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This work aims to achieve intelligence on embedded devices by
deploying deep neural networks (DNNs) onto resource-constrained
microcontroller units (MCUs). Apart from the low frequency (e.g.,

1-16 MHz) and limited storage (e.g., 16KB to 256KB ROM), one of 2021, Tokyo, Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
the la.rgest challenges is the limited RAM {e.g., 2KB to 64K:B), which 1145/3394885.3439194

is needed to save the intermediate feature maps of a DNN. Most

existing neural network compression algorithms aim to reduce 1 INTRODUCTION

the model size of DNNs so that they can fit into limited storage.
However, they do not reduce the size of intermediate feature maps
significantly, which is referred to as working memory and might
exceed the capacity of RAM. Therefore, it is possible that DNNs can-
not run in MCUs even after compression. To address this problem,
this work proposes a technique to dynamically prune the activa-
tion values of the intermediate output feature maps in the runtime
to ensure that they can fit into limited RAM. The results of our
experiments show that this method could significantly reduce the
working memory of DNNs to satisfy the hard constraint of RAM
size, while maintaining satisfactory accuracy with relatively low

In the fast-growing world of Internet of Things (IoT), which con-
nects and shares data across a vast network of devices or “things”,
analytics is the key to extract the most valuable information from
raw data in a broad spectrum of applications — from manufacturing
and retailing to energy, smart cities, health care and beyond. For
its ability to make rapid decisions and uncover deep insights as
it learns from massive volumes of IoT data, Artificial Intelligence
(AI) is an essential form of analytics to expand the value of IoT. In
Artificial Intelligence of Things (AIoT), Al adds value to IoT through
machine learning and improves decision making while IoT adds
value to AI through connectivity, signaling, and data exchange. Ac-
cording to a recent market research report, embedded Al in support
of IoT Things/Objects will reach $4.6B globally by 2024 [14].

overhead on memory and run-time latency.

CCS CONCEPTS In recent years, deep neural networks (DNNs) have been proved
« Computer systems organization — Embedded software; « to be a promising technique of Al with its powerful capability
Computing methodologies — Neural networks; Supervised learn- to make accurate inferences based on complex and noisy inputs.
ing by classification. While many dedicated DNN accelerators such as TPU [9] have

been designed, the majority of IoT devices are still using low-cost,
KEYWORDS low-power, and resource-constrained microcontroller units (MCUs).
Therefore, to realize the vision of AIoT, it is essential to deploy in-
telligence into the prolific embedded devices via deploying DNNs
on MCUs. However, typical MCUs are resource-constrained, which
have limited storage (e.g., ROM and Flash memory) capacity and run

in low frequency (several or tens of MHz), while a typical DNN usu-
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fit into the limited storage with compression, it still cannot run
successfully if the intermediate data (i.e., feature maps) exceeds the
size of limited RAM (e.g., 2KB - 64KB). Although we can constantly
spill out the intermediate data to fast non-volatile memories such
as FRAM in some cases [4], it is either too expensive or infeasible
for Flash memory or ROM in most of the off-the-shelf commercial
MCUs.

The necessary space to save the intermediate results of a DNN is
referred to as working memory Q. We use () to denote the memory
requirement of layer I of a specific DNN. It is defined as:

Q= |xg| + yil, (1)

where |x;| denotes the number of activation values of input feature
maps of layer [, and |y;| denotes the number of activation values
of output feature maps of layer [, which is equivalent to |xj,4|. For
a DNN consisting of L layers, its working memory Q is defined

as Imax Q. And the working memory Q of a specific DNN is
€1,...L

oversized when Q exceeds the RAM size of the target MCU.

