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Transient and Steady-State Analysis of Multistage
Production Lines With Residence Time Limits
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Abstract— Residence time limits for the intermediate products
are commonly seen in production systems due to quality require-
ments. A part in a buffer typically needs to be scrapped or
reworked if its residence time exceeds the maximum allowable
residence time, while a part needs to keep waiting in the buffer
if its residence time is less than the minimum required residence
time. Such limits could be required at multiple stages of the pro-
duction line, making it difficult to analyze both the steady-state
and transient production system performance. The problem
under study is formulated as a multistage geometric serial
production line with residence time limits. To deal with its large
state space, a two-machine-one-buffer subsystem isolated from
a multistage geometric serial production line is first analyzed
for both steady-state and transient performance. Furthermore,
a novel aggregation method, including the steady-state analysis
and transient analysis, is proposed to evaluate the overall system
performance. The proposed aggregation method substantially
reduces the complexity of the problem and makes the analy-
sis of the problem tractable. Compared with the simulation,
the aggregation method maintains high accuracy in estimating
both steady-state and transient performance measures. Such a
method provides quantitative tools for effective performance
evaluation and prediction on the factory floor.

Note to Practitioners—It is well known that potential quality
problems may occur and production cost may increase if the
residence time of intermediate products is left uncontrolled.
The residence time limits become a concern, especially in the
automotive industry, food industry, and semiconductor industry,
where intermediate products stay in a stage susceptible to defects.
The limits also apply to large scale additive manufacturing of
thermoplastic polymers. The deposition of each layer is subject to
lower and upper bounds of surface temperature, which, in prac-
tice, are equivalent to minimum required residence time limit
and maximum allowable residence time limit, respectively. With
residence time considered, the size of state space for the overall
production system model will grow exponentially, as the system’s
size increases, which brings tremendous challenges to evaluate
such a system both in the short term and in the long run. In this
article, we introduce a novel modeling approach for a multistage
geometric serial production line with residence time limits and
propose a method that drastically reduces the complexity of the
system. Such a method provides a quantitative tool to effectively
evaluate the performance of multistage geometric lines with
residence time limits.

Index Terms— Aggregation method, multistage production
lines, residence time, transient analysis.
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NOMENCLATURE

Number of machines in multistage line.
ith machine of multistage line.

First machine of subsystem.

Second machine of subsystem.

State of machine m‘?“b in subsystem.
Failure probability of machine m; in multi-
stage line.

Failure probability of machine m?“b in
subsystem.

Repair probability of machine m; in multistage
line.

Repair probability of machine m" in
subsystem.

ith buffer in multistage line.

Buffer in subsystem.

Capacity of buffer B;.

Capacity of buffer B.

Buffer occupancy for buffer B.

Minimum required residence time for
buffer B;.

Minimum required residence time for
buffer B.

Maximum allowable residence time for
buffer B;.

Maximum allowable residence time for
buffer B.

Residence time of the ith part in buffer B.
Starvation probability of machine m; in
cycle t.

Starvation probability of machine m3*®.
Blockage probability of machine m; in cycle 7.
Blockage probability of machine mS5™.
Probability that machine m}" that is up in one
cycle is still up in the next cycle.

Probability that machine m}" that is up in one
cycle is down in the next cycle.

Probability that machine m,S(“b that is down in
one cycle is up in the next cycle.

Probability that machine m,S(“b that is down in
one cycle is still down in the next cycle.

Probability for state in
cycle t.

Conditional probability that the second part in
buffer B has residence time 7, given that there
are n parts in buffer B and the first part in

buffer B has residence time 7.

1545-5955 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ASU Library. Downloaded on July 16,2021 at 00:40:17 UTC from IEEE Xplore. Restrictions apply.



WANG AND JU: TRANSIENT AND STEADY-STATE ANALYSIS OF MULTISTAGE PRODUCTION LINES WITH RESIDENCE TIME LIMITS 123

I. INTRODUCTION

N PRODUCTION systems, residence time typically refers

to the time that a part spends in a buffer before entering
the next machine. Such time is usually subject to certain
limits, including both upper and lower limits, to make sure
the requirement of product quality is met. For instance, in the
food industry, the perishability of food is often considered
[1], [2]. There are time limits for intermediate products in
every processing stage from raw materials to final prod-
ucts. These requirements need to be met for products like
yogurt, beer, and bread [3], [4]. In semiconductor manufac-
turing, residence time limits also receive substantial attention
[5]-[7]. The time that a wafer stays in a process module of
a cluster tool is subject to limits to prevent the wafer from
being premature or defective. Residence time limits can also
be observed in battery production as well [8].

The rapid development in information and communication
technologies makes it possible to monitor and control pro-
duction systems with residence time limits in real-time [9].
Each part carries its individual process information, such as
residence time [10]-[12]. Therefore, the residence time of
each part in the buffer could be captured in real-time so as
to determine the usability of the part—whether to be sent
downstream or scrapped. In addition, machines and material
flow could be controlled to increase system throughput and
reduce wastes due to scrap. How to develop an analytical
method for evaluating the performance of such a complex
system becomes a central problem.

Early works study residence time limits mainly on a
two-machine serial production line and do not yet extend
the analysis to a large-scale problem with more than two
machines [8], [13]-[15]. To analyze a multistage geometric
serial production line with residence time limits, we take a
two-machine-one-buffer subsystem, isolated from the multi-
stage geometric serial production line, as a building block, and
develop a Markov chain model to analyze the subsystem first.
An approximate method to model residence time is introduced
to reduce the size of the state space of the subsystem. In addi-
tion, based on the analysis of two-machine-one-buffer sub-
systems, the aggregation method is applied to obtain both the
steady-state and transient performance of a multistage geomet-
ric serial production line with residence time limits. Validated
by simulation experiments, the proposed aggregation method
maintains high accuracy in estimating both steady-state and
transient performance measures. The main contribution of
this article is twofold. One is the approximate method to
model a two-machine-one-buffer subsystem, which makes the
analysis of a two-machine-one-buffer subsystem efficient and
also provides a building block for the aggregation method.
The other is the aggregation method, which evades the direct
modeling for multistage geometric serial production lines with
residence time limits. Instead of defining virtual machines
like the early work for the aggregation method [16], we use
starvation probabilities and blockage probabilities to support
the iteration of the aggregation method without modifying
parameters of machines and buffers in each iteration, which
increases the flexibility of the aggregation method to deal with
systems with large state space.

The remainder of this article is structured as follows.
Section II reviews the related literature. Section III intro-
duces assumptions and formulates the problem. In Section IV,
we present the approximate modeling for a two-machine-
one-buffer subsystem. In Section V, the aggregation method
is proposed to estimate both the steady-state and transient
performance of a multistage geometric serial production line
with residence time limits. The accuracy of the proposed
aggregation method is investigated in Section VI. Finally,
conclusion and future directions are provided in Section VII.

II. LITERATURE REVIEW

The terms, deterioration and perishability, are widely used
to represent the feature of the maximum allowable resi-
dence time limits [17], and they were initially applied to
blood banks [17]-[20]. There is plenty of research working
on classification and modeling on the maximum allowable
residence time limits. A product may become obsolete after a
certain time, or it may be decaying continuously [21]. For the
decaying case, the deterioration can be age-dependent ongoing
deterioration or age-independent ongoing deterioration [21].
Amorim et al. [3] and Pahl and Vof3 [17] provide several
classifications to deal with perishability. Those studies on res-
idence time limits primarily focus on the maximum allowable
residence time. In this article, we consider both minimum
required residence time and maximum allowable residence
time as residence time limits and define the limits by constant
thresholds without considering continuous decay.

