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Abstraci—This work aims to enable persistent, evenl-driven sensing
and decision capabilities Tor energy-harvesting (EHkpowered deviees
by deploying lightweight DNNs onto EH-powered devices. However,
harvested energy is usually weak and unpredictable and even lightweight
% Ms take multiple power cycles to finish one inference. To eliminate
the indefinite long wait to accumulate energy for one inference and o
optimize the accuracy, we developed a power trace-aware and exit-guided
network compression algerithm to compress and deploy muolti-exit nearal
networks to EH-powered microcontrollers (MCUs) and select exits during
execution according to available epergy. The experimental results show
superior accuracy and latency compared with state-of-the-art fechnigues.

Index Terms—Energy harvesting, intermittent inference, network com-
PressHEn

I. INTRODUCTION

The maturation of energy harvesting (EH) technology and the
recent emergence of intermittent computing, which stores harvestad
energy in energy storage and supporls an episode of program ex-
ecution during each power cycle, creates the opportunity to build
sophisticated batiery-less energy-newiral sensors. One of the most
promising applications of such sensors is to build persistent, event-
driven loT sysiems in which the main device (e.g. a batlery-draining
processing system) can remain dormant, with near-zero power con-
sumption, until awakened by an EH-powered sensor, which monitors
events of interest constanfly with harvested energy. To realize this
capahility, the EH-powered sensor has o frequently make decisions
locally with sensor data, as it is prohibitive to send the raw data to
other devices and offload the computation to them.

Deep newral networks (DNNs) can effectively extract features
from noisy input data. However, they are usually computationally
expensive, Typical neural networks have ens of millions of weights
and use billions of operations to finish one inference. Even a small
DNM (e.g. MobileMNetV2 [1]) has over a million weights and millions
of operations. However, microcontrollers (MCUs) are constrained in
resources, Typical MCUs have limited storage (e.g. Flash or FRAM)
size (several or tens of KB) and run in low frequency (several or tens
of MHz). Direcily deploving DNN (o MCLU is infeasible because the
model size exceeds the storage capacity. Even if the DNN model can
fit into the limited storage, the time © finish one inference is sill oo
leng (tens or hundreds of seconds).

DNN inference on intermittently-powered devices remains largely
unexplored. Existing work [2] made the first step to implement DNNs
on an intermittently powered MCU. However, multiple power cycles
are neaded to finish one inference in most casez. Since the harvestad
power is usually weak and unpredictable, the latency to obtain the
final inference result can be indefinitely long. Recently, the multi-
exit network with classifiers in shallower layers is proposed [3], [4].
They are very promising for EH-powered devices with limited enargy
budget because they can reduce the inference energy cost and latency
by exiting from early-exits while maintaining the accuracy.
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However, to achieve efficient inference with multi-exit networks
on EH-powered devices, the first challenge is how (o fit the muli-
exit network onto MCUs while keeping a high accuracy of each exit.
Simply compressing the network with existing network compression
approaches [2] does not work well since they only consider the
accuracy of the final exit. For a mult-exit network, only considering
the final exitl during compression will significantly degrade the
accuracy of early-exits, Unfortunately, the EH-powered system ofien
chooses early-exits in shallower layers to generate the result with the
limited energy budget, which resulis in low accuracy, Therefore, how
te compress the network considering the accuracy and energy cost of
each exit remains a problem. It becomes more complicaied when the
power source is considered. Powered by dynamic EH, the chances
that each exat is selected are different depending on both the power
condition and the accuracy/energy cost of each exit after compression.
To maximize the average accuracy of all the evenis, the compression
algorithm has to take the power condition and accuracy/energy cost
of multiple exits into consideration. Maximizing the average accuracy
across all the events is equivalent to maximizing the number of
interesting evenis that are correctly processed in a fixed amount of
harvested energy, which is important for EH-powered devices.

The second challenge is how to select the exit for each event during
runtime to achieve a high average accuracy in the long-term. The
exit neads o be selected hased on the available EH enengy and the
difficulty of each input. Two saquential decisions need to be made.
First, when an event happens, simply selecting the exit with the
highest accuracy that curment energy can support can result in low
average accuracy in the long run. This 18 because even if current EH
efficiency is high, it can be low in the future. Instead of using up
all the available energy for one inference to achieve high accuracy,
a better strategy is to reserve some energy for the future events.
Otherwise the following events will have low accuracy or even be
missad because of insufficient energy. Second, the inference difficulty
of each input needs to be considerad. The difficulty is only known at
an exit by inspecting the entropy of current result. If the confidence
is low at the selected exit, a second decision needs to be made on
whether an incremental inference is needed to propagate the input to a
following exit for a higher accuracy. To make these two decisions, the
EH condition and the difficulty of current event need to be considered.