According to Eq. (1), we can conclude that Q; is related to the
shape and number of filters of layer I. Existing neural network
compression techniques such as fine-grained unstructured pruning
in [5] focus on pruning the insignificant weights of filters, which
could not reduce the working memory of a DNN since it does not
change the shape or number of filters. Structured pruning [11],
which removes certain number of filters in each layer (as shown
in Figure 1(a)(b)), could lead to the reduction of working memory.
However, this method is not only coarse-grained but also static and
invariant to different inputs. For instance, in Figure 1(a)(b), the filter
in grey color is removed permanently and thus reduce the working
memory. This pruning operation might not affect the inference of
some inputs like input 0. However, the removed filter might be
very important for the inference of some inputs like input 1. And
the removal of this filter could degrade the accuracy of the infer-
ence of this kind of inputs. Thus, static structured pruning would
weaken the representation capability of the original DNNs espe-
cially those already small DNNs designed for MCUs, and thus lower
the accuracy by a large margin. Although [12] proposes dynamic
structured pruning to mitigate the loss of accuracy incurred by
this coarse-grained pruning, it is not suitable to be used in MCUs
since it needs an extra DNN to decide the policy of pruning in
the runtime, which makes it prohibitive for resource-constrained
MCUs. Quantization [16] is another compression technique that
could reduce working memory by using fewer bits to represent the
activation values of output feature maps. However, the working
memory of lots of DNNs could not satisfy the constraint of RAM
even after their activation values being quantized to one byte, which
will be shown in Section 4. [16] proposes to quantize the activation
values to less than one byte. However, this kind of quantization
is not hardware friendly and might cause problems in accessing
the memory of MCUs without extra hardware support. Moreover,
quantization is also static and thus insensitive to the inputs in the
runtime.

To deploy a given DNN that could not directly run on MCUs due
to the limited size of RAMs, we developed a lightweight run-time
working memory compression algorithm to dynamically prune the
intermediate output feature maps such that they could fit into RAMs
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Figure 1: Static Pruning vs. Dynamic Pruning

without degrading accuracy significantly for certain inputs. The
main idea is shown in Figure 1. Instead of removing certain filters
statically (Figure 1 (a)(b)), our method could dynamically remove
the insignificant activation values (white squares in Figure 1 (c)(d))
in the output feature maps in the runtime. Since which values to
be pruned are dynamically decided based on the current input, the
method is sensitive to the input and thus minimize the accuracy
degradation incurred by pruning for each input.
The main advantages of our method are as follows.

o Effectiveness. To the best of our knowledge, this is the first
work to guarantee that a specific DNN with oversized work-
ing memory could fit into resource-constrained MCUs with-
out changing the architecture of the deployed DNN. Since
the complete architecture is reserved, the loss of accuracy
incurred by pruning is reduced compared with static prun-
ing that modifies the architecture of original DNNs, which
shows the effectiveness of our algorithm.

Simplicity. The method we proposed could be implemented
easily on the off-the-shelf commercial MCUs without any
extra hardware support.

Lightweight. The method is also lightweight since the in-
curred memory overhead is negligible and the overhead on
the run-time latency is moderate, which will be shown in
Section 4.

Besides, the DNN running with our compression algorithm is also
a good complement to the recent neural architecture search (NAS)
specified for MCUs [3], which will be illustrated in Section 2.

According to the experimental results, our method could guar-
antee that the DNN with oversized working memory could fit into
limited RAM while maintaining satisfactory accuracy with rela-
tively low overhead on memory and run-time latency.

The remainder of the paper is organized as follows. Section 2
reviews the related works and Section 3 describes the run-time
working memory compression in detail. Experimental results are
given in Section 4 and the concluding remarks are given in Section 5.
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2 RELATED WORK

Deployment of DNNs on Resource-Constrained MCUs. DNNs
were once thought to be unsuitable for deployment on resource-
constrained MCUs due to the gap between its complexity and the
limited resources of MCUs. However, more attention has been
paid to running DNNs on resource-constrained MCUs in recent
years. [7] designs and deploys a DNN on MCUs to detect ventricular
arrhythmias and achieves better performance than conventional
algorithms. However, the simple architecture of the DNN hinders
it from being applied to more complex tasks such as image classifi-
cation. [4] is the first work to successfully deploy DNNs on energy
harvesting powered MCUs. However, instead of ROM, this kind
of MCUs use FRAM as the storage component, which is more ex-
pensive and allows frequent writing operations. The problem of
oversized working memory was overcome by constantly spilling
out intermediate data from SRAM to FRAM. However, this strat-
egy is either too expensive or infeasible for the MCUs with Flash
memory or ROM. Different from the above works that focus on the
inference of DNNs on MCUs, [19] proposes a framework for the
efficient on-device training of DNNs. Based on their framework,
the online training of LeNet could be achieved on MCUs, which
helps to enable more use cases of DNNs on MCUs.

