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Gaussian Process Monitoring of Layerwise-
dependent Imaging Data

Runsang Liu', Bryan D. Vogt® and Hui Yang'*, Senior Member, IEEE

Abstract—Additive Manufacturing (AM) enables the direct
production of complex geometries from computer-aided designs
(CAD). The AM fabrication process is often executed in a layer-
by-layer manner, whereby minute printing errors in one layer
can manifest significant defects in the final part. In-situ quality
monitoring and control are currently limited for AM processes
and cause low repeatability. Recently. advanced imaging is
increasingly invested in AM and leads to the proliferation of
layerwise imaging data, which provides an opportunity to
transform quality control of AM from post-build inspection to
in-situ quality monitoring. However, existing methodologies for
in-situ inspection primarily focus on key characteristics of image
profiles that tend to be limited in the ability to analyze the
variance components, as well as root causes and failure patterns
that are critical to process improvement. This paper presents an
Additive Gaussian Process with dependent layerwise correlation
(AGP-D) to model the spatio-temporal correlation of layerwise
imaging data for AM quality monitoring. The AGP-D consists of
three independent GP modules. The first GP approximates the
base profile, whereas the second and third GP capture the
correlation within the same layer and among layers,
respectively. Based on posterior predictions of new layers,
Hotelling T? and generalized likelihood ratio (GLR) control
tests are formulated to detect process shifts in the newly
fabricated layer and analyze root causes. The proposed
methodology is evaluated and validated using both simulation
data and real-world case study of a cylinder build fabricated by
a laser powder bed fusion (LPBF) machine. Experimental results
show the proposed AGP-D is effective for real-time modeling
and monitoring of layerwise-correlated imaging data.

Index Terms: Additive manufacturing, Gaussian process,
process control, statistical monitoring, spatiotemporal
correlation.

I. INTRODUCTION

ROM the advances in 3D printing that have led to surging
demand for prototyping and on-demand fabrication,
modern industry is shifting to a next-generation
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manufacturing paradigm that is highly adaptive and flexible
to customized designs. Additive Manufacturing (AM) is an
enabling technology for the direct transition of digital designs
to functional 3-dimensional parts via layer-upon-layer
deposition of materials. This, in turn, enables the creation of
complex shapes that are otherwise difficult, or even
impossible, to construct by traditional manufacturing
technologies, e.g., subtractive manufacturing, with the added
advantage of shorter lead times and the ability to customize
on the fly. Therefore, AM overcomes conventional design and
manufacturing constraints, especially for designs that involve
complex geometries. Traditional post-build inspection uses
optical methods such as scanning laser optical tomography
(SLOT) to detect potential quality issues in finalized builds
[1]. On the other hand, sensor-based monitoring allows
manufacturers to find misprints and respond quickly to
alleviate potential greater problems, reducing scraps and
reworks. However, real-time quality control is usually limited
for AM processes [2][3]. As a result, widespread application
of AM is hampered by the yield and broad distribution in
performance metrics, which can arise from the accumulation
of minor errors during the print. As such, advanced sensing
(e.g., optical or thermal imaging) is increasingly adopted to
increase information visibility during AM processes, where
well-placed sensing units capture and convert real-time
process information into imaging data.

Although the availability of layerwise imaging data
provides an opportunity to shift quality control of AM from
post-build inspection to in-situ process monitoring, new
analytical tools are urgently needed to extract useful
information from imaging data and analyze stochastic
variations in AM processes. Traditional statistical process
control (SPC) measures the variability of a process using a
large number of parts manufactured from the same design.
However, AM is often used for prototyping and
customization, thus it is not uncommon that only a few
identical parts are fabricated. The poor repeatability in quality
measurements poses significant challenges to conventional
quality monitoring practices for AM processes. As shown in
Fig. 1(a)-(c), SPC has achieved success in automotive and
semiconductor industries in the past few decades. SPC
methods have evolved from monitoring univariate features,
multiple quality measurements to functional profiles.
Nonetheless, traditional SPC is currently limited in the ability
to model and analyze high-dimensional data [4], for example,
layerwise imaging data as in Fig. 1(d). This, in turn, calls upon
the development of new image-guided SPC methods.
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Fig. 1. The evolution of statistical process control (SPC) from (a) Univariate
monitoring; (b) Joint monitoring of multiple features; (c) Function profile
monitoring; to (d) high-dimensional imaging data.