To address these two challenges, we propose a two-phase ap-
proach to automatically compress multi-exit neural networks before
deployment and conduct runtime exit selection. In the first phase,
we aim to compress the multi-exit network to fit it onto MCUs and
achieve high average accuracy of all events. First, we will consider
typical EH power traces and event distribution, which determine the
probability of selecting each exit. Priority will be given to the exits
which have higher probability of being selected. Since the probability
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of selecting each exit will change after we compress the network doe
te the change of computation complexity for each exit, we develop a
reinforcement-learning (RL) based approach to automatically search
the best pruning rate, bitwidth of weights and activations in all the
layers to maximize the average accuracy.

In the second phase, we aim o maximize the average accuracy for
all the events during runtime. We employ Q-lzarning [5] to learn the
hest exit under different EH energy conditions. To select the exit for
an event, we use the current available energy level and the charging
efficiency as the state, and use all exils as the actions the leaming
method can take. Q-leamning is lightweight as it uses a lookup table
(LUT) to select actions. The learning process only involves updating
the LUT. To decide whether to conduct incremental inference, we use
the confidence of the result at the selected exit and current available
energy as the state. The action is a hinary decision, representing to
continue the inference or to output the current result.

In summary, the main contributions of the paper include:

« Intermittent inference model. We propose an intermittent and
incremental inference model to guarantee an inference result
before power failure occurs, Waiting for the next power cycle
is not neaded while further refining is still possible.

« Power trace-aware compression. We develop a power trace -
aware and multiple exits-guided compression technigue to com-
press multi-exit networks to fit onto MCUs while maximizing
the average inference accuracy.

« Runtime adaptation. We propose an online exit selection
method 1o select the exit Tor each event considering the EH
condition and difficulty of each input.

Experimental resulis show that the proposed technigues improve
the number of correctly processed events per energy unit by 3.6x
over [2], a siate-of-the-art (SOTA) intermitient inference framework,
It also outperforms [6], a NAS framework to generate networks for
MCTUs, by 18.9x. The latency of all the processed events is improved
by 7.8x and 10.2x over these two approaches, respectively.

II. EVENT-TRIGGERED INTERMITTENT INFERENCE
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Fig. 1: Intermittent execution model with muli-exits and benefits of

nonuniform compression.

In the existing state-of-the-art deployment of DNNs on EH-
powered devices [2], when the power is not sufficient to finish
the entire forward-pass, the system is forced to panse during the
inference process and wait until enough energy is harvested. However,
the unpredictable EH process can result in indefinite waiting time
te harvest sufficient energy, by which time the event may become
obsolete. To solve this problem, we employ networks with multi-
exits [4]. As shown in Figure 1(b)(c), this simple network has 3 exits,

and each exit has a different accuracy and energy cost on CIFAR-
10. As shown in Figure 1(a), when an event triggers the inference,
an exit will be selected according to the available energy and the
energy cost of each exit. In this example, when Event 1 occurs, the
stored energy is sufficient to support the inference to Exit 3, which
is selected as the exit. However, when Event 2 occurs, the energy
can only support the inference to Exit 1. At each exit, the confidence
of the result is measured by the entropy. If the confidence is higher
than a threshold, the inference exits from this point. Otherwise, when
more energy is available, an incremental inference will be made to
proceed to the following exit for higher accuracy. In this example,
since the confidence of Event 2 in Exit 1 is below the threshold, an
incremental inference is conducted to proceed (o Exat 2. This process
alleviates the indefinitely long waiting time problem and an inference
result with confidence can be obtained during each power cycle,
Metric We use local inference to filler sensor readings from events
s0 that only the interesting evenis are used o wake up the main
device. Our figure of merit is the number of interesting events that are
correctly processed in a fixed amount of harvesied eneregy. We denoie
it as IEpmJ, or Interesting Events per milliJoule. Maximizing [EpmJS
is equivalent o maximigng the aw:ra%c \;rizccuracy of all cvci;tl.%:
- _ Neorrect _ _:l'=1] Am.‘f + _If='|_ 0 _ N L
Sy Broe N 2
(1

Nearrecr 15 the number of comectly processed events. N = Ny + Na
is the number of all the events in which N; events are processad
by inference and N: events are missed due to insufficient energy.
Neorrect i8 @ subset of N1 and Neorrect = 3,2, Ace;. Ace; €
{0, 1} where Aecy = 1 represents event j is correctly processed and
Arc; = 0 otherwise. Since W and Fy ., are constants determined by
the EH environment, maximizing /EpmJ is equivalent o maximizing
the average accuracy of all WV events, which is the number of cormectly
processed events over all the events % E;\;, Aecy.