DNN Compression. DNN compression is a technique to reduce
the size of a specific DNN so that it could fit into the memory of
mobile or embedded devices with negligible loss of accuracy [5, 6,
11, 12, 16]. Pruning is one of the common compression techniques,
which could be divided into structured pruning [6, 11, 12] and un-
structured pruning [5]. However, directly applying unstructured
pruning to DNNs on MCUs could not solve the problem of over-
sized working memory, as we discussed in Section 1. Structured
pruning and quantization [16] could reduce the working memory
of a given DNNs since they effectively decrease the size of inter-
mediate feature maps. And [18] is the first work to combine these
two techniques to deploy DNNs on energy harvesting powered
MCUs. However, the framework they propose is optimized for en-
ergy harvesting settings and specified for a special kind of DNNs,
i.e., multi-exit DNNs. To satisfy the more strict energy consumption
constraint of energy harvesting powered devices, the accuracy of
DNNs is sacrificed. Therefore, a more general method is needed
to solve the problem of oversized working memory of DNNs on
MCUs while maintaining the accuracy as much as possible.
Hardware-Aware Neural Architecture Search (NAS). Hardware-
aware NAS is an emerging technique that could automatically
generate the architecture of DNNs with the best accuracy for a
particular application while satisfying the hardware constraints
of target platforms [2, 8, 17]. While most of the existing works
focus on mobile devices or FPGAs, little attention has been paid to
the design of DNNs on resource-constrained MCUs. Recently, [3]
proposes a hardware-aware NAS customized for MCUs. It takes the
model size and working memory of DNNSs into consideration in the
search process. It could eliminate the DNNs with oversized working
memory since they are regarded as not being able to run on MCUs
by default in the search process. However, equipped with our run-
time working memory compression, this kind of eliminated DNNs
actually can run on the target MCUSs successfully. And they might
have better accuracy compared with those DNNs having smaller
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working memory since a larger working memory is usually related
to a more complicated architecture with stronger representation
capability. Due to the simplicity of our compression algorithm, it is
convenient to be merged into the NAS framework in [3] and thus
expand their search space, which could lead to better results. There-
fore, we can conclude that the DNN running with our compression
algorithm is a good complement to [3].

3 RUN-TIME WORKING MEMORY
COMPRESSION

Traditional static structured pruning [11] aims to reduce the compu-
tational cost by removing certain filters on selected layers of DNNS,
which could reduce the memory requirement of the corresponding
layers at the same time. However, since it is usually applied to
DNNs on mobile or cloud platforms, where the memory to store the
intermediate data is sufficient, the reduction of working memory
is only a side effect of this method and thus it is not optimized for
the saving of working memory. In the original setting of structured
pruning, if some layers with large memory requirements are sensi-
tive to pruning, the algorithm could choose to prune less or even no
filters at those layers in order to maintain the accuracy. However,
the limited RAM size in MCUs poses hard constraints on the work-
ing memory of the deployed DNNs. Even if some layers are sensitive
to pruning, they will have to be pruned heavily if their memory
requirements exceed the RAM size by a large margin. Therefore,
we propose a run-time working memory (WM) compression speci-
fied for the deployment of DNNs on resource-constrained MCUSs.
It could reserve the complete architecture of the deployed DNNs
if their weights could fit into the storage and dynamically prune
the insignificant activation values of intermediate output feature
maps in the runtime to satisfy the hardware constraint of RAM size.
Therefore, our method could make full use of the representation
capability of the original DNN and thus lower the accuracy loss
incurred by pruning as much as possible for some layers sensitive
to it.