Commonly, layerwise imaging data involve complex
structures, within-layer and across-layer correlated variations.
Real-world uncertainty in layerwise finishes of the build leads
to stochastic variations in each image profile. Feature-based
methods such as linear transformations [5][6], deep learning
[7][8], multifractal analysis [9], and community-based
statistics [10] are proposed to extract key characteristics and
features from image profiles for statistical monitoring of
manufacturing processes. However, feature-based methods
tend to focus on one or more aspects of the engineering intent
(e.g., the plume size, average temperature from melt pool
images), as opposed to modeling the image profile as a
random function. As a result, features are limited in the ability
to analyze different types of variance components, as well as
root causes and out-of-control patterns that are critical to
process improvement.

These shortcomings have driven the design of alternative
model-based methods. For example, parametric functions
[11][12] are first proposed to approximate the profile and then
monitor the parameter vector. To further increase the model
performance, non-parametric models such as Gaussian
Process (GP) [13] and spline modeling [14] are proposed and
utilized. Among popular non-parametric models, GP is more
favorable due to several key advantages. First, GPs have been
demonstrated to successfully model complex profiles
[15][16]. Second, GPs are flexible enough to be extended to
higher input dimensions when compared to other non-
parametric approaches. Third, stochastic GPs and posterior
predictions allow a natural transition to the design of new SPC
methods. With these advantages, several GP models have
been proposed to model and analyze manufacturing data. For
example, composite GP is used to model the smoothness of
titanium alloy pieces [17], while additive GP with
independent layers (AGP-I) uses two GPs to model the
variation of wafer thickness profiles [13]. However, most
existing model-based methods focus on the modeling of
imaging data with an assumption of layerwise independence
and are not developed to fully address layerwise correlation
of imaging data from AM fabrication processes.

This paper presents an Additive Gaussian Process with
dependent layerwise correlation (AGP-D) to characterize the
spatio-temporal correlation of layerwise imaging data for
real-time quality monitoring of AM fabrications. The AGP-D

consists of three independent GP modules. The first GP
approximates the base profile, whereas the second and third
GPs capture the correlation within the same layer and across
different layers. Based on posterior distributions of the new
layer from AGP-D modeling, Hotelling T? and generalized
likelihood ratio (GLR) tests are formulated to detect process
deviations in a newly fabricated layer and analyze root causes.
A real-time monitoring framework that combines the AGP-D
model and multivariate control charts is also developed to
enable in-situ quality monitoring of layerwise imaging data
from AM fabrication procedures. The proposed methodology
is evaluated and validated using simulation studies and a real-
world case study of a cylinder build fabricated by a laser
powder bed fusion (LPBF) machine. Experimental results
show the proposed AGP-D and multivariate control charts are
effective for real-time monitoring of layerwise-correlated
imaging data.

This paper is organized as follows: Section II provides a
literature review on relevant methods of image-based quality
monitoring. Section III presents the proposed AGP-D and
statistical monitoring methodology. Section IV shows the
detailed experimental design and results using both
simulations and a real-world case study. Section V discusses
and concludes this study.

II. RESEARCH BACKGROUND

Quality control in AM remains an enduring challenge
despite advancements in sensing technology and SPC
methods. Slight changes in process conditions can cause non-
negligible impacts on the quality of AM builds [18]. As a
result, image-guided monitoring that utilizes the selection of
the cameras to provide opportunities for real-time process data
is among the highest priorities for AM quality control. For
example, infrared cameras detect thermal signals of layerwise
builds to provide temperature history information, and can
further be utilized to detect material discontinuities [19][20].
High-resolution cameras with multiple flash modules that
enable immediate layer imaging after recoating and laser
exposure are used to identify common defects such as
porosities and poor surface finishes [21]. These sensors bring
a wealth of high-dimensional imaging data that can further
enable shape analysis on the print, for example, height,
trajectory, and textures [22]. The plethora of process
information necessitates the development of new analysis
tools and SPC methods.