Failures of machines may occur randomly and influence
the performance of production systems [22]—[24]. Research on
residence time limits is conducted on serial production lines
under the uncertainty of machine reliability. One direction is
to estimate and utilize the probability distribution of residence
time, and those studies help design buffer capacity to reduce
the defective rate [25]-[27]. However, defective parts in those
production systems can only be detected at the end of the pro-
duction line, and thus it wastes resources to process defective
parts. Naebulharam and Zhang [28] evaluate Bernoulli serial
production lines with deteriorating product quality by defining
the quality buy rate for a buffer, and a part is removed from the
system immediately after it is detected to be defective. Another
direction to study residence time limits is to take residence
time as a constraint into modeling. Ju et al. [15] evaluated
the two-machine Bernoulli line with perishable intermediate
products, and Ju et al. [14] further studied the production
control of the two-machine Bernoulli line. Kang et al. [8]
and Wang er al. [13] extended the analysis from a Bernoulli
machine to a geometric machine, which, practically, is a more
general reliability model. When residence time is considered
in modeling, the state space can become too large to perform
analysis. Kang et al. [8], Wang et al.[13], andJu et al. [14],[15]
use approximated methods to model residence time.

The aggregation method provides a framework to approx-
imately evaluate multistage serial production lines. Li and
Meerkov [22] proposed the aggregation method to estimate the
steady-state performance measures of multistage Bernoulli ser-
ial production lines. Zhang et al. [29] extended the aggregation
method to perform transient analysis for multistage Bernoulli
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Fig. 1. Multistage geometric serial line with residence time limits.

serial production lines. Lee and Li [30] and Lee et al. [31]
studied Bernoulli serial production lines with waiting time lim-
its through the aggregation method. In those studies, a virtual
Bernoulli machine is created in the analysis of multistage serial
production lines with Bernoulli machines. Chen et al. [16]
applied the aggregation method to geometric serial production
lines by defining virtual geometric machines. In this article,
each machine is assumed to be a geometric machine. Instead of
defining virtual geometric machines, we use starvation prob-
abilities and blockage probabilities to model the connection
of neighboring two-machine-one-buffer subsystems without
modifying parameters of machines and buffers. Such an aggre-
gation method is flexible and easily applied to geometric serial
production lines with residence time limits.

III. PROBLEM FORMULATION

For simplicity purposes, the term “multistage line” is used
to represent a multistage geometric serial production line with
residence time limits for the rest of this article. The multistage
line under study is shown in Fig. 1. Raw materials enter
machine m to be processed and continue to flow downstream
until they finish the process in machine mp or get scrapped
from a buffer. The following assumptions define the machines,
the buffers, and their interactions.

1) The multistage line consists of D machines (denoted
by my,my,...,mp) and (D — 1) buffers (denoted by
B\, B>,...,Bp_1), where D > 2.

2) All machines are synchronized with a constant process-
ing time (cycle time), which is the time to process a
part.

3) Machines are subject to failures, and their reliability
models are independent. The reliability model for each
machine follows a geometric distribution. Specifically,
if machine m; is up in cycle (k—1), it will still be up with
probability (1 — p;) and down with probability p; during
the kth cycle, for i = 1,2,...,D, and k = 2,3,...
If machine m; is down in cycle (k—1), it will be up with
probability r; and down with probability (1 —r;) during
the kth cycle, for i = 1,2,...,D, and k = 2,3,...
Here, p; and r; are defined as the failure probability
and repair probability, respectively, fori = 1,2,..., D.
The machine efficiency of machine m;, denoted by e;,
is represented by e¢; = (r; /(r; + pi)).

4) Buffer B; has a finite capacity N; (I < N; < 00), for
i =1,2,...,D — 1. First-in-first-out (FIFO) policy is
assumed regarding the buffer outflow process.

5) The maximum allowable residence time for
parts in buffer B; is characterized by 7;max, for
i =1,2,...,D — 1, counted as the number of cycles.

A part in buffer B; will be scrapped immediately at the
beginning of the cycle when its residence time reaches
T;max- Let Tjmax > N;, otherwise N; has no effect on
the system.

6) The minimum required residence time for parts in buffer
B; is denoted by T; min, fori =1,2,..., D —1, counted
as the number of cycles. A part is allowed to leave buffer
B; and enter machine m;,; only when its residence time
reaches or exceeds 7; min.

7) Machine m;, fori =1,2,..., D — 1, is blocked during
a time slot, if at the beginning of the cycle: 1) machine
m; is up; 2) buffer B; is full; 3) machine m;;; does not
produce a part in this cycle due to machine failure or
blockage; and 4) there will be no part scrapped from
buffer B; at the beginning of the next cycle. Machine
mp is never blocked. In addition, block-before-service
policy is assumed.

8) Machine m;, fori =2,..., D, is starved during a time
slot, if machine m; is up and no part in buffer B;_; has
residence time greater than or equal to 7;_; min. Machine
m is never starved.

The problem to be studied is to develop a method under
assumptions 1-8 to evaluate both the steady-state and transient
behaviors of the multistage line. Specifically, the system
behavior of a multistage line is described by performance
measures defined as follows.

1) Production Rate, PR;(t), fori = 1, ..., D: The expected
number of parts produced by machine m; in cycle ¢.

2) Overall Production Rate, PR(t): The expected number
of parts produced by the multistage line in cycle ¢.

3) Overall Consumption Rate, CR(t): The expected number
of parts that enter the multistage line in cycle 7.

4) Scrap Rate, SR;(t), fori =1, ..., D — 1. The expected
number of scrapped parts from buffer B; in cycle 7.

5) Overall Scrap Rate, SR(t): The expected number of
scrapped parts from the multistage line in cycle .

6) Work-in-Process, WIP;(t), for i = 1,...,D — 1: The
expected number of parts in buffer B; in cycle 7.

7) Overall Work-in-Process, WIP(t): The expected number
of parts in the multistage line in cycle z.

8) Starvation Probability, pi(t), for i = 1,...,D: The
probability that machine m; is starved in cycle ¢, when
machine m; is up.

9) Blockage Probability, pl-b(t), for i = 1,...,D: The
probability that machine m; is blocked in cycle 7, when
machine m; is up.

For a multistage line, the overall production rate is equal to
the production rate of the last machine, and thus we have
PR(t) = PRp(t) for all t. The overall consumption rate
is equal to the production rate of the first machine, so we
have CR(t) = PRy(t) for all ¢. Scrap occurs in each buffer
in the multistage line. Thus, the overall scrap rate is the
summation of scrap rates of all buffers. Similarly, the overall
work-in-process is the summation of work-in-processes of all
buffers. Thus, we have SR(r) = Zi';_ll SR;(t) and WIP(t) =
Zi':l WIP;(t) for all . By assumptions 7 and 8, we have
pi(t) =0 and pr(t) =0 for all 7.
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Fig. 2. Two-machine-one-buffer subsystem.

IV. TWO-MACHINE-ONE-BUFFER SUBSYSTEMS

A. Model Formulation

The multistage line cannot be modeled directly using a
single Markov chain due to its large state space. For instance,
for a multistage line with ten machines, nine buffers, buffer
capacity being N; = 6 and maximum allowable residence
time Tjmix = 8 for i = 1,2,...,9, the total number of
system states is as large as 3.5 x 10>*. Alternatively, we start
with a simple two-machine-one-buffer subsystem with a much
smaller state space as shown in Fig. 2, which plays a role
as a building block for the performance evaluation of the
multistage line later. In the rest of this article, we will simply
use the term “subsystem” to represent the two-machine-one-
buffer subsystem.