To deploy this inference model, the muli-exit network needs o be
compressed to fit onto resource-constrained MCUs. The compression
approach will be introduced in Section T11.

E!,n!,n!

III. PoweR TRACE-AWARE, EXIT-GUIDED NETWORK
COMPEESSION

In this section, we will develop an EH powered trace-aware and
exit-puided network compression algorithm. It aims o fit the muli-
exit network onto MCUs and maximize the average accuracy by
allocating laver-wise pruning rate and gquantization bitwidih, Existing
compressing algorithms, which uniformly compress network, will
significantly degrade the accuracy of exiis in shallow layers as shown
in Figure 1{h). Different from existing algorithms that only consider
the accuracy of the final classifier, this approach takes the accuracy
of all exits into consideration and conducts nonuniform compression.
As shown in Figure 1(b), if we take a non-uniform approach, which
compresses less in the shallow layers and more in the desp layers, the
accuracy drop for all exits will be small. What is more, some exits
will be chosen more often than the others under a given power trace
and event distribution. Thus, we will prioritize the accuracy of these
exits during the compression process. In this way, we can improve
the average inference accuracy across all events.

The overview of the compression approach is shown in Figure
2. This approach takes the multi-exit network, EH power trace, and
event distribution as the input and generates non-uniform pruning
rate and the bitwidth allocation policy for each layer. Based on the
pruning rate, channel pruning is applied to each layer to prune out the
input channels [7]. The channel to be pruned out is selected by the
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Fig. 2: Overview of compression and mintime exit selection.

importance of the channel, i.e the magniiwde of weighis applied to
the input channel, and the less important ones are pruned out. Basad
on the bitwidth policy, linear quantization [8] 15 applied o both the
weights and activations. After compression, the network is deployed
onto MCUs and the runtime algorithm will select the exit for each
event, which will be introduced in Section ['V. During compression,
the approach first generates an initial layer-wise compression policy.
The compression policy prioritizes the exits with higher probability
and provides them with relatively higher accuracy by adjusting
the layer-wise compression policy. After applying the compression
policy, the probability distribution of each exit is changed and the
compression policy neads further fine-tuning. To accelerate the above
iterative design process, we propose a reinforcement learning (RL)-
based algorithm to co-explore the pruning and quantization policies
and the prebability distribution of each exit.

A. Problem Formulation

Given a full-precision network with muoltiple early-exits, we will
explore the accuracy and energy cost allocation for each exit to
maximize the average accuracy (equivalent to maximizing [EpmJ
defined in Section II) under the given EH power trace and event
distribution. This is achieved by non-uniformly allocating the pruning
rate and guantization bitwidth for each layer Both pruning and
quantization reduce the FLOPs and weight size of the network bt
with different emphasis. Pruning mainly reduces the FLOPs, while
quantization mainly reduces the model size.

Pruning Gvien a pruning rate oy, we employ channel pruning
te prune out the entire input channels of a convolutional or fully-
connecied layver. The advaniages are two-fold. Tt reduces the FLOPs
of the previous layer by reducing the number of output channels. It
alzo reduces the FLOPs of the current layer by reducing the number
of input channels. Besides, it can be directly implemented on off-the-
shell MCUs without overhead. More specifically, given the pruning
rate rv; for layer [, we reduce the filter weights from shape [, ¢, k, k]
to [n, e, k, k] such that oy = ' /. For convolutional layers, n and «
are the number of output and input channels, respectively, and & is the
filter kernel size, For fully-connected layers, noand ¢ are the number
of output and input activations, and k& = 1. The input channels to be
pruned are selected according to the sum of absoluie weights applied
to them. We use wy ; to represent the weights of filter 7 connectad
o input channel 3. The i1;rlrpunance of imput channel 7 is:

85 = El""‘r“n.fli j = {I:l"':l‘-"]I [2)

Al the input channels ﬂ.I"E.'_jSDI'tE.'d by =; and the least important ones
are pruned out to make ¢ = e
Quantization For each layer [, we employ linear quantization for
both the weights and activations following the bitwidth b and &'
Given weight bitwidih b = k, the linearly quantized weight w is:
wi = elamp(round|w; /), B S S R (3
where clamp(x, Ib ub) truncates the value = into the range [Ib. ub|
that k bits can represent. s is the scaling factor, which is determined
by minimizing the quantization error ||tw; —my||2. As for activations,
the quantization procedure is similar except the range for dlamp() is

changed. Since all the activations are non-negative due to the Rel.U
function, we truncate the activations into the range [0, 2% — 1].