The imaging data stream collected by advanced cameras
during manufacturing processes usually contains linear,
nonlinear, and irregular information [23]. Therefore, feature-
based methods focus on monitoring aggregated attributes
extracted from layerwise imaging data. For example, principal
component analysis (PCA) [5], Fourier transforms [6] and
Pearson correlation coefficient (PCC) [24] can be used to
extract linear features, while nonlinear and irregular features
can be characterized using deep learning [7], and multifractal
analysis [9], respectively. Low-rank tensor decomposition
techniques are also used to extract key characteristic features
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from high-dimensional image profiles [25]. Note that features
extracted from thermal images such as plume size and average
temperature of melt pool images are investigated to monitor
the stability of melting conditions [26]. Active contours are
also extracted for the characterization of layerwise images,
where the plane-wise deviations are monitored by computing
the distance between the nominal and the extracted contour
[27]. Although feature-based approaches are shown to have
certain advantages, very little has been done to model the
image profile as a random function. Traditional feature-based
approaches focus on the extraction of features from image
profiles (e.g., infrared or optical images), while Gaussian
process modeling is an alternative approach to model the
image profile as a random function. The present investigation
focuses on three random components in each layerwise
image, i.e., (i) the base profile, (ii) within-layer, and (iii)
across-layer correlated components that capture correlated
deviations within the same layer and between different layers.
Then, in-situ monitoring is formulated as a hypothesis testing
problem, instead of classification or clustering problems with
multiple feature descriptors. The development of alternative
strategies for monitoring AM processes with layerwise
images is useful due to distinct advantages and disadvantages
of these methodologies.

Therefore, model-based approaches such as splines
monitoring [14], support vector regression [28], and GP [13]
have been proposed to estimate and characterize spatial image
profiles. In addition, deep learning is not only used to extract
features but also to predict material continuity based on the
signatures developed from multiple cameras [8]. Among
popular non-parametric models, GPs have gained noticeable
attention for modeling complex patterns due to their
flexibility and versatility. GPs are demonstrated to
successfully model and predict complex profiles such as
turbulent flows [29], liquefaction triggering procedures [30],
heterogeneous land data in remote sensing [31]. In addition,
GP was used to model complex shape and free-form surfaces
of 3D point cloud data from a laser scanner [32]. Therefore,
several GP models and their variants are being used to model
profiles from manufacturing processes. For example, a series
of GP models are used to model the polishing stages on a
titanium alloy workpiece [17]. Additive GP with independent
layers [13] is proposed to model and monitor the silicon wafer
thickness profile considering both standard thickness and
correlation in the measurement locations within the same
wafer. However, most of existing model-based methods are
mainly focused on modeling within-layer correlations and
assume layerwise independence but are less concerned about
across-layer correlated variations among imaging data in the
process of AM fabrication. The ability to delineate within-
layer and across-layer correlated components is critical to
quality monitoring of AM fabrication processes in a layer-by-
layer fashion and further mitigate incipient defects.

III. RESEARCH METHODOLOGY

In this section, we propose an online framework of AM

process monitoring based on imaging data. As shown in Fig.
2, in-control layerwise imaging data are first pre-processed to
create the stack of region of interests (ROIs) to focus on the
fabrication area in the AM build and exclude nuisance
information in the background area of powders. Next, the
AGP-D model is trained on the in-control ROIs to model the
imaging data in terms of the base profile, within and across
layer correlations. The trained AGP-D model is then used to
obtain the posterior distribution of pixel intensities in a new
image profile. Finally, Hotelling T2 and generalized
likelihood ratio (GLR) tests are performed to detect process
changes and/or variations based on confidence intervals from
posterior distributions in the ROI of the newly fabricated
layer. If the new layer is in-control, it is added to the training
data and the AGP-D model is updated. Otherwise, in-situ
rectification actions should be taken, where the choice of
corrective actions can be determined via a sequential
optimization framework as discussed in [33].

