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Transient and Steady-State Analysis of Multistage
Production Lines With Residence Time Limits

Feifan Wang , Student Member, IEEE, and Feng Ju , Member, IEEE

Abstract— Residence time limits for the intermediate products
are commonly seen in production systems due to quality require-
ments. A part in a buffer typically needs to be scrapped or
reworked if its residence time exceeds the maximum allowable
residence time, while a part needs to keep waiting in the buffer
if its residence time is less than the minimum required residence
time. Such limits could be required at multiple stages of the pro-
duction line, making it difficult to analyze both the steady-state
and transient production system performance. The problem
under study is formulated as a multistage geometric serial
production line with residence time limits. To deal with its large
state space, a two-machine-one-buffer subsystem isolated from
a multistage geometric serial production line is first analyzed
for both steady-state and transient performance. Furthermore,
a novel aggregation method, including the steady-state analysis
and transient analysis, is proposed to evaluate the overall system
performance. The proposed aggregation method substantially
reduces the complexity of the problem and makes the analy-
sis of the problem tractable. Compared with the simulation,
the aggregation method maintains high accuracy in estimating
both steady-state and transient performance measures. Such a
method provides quantitative tools for effective performance
evaluation and prediction on the factory floor.

Note to Practitioners—It is well known that potential quality
problems may occur and production cost may increase if the
residence time of intermediate products is left uncontrolled.
The residence time limits become a concern, especially in the
automotive industry, food industry, and semiconductor industry,
where intermediate products stay in a stage susceptible to defects.
The limits also apply to large scale additive manufacturing of
thermoplastic polymers. The deposition of each layer is subject to
lower and upper bounds of surface temperature, which, in prac-
tice, are equivalent to minimum required residence time limit
and maximum allowable residence time limit, respectively. With
residence time considered, the size of state space for the overall
production system model will grow exponentially, as the system’s
size increases, which brings tremendous challenges to evaluate
such a system both in the short term and in the long run. In this
article, we introduce a novel modeling approach for a multistage
geometric serial production line with residence time limits and
propose a method that drastically reduces the complexity of the
system. Such a method provides a quantitative tool to effectively
evaluate the performance of multistage geometric lines with
residence time limits.

Index Terms— Aggregation method, multistage production
lines, residence time, transient analysis.
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NOMENCLATURE

D Number of machines in multistage line.
mi i th machine of multistage line.
msub

1 First machine of subsystem.
msub

2 Second machine of subsystem.
ssub
i State of machine msub

i in subsystem.
pi Failure probability of machine mi in multi-

stage line.
psub
i Failure probability of machine msub

i in
subsystem.

ri Repair probability of machine mi in multistage
line.

r sub
i Repair probability of machine msub

i in
subsystem.

Bi i th buffer in multistage line.
B Buffer in subsystem.
Ni Capacity of buffer Bi .
N Capacity of buffer B .
n Buffer occupancy for buffer B .
Ti,min Minimum required residence time for

buffer Bi .
Tmin Minimum required residence time for

buffer B .
Ti,max Maximum allowable residence time for

buffer Bi .
Tmax Maximum allowable residence time for

buffer B .
τi Residence time of the i th part in buffer B .
psi (t) Starvation probability of machine mi in

cycle t .
ps Starvation probability of machine msub

1 .
pbi (t) Blockage probability of machine mi in cycle t .
pb Blockage probability of machine msub

2 .
P(k)

1,1 Probability that machine msub
k that is up in one

cycle is still up in the next cycle.
P(k)

1,0 Probability that machine msub
k that is up in one

cycle is down in the next cycle.
P(k)

0,1 Probability that machine msub
k that is down in

one cycle is up in the next cycle.
P(k)

0,0 Probability that machine msub
k that is down in

one cycle is still down in the next cycle.
x(n, τ1,
ssub

1 , ssub
2 , t) Probability for state (n, τ1, ssub

1 , ssub
2 ) in

cycle t .
�(n, τ1, τ2) Conditional probability that the second part in

buffer B has residence time τ2 given that there
are n parts in buffer B and the first part in
buffer B has residence time τ1.
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I. INTRODUCTION

IN PRODUCTION systems, residence time typically refers
to the time that a part spends in a buffer before entering

the next machine. Such time is usually subject to certain
limits, including both upper and lower limits, to make sure
the requirement of product quality is met. For instance, in the
food industry, the perishability of food is often considered
[1], [2]. There are time limits for intermediate products in
every processing stage from raw materials to final prod-
ucts. These requirements need to be met for products like
yogurt, beer, and bread [3], [4]. In semiconductor manufac-
turing, residence time limits also receive substantial attention
[5]–[7]. The time that a wafer stays in a process module of
a cluster tool is subject to limits to prevent the wafer from
being premature or defective. Residence time limits can also
be observed in battery production as well [8].

The rapid development in information and communication
technologies makes it possible to monitor and control pro-
duction systems with residence time limits in real-time [9].
Each part carries its individual process information, such as
residence time [10]–[12]. Therefore, the residence time of
each part in the buffer could be captured in real-time so as
to determine the usability of the part—whether to be sent
downstream or scrapped. In addition, machines and material
flow could be controlled to increase system throughput and
reduce wastes due to scrap. How to develop an analytical
method for evaluating the performance of such a complex
system becomes a central problem.

Early works study residence time limits mainly on a
two-machine serial production line and do not yet extend
the analysis to a large-scale problem with more than two
machines [8], [13]–[15]. To analyze a multistage geometric
serial production line with residence time limits, we take a
two-machine-one-buffer subsystem, isolated from the multi-
stage geometric serial production line, as a building block, and
develop a Markov chain model to analyze the subsystem first.
An approximate method to model residence time is introduced
to reduce the size of the state space of the subsystem. In addi-
tion, based on the analysis of two-machine-one-buffer sub-
systems, the aggregation method is applied to obtain both the
steady-state and transient performance of a multistage geomet-
ric serial production line with residence time limits. Validated
by simulation experiments, the proposed aggregation method
maintains high accuracy in estimating both steady-state and
transient performance measures. The main contribution of
this article is twofold. One is the approximate method to
model a two-machine-one-buffer subsystem, which makes the
analysis of a two-machine-one-buffer subsystem efficient and
also provides a building block for the aggregation method.
The other is the aggregation method, which evades the direct
modeling for multistage geometric serial production lines with
residence time limits. Instead of defining virtual machines
like the early work for the aggregation method [16], we use
starvation probabilities and blockage probabilities to support
the iteration of the aggregation method without modifying
parameters of machines and buffers in each iteration, which
increases the flexibility of the aggregation method to deal with
systems with large state space.

The remainder of this article is structured as follows.
Section II reviews the related literature. Section III intro-
duces assumptions and formulates the problem. In Section IV,
we present the approximate modeling for a two-machine-
one-buffer subsystem. In Section V, the aggregation method
is proposed to estimate both the steady-state and transient
performance of a multistage geometric serial production line
with residence time limits. The accuracy of the proposed
aggregation method is investigated in Section VI. Finally,
conclusion and future directions are provided in Section VII.