A subsystem consists of two machines (denoted by m5"" and
m%“b) and a buffer (denoted by B). Similar to a machine in a
multistage line, machine m$™ in a subsystem is characterized
by failure probability p"° and repair probability rf“b, for
i = 1,2. Buffer B is described by its maximum allowable
residence time Ti,x, minimum required residence time Tiyip,
and buffer capacity N. A subsystem, isolated from a multistage
line, is influenced by its upstream buffer through starvation and
its downstream buffer through blockage. In order to cope with
such effects, we use two probabilities, starvation probability
p* and blockage probability p?, to model the starvation from
the upstream buffer and the blockage from the downstream
buffer. Specifically, p® presents the probability that starvation
occurs to machine m$" when machine m$*™ is up. p’ denotes
the probability that blockage occurs to machine m$™ when
machine m5™ is up.

To analyze a subsystem, we include only residence time of
the first part in buffer B in the state, instead of recording
residence times of all the parts. The rest of the residence
time is then estimated using approximation. The detail of
the approximate method is discussed in Section IV-C. Let
n € {0,1,..., N} denote the buffer occupancy in buffer B.
71 € {0, 1, ..., Thax — 1} denotes the residence time of the first
part in buffer B. We denote the states of machines m$" and
m$™ by s{"* and s3'°, respectively. Specifically, s;"* = 1 means
that machine m‘f-“b is up, and sl‘?“b = 0 means that machine m‘?“b
is down. Then, the system state of a subsystem is represented
by (n, 71, 5}, s5*®). For the same example mentioned above
with 3.5 x 10 states, the number of states of the approximate
model for each subsystem is 136. The size of the state space

for a single model to be analyzed is significantly reduced.

B. Transition Equations

Based on the states of subsystems, the transition equations
can be constructed. Let x(n, 71, s3°°, s5"°, t) denote the prob-
ability of state (n, 71, s3"°, s5°°) in cycle 7. Let Pif];) denote
the conditional probability that the state of machine mi“b is j
given that its state is i in the Previous cycle, for i, j =0, 1
and k = 1,2. Specifically, P\ = 1 — pi*®, P{") = ppb,
P =i, and Py = 1 —ri®, for k = 1,2. We introduce
the operator @ (n, 71, 72), which is defined as the conditional
probability that the second part in buffer B has residence time
7, given that there are n parts in buffer B and the first part
in buffer B has residence time 7;. The method to estimate
®(n, 71, 1) will be introduced in Section IV-C in detail. Let
us consider the state (l,i,sf“b,s?‘b) in cycle (t + 1), for
1 <i < Tpax — 1 and s?“b, sé“b = 0, 1. There is one part in
the buffer and its residence time could be any feasible value
except 0. The transition equation for state (1, i, si“b, 55%°) can

be expressed as

x(l, i sf“b, sS“b, t+ 1)

=x(1,i —1,0,0,1)PV, P@

.sub sub
0,53 0,53

+x(1,i —1,1,0,5)p* P, P

1y 7 0,55

+x(1,i —1,0,1,1)p? PV

0,570
+x(Li = L1, L0 p p P PP L (= Tain)

1s3eb
+x(1,i —1,0,1, 1) PV PP 1 (T + 1 — 1)

P21+ (i — Thnin)
202

0,53 13
. s () 52 A .
tx(Li = 1,11, 0)p P P2 I (Toin + 1 — )
Tinax —2
. N ) p2) ..
+ Z X(Z,],O, 1,1)(1_]7 )PO,S?ubPljS;ub(D(29]:l_l)
Jj=max(i, Tmin)
Tinax =2
. r b (@) 2) .o
+ Z x(2, J> 19 1’ I)PY(I_p )Pl,.YTUhPI,g-;“b(I)(z’ J>1 _1)
Jj=max(i, Tinin)

+x(2, Tyax — 1,0,0,1) P, PP

b sub
0,5{% 7 0,s3"

D2, Thax — 1,i — 1)

32, Tnax = 1, 1,0,0)p° P P @2, T — 1 = 1)

(2, Tnax = 1,0, 1) Py P @2, T — 1i = 1)

02, T = L1 L 0P P PG @R, T — 1i = 1)
1)

where 1y+(x) is an indicator function. 1y+(x) = 1 if x is an
positive integer (x € NT), and 0 otherwise. Similar to (1),
transition equations for all the other states can be formulated
as shown in the Appendix.

C. Approximation of Residence Time

The operator ®(n, 71, 72) is used in (1) for approximation
of residence time. The operator ®(n, 71, 75) is first proposed
in [15] and first applied to geometric serial line in [8]. How-
ever, the first machine of a subsystem studied in this article
can be starved, and the operator ®(n, 71, 75) is influenced by
starvation from the upstream buffer. Thus, the method that
derives ®(n, 71, 72) in the literature cannot be directly used.
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A method that derives ®(n, 71, 75) by taking starvation into
consideration is provided in what follows.

Given current time 7 and residence time of the first part 7y,
we denote the state sequence of machine m$™ from cycle (t —
71—1) to (t—1) by a (71 +1)-dimension Vector V. Specifically

s —1) ()

where s3"°(i) is the state of machine m$™ in cycle i. Denote
by y (V) the probability that a sequence V occurs

V= (s — 1 — 1), 570 — ).,

ub

7
— (1)
y (V) - H Psf“b(l—rl—2+i),sf”b(t—r1—l+i)' (3)

Since starvation may occur to machine m$*™, it is possible that

no part is produced by machine 5" durlng one cycle even
though machine m?“b is up. Therefore, we define the (z; 4 1)-
dimension vector W as a sequence for production of machine
m$*. Specifically

W:(wl(t—rl—1),w1(t—11),...,w1(t—1)) 4)

where w;(i) = 1 represents that m{"® produces a part in
cycle i, and O otherwise. Then, we have w1 (i) < s$°°(i) for
any i. The probability that a sequence W occurs can be derived
from the sequence V. Given W defined by (4), define C to be
a collection of all V that can result in W. Specifically

1 —1}

We denote by I'(W) the probability that a sequence W occurs.
Then, I'(W) can be expressed as

Sy

veC

where k = 372, (5*(0) — w1 (i),

We define a set, denoted by .A, that consists of all possible
W that satisfies w;(r — 7y — 1) = 1 and Z"H w(t—1i) =
n. Similarly, let B be a set that contains all possible W that
satisfies w (—71—1) = 1, w1 (t—1,—1) = 1, and > 72, w (1 —
i) =n — 2. Specifically

71+1
A= [W‘Un(l—‘[l -1 = 1,Zw1(l—i) :}’l}

i=1

C={VIw@) <s\™G),i=t—1—1,...

r(w) = —p)" (6)

B = iW‘U)](l‘—Tl—l):l,wl(l‘—Tz—l):l,

)
Zwl(t—i) =n —2}.
i=1
Then, the operator ®(n, 71, 73) can be estimated as follows:

ZWEB F(W)
ZWEA F(W)

where the denominator is the probability that buffer occupancy
is n and residence time of the first part is 7;, while the
numerator represents the probability that buffer occupancy
is n, residence time of the first part is 7|, and the residence
time of the second part is 7,.

(D(I’l,‘L'l,TQ) = (7)

D. Performance Measures of Subsystems

The estimated performance measures of a subsystem, for ¢ €
N+ U {oo} include productlon rate PR™ (t) consumEtlon rate

CR™ (t) scrap rate SR (t) work-in-process, WIP (t) star-
vation probablhty ST™ (t) and blockage probability BL" (t)
Given p*, p’, and x(n, 71, s*°, s3 sub 1), the performance mea-
sures are estimated in (8)—(13).