3.1 System Overview and Execution Model

Our run-time WM compression mainly consists of two parts, ie.,
the offline part and the online part, which will be illustrated in
Section 3.2 and 3.3, respectively. The offline part will decide the
amount of activation values to prune in each layer of the DNN
before deployment. If the memory requirement does not exceed the
RAM size for a specific layer, no activation values need to be pruned
and thus the WM compression will not be triggered in that layer
in the runtime, which reduces the online overhead. The system
overview of the online part is shown in Figure 2. And the online
part will decide which activation values to prune dynamically in
the runtime according to the output feature maps of the specific
layer. Note that the choices could be distinct for different input
data. When the online part is triggered for layer [, it means that
RAM cannot hold the complete output feature maps from layer 1.
Therefore, we reserve a tiny buffer, which occupies a small space
in RAM, to process the output feature maps progressively. The
calculated activation values in Y; will be sent to tiny buffer first
after the inference operation. When the tiny buffer is full, the MCU
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will be notified to execute the code of the online part of our run-
time WM compression. The program will decide k, the minimum
number of activation values to prune for the specific data in the
buffer. We introduce a mechanism with threshold 7 to adapt k
in the runtime, which will be discussed in Section 3.3. Therefore,
we need a tiny space called Top K cache, to keep track of the
smallest k activation values among the data in the buffer. Then, at
least these k values are pruned and only the remaining part of the
activation values are saved in the space for output feature maps.
Besides, there is a bitmap related to the pruned output feature
maps Y. It uses one bit to indicate whether the corresponding
activation values are pruned in Y. The bit will be set to one if the
related activation value is pruned. When the MCU accesses the
input feature maps of the next layer [ + 1, it will first query the
bitmap, and use zero to represent the activation value whose bit
is set to one for the following inference operations. Otherwise, it
will employ the original values saved in Y;. By introducing a tiny
buffer and considering all the incurred memory overhead in the
offline part of our algorithm, our run-time WM compression can
guarantee that the DNN with oversized working memory could fit
into RAM appropriately and run successfully on the target MCU.

Y =W, *X

Inference Operation |« W, ROM

MCU

Y

Input feature
maps

Runtime

- Output
Compression

feature maps

Tiny Buffer—l |

Top KCache

SRAM

Figure 2: System Overview of Run-Time WM Compression

3.2 Offline Part of Compression Algorithm

Algorithm 1 presents the steps of the offline part of run-time WM
compression in detail. The purpose of this part is to decide the
amount of activation values to prune in the corresponding output
feature maps of each layer in the DNN with an online pruning array
Dy as output. Since this process is done before the deployment of a
DNN on the MCU, it is offline and thus reduce the online overhead.
Note that in our WM compression, we only need to consider the
convolution layers for compression. For the pooling layer, it is used
to downsample the output Y from the convolution layer. If Y could
fit into RAM, then the downsampled feature map must be able to fit
into RAM. For the fully connected (FC) layer, the size of its output
is much smaller than that of the convolution layer. Thus, there is
little possibility that the memory requirement of the FC layer could
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exceed RAM size. As for the input of Algorithm 1, RAM size S, and
tiny buffer size Sp, are both converted to the number of activation
values they can hold.

In the statements of Algorithm 1, function GetInSize(M) re-
turns an array containing the number of activation values in the
input feature maps of each convolution layer of DNN M, while
function GetOutSize(M) returns an array with the number of acti-
vation values in the output feature maps of each convolution layer.
The decision process of D) iterates through the N convolution
layers. For a specific layer [, there are two constraints on the output
feature maps and only one of them would be the bottleneck in
different cases. The first one is the hard constraint of RAM size S,.
When the memory requirement of layer ! exceeds S, according to
the memory layout shown in Figure 2, the hard constraint could be
formulated as

n _

out

s,=5D 45

in + Spm + Sp + Stkes

g) is the size of input of layer [, while Sgﬂt is the original

size of output of layer . S, denotes the size of tiny buffer. And

Spm 1s the size of bitmap, where S,,,, = [S"’;—:‘!”] and bw is the bit

width of an activation value. Sy, is the size of Top K cache, where

(St ~DY)+s
U Ir

and the values in the Top K cache, there is a multiplier 2 to calculate

Stkc- Based on Eq. (2), we can get D(I), which records the number

I
Dy (2)

where S

Ste =2 % . Since we need to record both the indices

of activation values to prune for layer I. DS) obtained in this case

corresponds to the option 1 (Opt. 1) for num to calculate D}(,n in

Algorithm 1.

Another constraint is from the observation that if S:(r? is small

and S:(:-L)t is quite large for layer I, the remaining spaces for S‘Eitl)

might be very tight if we only consider the hard constraint in
Eq. (2) for pruning and thus degrading the accuracy significantly.
Therefore, we introduce a predefined output threshold & to ensure
that the space occupied by the output of layer | does not exceed
a * S, after pruning. And the constraint could be formulated as,

s _pD )

a*Sr= out r

+ Spm + Stke-

DS) acquired based on Eq. (3), corresponds to the option 2 (Opt.
2) for num to calculate DS) in Algorithm 1. Besides, if there is a

pooling layer after layer [, Sl.(;ﬂ) might not be equal to S‘Ei)t. And
we have
s®

(1+1) .
S:‘n = min { out?