New Layerwise
Image profile

[ AGP Model

Defect ificati
Actions

Fig. 2. Flow diagram of the proposed methodology
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3.1 Additive Gaussian Process (AGP-D) Modeling

The stream of layerwise imaging data involves complex
data structures and stochastic variations, which call upon the
development of new analytical models for AM process
monitoring. In particular, the sum of layerwise deviations is
of interest, as well as mean functions and covariance
functions. This motivates the development of new Gaussian
process models to represent layerwise deviations as random
functions. Note that the proposed model specifically takes
across-layer correlations into consideration, which explicitly
assumes that there is dependence in the deviations between

layerwise image profiles. Let xi(]l.) be the (i, /)" pixel location

of the [*® ROI, and yi(jl) be the pixel intensity at the

corresponding location. Fig. 3 shows layerwise image profiles
are not independent of each other. Rather, two major types of
correlation (within-layer and across-layer correlation) impact
the distribution of intensities in the imaging data, which we
refer to as the spatio-temporal correlation. Therefore, the
distribution of the intensities is modeled as the sum of three
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Fig. 3. Within-layer and across-layer correlation in layerwise ROIs.
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independent functions:

l l l l

yi(j) = b(xi(j)) + Cwl(xi(j)) + cal(xi(j)) + ¢ (1

where e~N(0, 62) is the observation noise, b~GP(m,, K, )
is a realization of the base profile with mean m,; and
covariance matrix Ky, ¢,,;~GP(0,K,,;) and c,;~GP(0,K;)
capture within and across layer correlation, with zero mean
and covariance matrices K,,;, K;, accordingly. In this paper,
we use the squared exponential covariance function, therefore
the covariance matrix can be computed as:

K(x;j,xj1) = 62 exp [—(xl-]- - xirjr)Tdiag‘l(a)(x” - xirjr)] 2)

where o is the standard deviation and a is the length-scale
that quantifies the correlation neighborhood. The base profile
mathematically describes the standard geometric profile. The
within-layer component c,,;~GP(0,K,,;) only contains the
covariance within the same layer and the across-layer
component ¢,;~GP(0,K,;) only contains covariance across
different layers. The formulations of covariance structures
grant each component to capture different patterns within the
imaging data. Please note that covariance structures K,,;, Ky,
are defined differently as follows:

T
Ky, (xl(]l)xl(,l}),) =02 exp [— (xi(;) - xl(,?,) diag="(a,,;) (xi(;) - xl(,l]),)] 3)

’ N r
Ka (x.582) = odexp [~ (x = x)) diag™ (@) (x§ = x$0)]  (4)
The three functions are assumed to be independent of each
other. As a result, the observed pixel intensity yl.(jl) is

essentially the sum of three GPs, i.e., yl.(jl)~GP(mb,Kb +
K, + Kg;), which we refer to as the AGP-D model. Assume
the ROI stack of image profiles has the dimension of N, =
N, X n, X L, where n,, n,, are the number of pixels in x,y
directions and L is the number of layers. The linearized in-

T
control location data become X = [xﬂ),...xﬁ),...x,(li)ny

T
and pixel intensities are y = [J’S)' ...yl(f), yrsi)ny] , which

has the dimension of N, X 3 and N,, X 1, respectively. Let
B=100,,0,,0,], where 8 = [p,6% a], be the set of all
hyperparameters in the AGP-D model, and i, be the mean

estimates of in-control pixel intensities. The estimator B for
the set of hyperparameters can be computed by maximizing
the log-likelihood function:

1
B =arg m@x {— 7 log(det K(X, X))
1 -
—> (-1 x (KxX)" (%)
x (v - iy}

In-control dataset is used to estimate the hyperparameters for
each component in the AGP-D model by maximizing the log-
likelihood function using a conjugate gradient optimizer. This
study does not assume that all previous layers are normal.
Commonly, defects can occur right at the beginning of the
fabrication, or in the middle, or at the final phase. Type II
errors can lead to the biased estimation of defective
probability in a new layer. If accumulated, defective layers
can be potentially mixed into in-control training dataset and

thereby decrease the power of the proposed GP models. In the
general practice, practitioners may opt to manually inspect
and choose zero-defect layers (ROIs) to establish in-control
training dataset. The model can only be updated with the
addition of new layers that are closely inspected to be in-
control. Although manual inspection is labor-intensive,
practitioners can also opt to automatically update the model
with new layers that are identified by the model to achieve a
high probability to be in-control. Also, note that the
computation of covariance function and model update is
based on the majority of in-control datasets, instead of a single
layer that may be defective.