The estimated production rate f’??sub(t) is the expected
number of parts the subsystem produces in cycle 7. It is equal
to probability that machine m5™ is up, there is at least one
part in the buffer with residence time equal to or greater

than T, and machlne m}“b is not blocked. The estimated
consumption rate CR™ (t) represents the expected number of
parts that enter the subsystem in cycle 7. It is equivalent to the
probability that buffer is not full and machine m$™ produces
a part. §I\QSUb(t) denotes the estimated number of scrapped
parts from the subsystem in cycle ¢. It can be calculated
as the probability that residence time of the first part in the

buffer reaches (Tjnax — 1) but machine m%“b is not able to

produce due to machine failure or blockage. V/VFWb (t) denotes
the estimated number of parts in buffer B in the subsystem
in cycle t. §TSUb(Z) and ﬁsub(t) are starvation probability
of machine m5*™ and blockage probability of machine m$™,
respectively. The denominator of (12) presents the probability
that machine m%“b is up, and the numerator is the probability
that machine m5™ is up and the buffer is empty. Similarly,
the denominator of (13) is the probability that machine m3"®
is up, and the numerator is the probability that machine m$"

is up and the buffer is full.

V. MODELING MULTISTAGE LINE USING
AGGREGATION METHOD

For a production line with multiple stages, the state space is
typically too large to directly perform analysis. Alternatively,
the aggregation method is typically pursued to estimate the
performance measures of a multistage line based on the
analysis of all its subsystems. The aggregation method for
the multistage line consists of the steady-state analysis and
transient analysis, which are to be introduced in this section.

A. Steady-State Analysis

For a multistage line in the steady state, the state probability
of each state keeps unchanged, the starvation probability and
blockage probability of each machine become constant, and
the expected performance measures do not vary with time.
Given system parameters, the steady-state analysis is aimed at
obtaining performance measures introduced in Section III for
=00

When a multistage line is in the steady state, each subsys-
tem, isolated from the multistage line, is also in the steady
state. It means that the starvation probability p* and the
blockage probability p? for any subsystem do not change with
time. The steady-state probability x(n, 71, s{*, 55", 00) for all
(n, 71, $3°, 55"°) can be obtained via transmon equations such

as (1). Thus the performance measures PR™ (oo) CRSUb(oo)
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a5 sub ——sub Se=sub == sub

SR™ (00), WIP  (0), ST (o0), and BL™ (00) can be calcu-
lated by (8)—(13), as shown at the bottom of this page. By the
analysis of subsystems with pi(oo) and p; b(c0) known, for
i=1,...,D, PRSUb(oo) of the (i — 1)th subsystem can be the
estimate of PR;(o0) fori =2,...,D. CR™" (oo) of the first

subsystem can be the estlmate of PRl(oo) Let SR;(c0) and

WIP;(0c0) be SR™ (oo) and WIP (oo) of the ith subsystem,
respectively, for i = 1,..., D — 1. Then, PR(c0), CR(00),
SR(00), and WIP(00) can be derived.

The aggregation method provides iterative procedures to
estimate p; (co) and pl-b(oo) fori =1,..., D, shown in Fig. 3.
In each iteration, a backward aggregation and a forward
aggregation are performed. We start with the first iteration.
By Assumptions 7 and 8, we have pj(c0) = 0 and p? (c0) =
0. We set the initial p;(c0) to be O fori =2, ..., D and initial
pib(oo) tobe O fori=1,...,D — 1.

1) Backward Aggregation: The first iteration starts from the
backward aggregation, shown in Fig. 3(a). We first take
machine m p_;, machine mp, and buffer Bp_; to form a
subsystem. In the subsystem, the parameters of machine
m$", machine m3", and buffer B are the same as the
parameters of machine mp_;, machine mp, and buffer
Bp_1, respectively. The values of p},_,(co) and plz) (00)
of the multistage line are assigned to p* and p” of the
subsystem, respectively. With all the parameters for a
subsystem ready, the steady-state performance measures
of the subsystem can be obtained. The steady-state
blockage probability BL" (oo) of the subsystem is used
to update the value of p% ,(cc) in the multistage line.
After this step, a new multistage line is created with

the number of machines reduced by one, the number
of buffers reduced by 1, and the blockage probability
ph_,(c0) updated. Then, the process continues by tak-
ing machine mp_,, machine mp_;, and buffer Bp_,
from the new multistage line to form a subsystem.
Continue the process until the number of machines is
reduced to be one and all the blockage probabilities
pY(c0), fori =1,..., D — 1, are updated.

2) Forward Aggregation: Similar to the backward aggrega-
tion, the forward aggregation takes two machines and
one buffer to form a subsystem but starts from the left
side of the multistage line, shown in Fig. 3(b). We first
take machine m, machine m,, and buffer B; to form
a subsystem. The parameters of machine m, machine
my, and buffer B; of the multistage line are assigned
to machine m}“b, machine m““b, and buffer B of the
subsystem, respectively. p® and p® of the subsystem
are assigned the values of pj(co) and pé’(oo) of the
multistage line, respectively. By performing analysis
on the subsystem we obtain the steady-state starvation
probability ST™ (oo) which is then used to replace
p5(00) of the multistage line. After the step, a new
multistage line is created with the number of machines
reduced by one, the number of buffers reduced by one,
and the starvation probability p3(oo) updated. Continue
the process until the number of machines is reduced to
be one and all the starvation probabilities p;(c0), for
i=2,...,D, are updated.

An iteration is finished when both one backward aggregation
and one forward aggregation are completed. The estimated

Tinax —1

D)3 YD W

n=1 ry=max(n—1,Ty) s}*>=0

PR™ (t)— 1—

1
CR™ () = (1—p) [ D (0,0, 1,53, 1) +
5510=0

-y

(n, 71,5, 1,1) (8)

Toax—1 1

2. 2.

sub
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T

— s x(N, 1, 1,0,8) + T"‘i‘ x(N, 7,1, 1,1t
BL‘Ub(t) _ Z N px( 1 ) P’ N 3 x( 1 ) (13)

232 Ox(O 0,1 SZDt)'i_Zn 1

Tnax—1
71=n—1

zszzox(’l, Tl) 1, 529 t)

Authorized licensed use limited to: ASU Library. Downloaded on July 16,2021 at 00:40:17 UTC from IEEE Xplore. Restrictions apply.



128 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 1, JANUARY 2021

Pokoe) - — —Ppfes

Pl i) “_Cﬁ-(» IF€ Poa(o )I pn $>

Boa Mb1 BD 1 o
Scrap Scrd[p_ Serap
Extract a sub-system
mb sub
Scrap
Aggregation Update pg_l(oo)
o Poa(®)  — —
Pi(x p1(°°) pz | purr(w)l
ss e —> I
Bo- mp-1
Scrap Scrap
(@)
b
(00) (00) Pl PD 1(0) Pu( )
I see I I
i m \ Bool mpi Bpa
\ Scmp ‘ Scrap Scrap
Extract a sub-system
Aub _mb
Scrap
Aggregation Update psz(oo)
= Poa) o),
pz(w) pz(w) Ppa(®) Pp()
ma Bp2} mpi Bpa mp
Scrap Scrap

(b

Fig. 3.  Steady-state analysis of the aggregation method. (a) Backward
aggregation. (b) Forward aggregation.

steady-state performance measures can be obtained after sev-
eral iterations. The pseudocode for the aggregation method
is shown in Fig. 4. Lines 1 and 2 are to initialize starvation
probability and blockage probability. The iterative procedures
of the aggregation method are represented by the loop from
lines 4 to 19, among which the backward aggregation is given
by the loop from lines 5 to 11 and the forward aggregation
is given by the loop from lines 12 to 18. The function that
appears in lines 9 and 16 transfers the parameters into the
transition matrix by (1) and outputs starvation probability and
blockage probability by (12) and (13), respectively.