Spool (@)

where Sy, is the size of the output from the pooling layer follow-
ing convolution layer [, returned by the function GetPoolSize(M,
I). After N iterations, the resulted Dy, is the output of Algorithm 1
and would be used as one of the inputs of the online part of run-time
WM compression.

3.3 Online Part of Compression Algorithm

Algorithm 2 presents the steps of the online part of run-time WM
compression in detail for a specific input data X;. The purpose
of this part is to decide which activation values to prune dynami-
cally according to the output feature maps of specific layer | with
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Algorithm 1: Offline Part of Run-Time WM Compression
Input: Original DNN M with N convolution layers, output
threshold a, RAM size Sy, tiny buffer size Sp, bit
width bw of an activation value
Output: Online pruning array Dp
1 57, « GetInSize(M);
2 Sout «— GetOutSize(M);

3 S:,M «— Sout;

4 forl=1,..,Ndo

s | Som o 125501,

6 St uelll & S0 (1] + Sppms

7 Swm — S;n[l] +8)

8 dem « 1 — 2% (Sp/Sout[1]);

9 p « False;

1w | if S,; > a*Sr then

1 p « True;

12 if S} [I]+Sp = (1- @) * S, then

13 num « S; [I]+S, ,[I]+S, —S; // Opt. 1
14 else

15 | num «— S, [I] —a*Sy; // Opt. 2
16 end

17 else if S,,;; > S, then

18 p « True;

19 num « S [1]+S} ,[I] +S, — Sr; // Opt. 1
20 else

21 | num « 0;

22 end

23 Dp[l] « f%ﬁ—m—l;

24 if p then

25 St 1] = S, [ = Dp[l];

26 if there is a pooling layer after layer | then
27 Spool < GetPoolSize(M, I);

28 Siy 1+ 1] « min {S] (1], Spool };

29 else

30 | Si I +1] < 57, (115

31 end

32 end
33 end

Dg) > 0 for X;. For layer [, the activation values are pruned in the
unit of batch B, whose size is Sp. The amount of values pruned Py,
for a batch is the mean of D over all the T batches initially. Note
that although the output feature maps and their related bitmaps are
made up of three dimensions, they are flattened to one dimension in
Algorithm 2 for the simplicity of index. Function Conv(X;, M, L, s, €)
calculates the activation values starting from s + 1 to e through
convolution operations, which might include batch normalization
and ReLU functions. And the result Y}, is saved in the tiny buffer.
The first P, activation values and their corresponding indices in the
batch are sorted in descending order and used to initialize the Top K
cache as K and K}, respectively. Then each value YE{ in Y}, is com-

pared with the values K through function TopKAdd(%;y4, K, YEJ: )
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If YE{ is larger than any value in K, then Yg and j will be added
to K and Kjq, respectively. And the last value in K and its corre-
sponding index will be removed from Top K cache. Otherwise, K4
and K will keep unchanged. Besides, YE‘: should also be compared

with pruning threshold 7. If Yg is less than 7, then it will be pruned
and it corresponding bit in bitmap BM will be set to one through
function SetBitmap(BM, i = (S, — 1) + j), where i is the index of
the batch for YE‘: .

After all the values in the batch are processed by the steps men-
tioned above, if the activation values pruned by the threshold r are
more than the preset number Py, then we can reduce P}, for the fol-
lowing batches, where Py, is the average number of the total amount
of activation values to prune in the rest of the output feature maps.
Therefore, we can reserve more important features in the follow-
ing batches and thus mitigate the loss of accuracy. Otherwise, the
program will prune all the activation values recorded in the Top K
cache and set the corresponding bits to one in bitmap BM. Then, the
pruned values Y}, in the batch will be moved to the corresponding
position in the space for compressed output feature maps ;. After
all the batches are processed, our run-time WM compression for
convolution layer [ is finished. If there is a pooling layer after layer
1, Y; will be downsampled through the function Pool(Y;, M, [). And
the downsampled ¥; will be used as the input Xj,; for the next
layer [ + 1.