Next, the AGP-D model is used to characterize the
layerwise image profiles and compute the confidence bounds
of the surface finish in the next layer, which provides a
baseline to monitor the ROI in newly fabricated layers.
Specifically, the marginal distribution of pixel intensity y* =
y+D at location X, in the newly collected image ROI is
expected to follow a joint multivariate Gaussian distribution
with the prior distribution:

y iy | [KX,X)

[y | %X~ <[ﬁy*] : [K(X*, %)
with the posterior distribution to be:

y*ly' X'X*"'N(ﬁ*li*) (7)

and the corresponding mean and covariance:
i = fiy + KX, X KX X) + a2D 7 (y — fiy) (8)

£, = KX, X.) - KX, X)(KXX) + 62D KX, X,) (9
where ﬁy, i, are mean estimates from in-control and newly
collected ROIs. Therefore, the intensity distribution from the
new image ROI is expected to follow a multivariate Gaussian
distribution with mean fi, and covariance EZ, . Although
Gaussian Process is computationally expensive when the
input dimension is large, there are serval ways to increase the
computational efficiency. For example, fully independent
training conditional (FITC) approximates covariance
matrices using a smaller set of inducing inputs for a faster
prediction. Block-wise matrix inversion allows a more
efficient update of the AGP-D model after a new layer is
regarded as normal and then added to the in-control training
dataset. In addition, statistical sampling reduces the
dimensionality of the input, thereby enabling a faster
computation of GP modeling. Notably, statistical sampling in
Gaussian process is different from feature selection. Feature-
based approaches focus on the extraction of features from
image profiles (e.g., infrared or optical images) based on one
or more aspects of the engineering intent (e.g., the plume size
from melt pool images). On the other hand, Gaussian process
modeling is an alternative approach to model the image
profile as a random function, where statistical samples help
estimate covariance structures and then model the posterior
distribution of image profiles.

K(X,X.)
K(X.,X.) > ©

3.2 Statistical Monitoring of Correlated Imaging Data

The AGP-D model provides real-time mean and variance
estimation of intensity distribution of the ROI in newly
fabricated layers. Therefore, hypothesis tests can be created
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to test whether the new layer is out-of-control. Equation (7)
shows that the posterior distribution follows a multivariate
Gaussian distribution with the estimated mean vector fi, and
covariance matrix Z,. As such, the hypothesis to test whether
a new layer is in-control or defective can be formulated as:

HO: y(L+1)~N(|1*(L+1), Z£L+1))

(10)
Hl:y(L+1) - N(u*(L+1)’E£L+1))

where &+ s the true mean vector, £tV is the true
covariance matrix, and L + 1 is the layer index of a newly
fabricated layer. Traditionally, the y? statistic is often to
perform this hypothesis testing when the population mean and
covariance are known:

)(f+1 — (y(L+1) _ u*(L+1))T(Z£L+1))—1(y(L+1) _ ”*(L+1)) (1 1)

The upper control limit is UCL = y2(n“*V, ), where a is
the significance level. Because the chi-square statistic is the
squared term between the observational and true mean vector,
the lower control limit is zero. The null hypothesis is rejected,
if the test statistic is beyond the upper control limit. However,

the population mean p,+D and covariance Z:*? are often
unknown and need to be estimated from the in-control data as

fi. and £, . If we replace pu,®*D and T in y2,, with
estimated sample mean i, and covariance 3., the test statistic
in equation (11) becomes:

Tia = (Y0 -1 (12)
which is called the Hotelling T? statistic that is commonly
used to test the hypothesis as equation (10) in the literature.
In practice, control limits of the T? statistic can be
approximated by a chi-square distribution with n(+D
degrees of freedom, therefore, the null hypothesis is rejected
when the T? statistic is larger than y2(n“*V, a).