II. LITERATURE REVIEW

The terms, deterioration and perishability, are widely used
to represent the feature of the maximum allowable resi-
dence time limits [17], and they were initially applied to
blood banks [17]–[20]. There is plenty of research working
on classification and modeling on the maximum allowable
residence time limits. A product may become obsolete after a
certain time, or it may be decaying continuously [21]. For the
decaying case, the deterioration can be age-dependent ongoing
deterioration or age-independent ongoing deterioration [21].
Amorim et al. [3] and Pahl and Voß [17] provide several
classifications to deal with perishability. Those studies on res-
idence time limits primarily focus on the maximum allowable
residence time. In this article, we consider both minimum
required residence time and maximum allowable residence
time as residence time limits and define the limits by constant
thresholds without considering continuous decay.

Failures of machines may occur randomly and influence
the performance of production systems [22]–[24]. Research on
residence time limits is conducted on serial production lines
under the uncertainty of machine reliability. One direction is
to estimate and utilize the probability distribution of residence
time, and those studies help design buffer capacity to reduce
the defective rate [25]–[27]. However, defective parts in those
production systems can only be detected at the end of the pro-
duction line, and thus it wastes resources to process defective
parts. Naebulharam and Zhang [28] evaluate Bernoulli serial
production lines with deteriorating product quality by defining
the quality buy rate for a buffer, and a part is removed from the
system immediately after it is detected to be defective. Another
direction to study residence time limits is to take residence
time as a constraint into modeling. Ju et al. [15] evaluated
the two-machine Bernoulli line with perishable intermediate
products, and Ju et al. [14] further studied the production
control of the two-machine Bernoulli line. Kang et al. [8]
and Wang et al. [13] extended the analysis from a Bernoulli
machine to a geometric machine, which, practically, is a more
general reliability model. When residence time is considered
in modeling, the state space can become too large to perform
analysis. Kang et al. [8], Wang et al. [13], andJu et al. [14], [15]
use approximated methods to model residence time.

The aggregation method provides a framework to approx-
imately evaluate multistage serial production lines. Li and
Meerkov [22] proposed the aggregation method to estimate the
steady-state performance measures of multistage Bernoulli ser-
ial production lines. Zhang et al. [29] extended the aggregation
method to perform transient analysis for multistage Bernoulli
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Fig. 1. Multistage geometric serial line with residence time limits.

serial production lines. Lee and Li [30] and Lee et al. [31]
studied Bernoulli serial production lines with waiting time lim-
its through the aggregation method. In those studies, a virtual
Bernoulli machine is created in the analysis of multistage serial
production lines with Bernoulli machines. Chen et al. [16]
applied the aggregation method to geometric serial production
lines by defining virtual geometric machines. In this article,
each machine is assumed to be a geometric machine. Instead of
defining virtual geometric machines, we use starvation prob-
abilities and blockage probabilities to model the connection
of neighboring two-machine-one-buffer subsystems without
modifying parameters of machines and buffers. Such an aggre-
gation method is flexible and easily applied to geometric serial
production lines with residence time limits.

III. PROBLEM FORMULATION

For simplicity purposes, the term “multistage line” is used
to represent a multistage geometric serial production line with
residence time limits for the rest of this article. The multistage
line under study is shown in Fig. 1. Raw materials enter
machine m1 to be processed and continue to flow downstream
until they finish the process in machine mD or get scrapped
from a buffer. The following assumptions define the machines,
the buffers, and their interactions.

1) The multistage line consists of D machines (denoted
by m1,m2, . . . ,mD) and (D − 1) buffers (denoted by
B1, B2, . . . , BD−1), where D > 2.

2) All machines are synchronized with a constant process-
ing time (cycle time), which is the time to process a
part.

3) Machines are subject to failures, and their reliability
models are independent. The reliability model for each
machine follows a geometric distribution. Specifically,
if machine mi is up in cycle (k−1), it will still be up with
probability (1− pi) and down with probability pi during
the kth cycle, for i = 1, 2, . . . , D, and k = 2, 3, . . .
If machine mi is down in cycle (k−1), it will be up with
probability ri and down with probability (1 − ri ) during
the kth cycle, for i = 1, 2, . . . , D, and k = 2, 3, . . .
Here, pi and ri are defined as the failure probability
and repair probability, respectively, for i = 1, 2, . . . , D.
The machine efficiency of machine mi , denoted by ei ,
is represented by ei = (ri/(ri + pi)).

4) Buffer Bi has a finite capacity Ni (1 ≤ Ni < ∞), for
i = 1, 2, . . . , D − 1. First-in-first-out (FIFO) policy is
assumed regarding the buffer outflow process.

5) The maximum allowable residence time for
parts in buffer Bi is characterized by Ti,max, for
i = 1, 2, . . . , D − 1, counted as the number of cycles.

A part in buffer Bi will be scrapped immediately at the
beginning of the cycle when its residence time reaches
Ti,max. Let Ti,max ≥ Ni , otherwise Ni has no effect on
the system.

6) The minimum required residence time for parts in buffer
Bi is denoted by Ti,min, for i = 1, 2, . . . , D−1, counted
as the number of cycles. A part is allowed to leave buffer
Bi and enter machine mi+1 only when its residence time
reaches or exceeds Ti,min.

7) Machine mi , for i = 1, 2, . . . , D − 1, is blocked during
a time slot, if at the beginning of the cycle: 1) machine
mi is up; 2) buffer Bi is full; 3) machine mi+1 does not
produce a part in this cycle due to machine failure or
blockage; and 4) there will be no part scrapped from
buffer Bi at the beginning of the next cycle. Machine
mD is never blocked. In addition, block-before-service
policy is assumed.

8) Machine mi , for i = 2, . . . , D, is starved during a time
slot, if machine mi is up and no part in buffer Bi−1 has
residence time greater than or equal to Ti−1,min. Machine
m1 is never starved.

The problem to be studied is to develop a method under
assumptions 1–8 to evaluate both the steady-state and transient
behaviors of the multistage line. Specifically, the system
behavior of a multistage line is described by performance
measures defined as follows.

1) Production Rate, PRi(t), for i = 1, . . . , D: The expected
number of parts produced by machine mi in cycle t .

2) Overall Production Rate, PR(t): The expected number
of parts produced by the multistage line in cycle t .

3) Overall Consumption Rate, CR(t): The expected number
of parts that enter the multistage line in cycle t .

4) Scrap Rate, SRi (t), for i = 1, . . . , D − 1: The expected
number of scrapped parts from buffer Bi in cycle t .

5) Overall Scrap Rate, SR(t): The expected number of
scrapped parts from the multistage line in cycle t .

6) Work-in-Process, WIPi (t), for i = 1, . . . , D − 1: The
expected number of parts in buffer Bi in cycle t .

7) Overall Work-in-Process, WIP(t): The expected number
of parts in the multistage line in cycle t .

8) Starvation Probability, psi (t), for i = 1, . . . , D: The
probability that machine mi is starved in cycle t , when
machine mi is up.

9) Blockage Probability, pbi (t), for i = 1, . . . , D: The
probability that machine mi is blocked in cycle t , when
machine mi is up.