In the end, all of the N convolution layers are processed by
our compression method. The generated features Xpy ;1 would be
the input of the remaining fully connected layers in the deployed
DNN. And the final prediction ¥ would be calculated through func-
tion FC(Xp 1, M).

4 EXPERIMENTAL RESULTS

This section reports the experimental results of our proposed run-
time working memory compression on CIFAR-10. The results show
that our methods could reduce the working memory of a given
DNN effectively with accuracy higher than the original DNN or
with acceptable accuracy loss. Moreover, the accuracy of the DNN
compressed by our method outperforms the DNN compressed with
static structured pruning by a large margin. Besides, we also conduct
sensitivity analysis for the two hyperparameters in our algorithm,
i.e., tiny buffer size S}, and pruning threshold r, to explore the
impact of them on the performance of our algorithm.

4.1 Experimental Setup

Dataset. The dataset we used in the following experiments is
CIFAR-10, which contains 60000 images in 10 classes. In our exper-
iments, the size of training set, validation set and test set are 45000,
5000, and 10000, respectively. The pre-processing performed on the
images are mean subtraction and division by the standard deviation.
DNNSs. The DNNs evaluated in our experiments are LeNet-A, SpArSe-
Net-A and SonicNet-A, which are the adapted versions of three
lightweight DNNs suitable for resource-constrained MCUs, ie.,
LeNet [10], SpArSeNet [3] and SonicNet [4], respectively. The de-
tails of these DNNs are listed in Table 1. MS represents the model
size of the DNN while MS represents its working memory. # Filters
records the number of filters for each convolution layer and ker-
nel shape records the shape of kernels of the corresponding filters.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on July 16,2021 at 01:07:38 UTC from IEEE Xplore. Restnctions apply.



ASPDAC "21, January 18-21, 2021, Tokyo, Japan

Algorithm 2: Online Part of Run-time WM Compression

Input: Input data X3, original DNN M with N convolution
layers, online pruning array Dp, pruning threshold r,
tiny buffer size Sj,, bitmap BM initialized with zeros

Output: Prediction Y

1 Peyr < 0;
2 Sour — GetOutSize(M);
3 forl=1,...,Ndo

1 if Dp[I] > 0 then

5 T « fs"E—‘,,m];

6 P, 22y,

7 B « Sp;

8 fori=1,..,Tdo

9 if i == T then

10 Py <= Dp[l] = Peur;

1 B« Sout[l] mod Sp;

12 end

13 s,e « (i— 1) * Sp, min {i * Sp, Sour [1]};
14 Yy « Conv(Xp;, M, 1, s, €);

15 Kig, K «— Sort(Y]0, Py]);

16 Cp « 0;

17 for j=1,..,Bdo

18 TopKAdd(K;g, K, Yy 1], )5

19 if Y3[j] < r then

20 SetBitmap(BM,i=* (S, — 1) + j);
21 Yp[j] < 0;

22 Cop— Cg+1;

23 end

24 end

25 if Cy > Py, then

26 Peyr < Peyr + Cos

- P, — [DE[;]_—:’.:W

28 else

29 for k € K;; do

30 SetBitmap(BM, i * (S — 1) + k);
31 Yy [k] < 0;

32 end

33 Peyr < Peyr + Pp;

34 end

35 Yi[s:e] « Yp;

36 end

37 else

38 | ¥ « Conv(X},M,1,0,Spu[1]);

39 end

0 if there is a pooling layer after layer [ then
41 | Y; « Pool(Y;, M, I);

12 end

8| Xp < ¥

1 end
15 Y « FC(Xpy1,M);
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Note that all of the convolution layers of the evaluated DNNs use
valid padding with stride equal to 1. Pool position is a list of the
placement of pooling layers, i.e., the indices of convolution layers
followed by the pooling layers. FC config provides the size of output
features of each fully connected layer, which is after the series of
convolution layers and pooling layers. For example, LeNet-A has
two convolution layers. Both of them have 5 X 5 kernels. The first
layer has 6 filters while the second one has 32 filters. They are both
followed by a pooling layer. Note that only the second pooling layer
of LeNet-A is global average pooling. The other pooling layers of
the evaluated DNNs are max-pooling by default. LeNet-A has three
fully-connected layers after all the convolution and pooling layers.
And the output feature of them are 120, 84, 10, respectively. More-
over, the weights and the activation values of these three DNNs are
all quantized to one byte under Arm configuration.