The Hotelling T? test is designed to detect changes and
shifts in the AM processes. However, it is also imperative to
further perform the root cause analysis. In the practice, the
generalized likelihood ratio (GLR) test is often used to detect
the process changes and further perform root cause diagnosis.
Specifically, if the manufacturing process is out of control,
the deviation is captured by the root cause component y:

yl(]L+1) b( (L+1)) +cy (x(L+1)

+ cal(x(“l)) + y(xij) + ¢

T
*(L+1)) (££L+1))71(y(L+1) _ ﬁ*(L+1))

(13)

where y(x;;) denotes the deviation due to assignable causes
in the out-of-control process that is characterized by
hyperparameter 0, = [u,, aﬁ, a,] to detect specific
deviations in mean, variance, and roughness. Although the
base profile remains the same, y adds another degree of mean
profile variations if there is any. This, in turn, offers the
flexibility to model layers with different mean profiles and
identify root causes. The hypothesis to test whether y(+) is
significantly different from zero can be formulated as:

Hy: y(L+1)~N(ﬁ*(L+1)’ EEL+1))

o (14)
H15y(L+1)~N(ﬁ*(L+1) + 0y, 2£L+1) +Z,)

As such, the hypothesis can be reformulated as: Hy: 0, =
0, H:0, # 0 to test whether there are shifts in model
parameters. Then, the GLR statistic can be computed as:
argmax Likelihood(H;)
9y (15)
Likelihood(Hy)

which computes the ratio of likelihoods under H, and H;,
respectively. Under Hy, the likelihood is computed as:

RL+1 = Zln

Likelihood(H,) =
n(H ) (L+1) % 1 (L+1)
o @+1
(2n)~ det( ) exp [ > (y (16)
) G0 e
TR)
Similarly, the likelihood when Hj is true is computed as:
Likelihood(H;) =
n(L+1) 1 1
(2m~ det( sUHD 4 5 ) Zexp | ——(y(“'l)
(17)

L M) ( $L+1)

+ zy) 0 - -]

The GLR test rejects the null hypothesis H, when the test
statistic Ry, > %(}(2(1, a) + x%(2,a)). When a defective
layer is detected, hyperparameters in ﬁy can be further

utilized to diagnose process changes of a specific type, e.g.,
mean shift, variance change, or roughness change.

IV. EXPERIMENTAL DESIGN AND RESULTS

In this investigation, we first evaluate and validate the
effectiveness of the proposed AGP-D model, and statistical
monitoring schemes using a simulation study. The simulation
study aims to evaluate the effectiveness of layerwise
correlated data estimation and further investigate the
performance of statistical monitoring schemes under different
types of process shifts. With the efficacy demonstrated using
simulations, a real-world case study of a cylinder build from
an LPBF machine is further conducted.

4.1 AGP-D Modeling Performance

We first show that the proposed AGP-D model is sufficient
to estimate the surface finishes and capture the layerwise
correlation from image profiles in AM processes using
simulated data. In this simulation, we use the following
sinusoid function to be the base profile:

f(xq,x5) = cos(x;) + sin (XS ) cos (x3) (18)

with x; € [-3,3] and x, € [-3,3] . The within-layer and
across-layer correlation are generated from two independent
GPs with hyperparameter of: 0,,; = [u,; =0,a,; =
(0.5,0.5,0.5), 0,; = 1.5] and 04 =[Uw =0,ay =
(2,2,2.5), 0, = 1.5], respectively. These simulated spatio-
temporal correlations will result in a more realistic correlation
across the layers. To generate the layerwise correlated data,
we utilize the Cholesky factorization:

y =f+ chol(K) X rnd + € (19)
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Fig. 4. Simulated layerwise-correlated data

where K is the covariance matrix, rnd~Z(0,1) is the
standard normal random variable, and €~(0,1e — 4) is the
random noise.

As shown in Fig. 4, we generated in-control layers that
have varying intensities over time, simulating the layerwise
image profiles of AM build during layer-upon-layer
fabrication procedures. We compare the proposed
methodology with the original GP (OGP) with noisy
measurements [34] and AGP-I (i.e., independent layerwise
correlation) proposed in [13]. The hyperparameters for the
three GP models are estimated using the maximum log-
likelihood method, and a total of 400 randomly sampled data
points are used to predict the prior distribution of the in-
control profile. The negative log-likelihood (NLL) of the
predicted distribution is used to quantify the performance of
model estimation. Because we aim to estimate the distribution
and then compute the confidence bounds of unseen layers, the
likelihood that quantifies the goodness of fit of the model is
more suitable than the commonly used root mean squared
error (RMSE). NLL shows how well the model fits the data
based on the likelihood of the fit, and a smaller NLL value
indicates the model has a better fit.