B. Transient Analysis

With the system parameters and initial system state
known, the transient analysis is aimed at obtaining transient

1: Initialize pf(c0) =0,4i=1,---,D
2: Tnitialize pY(c0) =0,i=1,---,D
3: Determine the total number of iterations: iter

4: for j = 1,iter do > Iterations

5 for k=1,D—1do > The backward aggregation
6 l=D—k > Set index
7: m=D—-k+1

8 I= |:pl1T‘lvp?(oo)vpmrrmvpin(oo)le,maszl,minaNl]

9 [é\Tsub(oo),J/B.Esub(oo)] = getSubPerformance(I)
10: p(o0) = BL™(c0) > Update blockage probability
11: end for
12: for k=1,D —1 do > The forward aggregation
13: =k > Set index
14: m=k+1
15: 1= (pt,71,7(00), P, T D (09), T Thmins N )
16: [ﬁsub(oo),ﬁfsub(oo)] =getSubPerformance(I)

17: 5, (00) = ST (c0) > Update starvation
probability

18: end for

19: end for

Fig. 4. TIterative procedures of the steady-state analysis.
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Fig. 5. Multistage line is decomposed into subsystems for transient analysis.

performance measures introduced in Section III for ¢ € N*,
To perform a transient analysis of a multistage line,
we first decompose a multistage line into several subsystems.
Fig. 5 shows the decomposition, where any two neighboring
machines and the buffer between the two machines are isolated
to form a subsystem. A multistage line with D machines and
(D — 1) buffers is decomposed into (D — 1) subsystems.
The subsystem that consists of machine m;, machine m; i,
and buffer B; is denoted by SS;, fori = 1,...,D — 1.
In the transient analysis, the starvation probability p°® and the
blockage probability p? for a subsystem change over time,
and each subsystem is modeled to be a time-varying Markov
chain. The objective of the transient analysis is to capture the
time-varying transition matrix of each subsystem over time so
that the transient behavior of both subsystems and the whole
multistage line can be predicted.
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1: Initialize X;(1),i=1,---,D—1
2: Obtain pi(1),i=1,---,D
3: Obtain p?(1),i=1,---,D
4: Set the length of time: T'
5: for j=1,T—1do
6: for k=1,D —1 do > Update state probability
7: l=D—-k > Set index
8: m=D-k+1
9: 1= |:pl7 Tl7pl5(j)7pm7 T’ITHp?n(j)? Tl,maaca Tl,min7 Nl]
10: Qi(4) = getTransition(I)
1 Xi(j+1) = Xi(5)Qu(5)
12 end for
13: for k=1,D —1do > Update starvation and
blockage probabilities
14: l=D—-k > Set index
15: m=D—-k+1
16: Update pS, (5 +1) and p}(j + 1) from X;(j +1)
17: end for
18: end for
Fig. 6. Procedures of the transient analysis.

Let X;(r) denote the row vector of state probabilities of
subsystem SS; in cycle ¢, fori = 1,..., D—1. We denote the
transition matrix of subsystem SS; in cycle r by Q;(¢). The
pseudocode for the transient analysis is shown in Fig. 6, which
provides procedures to use the time-varying transition matrices
of subsystems to perform a transient analysis of the multistage
line. Given the initial state of a multistage line, the initial states
of its subsystems are determined. It further determines the state
probability X;(1) for i = 1,..., D — 1, which is initialized
in line 1. With X;(1) for i = 1,..., D — 1 known, p;(1)
and pf’(l) for i = 1,..., D can be obtained. A loop from
lines 5 to 18 is then to calculate the transient system state
probability of the multistage line from cycle t = 1 to cycle
t = T. There are two loops inside the loop. The first loop
from lines 6 to 12 is to update the state probabilities of each
subsystem, and the second loop from lines 13 to 17 is to update
the starvation probabilities and the blockage probabilities.
Line 10 is a function to transfer system parameters to the
transition matrix of a subsystem. The update in line 16 can
be achieved by (12) and (13). When the calculation for all the
loops is completed, the state probabilities and performance
measures of each subsystem (from SS; to SSp_;) for each
cycle (from r+ = 1 to t = T) are obtained. Then the tran-
sient performance measures of the entire multistage line are
derived.

C. Comparison Between Steady-State and Transient Analysis

The steady-state analysis is aimed at long-term performance.
When the system reaches steady state soon and stays in steady
state for a long time, the production during the transient
stage is negligible. The long-term performance obtained from
the steady-state analysis can be used to estimate production
capacity, make the production plan, and conduct continuous
improvement. Transient analysis is required, when produc-
tion operates partially or entirely in the transient regime for

TABLE I
PARAMETER SETTING FOR ILLUSTRATIVE EXAMPLE

i T 2 3 4 5 6 7 8
e 062 075 085 073 068 091 081 072
ri 035 044 037 024 027 035 029 046
N; 5 6 7 7 7 5 6 6

Timaz 8 8 10 10 8 7 9 9

Timin 1 1 2 2 1 1 2 1

reasons such as long cycle time, disruptions, etc. The system
performance is not stable in the transient stage and may
be increasing, decreasing, or fluctuating in this stage. The
transient analysis is aimed at capturing such dynamics. For
a simple discrete-time Markov chain, system transition can
be represented by a transition matrix. Steady-state analysis
and transient analysis can be performed by manipulating the
transition matrix. However, there is no single matrix that can
model system transition for a multistage line, and thus the
aggregation method is proposed to address the problem.

The procedure for steady-state analysis and the procedure
for transient analysis are different from several aspects. First,
it is assumed that there exist constant starvation probabil-
ity, blockage probability, and steady-state probabilities in
steady-state analysis, while in transient analysis those prob-
abilities change over time. Second, starvation probability and
blockage probability for each subsystem are unknown and
initialized to zero in steady-state analysis, whereas the two
probabilities are initially known from the initial system state
in transient analysis. Third, the loop from lines 4 to 19 in Fig. 4
represents the iterative procedure for steady-state analysis,
and it converges from performance measures under the initial
setting to the performance measures in a steady state. The
intermediate measures in the iterative procedure have no
physical meaning. In contrast, the loop from lines 5 to 18
in Fig. 6 is to obtain transient behavior. For any j in the
loop, transient starvation probability, blockage probability,
state probabilities and performance measures for cycle (j +1)
are derived. Fourth, the number of iterations for both methods
is different. The backward aggregation and forward aggrega-
tion are performed ifer times in steady-state analysis, while
there is only one backward aggregation in transient analysis.
Finally, the procedure of steady-state analysis cannot analyze
the transient behavior of a multistage line. In contrast, tran-
sient analysis can be used to obtain steady-state performance
measures by running for a sufficiently large number of cycles
as the system reaches a steady state, but such a way is not
computationally efficient.

VI. MODEL VALIDATION
A. Illustrative Example

To evaluate the accuracy of the proposed analytical method,
we compare the results obtained from the proposed analytical
method with simulation. A MATLAB program is constructed
to conduct a numerical experiment. We first consider a single
case with the parameters shown in Table 1.

Initially, all the machines are set to be up, and all the buffers
are set to be empty. Both steady-state analysis and transient

Authorized licensed use limited to: ASU Library. Downloaded on July 16,2021 at 00:40:17 UTC from IEEE Xplore. Restrictions apply.



130 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 1, JANUARY 2021

95% confidence interval
0.4 e 0.9 Simulation
P = = = Transient analysis
= 03 = 0.8 fl}mmmem Steady state analysis
& &
=02 © 07 k
0.1 0.6
0 0.5
0 50 100 150 0 50 100 150
t t
0.2 15
AR Ny
0.15
=10
Z 01 g
5 5
5
0.05
0 0
0 50 100 150 0 50 100 150

t t

Fig. 7. Comparison of performance measures from the aggregation approach
and simulation.

analysis of the aggregation method are performed. For the
steady-state analysis of the aggregation method, six iterations
are conducted to get the steady-state performance measures.
Simulation repeats 10000 times to obtain the average value
and 95% confidence interval of each performance measure
in each cycle. The result of the numerical study is shown
in Fig. 7. Simulated performance measures are plotted in blue
solid line, with the shaded area indicating the 95% confi-
dence interval. The red dashed lines represent the transient
performance measures obtained from the transient analysis
of the aggregation method. The green dashed-dotted lines
represent the steady-state performance measures obtained from
a steady-state analysis of the aggregation method. The result of
the experiment suggests that the proposed aggregation method
can capture both the steady-state and transient behaviors of the
multistage line accurately.