The goal here is to find the best pruning and quatization rate.
Formally, the multi-exit network compression problem under the
power trace and event distribution constraints is formulated as:

N
1
Max ; AeCogiti i) 4)
st Y EHy 2y Fagup,¥n € {1..N} (5)

=1 i=1
Aeei = faeelm, by, BT, ...,aL‘,bﬂ,bﬂ!}, Yie {l.m} (6)
By = felm, b6, b, op, b, b)), Wie {1..m} (M
Smnd'ni “‘_: S‘!nrgﬂt _nFdenI! E F‘I!a.rgi't (s::'

The objective is to maximize the average accuracy {equivalent to
maximizing {Epmt defined in Section IT) of the given N events and
under the power trace. In the ohjective function Egq.(4), Accessq
represents the accuracy of the exit for event j. For event j, an exit ¢
is selected from m exils by the policy i = exit(f). A simple policy
is selecting the exit for an event such that the epergy cost at the
selected exil does not exceed currenily available energy, The first
constraint listed in Eg.(5) is that for each of the N events, the total
harvesied enerey from the beginning o current time is greaier than
or equal to the total energy cost for all the happened events. Here,
EH; s the harvesied energy afler event 7 — 1 and before event j,
and E.iy;) is the energy cost when exiting from exit ¢ following
policy i = exi#(j). The second constraint lisied in Eq.(6) is that the
accuracy Aee; of exit ¢ is determined by the pruning rate o, weight
bitwidth B;" and activation bitwidth &7 of all layers before the layer
L; where exit ¢ is located. Similarly, the third constraint listed in
Eq.(7) is that the energy cost & exiting from exil @ i8 determined
by all the pruning rates and bitwidth allocations before this exit. The
last constraint lsted in Eq.(8) is the weight size Smedor can fit into
the target MCU and the total FLOPS Finoder is reduced to the target
vale Fiorge:.

Given the pruning rate og and bitwidth &', b, 1 € {1,..., L}, the
objective function can be immediaiely calculated. This is done by
first evaluating Eq.(6) on the representative dataset to get Ace; and
measuring F; on the hardware or from the proxy FLOPs. Following
the energy constraint Eq.(5) and exit selection policy, the exit § =
erit(j) for event j £ {1...N} is determined. Given exit(j), the
ohjective function Eq.(4) is calculated. Howewver, the search space
is prombitively large to find the optimal allocation policy, Assume
the network has I layers. The gquantization bitwidth 5" and b are
both selecied from {1,..., 8}, and the pruning rate o is in the range
[(1.05,1.0] with a step size (L05. The design space as large as (&% x
200" = 107", which prohibits direct searching,
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Fig. 3: Exit-guided layer-wise pruning and quantization.
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To effectively ssarch for the optimal parameters, we model the
pruning and gquantization task as a reinforcement learning problem.
As shown in Figure 3, we use two agents to generate the pruning rate
and guantization bitwidth layer-by-layer. The compressed network is
then evaluated with the EH power trace and event distribution. Here,
the exit is selected according to the available energy when an event
happens. After that, the reward representing the average accuracy
of all events is given to the agents to update their policies. After the
exploration, the agents will generate the pruning rate and quantization
bitwidth for each layer to maximize Eq.(4) and equivalently JEpm.J.

State Two agents share the laver-wise state during training and
generate different actions. The key point is that both the pruning and
quantization information are encoded in the observation. Each agent
ohserves the peer’s action in the last layer such that it can take action
accordingly. For layer [, the shared observation € is:

Oy = (1, o, by ; br_y s flopreduced, floprematn,

Sreducedy Srematn franus Cing Couts Sweight } (9::'

1 is the laver index. oy—1 15 the pruning rale of the previous layer,
B, and &, are the hitwidth of weights and activations of the
previous layer., flopreguced 15 the reduced FLOPs in previous layers,
and flopeemais 18 the FLOPs in the following layers. seedueeqs and
Sremain are the reduced weight size and the remaining weight size,
ieane 15 8 binary value indicating whether this layer is a convolutional
or fully-connected layer, cin and cou are the number of input and
output channels for the convolutional layer, or the number of input
and output activations for the fully-connected laver. Each dimension
of (J; is normalized to [0, 1] to make them on the same scale.