Baseline. According to Section 2, static structured pruning and
quantization could also effectively reduce the working memory
of DNNs on resource-constrained MCUs. Since we have already
quantized the DNNs to one byte in our experiments, only static
structured pruning could reduce working memory further. There-
fore, we implement the method in [11] as the baseline. Note that
in [11], the layers to prune are decided manually since the goal of
their work is to reduce the computational cost and there is no mem-
ory constraint in their work. But in our implementations, pruning
will be triggered when the memory requirement exceeds RAM size.
Output Threshold «. Output threshold « is a predefined hyper-
parameter in our run-time working memory compression, which
is mentioned in Section 3.2. In our experiments, we set the value
of a to 0.8, 0.5 and 0.8 for LeNet-A, SpArSeNet-A and SonicNet-A,
respectively.

4.2 Evaluation of Run-Time WM Compression

Table 2 shows the experimental results of the evaluation of the three
mentioned DNNs running with our proposed run-time working
memory compression (RTWMC) and compares it with the baseline,
i.e., static structured pruning (SSP). The basic memory configura-
tions of the target MCUSs are shown with storage size and RAM
size. After quantization, all of the three DNNs could fit into the
storage of the target MCUs while the working memory of them
still exceeds the corresponding RAM size. Therefore, to run on the
target MCUs, pruning the intermediate feature maps is necessary.
Original ACC represents the accuracy of the DNNs without prun-
ing, while pruned ACC is the accuracy after pruning. According
to Table 2, for LeNet-A and SonicNet-A, the accuracy after prun-
ing with our proposed method (i.e., RTWMC) is 0.62% and 2.3%
higher than the original accuracy, respectively. It might be due to
the regularization functionality provided by our pruning method,
which could improve the generalization capability of the original
DNNs. In addition, the accuracy of our method on LeNet-A and
SonicNet-A outperforms that of the baseline (i.e., SSP) by 18.58%
and 14.87%, respectively. As for SpArSeNet-A, our pruning method
incurs 3.61% accuracy loss, while the accuracy loss of the baseline
is 7.59%. The accuracy of our method outperforms the baseline by
3.98%. It shows that our method could reduce the accuracy loss
incurred by pruning as much as possible. The main overheads of
RTWMC are the overhead on memory and run-time latency. For
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Table 1: Configuration of Evaluated DNNs

Network MS (KB) WM (KB) # Filters Kernel Shape Pool Position  FC Config
LeNet-A 10.79 459 [6,32] [5,5] 1, 2] [120, 84, 10]
SpArSeNet-A  24.33 1574 [9,11,17,39]  [3,4,1,5] [2, 4] [10]
SonicNet-A 60.17 15.31 [20, 80] [5, 5] [1, 2] [10]

SSP, all of the space of RAM are used to store the intermediate
feature maps, while for RTWMC, some of them are reserved for
the tiny buffer and Top K cache as shown in Figure 2. But the to-
tal memory overhead is quite small, which are 0.02 KB, 0.09 KB
and 0.07 KB, respectively. And it is negligible compared with the
corresponding RAM size. Moreover, the accuracy of our RTWMC
with these memory overheads is still much higher than that of
SSP as shown in Table 2. Besides, we also estimate the runtime
latency of RTWMC, which is represented in the form of the ratio
of the latency of RTWMC to that of running the DNNs without
pruning. The ratio is 1.08x, 1.26x and 1.17x, respectively, which is
moderate for running DNNs on MCUs. Therefore, we can claim
that our RTWMC is lightweight for the deployment of DNNs on
resource-constrained MCUs.

4.3 Sensitivity Analysis of Hyperparameters

In this section, we report the experimental results about the sensi-
tivity analysis of hyperparameters in RTWMS. Section 4.3.1 shows
the analysis of pruning threshold 7, while Section 4.3.2 is about the
analysis of buffer size 5.