As shown in Fig. 5 (a)-(c), the difference among mean
predictions from AGP-D, AGP-1, and OGP is not significant,
and all three methods predict the mean of the layer close to
the simulated layer. Shown in Fig. 5 (d)-(f) is the estimated
covariance structure, where the predicted covariance is
overlaid with the simulated covariance to demonstrate the
difference in covariance magnitude. The less gray area we can
see, the better the prediction. As shown in Fig. 5 (d)-(f), the
AGP-D and AGP-I have similar predicted covariance
structures, only with minute differences. However, the OGP
is limited in the ability to predict the simulated covariance

(b)
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Fig. 5. Predicted means and covariances of the first layer using different GP
models: (a) AGP-D (proposed) predicted mean; (b) AGP-I predicted mean,;
(c) OGP predicted mean; (d) AGP-D predicted covariance; (¢) AGP-I
predicted covariance and (f) OGP predicted covariance.
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structure, leaving the largest area of shades. This is because
the OGP did not take spatio-temporal correlations into
consideration. Through our experiments, the AGP-D has an
NLL of 532, while AGP-I and OGP has an NLL of 907 and
1647, respectively. This comparison demonstrates that
although three models are equally effective in mean
estimation, the proposed AGP-D is overall more effective to
model layerwise correlated image profiles.

4.2 Performance comparisons of Monitoring Schemes

In this section, we examine the performance of the
proposed statistical monitoring scheme under different types
of defects. Based on engineering knowledge, three types of
process-change scenarios are observed on the surface during
layerwise fabrication: shift in mean, change in variance, and
change in roughness. Therefore, we use an additional GP
y(xl-j) with mean y,, variance o,,, and length scale a, to
model the three types of shifts, correspondingly. Note that in
the squared exponential covariance function mentioned in
section III, when the length scale is increased, the covariance
structure is flatter, hence the resulting deviation is smoother.

To investigate the performance of the proposed statistical
monitoring schemes, we generated 6 layers using the same
setting as in section 4.1, with the additional GP added to the
6" layer to simulate process shifts. The first 5 layers are
treated as in-control layers, while the proposed AGP-D model
is utilized to predict the image profile of the 6t" layer. Both
the GLR and T? tests are used to determine if the new layer
conforms with the predicted distribution. The performance of
the proposed statistical monitoring scheme is quantified with
type II error under three types of process changes since type
IT error describes the occurrence of error when the test falsely
accepts the null hypothesis, i.e., a layer is not defective. The
control limits for both tests are computed based on the
significance level a = 0.05, and the proposed AGP-D model
is benchmarked with AGP-I and OGP.

Fig. 6 shows the operation characteristic (OC) curves of
different types of shifts under three different GP models. The
OC curves show that both GLR and T? tests are capable to

detect process changes. Specifically, all three GP models are
GLR test T? test
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Fig. 6. Performance comparison of Type II errors from AGP-I, AGP-D, and
OGP models in detecting different types and magnitudes of process shifts: (a)
Mean shift; (b) Variance change and (c) roughness change.
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capable to detect process shifts in terms of mean and variance,
while OGP is limited in the ability to detect changes in
roughness. This is because OGP does not consider
correlations in layerwise imaging data. However, the AGP-D
is shown to have a higher sensitivity in terms of detecting all
three types of process changes when compared to the AGP-I
and OGP models. Therefore, we conclude the proposed AGP-
D yields a superior result when monitoring process changes
in layerwise-correlated imaging data.

4.3 Real-world Case Study

To further evaluate the effectiveness of the proposed
methodology, a real-world case study is conducted on the
imaging dataset collected at Penn State CIMP-3D as shown
in Fig. 7(a). The cylinder build is fabricated under a direct
metal laser sintering (DMLS) process by an EOSINT M280
LPBF machine with a Titanium alloy material. Fig. 7(b)
shows an example of the layerwise imaging data of the build,
where each AM image contains 1000x1017 pixels.