Action Two agents generate different actions. One agent generales
the action cy for the layer-wise pruning rate. The other agent
generales two actions, one for the layer-wise weight bitwidth b
and one for activation bitwidth 5. We use continuous action space
o generate accuracy pruning rate and guantization bitwidth. We do
nod wse discrete action space because fing-grained pruning rate and
quantization bitwidth need a large number of discrete actions to
represent, which results in inefficient exploration during training. To
apply the agents” actions to the compression process, the continuous
action representing the pruning rate can be directly applied to
pruning. The action for quantization is first linearly mapped from the
continuous action space [0, 1] to the discrete bitwidth in the range
[Bnin s Bimaz]| for weights and [b,q.,, Biaz| for activations. Then the
bitwidth is applied (o the quantization of weights and activations,

Reward Two agents have different reward functions Fppyme and
R euane due 1o different goals, Their rewards consist of the accuracy
part Haee and the compression part. Hy.. aims to maximize the
average accuracy of all events under the miven power trace and event
distribution. We use the percentage of each exit being selected to
guide the compression process. R, . is defined as:

[ — Zp.;.n"lccf

where p; is the percentage of exill_zji being selected. Tt is determmned
by both the power trace and event distribution in Eq.(4)-(8).

The compression goal of the pruning agent is to keep the FLOPs
of all exits Finpaet = 3 1oy flop; under the targeted value Fyegpor.
The guantization agent aims to keep the weight size Smoder under
the target value Sigpger. Considering the accuracy reward in Eg.(10),
the reward for two agents are defined as follows:

{10

A Raee  if Froogar < Frarget
R unRe — 11
Fr —A otherwisa an
AaRace i Smodat < S‘!nrgﬂt
uant — - {12}'
Bauant —Az otherwise

where Ay and Ag are the reward scaling factors. When the compres-
sion goal is satisfied, the reward is the scaled accuracy. Otherwise,
the reward is a negative value to punish the agents.

Agent We use two RL agents, one for pruning and the other for
quantization. Separate agents enable us to set different rewards to
achieve different goals simultaneously. The agents leverage the deep
deterministic policy gradient (DDPG) [9] algorithm to explore the
design space. The agents process the network layer-by-layer. In the
learning process, one step represents the agent processes one layer.
For each layer, two agents take the step simultaneously and proceed
to the next layer. One episode consists of many steps. It starts from
the first layer and ends at the last layer.

During exploration, each agent aims to maximize the owverall
reward of one episode. The action-value Q-function is estimated as

&= + GO, 8041 Hayy y —piope) {13)
The Q-funciion Q(Cli, a) is updated by minimizing the loss:
Loss = HZ{QI —Q(DEJEI}”n:=p[D¢] (14)

where N is the number of sampled steps during exploration. The
policy o = p(() is updated using the sampled policy gradient:

V= ;vm@{m,m}wmel (1)

IV, RUNTIME EXIT SELECTION AND INCREMENTAL INFERENCE

During the compression process, the exit selection for an event j is
determined statically using a static policy, e.g. a lockup table (LUT).
However, naively following the static policy during runtime can result
in low average accuracy in the long term. For example, when the
EH power is low in the long mun, even if the system has sufficient
energy to select the exit with the highest accuracy and energy cost
for the current inference, a better decision can be selecting an exit
with lower energy cost to reserve energy for following events. This
dynamic exit-selection can improve the average accuracy. Besides, if
the confidence at the selected exit is low, an incremental inference
by proceading to the following exit can improve the accuracy. We
propose an online algorithm to make these two sequential decisions.

During runtime, both the power trace and the event distribution
are unknown in advance. To select the best exit for each event, we
propose to employ a lightweight RL algorithm, Q-learning [5]. Q-
leamning consists of the state set S, the action set .4 and the reward
function . The state set 5 contains the current available energy F
and the charging efficiency P. Since both £ and F are continuous
values, to make the number of elements in S finite, we discretize &
and P with appropriate step size. The action set .4 represents all the
possible exits, which is A = {exity, ..., exity }. The reward R is
the accuracy of the selected exit r = Aeca,a € 4. The agent aims
to learn the optimal policy « such that @ = w(s),e € A, s € S to
maximize the reward R = %7 r. When an event happens, the agent
takes two steps, one for selecting the action and the other for updating
the Q-table. The action for the exit is selected by finding the highest
(J-value in current state, represented as o = arg maxge 4 s, a),
where (s, a) denotes the Q-value of action-state pair (s, a). The
entry (s, a) in the Q-table is updated as:

Q(s,a) = Q(s,a) + afr + ymaxQ(s',a) - Q(s,a))  (16)
The overhead of Q-learning is negligible. It only needs a lookup table
(LUT) with state-action pairs as the entries, and the learning process
is updating the LUT by Eq.(16).