4.3.1 Sensitivity Analysis of Pruning Threshold t. Figure 3 shows
the impact of pruning threshold r on the top-1 accuracy of the DNNs
pruned by RTWMC, when the buffer size S, is fixed. For LeNet-A,
SpArSeNet and SonicNet, the buffer size is 70 B, 30 B and 90 B,
respectively. When the pruning threshold is 0, each output feature
map is pruned equally, which means the number of activation val-
ues to be pruned is the same for each feature map. And the achieved
accuracy is already relatively high. For LeNet-A and SonicNet-A, it
is 18.32% and 14.59% higher than the baseline, respectively. And for
SpArSeNet-A, it is only 0.78% lower than the baseline. This result
shows the advantage of fine-grained dynamic unstructured pruning
over the coarse-grained static structured pruning. Moreover, the
accuracy could be further improved with an appropriate pruning
threshold. The highest accuracy is 60%, 71.46% and 71% for LeNet-
A, SpArSeNet and SonicNet, which is achieved at 0.7, 0.4 and 0.3,
respectively. And all of them outperform the baseline by a large
margin. Besides, when the threshold is large (i.e., 10 in our exper-
iments), the accuracy of the evaluated DNNs drops dramatically
and is less than 25% for all these three DNNs. More specifically, the
corresponding accuracy is 20.28%, 11.22% and 17.31% for LeNet-
A, SpArSeNet and SonicNet-A, respectively. In this case, the first
several output feature maps are almost removed completely for
inference, which reduces the accuracy significantly. This case is
quite similar to the case where the structured pruning is applied in
the run-time and thus without the chance to retrain the weights.
Therefore, this result could imply the advantage of fine-grained dy-
namic unstructured pruning over the naive coarse-grained dynamic
structured pruning.

4.3.2  Sensitivity Analysis of Buffer Size Sp,. Figure 4 shows the im-
pact of buffer size Sj, on the top-1 accuracy of the DNNs pruned
by RTWMC, when the pruning threshold r is fixed. For LeNet-A,
SpArSeNet and SonicNet, the pruning threshold 7 is 0.3, 0.3 and 0.1,
respectively. Since the complete output feature maps could not fit
into the RAM, pruning could not be executed based on the global
information of the feature maps. And in RTWMC, pruning is done
in the unit of buffer size. If the buffer size is too small, the decision
of pruning is only based on the information of a small number of
activation values, which might lead to suboptimal solutions. There-
fore, a bigger buffer size is helpful to make wiser decisions about
pruning. But if the buffer size is too large, the memory overhead and
the run-time overhead will be increased, which leads to the larger
total number of activation values to be pruned and longer run-time
latency. Thus, we need to choose an appropriate buffer size in or-
der to get the best performance. The highest accuracy is 60.04%,
72.01% and 71.11% for LeNet-A, SpArSeNet and SonicNet, which is
achieved with the buffer size of 10 B, 40 B and 30 B, respectively,
For LeNet-A, the best performance could be achieved with quite
small buffer size while for SpArSeNet and SonicNet, increasing the
buffer size could improve the accuracy at the early stage. When the
best accuracy is achieved, the trend of the three curves in Figure 4
becomes stable with little change in the accuracy. It means that
the positive and negative impacts brought by a larger buffer size
achieve a subtle balance. And thus, increasing the buffer size is not
necessary for better accuracy. Therefore, we can conclude that for
RTWMC, the best performance could be achieved with a relatively
small buffer size, which justifies the small memory overhead and

the moderate run-time overhead we claimed in Section 4.2
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Figure 3: Top-1 Accuracy of Run-Time Working Memory
Compression (RTWMC) with Different Pruning Threshold
7 on Three Evaluated DNNs.
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Table 2: Evaluation of the Three DNNs with Run-Time WM Memory Compression

Network Storage RAM Original Pruning Pruned Memory Estimated Buffer Pruning
etwor! . . . .
Size (KB) Size (KB) ACC (%) Method ACC (%) Overhead (KB) Runtime Latency Size (B) Threshold
LeNet-A 32 4 59.44 RTWMC 60.06 0.02 1.08x 10 0.3
SSP 41.48 - - - -
SpArSeNet-A 32 8 75.62 RTWMC 72.01 0.09 1.26x 40 0.3
SSP 68.03 - - - -
SonicNet-A 64 8 68.81 RTWMC 71.11 0.07 1.17x 30 0.1
SSP 56.24 - - - -
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