As is shown in Fig. 8, the blue solid lines represent the
steady-state performance measures obtained from the sim-
ulation, while the green dashed-dotted lines represent the
estimated performance measures after each iteration of the
aggregation method. The initial starvation probability and
blockage probability for each machine of the multistage line
are set to be 0, and the estimated performance measures
in iteration O in Fig. 8 represent the estimated performance
measures with the initial parameter setting. It is suggested
that the convergence can be achieved usually within three
iterations, and converging performance measures are close to
the true values.

B. Experiment With Random Parameters

To evaluate the accuracy of the proposed method in a
more general sense, the experiment with random parameters is
conducted. We compare the estimated performance measures
obtained through the aggregation method with the ones esti-
mated by the simulation. Let Ty be the threshold of time where
one can guarantee that the system in the simulation study can
reach the steady state, and let 7 denote the run length of
the simulation. We denote by PM(t) the true performance
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Fig. 8. Steady-state performance measures estimated in each iteration of the
aggregation method.

measures, like PR(t), CR(t), SR(t), and WIP(t), and they
represented by average performance measures of all repeats of
the simulation in cycle ¢. The true steady-state performance is
obtained as follows:

1 T
PM(c0) = 1 > PM(). (14)
st =T,

Denote the steady-state performance measures obtained
through the aggregation method by PR(c0), CR(c0), SR(c0),
and WIP(c0). The absolute errors of the estimated steady-state
performance measures, denoted by €pr(co), €Cr(oo)s €SR(o0) and
€WIP(s0)> are provided as follows:

€pmio) = |PM(00) — PM(c0)] (15)

where PM(c0) represents PR(c0), CR(c0), §I\((oo), and
WIP(00), and €pp(oo) TEPIESents €pr(so)s €CR(s0)s €SR(c0)» and
€wip(sc)- The relative errors of the estimated steady-state
performance measures are denoted by dpr(so), Ocr(00)» SR(c0)>
and Owp(ec)- Let dppr(ooy Stand for dpr(oc), Ocr(co)» OsR(c0)> and
Owip(sc)- The relative errors are defined as follows:

€PM(cc)
PM(c0)”

Let T;, be the time before which the transient behaviors of
the aggregation method and the simulation are compared.
The absolute errors of the estimated transient performance
measures are denoted by €pr(1), €cr), €srey) and ewp(). Let
epmy stand for €pr(y, €crq), €srey and €wrpy. The absolute
errors are defined as follows:

> |PMG) — PMG)|

T .
The relative errors of the estimated transient performance
measures are denoted by Jpgr(), dcr)» Osr(ry and Swip). Let

opm(@y stand for dpgry, dcr@y. dsrer) and Owipy. The relative
errors are defined as follows:

OPM(c0) = (16)

€pm@ry = (17)

€PM(1)

PM(od)" (18)

Opm(r) =
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Accuracy of the steady-state analysis. (a) Absolute error of overall
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Accuracy of the transient analysis. (a) Absolute error of overall

production rate. (b) Relative error of overall production rate. (c) Absolute
error of overall consumption rate. (d) Relative error of overall consumption
rate. (e) Absolute error of overall scrap rate. (f) Relative error of overall scrap
rate. (g) Absolute error of overall work-in-process. (h) Relative error of overall
work-in-process.

To test the aggregation method in both steady-state analysis
and transient analysis, the parameter settings are randomly
selected from the range shown as follows:

D e {4,5,6,7,8,9, 10}
e; €[0.60,0.99], fori=1,...,D
r; € [0.20,0.50], fori=1,...,D

N; € {5,6,7} fori=1,...,D—1
E,maxe{Ni+1,Ni+2,Ni+3} fori=1,...,D—1
Timin € {1,2}, fori=1,...,D—1. (19)

The number of machines is selected from the range
{4,5,6,7,8,9,10}, and this can cover a large number of
applications. Machine efficiency is commonly seen in the
range of [0.60, 0.99], from which the machine efficiency is
randomly chosen in the experiment. The selection of N and
T;min and T;max covers a large portion of applications. The
steady-state performance of a production system is worth

production rate. (b) Relative error of overall production rate. (c) Absolute
error of overall consumption rate. (d) Relative error of overall consumption
rate. (e) Absolute error of overall scrap rate. (f) Relative error of overall
scrap rate. (g) Absolute error of overall work-in-process. (h) Relative error
of overall work-in-process.

analyzing, when the buffer is capable of supporting a smooth
production, and the majority of parts are finally produced with
an acceptable quality. Thus, the repair probability is selected
from [0.20, 0.50]. For the experiments of steady-state analysis,
5000 random parameter settings are generated. In each para-
meter setting, the run length is 7 = 100000, and 40 runs are
carried out. The cycles after T, = 20001 are considered in the
steady-state analysis. In the transient analysis, 5000 parameter
settings are randomly selected. In each parameter setting,
the simulation runs 7" = 2000 cycles and repeats 10000 times.
In addition, we set Ty = 1001 and T;, = 400.

The accuracy of the steady-state analysis and transient
analysis is shown in Figs. 9 and 10, respectively. The overall
consumption rate can be estimated accurately. The median of
the relative error of the overall consumption rate is 0.81%
in both steady-state analysis and transient analysis, and the
relative errors are less than 2.0% for most cases. The esti-
mates of the overall production rate and work-in-process have
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higher errors. In most cases, it can maintain relative errors
smaller than 6%, which is also acceptable. The overall scrap
rate has the largest error. The median of relative error is 4.1%
for steady-state analysis and 3.9% for transient analysis. The
absolute error of the scrap rate is small, and the large relative
error is partially due to the small denominator. The experiment
with random parameters suggests that the proposed analytical
method, combining the approximate modeling of residence
time and the aggregation method, can estimate performance
measures of a multistage line in high accuracy.

Both the simulation and the aggregation method are devel-
oped with MATLAB and run on a computer with Intel(R)
Core(TM) i7-8700 CPU, 16-GB RAM, and 64-bit Windows
10 Enterprise operating system. The average time to perform
simulation for a parameter setting in the steady-state analysis
is 39.63 s, and it takes only 0.13 s on average to perform
steady-state analysis of the aggregation method. It shows that
the aggregation method is more efficient. In the transient
analysis, the simulation takes 219.11 s on average for each
parameter setting, and the aggregation method takes 27.36 s.
The transient analysis of the aggregation method takes more
time than the steady-state analysis, but it is still more efficient
than the simulation.

VII. CONCLUSION AND FUTURE WORK

In this article, we introduce a novel modeling approach
for both transient and steady-state performance evaluation of
multistage geometric serial production lines with residence
time limits. Specifically, to deal with the complexity of such
systems, a two-machine-one-buffer subsystem is defined, and
a Markov chain model is developed to analyze the subsystem.
The approximate modeling of residence time is applied to the
analysis of the two-machine-one-buffer subsystem to further
reduce the size of state space. The aggregation method is
then developed to evaluate the performance of a multistage
geometric serial line with residence time limits. Compared
with simulation, the proposed aggregation method is verified
to possess high accuracy in evaluating both steady-state and
transient performance. Such a method can provide production
engineers a quantitative tool to evaluate complex production
systems efficiently and accurately. Future work can be directed
to investigating real-time control policies that optimize such
a complex system by leveraging the developed modeling
approach in this article.