To further improve the average accuracy, a second decision is made
at the chosen exit for event j. If the confidence of the result is
low and the remaining energy is high, the algorithm can decide to
propagate the input further to the next exit for higher accuracy. The
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decision is made based on the confidence of the result and current
available energy. We use the entropy of the result as the measure of
confidence [3]. We use another ()-table to make the decision

V. EXPERIMENTAL RESULTS

We conduct extensive experiments to demonstrate the effectiveness
of our approaches in terms of nommiform compression, [Epmt and
accuracy, FLOPs and latency, and runtime adapiation.

A, Experimental Setup

The experiments are targeting on T MSP432 MCU. To power the
MCLU, we use solar profile from [10]. The backbone of the multi-
exit model is LeMet [11]. We use LeMNet because most state-of-the-art
DNMNs designed for mobile devices cannot fit into typical MCUs even
after compression, For example, MobileNetV2 [1] and DARTS [12]
require 4.6MB and 6.6MB weight storage, respectively. However,
a typical MCLU has tens of KBs weight storage. We extend LeNet
to four convolutional layers and equip it with two early-exits along
the data path. The original network needs S80KE weight siorage
when represented with 32-hit floating-point numbers. The FLOPs of
three exits are 0.4452M, 1.2602M and 1.6202M with corresponding
accuracy 64.9%, 72.0% and 73.0%. The energy cost is 1.5mJ per
million FLOPs, We are using the CIFAR-10 dataset and 500 events
are randomly distributed across the duration of the EH power trace.

B. Nonuniform Pruning and Quantization
1
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Fig. 4 Pruning and quantization policy under 1.15M FLOPs and
16KB weight size constraints.

Our approach effectively finds out the pruning rate and quantization
bitwidth allocation policy o maximize the average accuracy under
the model size and FLOPs constraint. Figure 4 shows the layer-wise
preservie rale and quantization bitwidih, The FLOPs constraint is set
te 1.15M FLOPs, and the target model size is set to 16KB. Under
these constrainis, our approach efficiently allocates the hmited FLOPs
and weight size budge to maximize the accuracy. For pruning, the
comvolutional layers are pruned more because they are more FLOPs-
intensive than the fully-connected layers. Different from pruning,
the guantization allocales more accuracy 1o convolutional lavers by
setting their bitwidth to 8. FC-B21 and FC-B31 are guantized to 1-
hit possibly because they have larpe weight size and less sensitive to
data precision. The search takes 6 hours on a Nvidia P100 GPT.

C. TEpmJ and Average Accuracy

The proposed approaches substantially outperform the SOTA base-
lines in terms of IEpmJ (Interesting Events per millioule) and
equivalently the average accuracy of all events, We compare with
three baselines. SonicMet is from the SOTA intermittent inference
framework [2]. SpArSeNet is a network geperated by a Neural
Architecture Search framework for MCUs [6]. LeNet-Cifar is the
LeNet [11] adapted for CIFAR-10 dataset.

The result of JEpmJ is shown in Figure 5. Our approach outper-
forms SonicNet, SpArSeNet and LeNet-Cifar by 3.6x, 18.9x and
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Fig. 5: Number of interesting events per energy harvesting millijoule.

(1.28x, respectively. Our approach achieves (.89 interesting events
per milljoule, while SomcMNet and SpArSeMNet only achieve (.25 and
(105, respectively. During compression, our approach considers the
accuracy and energy cost of each exit, the EH power trace and the
event distribution to compress the network such that the JEpmJ is
maximized. In terms of the accuracy of all events, where the accuracy
of missed event is set to 0, our approach achieves average accuracy
of 50.1%, while SonicNet, SpArSeNet and LeNet-Cifar only achieve
14.0%, 2.6% and 39.2%, respectively. As for the accuracy of all
the processed events, our approach achieves 65.4%, slightly lower
than 75.4%, 82.74%, 74.7% hy the baselines. This is because we aim
te improve the long-term accuracy to maximize [EpmJ instead of
the accuracy for a single event. Solely aiming at the per-inference
accuracy will generate network with high energy cost and result in
high percentage of missed events, which degrades IEpmJ.