For a multistage line, the overall production rate is equal to
the production rate of the last machine, and thus we have
PR(t) = PRD(t) for all t . The overall consumption rate
is equal to the production rate of the first machine, so we
have CR(t) = PR1(t) for all t . Scrap occurs in each buffer
in the multistage line. Thus, the overall scrap rate is the
summation of scrap rates of all buffers. Similarly, the overall
work-in-process is the summation of work-in-processes of all
buffers. Thus, we have SR(t) = ∑D−1

i=1 SRi(t) and WIP(t) =∑D−1
i=1 WIPi (t) for all t . By assumptions 7 and 8, we have

ps1(t) = 0 and pbD(t) = 0 for all t .
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Fig. 2. Two-machine-one-buffer subsystem.

IV. TWO-MACHINE-ONE-BUFFER SUBSYSTEMS

A. Model Formulation

The multistage line cannot be modeled directly using a
single Markov chain due to its large state space. For instance,
for a multistage line with ten machines, nine buffers, buffer
capacity being Ni = 6 and maximum allowable residence
time Ti,max = 8 for i = 1, 2, . . . , 9, the total number of
system states is as large as 3.5 × 1024. Alternatively, we start
with a simple two-machine-one-buffer subsystem with a much
smaller state space as shown in Fig. 2, which plays a role
as a building block for the performance evaluation of the
multistage line later. In the rest of this article, we will simply
use the term “subsystem” to represent the two-machine-one-
buffer subsystem.

A subsystem consists of two machines (denoted by msub
1 and

msub
2 ) and a buffer (denoted by B). Similar to a machine in a

multistage line, machine msub
i in a subsystem is characterized

by failure probability psub
i and repair probability r sub

i , for
i = 1, 2. Buffer B is described by its maximum allowable
residence time Tmax, minimum required residence time Tmin,
and buffer capacity N . A subsystem, isolated from a multistage
line, is influenced by its upstream buffer through starvation and
its downstream buffer through blockage. In order to cope with
such effects, we use two probabilities, starvation probability
ps and blockage probability pb, to model the starvation from
the upstream buffer and the blockage from the downstream
buffer. Specifically, ps presents the probability that starvation
occurs to machine msub

1 when machine msub
1 is up. pb denotes

the probability that blockage occurs to machine msub
2 when

machine msub
2 is up.

To analyze a subsystem, we include only residence time of
the first part in buffer B in the state, instead of recording
residence times of all the parts. The rest of the residence
time is then estimated using approximation. The detail of
the approximate method is discussed in Section IV-C. Let
n ∈ {0, 1, . . . , N} denote the buffer occupancy in buffer B .
τ1 ∈ {0, 1, . . . , Tmax −1} denotes the residence time of the first
part in buffer B . We denote the states of machines msub

1 and
msub

2 by ssub
1 and ssub

2 , respectively. Specifically, ssub
i = 1 means

that machine msub
i is up, and ssub

i = 0 means that machine msub
i

is down. Then, the system state of a subsystem is represented
by (n, τ1, ssub

1 , ssub
2 ). For the same example mentioned above

with 3.5×1024 states, the number of states of the approximate
model for each subsystem is 136. The size of the state space
for a single model to be analyzed is significantly reduced.

B. Transition Equations

Based on the states of subsystems, the transition equations
can be constructed. Let x(n, τ1, ssub

1 , ssub
2 , t) denote the prob-

ability of state (n, τ1, ssub
1 , ssub

2 ) in cycle t . Let P(k)
i, j denote

the conditional probability that the state of machine msub
k is j

given that its state is i in the previous cycle, for i, j = 0, 1
and k = 1, 2. Specifically, P(k)

1,1 = 1 − psub
k , P(k)

1,0 = psub
k ,

P(k)
0,1 = r sub

k , and P(k)
0,0 = 1 − r sub

k , for k = 1, 2. We introduce
the operator �(n, τ1, τ2), which is defined as the conditional
probability that the second part in buffer B has residence time
τ2 given that there are n parts in buffer B and the first part
in buffer B has residence time τ1. The method to estimate
�(n, τ1, τ2) will be introduced in Section IV-C in detail. Let
us consider the state (1, i, ssub

1 , ssub
2 ) in cycle (t + 1), for

1 ≤ i ≤ Tmax − 1 and ssub
1 , ssub

2 = 0, 1. There is one part in
the buffer and its residence time could be any feasible value
except 0. The transition equation for state (1, i, ssub

1 , ssub
2 ) can

be expressed as

x
(
1, i, ssub

1 , ssub
2 , t + 1

)
= x(1, i − 1, 0, 0, t)P(1)

0,ssub
1
P(2)

0,ssub
2

+x(1, i − 1, 1, 0, t)ps P(1)

1,ssub
1
P(2)

0,ssub
2

+x(1, i − 1, 0, 1, t)pbP(1)

0,ssub
1
P(2)

1,ssub
2

1N+(i − Tmin)

+x(1, i − 1, 1, 1, t)ps pbP(1)

1,ssub
1
P(2)

1,ssub
2

1N+(i − Tmin)

+x(1, i − 1, 0, 1, t)P(1)

0,ssub
1
P(2)

1,ssub
2

1N+(Tmin + 1 − i)

+x(1, i − 1, 1, 1, t)ps P(1)

1,ssub
1
P(2)

1,ssub
2

1N+(Tmin + 1 − i)

+
Tmax−2∑

j=max(i,Tmin)

x(2, j, 0, 1, t)
(
1− pb

)
P(1)

0,ssub
1
P(2)

1,ssub
2

�(2, j, i−1)

+
Tmax−2∑

j=max(i,Tmin)

x(2, j, 1, 1, t)ps
(
1− pb

)
P(1)

1,ssub
1
P(2)

1,ssub
2

�(2, j, i−1)

+x(2, Tmax − 1, 0, 0, t)P(1)

0,ssub
1
P(2)

0,ssub
2

�(2, Tmax − 1, i − 1)

+x(2, Tmax − 1, 1, 0, t)ps P(1)

1,ssub
1
P(2)

0,ssub
2

�(2, Tmax − 1, i − 1)

+x(2, Tmax − 1, 0, 1, t)P(1)

0,ssub
1
P(2)

1,ssub
2

�(2, Tmax − 1, i − 1)

+x(2, Tmax − 1, 1, 1, t)ps P(1)

1,ssub
1
P(2)

1,ssub
2

�(2, Tmax − 1, i − 1)

(1)

where 1N+(x) is an indicator function. 1N+(x) = 1 if x is an
positive integer (x ∈ N+), and 0 otherwise. Similar to (1),
transition equations for all the other states can be formulated
as shown in the Appendix.

C. Approximation of Residence Time

The operator �(n, τ1, τ2) is used in (1) for approximation
of residence time. The operator �(n, τ1, τ2) is first proposed
in [15] and first applied to geometric serial line in [8]. How-
ever, the first machine of a subsystem studied in this article
can be starved, and the operator �(n, τ1, τ2) is influenced by
starvation from the upstream buffer. Thus, the method that
derives �(n, τ1, τ2) in the literature cannot be directly used.
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A method that derives �(n, τ1, τ2) by taking starvation into
consideration is provided in what follows.