(a) (b)

o et v

Fig. 7. (a) The cylinder build; (b) a layerwise image of the build.
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Fig. 8. (a) GLR and (b) T2 control charts on layerwise imaging data of the
cylinder build. The red line is the control limit computed using @ = 0.05. (i)-
(iv) are examples of in-control and out-of-control layers.

The layerwise imaging data are first processed using image
registration to obtain ROIs and eliminate background noises
(e.g., powders). In this study, a total of 58 layerwise images
are collected, where 30 of them are closely inspected to be
defect free and are thus used as the training dataset. The rest
28 layers are used as testing data. To increase computational
efficiency, a total of 1000 samples are drawn from the in-
control ROI stack. Next, the proposed AGP model is trained
on in-control ROIs and then predicts the posterior distribution
of the newly collected ROI. Finally, for each new ROI, we
use the proposed GLR and T? control chart to detect whether
it is in-control or not.

Fig. 8 shows the variations of GLR and T? test statistics
collected with respect to the index of testing layers. We can
observe that 8 layers have a test statistic that significantly lies
above the threshold, which is computed using significance
level @ = 0.05. This indicates these 8 layers are tested to be

defective. In addition, two statistical monitoring schemes
have reached a consensus on the detection of out-of-control
layers. To further investigate root causes of abnormal
changes, we show examples of ROI from layers tested as
defective and in-control in Fig. 9(i)-(iv). It may be noted that
the porosity defects cause the nonconformity of intensity
distributions which lead to a test statistic beyond the UCL.
For the remaining layers, we can observe test results fluctuate
but are still below the threshold, which indicates the process
is in control. The average computation time for one layer is
5.39 seconds, while the minimum time to fabricate a layer is
28.12 seconds. The computation time is estimated with the
use of a laptop computer with Intel Core 17 2.60GHz, 16GB
RAM, and can be further improved with high-performance
industrial computers. In our case study, the computational
speed to update the AGP-D model is fast enough for the
implementation of hypothesis testing and real-time
monitoring objectives.
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Fig. 9. Example images that are in-control (ii, iv) and defective (i, iii).

V. DISCUSSION AND CONCLUSIONS

Product quality is a key determinant for the broad adoption
of new manufacturing technologies. Although AM has gained
increasing attention due to its flexibility and capability to
fabricate complex shapes, AM processes are currently limited
in their in-situ quality monitoring, which poses challenges to
the wide adoption of AM in commercial applications. With
the rising investment by manufacturers in advanced sensing,
real-time imaging data has now become available for quality
monitoring. Such a plethora of high-dimensional imaging
data necessitates the development of new image-guided SPC
methods to effectively utilize the newfound data for real-time
process control. Traditional image profile monitoring
methods tend to focus on key characteristics (e.g., the plume
size, average temperature from melt pool images), as opposed
to modeling the image profile as a random function.

In this paper, we present a new Additive Gaussian Process
model to characterize and model spatio-temporal correlations
of layerwise imaging data for real-time quality monitoring of
AM fabrications. The developed AGP-D represents each
image profile with three stochastic components, i.e., the base
profile, within-layer and across-layer correlation profiles.
After training the AGP-D model with in-control imaging data,
the posterior distribution of a newly fabricated layer is
obtained, which is then incorporated into GLR and T2 tests to
detect process shifts. If the newly fabricated layer passes the
hypothesis test, it is added to in-control dataset. Otherwise,
correction actions shall be taken. The proposed methodology
is evaluated and validated using both simulation studies and a
real-world case study. Experimental results show that the
proposed AGP-D has strong potentials for modeling
layerwise imaging data in AM and further enabling in-situ
quality monitoring.
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Although this study focuses on the cylinder build, Gaussian
processes are flexible enough to model complex shapes and
free-form surfaces. It may be noted that shape-to-image
registration between CAD drawings and layerwise profiles
can be performed to delineate ROIs from the background
noise (e.g., powder areas) and improve the model robustness.
If a new layer has a different shape from previous layers, this
actually does not impact the computation of covariance
structures. Simply, the covariance matrix can be defined and
computed within the ROI boundary. In other words, although
the geometric boundary will generally vary between layers in
an AM build, this will not impact the computation of the
covariance matrix, nor the ability to model experimentally
resolvable local minute variations in each individual layer.
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