APPENDIX
REMAINING TRANSITION EQUATIONS IN SECTION IV-B

We start with the simple state (0, 0, s3°, 55*°) in the (t +1)-
th cycle, for s3"°,s5"° = 0, 1. It represents the system state
that the buffer is empty and the states for both machines
are sf“b and sgub, respectively. Transitions regarding state
(0,0, 53U, 55%°) in cycle # + 1 can be obtained using the

following equation:
x(O, 0, s?“b, sé“b, t+ 1)
= x(0,0,0,1,1)P", P?

sub sub
0,530 * 1550

+x(0,0,1,1,1)p* PV, P®

sub sub
150 41 g3

+x(0,0,0,0,1) P, P

.sub sub
0,53 0,53

+x(0,0,1,0,0)p* PV, P2

1,539 " 0,550
Tmax_2
»n p) pQ)
+ Z x(1,7,0,1, t)(l —-p )PO’S?ubPl’Szub
T1:Tmin
T =2
b\ p(1 2
n Z x(l, a1, t)ps(l —p )Pl,g)fubpl(,s);‘b

71=Thin
+.X(1, Tmax -
+'x(19 Tmax - 19 1’03 t)pSP(l) P(Z)

sub sub
1,30 40,530

+x(1, Toax — 1,0, 1,1)PD, P

sub sub
0,530 * 150

1,0,0,/)P", P®

sub sub
0,530 70, 53

+x(1, Tpax — 1, 1, 1, 1) p* PV PP

sub sub
1,50 1 g3

(20)

for s°, 550 =0, 1.

State (1,0, s{*®, s5®) in cycle 7 + 1, for s, s5%° = 0, 1,
represents the state that there is one part in buffer B and its
residence time is 0. It implies the part is produced by machine
m$* at the end of cycle 7. Thus, machine m$"™ must be up in
cycle ¢, and starvation does not happen to machine mi“b. The
system evolution for x (1, 0, sf“b, sgub, t+1) can be represented
as

x(l, 0, s?“b, sS“b, t+ 1)
=x(0,0,1,0,1(1 - p*) P, P

,Sf“b 0,3‘;“‘3

S 1 2
+x(0,0, 1, 1,)(1 = p*) Pk P,

Tmax_2
1 2
+ > (o LL(L=p) (1= p") Pl P
71=Thin
K 1 2
(1, Tnax = 1, 1,0,0)(1 = p*) Pk P
+x(1, Toax — 1, 1, L,1) (1 = p*) P P2, (1)
,87 1,53
for sjt®, s34 =0, 1.
The rest of the transitions are shown in the following:
x(j,j - 1,s?“b,s§“b, r+ 1)
. . 1 2
=x( = 1Lj =2 L0,0(1=p )PPl
(=L j =2 L L1 = p) Pl
X Pl(,zs)iub 1N+ (Tmin + 2 —_ ])
+x(—1Lj—=2,1,1,0(1—p")p"
X PV P2 1 (= 1 = Thnin)
Tmax_2
+ > x(Gi L Ln(1-p)(1-ph)
i=max(j—1,Tyin)
1 2 P
X Pf,s)lwh Pl(,s);uh O(j,i,j—2)
+x(, Toax = 1, 1,0,0) (1= p*) Py
X P2 ®(j, Tonax — 1 j = 2)
+x(J, Tmax — 1, 1, 1, t)(l — ps)
X P P @, o — 1, = 2) (22)
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for2 < j < N, and s*°,
(],l S?Ub, sub I+1)
1,1,0,0)(1—p )P“{ubp(z)

0, Asub

) P l(i.);ub 1(2)xub 1N+ (Tmm +1- )
) Pb P l(i.);ub 1(2)xub I+ (i — Tinin)

b _
s =0, 1

ZX(J—I,I—
+x(j—1,i—1, l,l,t)(l—ps
+x(j—1,i—1, l,l,t)(l—ps

+x(j, i =1,0,0,0P) L P2,

—l—x(j,i—l,O,l,t)P(l)wb 1(2)~uh1N+(Tmm+1 i)

+x(j,i—1,0,1,0)p" 0% P2 1o+ (i = Trnin)

+x(j,i—1,1,0, t)pSPI(’IS)TubP(ZWb

+x(j,i—1,1,1, t)pSPl(fS?;uh 1(2>mb1N+(Tmm+1 i)

+x(j,i—1,1,1,0)p° pbPl(’ls)Tuh l(z{ubll\H (i — Tnin)
Tnax—2

Y

k=max (i, Tin)
xPl(,IS)T.,b (z)thD(J, k,i—1)
+x(j, Tmax—1, 1,0, ) (1= p* )P(lmb
X P (s T — 1,1 1)
+x(f, Toax—1, L, L) (1= p

2 .
I(S)S“bq)(‘]’ max — 15l_1)
Tnax—2

DY

k=max (i, Tiin)
P(l)sub (2)subq)(.]+1 k l_l)

Tmi\x —2

DY

k=max (i, Tiin)
1 2
X Pl(’S)lwb 1( )~uhq)(.] +1,k,i— 1)

1,0,0,7)P"

0,s ~uh

x(j, k. 1, 1,0)(1=p*) (1= p")

)P(lsub

x(j+1,k,0,1,1)(1—p)

x(j+1,k,1,1,0)p* (1-p")

+x(+1, Thax—
(z)subd)(]—i—l Tomax—1,i—1)

+x(+1, Tnax—
X P @G+ 1, Toax— 1,0 = 1)

1,1,0,1)p° P“lm,

(1)
1» 05 15 t)PO,sf“b

+x(j+1, Tmax—

O(z)subd)(]—i—l Toax—1,i—1)
+xG+1, Tox—1,1,1,1)p° P“mb
x P @ +1, T —1,i 1) (23)
for2 <j<N-1,j<i<Tnx—

(N i sS“b S“b t+1)

:x(N—l,l—l,l,O,t)(l—
1,1,1,0(1-p )P“{uh (2{%1N+(Tmm+1 i)
w(N=1,i—1,1,1,1)(1-p*) p” P“{uh fi{ublw(z— Tmin)
+x(N,i—1,0,0, t)P‘lth‘zmh

1, and s, 55° = 0, 1

P P
+(N—1,i—

+x(N,i—
+x(N,i—

-
4x(N, Tmax—1, 1,0, t)(l—px
+x (N, Thmax—1, 1, 1, t)(l—p

+x(N,i—

10, 1,0 P PO e (T + 1)
1,0,1 t)p 0(1)~uh 1(2)xub1N+(l_ Tvin)

Tinax—

X(N, j, 1 L) (1=p*) (1=p") P

Jj=max (i, Tinin)

2
x PO, ji—1)

(1)
)Pmub
”{@<D(ﬁv Toax—1,i—1)

(1)
S) Pl,s?“b
1(2)sub (I)(N Tmax 5 i - 1)

1,1,0, t)P“{ubP(zm

(N, i=1,1,1 r)P“lm, 1‘2lub1N+(Tmm+1 i)

+x(N,i—1,1,1,1)p P“lm, (2)Sub1N+(z— Tinin)

for N <i < Typax —
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sub

1, and s} “’b—Ol

REFERENCES

Y. Li, F. Chu, Z. Yang, and R. W. Calvo, “A production inventory
routing planning for perishable food with quality consideration,” IFAC-
PapersOnlLine, vol. 49, no. 3, pp. 407412, 2016.

J. Wang, Y. Hu, and J. Li, “Transient analysis to design buffer capacity
in dairy filling and packing production lines,” J. Food Eng., vol. 98,
no. 1, pp. 1-12, May 2010.

P. Amorim, H. Meyr, C. Almeder, and B. Almada-Lobo, “Managing per-
ishability in production-distribution planning: A discussion and review,”
Flexible Services Manuf. J., vol. 25, no. 3, pp. 389-413, Sep. 2013.
G. Liberopoulos and P. Tsarouhas, “Reliability analysis of an automated
pizza production line,” J. Food Eng., vol. 69, no. 1, pp. 79-96, Jul. 2005.
S. Rostami, B. Hamidzadeh, and D. Camporese, “An optimal periodic
scheduler for dual-arm robots in cluster tools with residency constraints,”
IEEE Trans. Robot. Autom., vol. 17, no. 5, pp. 609-618, Oct. 2001.