Given current time t and residence time of the first part τ1,
we denote the state sequence of machine msub

1 from cycle (t−
τ1−1) to (t−1) by a (τ1+1)-dimension vector V . Specifically

V = (
ssub

1 (t − τ1 − 1), ssub
1 (t − τ1), . . . , s

sub
1 (t − 1)

)
(2)

where ssub
1 (i) is the state of machine msub

1 in cycle i . Denote
by γ (V ) the probability that a sequence V occurs

γ (V ) =
τ1∏
i=1

P(1)

ssub
1 (t−τ1−2+i),ssub

1 (t−τ1−1+i)
. (3)

Since starvation may occur to machine msub
1 , it is possible that

no part is produced by machine msub
1 during one cycle even

though machine msub
1 is up. Therefore, we define the (τ1 + 1)-

dimension vector W as a sequence for production of machine
msub

1 . Specifically

W = (w1(t − τ1 − 1),w1(t − τ1), . . . , w1(t − 1)) (4)

where w1(i) = 1 represents that msub
1 produces a part in

cycle i , and 0 otherwise. Then, we have w1(i) ≤ ssub
1 (i) for

any i . The probability that a sequence W occurs can be derived
from the sequence V . Given W defined by (4), define C to be
a collection of all V that can result in W . Specifically

C = {
V | w1(i) ≤ ssub

1 (i), i = t − τ1 − 1, . . . , t − 1
}
. (5)

We denote by �(W ) the probability that a sequence W occurs.
Then, �(W ) can be expressed as

�(W ) =
∑
V∈C

γ (V )
(
ps

)k(
1 − ps

)τ1−k
(6)

where k = ∑t−1
i=t−τ1

(ssub
1 (i) − w1(i)).

We define a set, denoted by A, that consists of all possible
W that satisfies w1(t − τ1 − 1) = 1 and

∑τ1+1
i=1 w1(t − i) =

n. Similarly, let B be a set that contains all possible W that
satisfies w1(t−τ1−1) = 1, w1(t−τ2−1) = 1, and

∑τ2
i=1 w1(t−

i) = n − 2. Specifically

A =
{
W

∣∣∣∣w1(t − τ1 − 1) = 1,

τ1+1∑
i=1

w1(t − i) = n

}

B =
{
W

∣∣∣∣w1(t − τ1 − 1) = 1, w1(t − τ2 − 1) = 1,

τ2∑
i=1

w1(t − i) = n − 2

}
.

Then, the operator �(n, τ1, τ2) can be estimated as follows:

�(n, τ1, τ2) =
∑

W∈B �(W )∑
W∈A �(W )

(7)

where the denominator is the probability that buffer occupancy
is n and residence time of the first part is τ1, while the
numerator represents the probability that buffer occupancy
is n, residence time of the first part is τ1, and the residence
time of the second part is τ2.

D. Performance Measures of Subsystems

The estimated performance measures of a subsystem, for t ∈
N+ ∪{∞}, include production rate P̂R

sub
(t), consumption rate

ĈR
sub

(t), scrap rate ŜR
sub

(t), work-in-process, ŴIP
sub

(t), star-
vation probability ŜT

sub
(t), and blockage probability B̂L

sub
(t).

Given ps , pb, and x(n, τ1, ssub
1 , ssub

2 , t), the performance mea-
sures are estimated in (8)–(13).

The estimated production rate P̂R
sub

(t) is the expected
number of parts the subsystem produces in cycle t . It is equal
to probability that machine msub

2 is up, there is at least one
part in the buffer with residence time equal to or greater
than Tmin, and machine msub

2 is not blocked. The estimated
consumption rate ĈR

sub
(t) represents the expected number of

parts that enter the subsystem in cycle t . It is equivalent to the
probability that buffer is not full and machine msub

1 produces
a part. ŜR

sub
(t) denotes the estimated number of scrapped

parts from the subsystem in cycle t . It can be calculated
as the probability that residence time of the first part in the
buffer reaches (Tmax − 1) but machine msub

2 is not able to

produce due to machine failure or blockage. ŴIP
sub

(t) denotes
the estimated number of parts in buffer B in the subsystem
in cycle t . ŜT

sub
(t) and B̂L

sub
(t) are starvation probability

of machine msub
2 and blockage probability of machine msub

1 ,
respectively. The denominator of (12) presents the probability
that machine msub

2 is up, and the numerator is the probability
that machine msub

2 is up and the buffer is empty. Similarly,
the denominator of (13) is the probability that machine msub

1
is up, and the numerator is the probability that machine msub

1
is up and the buffer is full.

V. MODELING MULTISTAGE LINE USING

AGGREGATION METHOD

For a production line with multiple stages, the state space is
typically too large to directly perform analysis. Alternatively,
the aggregation method is typically pursued to estimate the
performance measures of a multistage line based on the
analysis of all its subsystems. The aggregation method for
the multistage line consists of the steady-state analysis and
transient analysis, which are to be introduced in this section.

A. Steady-State Analysis

For a multistage line in the steady state, the state probability
of each state keeps unchanged, the starvation probability and
blockage probability of each machine become constant, and
the expected performance measures do not vary with time.
Given system parameters, the steady-state analysis is aimed at
obtaining performance measures introduced in Section III for
t = ∞.

When a multistage line is in the steady state, each subsys-
tem, isolated from the multistage line, is also in the steady
state. It means that the starvation probability ps and the
blockage probability pb for any subsystem do not change with
time. The steady-state probability x(n, τ1, ssub

1 , ssub
2 ,∞) for all

(n, τ1, ssub
1 , ssub

2 ) can be obtained via transition equations such
as (1). Thus, the performance measures P̂R

sub
(∞), ĈR

sub
(∞),
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ŜR
sub

(∞), ŴIP
sub

(∞), ŜT
sub

(∞), and B̂L
sub

(∞) can be calcu-
lated by (8)–(13), as shown at the bottom of this page. By the
analysis of subsystems with psi (∞) and pbi (∞) known, for
i = 1, . . . , D, P̂R

sub
(∞) of the (i −1)th subsystem can be the

estimate of PRi (∞) for i = 2, . . . , D. ĈR
sub

(∞) of the first
subsystem can be the estimate of PR1(∞). Let SRi(∞) and

WIPi(∞) be ŜR
sub

(∞) and ŴIP
sub

(∞) of the i th subsystem,
respectively, for i = 1, . . . , D − 1. Then, PR(∞), CR(∞),
SR(∞), and WIP(∞) can be derived.

The aggregation method provides iterative procedures to
estimate psi (∞) and pbi (∞) for i = 1, . . . , D, shown in Fig. 3.
In each iteration, a backward aggregation and a forward
aggregation are performed. We start with the first iteration.
By Assumptions 7 and 8, we have ps1(∞) = 0 and pbD(∞) =
0. We set the initial psi (∞) to be 0 for i = 2, . . . , D and initial
pbi (∞) to be 0 for i = 1, . . . , D − 1.