0. FLOWPs and Larency
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Fig. 6: FLOPs reduced by compression

FLOPs Our approach effectively reduces the FLOPs of each exat
to maximize the average accuracy of all events. Reducing FLOPs
is imporiant because with lower FLOPs and lower energy cost per
inference, the saved energy can be allocated to other events which
could have been missed due to insufficient encrey. Figure 6 shows
the FLOPs of each exit before and after compression. The FLOPs are
reduced by 0.31x%, 0.44x and (,67x for three exits, respectively. The
reduction ratio of each exit is automatically decided by our approach.
Different from our approach, the SonicMNet has 200 FLOPs and
SpArSeNet has 11.4M FLOPs becanse they did not consider the
limited EH energy and only priovitize the per-inference accuracy,
This results in high energy cost per inference, low TEpmJ and low
average accuracy across all events because large portion of the events
are missed. The LeNet-Cifar is manually designed by domain experts
and has low FLOPs, which fortunately fits the EH scenario well.

Latency Our approach greatly reduces both per-evenmt latency
and per-inference latency. First, the per-evemt latency is from the
occurrence of an event to the end of inference. Across all the
processed events, our approach improves the per-event latency by
T8x, 10.2x and 3.15x over three baselines. More specifically, the
average latency of our approach is 18.0 time units (1 second per
time unit), while the latency of three baselines are 130.9, 183.4 and
56.7 time units, respectively. The improvement shows our approach
smartly selects the early-exits to guickly output a result when the
EH energy is low, instead of wailing for multiple power cycles to

FLOPS [n10f
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reach the final exit as the baselines do. Second, our approach also
improves the per-inference latency, which is from the start to the end
of an inference. As shown in Figure 6, using the FLOPs as the proxy
for the per-inference latency, our approach improves the average per-
inference latency by 4.1x, 23.2x and 0.46x over three haselines.

E. Runtime Adapiation
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Fig. 7: Runtime adaptation by Lightweight learning.

The average accuracy of all events is further improved by the
runtime exit selection, The runtime adaptation effectively learns from
the EH environment and selacts the exit for each event to maximiza
the average accuracy. The adaptation approach outperforms the static
LUT by 10.2%. Figure Ta shows the average accuracy of all events is
improved during the runtime adapiation. The hghtweight Q-leaming
approach gradually learns to optimize the exit selection. Figure Th
shows the percentage and number of events exiting from each of the
three exits. Compared with the static LUT, the (-leaming approach
prioritizes the exit 1 shown in the blue bar (o decrease the energy cost
of each inference. By the strategy adaptation, the Q-learning approach
processes 11.2% more evenls than the static LUT. The overbead of
()-learning is negligible by updating its (-tahle.

V1. RELATED WORK

Intermittent Execution. EH techniques extract power from the
ambient environment and provide an attractive power alternative in
sensing scenarios where it is difficult to employ batteries. With an
unstable power supply, EH-powered computing systems have to run
intermittently. Various optimization and tocls such as Chain [13] have
also been proposed to ensure correctness and improve efficiency.
Gobieski et al. [2] made the first step to implement DNNs in an
intermittently-powered sensor. It guarantees the correctness of DNN
inference across multiple power failures. The drawback is that we
must wait for multiple power cycles to finish one inference. Since the
harvested power is usually weak and unpredictable, it takes indefinite
amount of time to obtain the final inference resull.

Multi-Exit Network. The multi-exit neural network has been inves-
tigated in varions studies. Instead of only having one final inference
result, networks can have early result to save time or energy. In [3],
[4], a subset of networks is selected for faster inference by trading
off accuracy. These approaches allow dynamic trade-off between
inference latency and accuracy. However, none of the works are
targeted on EH-powered MCUs, which are constrained in the weight
storage and energy budgets. The large weight size and FLOPs of their
models are prohibitive for direct deployment to EH-powered MCUs,
Pruning and quantization are needed for the deplovment.

Network Compression. There are extensive explorations on network
pruning and gquantization. For quantization, [14] employs binary
filters and inputs for CNNs. [8] automates the quantization of each
layer by a leaming-based method. For pruning, [15] employs RL
to autcmatically explore the layer-wise pruning rate for channel
pruning [7]. However, these pruning and quantization methods only
consider network with one exit, which will greatly degrade the

accuracy of early-exits. Besides, the above approaches only focus
on either guantization or pruning, not both of them. To deploy
multi-exit networks to MCUs, an automated approach to conduct
the guantization and pruning simultaneously while considering the
accuracy of all exits is needed.