F. Yang, N. Wu, Y. Qiao, M. Zhou, and Z. Li, “Scheduling of single-
arm cluster tools for an atomic layer deposition process with residency
time constraints,” /[EEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 3,
pp. 502-516, Mar. 2017.

C. Pan, M. Zhou, Y. Qiao, and N. Wu, “Scheduling cluster tools in
semiconductor manufacturing: Recent advances and challenges,” IEEE
Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 586-601, Apr. 2018.

N. Kang, F. Ju, and L. Zheng, “Transient analysis of geometric serial
lines with perishable intermediate products,” IEEE Robot. Autom. Lett.,
vol. 2, no. 1, pp. 149-156, Jan. 2017.

Y. Lu and F. Ju, “Smart manufacturing systems based on cyber-physical
manufacturing services (CPMS),” IFAC-PapersOnLine, vol. 50, no. 1,
pp- 15883-15889, Jul. 2017.

F. Wang, F. Ju, and Y. Lu, “A study on performance evaluation and
status-based decision for cyber-physical production systems,” in Proc.
13th IEEE Conf. Autom. Sci. Eng. (CASE), Aug. 2017, pp. 1000-1005.
P. Stephan, G. Meixner, H. Koessling, F. Floerchinger, and L. Ollinger,
“Product-mediated communication through digital object memories in
heterogeneous value chains,” in Proc. IEEE Int. Conf. Pervas. Comput.
Commun. (PerCom), Mar. 2010, pp. 199-207.

S. Weyer, M. Schmitt, M. Ohmer, and D. Gorecky, “Towards Indus-
try 4.0—Standardization as the crucial challenge for highly modular,
multi-vendor production systems,” IFAC-PapersOnLine, vol. 48, no. 3,
pp. 579-584, 2015.

F. Wang, F. Ju, and N. Kang, “Transient analysis and real-time control
of geometric serial lines with residence time constraints,” /ISE Trans.,
vol. 51, no. 7, pp. 709-728, Jul. 2019.

F. Ju, J. Li, and J. A. Horst, “Transient analysis of serial production
lines with perishable products: Bernoulli reliability model,” /EEE Trans.
Autom. Control, vol. 62, no. 2, pp. 694-707, Feb. 2017.

F. Ju, J. Li, and J. Horst, “Transient analysis of Bernoulli serial line
with perishable products,” in Proc. IFAC Symp. Inf. Control Problems
Manuf., 2015, pp. 1670-1675.

Authorized licensed use limited to: ASU Library. Downloaded on July 16,2021 at 00:40:17 UTC from IEEE Xplore. Restrictions apply.



134

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 1, JANUARY 2021

G. Chen, C. Wang, L. Zhang, J. Arinez, and G. Xiao, “Transient per-
formance analysis of serial production lines with geometric machines,”
IEEE Trans. Autom. Control, vol. 61, no. 4, pp. 877-891, Apr. 2016.
J. Pahl and S. VoB, “Integrating deterioration and lifetime constraints
in production and supply chain planning: A survey,” Eur. J. Oper. Res.,
vol. 238, no. 3, pp. 654-674, Nov. 2014.

M. B. Dumas and M. Rabinowitz, “Policies for reducing blood wastage
in hospital blood banks,” Manage. Sci., vol. 23, no. 10, pp. 1124-1132,
Jun. 1977.

E. Brodheim and G. P. Prastacos, “The long island blood distribution
system as a prototype for regional blood management,” Interfaces, vol. 9,
no. 5, pp. 3-20, Nov. 1979.

J. Belién and H. Forcé, “Supply chain management of blood products:
A literature review,” Eur. J. Oper. Res., vol. 217, no. 1, pp. 1-16,
Feb. 2012.

H.-M. Wee, “Economic production lot size model for deteriorating
items with partial back-ordering,” Comput. Ind. Eng., vol. 24, no. 3,
pp. 449458, Jul. 1993.

J. Li and S. M. Meerkov, Production Systems Engineering. New York,
NY, USA: Springer, 2008.

S. B. Gershwin, Manufacturing Systems Engineering. Upper Saddle
River, NJ, USA: Prentice-Hall, 1994.

F. Wang, Y. Lu, and F. Ju, “Condition-based real-time production control
for smart manufacturing systems,” in Proc. IEEE 14th Int. Conf. Autom.
Sci. Eng. (CASE), Aug. 2018, pp. 1052-1057.

C. Shi and S. B. Gershwin, “Part waiting time distribution in a
two-machine line,” IFAC Proc. Volumes, vol. 45, no. 6, pp. 457-462,
May 2012.

A. Angius, M. Colledani, A. Horvith, and S. B. Gershwin, “Analysis of
the lead time distribution in closed loop manufacturing systems,” IFAC-
PapersOnLine, vol. 49, no. 12, pp. 307-312, 2016.

C. Shi and S. B. Gershwin, “Part sojourn time distribution in a two-
machine line,” Eur. J. Oper. Res., vol. 248, no. 1, pp. 146-158, Jan. 2016.
R. Naebulharam and L. Zhang, “Bernoulli serial lines with deteriorating
product quality: Performance evaluation and system-theoretic proper-
ties,” Int. J. Prod. Res., vol. 52, no. 5, pp. 1479-1494, Mar. 2014.

L. Zhang, C. Wang, J. Arinez, and S. Biller, “Transient analysis
of Bernoulli serial lines: Performance evaluation and system-theoretic
properties,” IIE Trans., vol. 45, no. 5, pp. 528-543, May 2013.

J.-H. Lee and J. Li, “Performance evaluation of Bernoulli serial lines
with waiting time constraints,” IFAC-PapersOnLine, vol. 50, no. 1,
pp. 1087-1092, Jul. 2017.

J.-H. Lee, J. Li, and J. A. Horst, “Serial production lines with waiting
time limits: Bernoulli reliability model,” [EEE Trans. Eng. Manag.,
vol. 65, no. 2, pp. 316-329, May 2018.

Feifan Wang (Student Member, IEEE) received the
bachelor’s degree from the Department of Industrial
Engineering, Zhejiang University of Technology,
Hangzhou, China, and the master’s degree from the
Department of Industrial and Systems Engineering,
Zhejiang University, Hangzhou, in 2013 and 2016,
respectively. He is currently pursuing the Ph.D.
degree with the School of Computing, Informatics,
and Decision Systems Engineering, Arizona State
University, Tempe, AZ, USA.

His research interests include the modeling, analy-
sis, and control of production systems.

Feng Ju (Member, IEEE) received the B.S. degree
from Shanghai Jiao Tong University, Shanghai,
China, in 2010, and the M.S. degree in electrical
and computer engineering, and the Ph.D. degree in
industrial and systems engineering from the Univer-
sity of Wisconsin, Madison, WI, USA, in 2011 and
2015, respectively.

He is a member of the Institute for Operations
Research and the Management Sciences, the Institute
of Industrial and Systems Engineers, and the Insti-

ha tute of Electrical and Electronics Engineers. He is
currently an Assistant Professor with the School of Computing, Informatics,
and Decision Systems Engineering, Arizona State University, Tempe, AZ,
USA. His research interests include modeling, analysis, continuous improve-
ment, and optimization of manufacturing systems.

Dr. Ju was a recipient of multiple awards, including the Best Paper Award
in IFAC MIM and a Best Student Paper Finalist in the IEEE CASE and IFAC
INCOM.

Authorized licensed use limited to: ASU Library. Downloaded on July 16,2021 at 00:40:17 UTC from IEEE Xplore. Restrictions apply.