1) Backward Aggregation: The first iteration starts from the
backward aggregation, shown in Fig. 3(a). We first take
machine mD−1, machine mD, and buffer BD−1 to form a
subsystem. In the subsystem, the parameters of machine
msub

1 , machine msub
1 , and buffer B are the same as the

parameters of machine mD−1, machine mD, and buffer
BD−1, respectively. The values of psD−1(∞) and pbD(∞)
of the multistage line are assigned to ps and pb of the
subsystem, respectively. With all the parameters for a
subsystem ready, the steady-state performance measures
of the subsystem can be obtained. The steady-state
blockage probability B̂L

sub
(∞) of the subsystem is used

to update the value of pbD−1(∞) in the multistage line.
After this step, a new multistage line is created with

the number of machines reduced by one, the number
of buffers reduced by 1, and the blockage probability
pbD−1(∞) updated. Then, the process continues by tak-
ing machine mD−2, machine mD−1, and buffer BD−2

from the new multistage line to form a subsystem.
Continue the process until the number of machines is
reduced to be one and all the blockage probabilities
pbi (∞), for i = 1, . . . , D − 1, are updated.

2) Forward Aggregation: Similar to the backward aggrega-
tion, the forward aggregation takes two machines and
one buffer to form a subsystem but starts from the left
side of the multistage line, shown in Fig. 3(b). We first
take machine m1, machine m2, and buffer B1 to form
a subsystem. The parameters of machine m1, machine
m2, and buffer B1 of the multistage line are assigned
to machine msub

1 , machine msub
2 , and buffer B of the

subsystem, respectively. ps and pb of the subsystem
are assigned the values of ps1(∞) and pb2(∞) of the
multistage line, respectively. By performing analysis
on the subsystem, we obtain the steady-state starvation
probability ŜT

sub
(∞), which is then used to replace

ps2(∞) of the multistage line. After the step, a new
multistage line is created with the number of machines
reduced by one, the number of buffers reduced by one,
and the starvation probability ps2(∞) updated. Continue
the process until the number of machines is reduced to
be one and all the starvation probabilities psi (∞), for
i = 2, . . . , D, are updated.

An iteration is finished when both one backward aggregation
and one forward aggregation are completed. The estimated

P̂R
sub

(t) = (
1 − pb

) N∑
n=1

Tmax−1∑
τ1=max(n−1,Tmin)

1∑
ssub

1 =0

x
(
n, τ1, s

sub
1 , 1, t

)
(8)

ĈR
sub

(t) = (
1 − ps

)⎛⎝ 1∑
ssub

2 =0

x
(
0, 0, 1, ssub

2 , t
) +

N−1∑
n=1

Tmax−1∑
τ1=n−1

1∑
ssub

2 =0

x
(
n, τ1, 1, ssub

2 , t
)

+(
1 − pb

) Tmax−2∑
τ1=max(N−1,Tmin)

x(N, τ1, 1, 1, t) +
1∑

ssub
2 =0

x
(
N, Tmax − 1, 1, ssub

2 , t
)⎞⎠ (9)

ŜR
sub

(t) =
N∑

n=1

1∑
ssub

1 =0

x
(
n, Tmax − 1, ssub

1 , 0, t
) + pb

N∑
n=1

1∑
ssub

1 =0

x
(
n, Tmax − 1, ssub

1 , 1, t
)

(10)

ŴIP
sub

(t) =
N∑

n=1

Tmax−1∑
τ1=n−1

1∑
ssub

1 =0

1∑
ssub

2 =0

nx
(
n, τ1, s

sub
1 , ssub

2 , t
)

(11)

ŜT
sub

(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑1
ssub

1 =0 x
(
0, 0, ssub

1 , 1, t
) + ∑max(N,Tmin)

n=1

∑Tmin−1
τ1=n−1

∑1
ssub

1 =0 x
(
n, τ1, ssub

1 , 1, t
)∑1

ssub
1 =0 x

(
0, 0, ssub

1 , 1, t
) + ∑N

n=1

∑Tmax−1
τ1=n−1

∑1
s1=0 x

(
n, τ1, ssub

1 , 1, t
) , if Tmin > 0∑1

ssub
1 =0 x

(
0, 0, ssub

1 , 1, t
)∑1

ssub
1 =0 x

(
0, 0, ssub

1 , 1, t
) + ∑N

n=1

∑Tmax−1
τ1=n−1

∑1
ssub

1 =0 x
(
n, τ1, ssub

1 , 1, t
) , if Tmin = 0

(12)

B̂L
sub

(t) =
∑Tmax−2

τ1=N−1 x(N, τ1, 1, 0, t) + pb
∑Tmax−2

τ1=N−1 x(N, τ1, 1, 1, t)∑1
s2=0 x(0, 0, 1, s2, t) + ∑N

n=1

∑Tmax−1
τ1=n−1

∑1
s2=0 x(n, τ1, 1, s2, t)

(13)
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Fig. 3. Steady-state analysis of the aggregation method. (a) Backward
aggregation. (b) Forward aggregation.

steady-state performance measures can be obtained after sev-
eral iterations. The pseudocode for the aggregation method
is shown in Fig. 4. Lines 1 and 2 are to initialize starvation
probability and blockage probability. The iterative procedures
of the aggregation method are represented by the loop from
lines 4 to 19, among which the backward aggregation is given
by the loop from lines 5 to 11 and the forward aggregation
is given by the loop from lines 12 to 18. The function that
appears in lines 9 and 16 transfers the parameters into the
transition matrix by (1) and outputs starvation probability and
blockage probability by (12) and (13), respectively.

B. Transient Analysis

With the system parameters and initial system state
known, the transient analysis is aimed at obtaining transient

Fig. 4. Iterative procedures of the steady-state analysis.

Fig. 5. Multistage line is decomposed into subsystems for transient analysis.

performance measures introduced in Section III for t ∈ N+.
To perform a transient analysis of a multistage line,
we first decompose a multistage line into several subsystems.
Fig. 5 shows the decomposition, where any two neighboring
machines and the buffer between the two machines are isolated
to form a subsystem. A multistage line with D machines and
(D − 1) buffers is decomposed into (D − 1) subsystems.
The subsystem that consists of machine mi , machine mi+1,
and buffer Bi is denoted by SSi , for i = 1, . . . , D − 1.
In the transient analysis, the starvation probability ps and the
blockage probability pb for a subsystem change over time,
and each subsystem is modeled to be a time-varying Markov
chain. The objective of the transient analysis is to capture the
time-varying transition matrix of each subsystem over time so
that the transient behavior of both subsystems and the whole
multistage line can be predicted.
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Fig. 6. Procedures of the transient analysis.

Let Xi (t) denote the row vector of state probabilities of
subsystem SSi in cycle t , for i = 1, . . . , D−1. We denote the
transition matrix of subsystem SSi in cycle t by Qi (t). The
pseudocode for the transient analysis is shown in Fig. 6, which
provides procedures to use the time-varying transition matrices
of subsystems to perform a transient analysis of the multistage
line. Given the initial state of a multistage line, the initial states
of its subsystems are determined. It further determines the state
probability Xi (1) for i = 1, . . . , D − 1, which is initialized
in line 1. With Xi(1) for i = 1, . . . , D − 1 known, psi (1)
and pbi (1) for i = 1, . . . , D can be obtained. A loop from
lines 5 to 18 is then to calculate the transient system state
probability of the multistage line from cycle t = 1 to cycle
t = T . There are two loops inside the loop. The first loop
from lines 6 to 12 is to update the state probabilities of each
subsystem, and the second loop from lines 13 to 17 is to update
the starvation probabilities and the blockage probabilities.
Line 10 is a function to transfer system parameters to the
transition matrix of a subsystem. The update in line 16 can
be achieved by (12) and (13). When the calculation for all the
loops is completed, the state probabilities and performance
measures of each subsystem (from SS1 to SSD−1) for each
cycle (from t = 1 to t = T ) are obtained. Then the tran-
sient performance measures of the entire multistage line are
derived.