VII. CoNcLUSION

This work aims to enable event-driven sensing and decision capa-
hilities for EH-powered devices by deploying lightweight DNNs onto
EH-powered devices. We provide an intermittent inference model to
provide timely and accuracy result. We propose a two-phase approach
e deploy multi-exit neural networks onto EH-powered MCUs. For
the first phase, we develop a power trace-aware and exit-guided net-
work compression algorithm to compress the networks to maximize
the overage accuracy. For the second phase, we develop a runtime
exit selection algorithm to adapt to dynamic EH environment and
event distribution. The experimental results show superior accuracy
and latency compared with state-of-the-art techniques.
Acknowledgement: This work used the Extreme Science and Engi-
neering Discovery Environment (XSEDE), which is supported by Na-
tional Science Foundation grant number ACI-1348562. Specifically,
it used the Bridges system, which is supportad by NSF award number

ACI-14456046, at the Pittsburgh Supercomputing Center (PSC). This
research was supported in part by the University of Pittsburgh Center

for Research Computing through the resources provided.
EEFERENCES
[1] M. Sandler, A. Howard, M. Zhu, A, Zhmeginov, and L-C. Chen,
“Mobilenetv: Inverted residueals and linear bottlenecks,” in Procecdings
af the IEEE Conference on Computer Vidon and Pattern Recognition,
[2] G. Gobdeski, B. Lucia, and M. Beckmann, “Intelligence beyond the adpe:
Inference on intermitient embedded systems,” in Proceedings af the
Tweniy-Fourth Internarional Conference on Architeciwral Support for
Programming Languages and Operating Systems.  ACM, 2019,
8. Teerapittayanon, B. McDuanel, and H.-T. Kung, “Branchynet: Fuast
inference via early exiting from deep neural networks” in 2006 23rd
Imrernadional Conference on Panern Recognivion {(ICPR).  1EEE, 2016.
G. Huang, D. Chen, T Li, E Wu, L. Van Der Maalen, and K. Q.
Weinberger, “Multi-scale dense convolutional networks for efficient
prediction,” arXiv prepring arXiv: 1 703,00844, vol. 2, 2017.
[5] C. J. Watkins and B, Dayan, “Q-learning,” Maching learning, vol, 8, no.
3-4, pp. 27T9-292, 1992,
I. Fedorov, R. P Adams, M. Mattina, and P N. Whatmough, “Sparse:
Spamse architecture search for cnns on resource-constrained microcon-
trodlers,” arXiv preprint arXiv: I 905 12007, 2019,
H. Li, A. Kadav, L Durdanovic, H. Samel, and H. P Graf, “Pruning
filters for efficient convnets,” arXiv prepring arXiv: TGOS 087 10, 2016,
[8] K. Wang, £ Liu, Y. Lin, J. Lin, and 5. Han, “Haq: Hardware-aware
avlomated quantization with mixed precision.” in Proceedings of the
TEEE Conference on Computer Vision and Parern Recognition, 2019,
[9]1 T P Lillicrap, J. I. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D). Wiarstra, “Continuons control with deep reinforcement
learning,” arXiv preprint arXiv: 130902971, 2015,
[10] A Maxey, C; Andreas, Oob Ridge Noional Laboraiory (ORNL):
Rovaring Shadowband Radiomerer (RSR); Oak Ridge, Tennessee (Datal;
NREL Reporr No. DA-5500-56512. hatpeddy.dol.org/l 0 5439 1052553,
Y. LeCun, L. Botow, Y. Bengio, P! Haffoer er al., “Gradient-based
learning applied o document recognition,” Proceedings of the IEEE,
vol. 86, no, 11, pp. 2278-2324, 1998,
[12] H. Lin, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
saarch,” arXiv prepring arXiv: 1806 00155, 2018,
[13] A. Colin and B. Lucia, “Chain: tasks and channels for reliable intermit-
lent programs,” in ACM SIGPLAN Novices.  ACM, Z016.
[14] M. Rastegari, V. Ordoner, J. Redmon, and A. Farhadi, “Xnor-net
Imagenet classification using binary convolutional neural networks,” in
European Conference on Compurer Vision.,  Springer, 2016,
¥. He, J. Lin, £, Lin, H. Wang, L.-J. Li, and 5. Han, “Amc: Automl for
model compression and acceleration on mobile devices,” in Procecdings
af the Eurapean Conference on Compuier Vision (ECCV), 2018,

[3

[4

[

7

(1]

[13]

Authonred heensed use limited to: University of Pitlsburgh. Downloaded on July 16,2021 at 01:53:52 UTC from [EEE Xplore. Restrictions apply.