C. Comparison Between Steady-State and Transient Analysis

The steady-state analysis is aimed at long-term performance.
When the system reaches steady state soon and stays in steady
state for a long time, the production during the transient
stage is negligible. The long-term performance obtained from
the steady-state analysis can be used to estimate production
capacity, make the production plan, and conduct continuous
improvement. Transient analysis is required, when produc-
tion operates partially or entirely in the transient regime for

TABLE I

PARAMETER SETTING FOR ILLUSTRATIVE EXAMPLE

reasons such as long cycle time, disruptions, etc. The system
performance is not stable in the transient stage and may
be increasing, decreasing, or fluctuating in this stage. The
transient analysis is aimed at capturing such dynamics. For
a simple discrete-time Markov chain, system transition can
be represented by a transition matrix. Steady-state analysis
and transient analysis can be performed by manipulating the
transition matrix. However, there is no single matrix that can
model system transition for a multistage line, and thus the
aggregation method is proposed to address the problem.

The procedure for steady-state analysis and the procedure
for transient analysis are different from several aspects. First,
it is assumed that there exist constant starvation probabil-
ity, blockage probability, and steady-state probabilities in
steady-state analysis, while in transient analysis those prob-
abilities change over time. Second, starvation probability and
blockage probability for each subsystem are unknown and
initialized to zero in steady-state analysis, whereas the two
probabilities are initially known from the initial system state
in transient analysis. Third, the loop from lines 4 to 19 in Fig. 4
represents the iterative procedure for steady-state analysis,
and it converges from performance measures under the initial
setting to the performance measures in a steady state. The
intermediate measures in the iterative procedure have no
physical meaning. In contrast, the loop from lines 5 to 18
in Fig. 6 is to obtain transient behavior. For any j in the
loop, transient starvation probability, blockage probability,
state probabilities and performance measures for cycle ( j +1)
are derived. Fourth, the number of iterations for both methods
is different. The backward aggregation and forward aggrega-
tion are performed i ter times in steady-state analysis, while
there is only one backward aggregation in transient analysis.
Finally, the procedure of steady-state analysis cannot analyze
the transient behavior of a multistage line. In contrast, tran-
sient analysis can be used to obtain steady-state performance
measures by running for a sufficiently large number of cycles
as the system reaches a steady state, but such a way is not
computationally efficient.

VI. MODEL VALIDATION

A. Illustrative Example

To evaluate the accuracy of the proposed analytical method,
we compare the results obtained from the proposed analytical
method with simulation. A MATLAB program is constructed
to conduct a numerical experiment. We first consider a single
case with the parameters shown in Table I.

Initially, all the machines are set to be up, and all the buffers
are set to be empty. Both steady-state analysis and transient
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Fig. 7. Comparison of performance measures from the aggregation approach
and simulation.

analysis of the aggregation method are performed. For the
steady-state analysis of the aggregation method, six iterations
are conducted to get the steady-state performance measures.
Simulation repeats 10 000 times to obtain the average value
and 95% confidence interval of each performance measure
in each cycle. The result of the numerical study is shown
in Fig. 7. Simulated performance measures are plotted in blue
solid line, with the shaded area indicating the 95% confi-
dence interval. The red dashed lines represent the transient
performance measures obtained from the transient analysis
of the aggregation method. The green dashed-dotted lines
represent the steady-state performance measures obtained from
a steady-state analysis of the aggregation method. The result of
the experiment suggests that the proposed aggregation method
can capture both the steady-state and transient behaviors of the
multistage line accurately.

As is shown in Fig. 8, the blue solid lines represent the
steady-state performance measures obtained from the sim-
ulation, while the green dashed-dotted lines represent the
estimated performance measures after each iteration of the
aggregation method. The initial starvation probability and
blockage probability for each machine of the multistage line
are set to be 0, and the estimated performance measures
in iteration 0 in Fig. 8 represent the estimated performance
measures with the initial parameter setting. It is suggested
that the convergence can be achieved usually within three
iterations, and converging performance measures are close to
the true values.

B. Experiment With Random Parameters

To evaluate the accuracy of the proposed method in a
more general sense, the experiment with random parameters is
conducted. We compare the estimated performance measures
obtained through the aggregation method with the ones esti-
mated by the simulation. Let Tst be the threshold of time where
one can guarantee that the system in the simulation study can
reach the steady state, and let T denote the run length of
the simulation. We denote by PM(t) the true performance

Fig. 8. Steady-state performance measures estimated in each iteration of the
aggregation method.

measures, like PR(t), CR(t), SR(t), and WIP(t), and they
represented by average performance measures of all repeats of
the simulation in cycle t . The true steady-state performance is
obtained as follows:

PM(∞) = 1

T − Tst + 1

T∑
i=Tst

PM(i). (14)

Denote the steady-state performance measures obtained
through the aggregation method by P̂R(∞), ĈR(∞), ŜR(∞),
and ŴIP(∞). The absolute errors of the estimated steady-state
performance measures, denoted by εPR(∞), εCR(∞), εSR(∞) and
εWIP(∞), are provided as follows:

εPM(∞) = |PM(∞) − P̂M(∞)| (15)

where P̂M(∞) represents P̂R(∞), ĈR(∞), ŜR(∞), and
ŴIP(∞), and εPM(∞) represents εPR(∞), εCR(∞), εSR(∞), and
εWIP(∞). The relative errors of the estimated steady-state
performance measures are denoted by δPR(∞), δCR(∞), δSR(∞),
and δWIP(∞). Let δPM(∞) stand for δPR(∞), δCR(∞), δSR(∞), and
δWIP(∞). The relative errors are defined as follows:

δPM(∞) = εPM(∞)

PM(∞)
. (16)

Let Ttr be the time before which the transient behaviors of
the aggregation method and the simulation are compared.
The absolute errors of the estimated transient performance
measures are denoted by εPR(t), εCR(t), εSR(t) and εWIP(t). Let
εPM(t) stand for εPR(t), εCR(t), εSR(t) and εWIP(t). The absolute
errors are defined as follows:

εPM(t) =
∑Ttr

i=1 |PM(i) − P̂M(i)|
Ttr

. (17)

The relative errors of the estimated transient performance
measures are denoted by δPR(t), δCR(t), δSR(t) and δWIP(t). Let
δPM(t) stand for δPR(t), δCR(t), δSR(t) and δWIP(t). The relative
errors are defined as follows:

δPM(t) = εPM(t)

PM(∞)
. (18)
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Fig. 9. Accuracy of the steady-state analysis. (a) Absolute error of overall
production rate. (b) Relative error of overall production rate. (c) Absolute
error of overall consumption rate. (d) Relative error of overall consumption
rate. (e) Absolute error of overall scrap rate. (f) Relative error of overall scrap
rate. (g) Absolute error of overall work-in-process. (h) Relative error of overall
work-in-process.

To test the aggregation method in both steady-state analysis
and transient analysis, the parameter settings are randomly
selected from the range shown as follows:

D ∈ {4, 5, 6, 7, 8, 9, 10}
ei ∈ [0.60, 0.99], for i = 1, . . . , D

ri ∈ [0.20, 0.50], for i = 1, . . . , D

Ni ∈ {5, 6, 7} for i = 1, . . . , D − 1

Ti,max ∈ {Ni + 1, Ni + 2, Ni + 3} for i = 1, . . . , D − 1

Ti,min ∈ {1, 2}, for i = 1, . . . , D − 1. (19)

The number of machines is selected from the range
{4, 5, 6, 7, 8, 9, 10}, and this can cover a large number of
applications. Machine efficiency is commonly seen in the
range of [0.60, 0.99], from which the machine efficiency is
randomly chosen in the experiment. The selection of N and
Ti,min and Ti,max covers a large portion of applications. The
steady-state performance of a production system is worth

Fig. 10. Accuracy of the transient analysis. (a) Absolute error of overall
production rate. (b) Relative error of overall production rate. (c) Absolute
error of overall consumption rate. (d) Relative error of overall consumption
rate. (e) Absolute error of overall scrap rate. (f) Relative error of overall
scrap rate. (g) Absolute error of overall work-in-process. (h) Relative error
of overall work-in-process.

analyzing, when the buffer is capable of supporting a smooth
production, and the majority of parts are finally produced with
an acceptable quality. Thus, the repair probability is selected
from [0.20, 0.50]. For the experiments of steady-state analysis,
5000 random parameter settings are generated. In each para-
meter setting, the run length is T = 100 000, and 40 runs are
carried out. The cycles after Tst = 20 001 are considered in the
steady-state analysis. In the transient analysis, 5000 parameter
settings are randomly selected. In each parameter setting,
the simulation runs T = 2000 cycles and repeats 10 000 times.
In addition, we set Tst = 1001 and Ttr = 400.

The accuracy of the steady-state analysis and transient
analysis is shown in Figs. 9 and 10, respectively. The overall
consumption rate can be estimated accurately. The median of
the relative error of the overall consumption rate is 0.81%
in both steady-state analysis and transient analysis, and the
relative errors are less than 2.0% for most cases. The esti-
mates of the overall production rate and work-in-process have
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higher errors. In most cases, it can maintain relative errors
smaller than 6%, which is also acceptable. The overall scrap
rate has the largest error. The median of relative error is 4.1%
for steady-state analysis and 3.9% for transient analysis. The
absolute error of the scrap rate is small, and the large relative
error is partially due to the small denominator. The experiment
with random parameters suggests that the proposed analytical
method, combining the approximate modeling of residence
time and the aggregation method, can estimate performance
measures of a multistage line in high accuracy.

Both the simulation and the aggregation method are devel-
oped with MATLAB and run on a computer with Intel(R)
Core(TM) i7-8700 CPU, 16-GB RAM, and 64-bit Windows
10 Enterprise operating system. The average time to perform
simulation for a parameter setting in the steady-state analysis
is 39.63 s, and it takes only 0.13 s on average to perform
steady-state analysis of the aggregation method. It shows that
the aggregation method is more efficient. In the transient
analysis, the simulation takes 219.11 s on average for each
parameter setting, and the aggregation method takes 27.36 s.
The transient analysis of the aggregation method takes more
time than the steady-state analysis, but it is still more efficient
than the simulation.

VII. CONCLUSION AND FUTURE WORK

In this article, we introduce a novel modeling approach
for both transient and steady-state performance evaluation of
multistage geometric serial production lines with residence
time limits. Specifically, to deal with the complexity of such
systems, a two-machine-one-buffer subsystem is defined, and
a Markov chain model is developed to analyze the subsystem.
The approximate modeling of residence time is applied to the
analysis of the two-machine-one-buffer subsystem to further
reduce the size of state space. The aggregation method is
then developed to evaluate the performance of a multistage
geometric serial line with residence time limits. Compared
with simulation, the proposed aggregation method is verified
to possess high accuracy in evaluating both steady-state and
transient performance. Such a method can provide production
engineers a quantitative tool to evaluate complex production
systems efficiently and accurately. Future work can be directed
to investigating real-time control policies that optimize such
a complex system by leveraging the developed modeling
approach in this article.

APPENDIX

REMAINING TRANSITION EQUATIONS IN SECTION IV-B

We start with the simple state (0, 0, ssub
1 , ssub

2 ) in the (t+1)-
th cycle, for ssub

1 , ssub
2 = 0, 1. It represents the system state

that the buffer is empty and the states for both machines
are ssub

1 and ssub
2 , respectively. Transitions regarding state

(0, 0, ssub
1 , ssub

2 ) in cycle t + 1 can be obtained using the
following equation:
x
(
0, 0, ssub

1 , ssub
2 , t + 1

)
= x(0, 0, 0, 1, t)P(1)

0,ssub
1
P(2)

1,ssub
2

+x(0, 0, 1, 1, t)ps P(1)

1,ssub
1
P(2)

1,ssub
2

+x(0, 0, 0, 0, t)P(1)

0,ssub
1
P(2)

0,ssub
2

+x(0, 0, 1, 0, t)ps P(1)

1,ssub
1
P(2)

0,ssub
2

+
Tmax−2∑
τ1=Tmin

x(1, τ1, 0, 1, t)
(
1 − pb

)
P(1)

0,ssub
1
P(2)

1,ssub
2

+
Tmax−2∑
τ1=Tmin

x(1, τ1, 1, 1, t)ps
(
1 − pb

)
P(1)

1,ssub
1
P(2)

1,ssub
2

+x(1, Tmax − 1, 0, 0, t)P(1)

0,ssub
1
P(2)

0,ssub
2

+x(1, Tmax − 1, 1, 0, t)ps P(1)

1,ssub
1
P(2)

0,ssub
2

+x(1, Tmax − 1, 0, 1, t)P(1)

0,ssub
1
P(2)

1,ssub
2

+x(1, Tmax − 1, 1, 1, t)ps P(1)

1,ssub
1
P(2)

1,ssub
2

(20)

for ssub
1 , ssub

2 = 0, 1.
State (1, 0, ssub

1 , ssub
2 ) in cycle t + 1, for ssub

1 , ssub
2 = 0, 1,

represents the state that there is one part in buffer B and its
residence time is 0. It implies the part is produced by machine
msub

1 at the end of cycle t . Thus, machine msub
1 must be up in

cycle t , and starvation does not happen to machine msub
1 . The

system evolution for x(1, 0, ssub
1 , ssub

2 , t+1) can be represented
as

x
(
1, 0, ssub

1 , ssub
2 , t + 1

)
= x(0, 0, 1, 0, t)

(
1 − ps

)
P(1)

1,ssub
1
P(2)

0,ssub
2

+x(0, 0, 1, 1, t)
(
1 − ps

)
P(1)

1,ssub
1
P(2)

1,ssub
2

+
Tmax−2∑
τ1=Tmin

x(1, τ1, 1, 1, t)
(
1 − ps

)(
1 − pb

)
P(1)

1,ssub
1
P(2)

1,ssub
2

+x(1, Tmax − 1, 1, 0, t)
(
1 − ps

)
P(1)

1,ssub
1
P(2)

0,ssub
2

+x(1, Tmax − 1, 1, 1, t)
(
1 − ps

)
P(1)

1,ssub
1
P(2)

1,ssub
2

(21)

for ssub
1 , ssub

2 = 0, 1.
The rest of the transitions are shown in the following:

x
(
j, j − 1, ssub

1 , ssub
2 , t + 1

)
= x( j − 1, j − 2, 1, 0, t)

(
1 − ps

)
P(1)

1,ssub
1
P(2)

0,ssub
2

+x( j − 1, j − 2, 1, 1, t)
(
1 − ps

)
P(1)

1,ssub
1

×P(2)

1,ssub
2

1N+(Tmin + 2 − j)

+x( j − 1, j − 2, 1, 1, t)
(
1 − ps

)
pb

×P(1)

1,ssub
1
P(2)

1,ssub
2

1N+( j − 1 − Tmin)

+
Tmax−2∑

i=max( j−1,Tmin)

x( j, i, 1, 1, t)
(
1 − ps

)(
1 − pb

)
×P(1)

1,ssub
1
P(2)

1,ssub
2

�( j, i, j − 2)

+x( j, Tmax − 1, 1, 0, t)
(
1 − ps

)
P(1)

1,ssub
1

×P(2)

0,ssub
2

�( j, Tmax − 1, j − 2)

+x( j, Tmax − 1, 1, 1, t)
(
1 − ps

)
×P(1)

1,ssub
1
P(2)

1,ssub
2

�( j, Tmax − 1, j − 2) (22)
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for 2 ≤ j ≤ N , and ssub
1 , ssub

2 = 0, 1

x
(
j, i, ssub

1 , ssub
2 , t+1

)
= x( j−1, i−1, 1, 0, t)

(
1− ps

)
P(1)

1,ssub
1
P(2)

0,ssub
2

+ x( j−1, i−1, 1, 1, t)
(
1− ps

)
P(1)

1,ssub
1
P(2)

1,ssub
2

1N+(Tmin+1−i)

+ x( j−1, i−1, 1, 1, t)
(
1− ps

)
pbP(1)

1,ssub
1
P(2)

1,ssub
2

1N+(i−Tmin)

+ x( j, i−1, 0, 0, t)P(1)

0,ssub
1
P(2)

0,ssub
2

+ x( j, i−1, 0, 1, t)P(1)

0,ssub
1
P(2)

1,ssub
2

1N+(Tmin+1−i)

+ x( j, i−1, 0, 1, t)pbP(1)

0,ssub
1
P(2)

1,ssub
2

1N+(i−Tmin)

+ x( j, i−1, 1, 0, t)ps P(1)

1,ssub
1
P(2)

0,ssub
2

+ x( j, i−1, 1, 1, t)ps P(1)

1,ssub
1
P(2)

1,ssub
2

1N+(Tmin+1−i)

+ x( j, i−1, 1, 1, t)ps pbP(1)

1,ssub
1
P(2)

1,ssub
2

1N+(i−Tmin)

+
Tmax−2∑

k=max(i,Tmin)

x( j, k, 1, 1, t)
(
1− ps

)(
1− pb

)
×P(1)

1,ssub
1
P(2)

1,ssub
2

�( j, k, i−1)

+ x( j, Tmax−1, 1, 0, t)
(
1− ps

)
P(1)

1,ssub
1

×P(2)

0,ssub
2

�( j, Tmax−1, i−1)

+ x( j, Tmax−1, 1, 1, t)
(
1− ps

)
P(1)

1,ssub
1

×P(2)

1,ssub
2

�( j, Tmax−1, i−1)

+
Tmax−2∑

k=max(i,Tmin)

x( j+1, k, 0, 1, t)
(
1− pb

)
×P(1)

0,ssub
1
P(2)

1,ssub
2

�( j+1, k, i−1)

+
Tmax−2∑

k=max(i,Tmin)

x( j+1, k, 1, 1, t)ps
(
1− pb

)
×P(1)

1,ssub
1
P(2)

1,ssub
2

�( j+1, k, i−1)

+ x( j+1, Tmax−1, 0, 0, t)P(1)

0,ssub
1

×P(2)

0,ssub
2

�( j+1, Tmax−1, i−1)

+ x( j+1, Tmax−1, 0, 1, t)P(1)

0,ssub
1

×P(2)

1,ssub
2

�( j+1, Tmax−1, i−1)

+ x( j+1, Tmax−1, 1, 0, t)ps P(1)

1,ssub
1

×P(2)

0,ssub
2

�( j+1, Tmax−1, i−1)

+ x( j+1, Tmax−1, 1, 1, t)ps P(1)

1,ssub
1

×P(2)

1,ssub
2

�( j+1, Tmax−1, i−1) (23)

for 2 ≤ j ≤ N − 1, j ≤ i ≤ Tmax − 1, and ssub
1 , ssub

2 = 0, 1

x
(
N, i, ssub

1 , ssub
2 , t+1

)
= x(N−1, i−1, 1, 0, t)

(
1− ps

)
P(1)

1,ssub
1
P(2)

0,ssub
2

+x(N−1, i−1, 1, 1, t)
(
1− ps

)
P(1)

1,ssub
1
P(2)

1,ssub
2

1N+(Tmin+1−i)

+x(N−1, i−1, 1, 1, t)
(
1− ps

)
pbP(1)

1,ssub
1
P(2)

1,ssub
2

1N+(i−Tmin)

+x(N, i−1, 0, 0, t)P(1)

0,ssub
1
P(2)

0,ssub
2

+x(N, i−1, 0, 1, t)P(1)

0,ssub
1
P(2)

1,ssub
2

1N+(Tmin+1−i)

+x(N, i−1, 0, 1, t)pbP(1)

0,ssub
1
P(2)

1,ssub
2

1N+(i−Tmin)

+
Tmax−2∑

j=max(i,Tmin)

x(N, j, 1, 1, t)
(
1− ps

)(
1− pb

)
P(1)

1,ssub
1

×P(2)

1,ssub
2

�(N, j, i−1)

+x(N, Tmax−1, 1, 0, t)
(
1− ps

)
P(1)

1,ssub
1

×P(2)

0,ssub
2

�(N, Tmax −1, i−1)

+x(N, Tmax−1, 1, 1, t)
(
1− ps

)
P(1)

1,ssub
1

×P(2)

1,ssub
2

�(N, Tmax −1, i−1)

+x(N, i−1, 1, 0, t)P(1)

1,ssub
1
P(2)

0,ssub
2

+x(N, i−1, 1, 1, t)P(1)

1,ssub
1
P(2)

1,ssub
2

1N+(Tmin+1−i)

+x(N, i−1, 1, 1, t)pbP(1)

1,ssub
1
P(2)

1,ssub
2

1N+(i−Tmin) (24)

for N ≤ i ≤ Tmax − 1, and ssub
1 , ssub

2 = 0, 1.
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