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Abstract—Additive Manufacturing (AM) enables the direct 
production of complex geometries from computer-aided designs 
(CAD). The AM fabrication process is often executed in a layer-
by-layer manner, whereby minute printing errors in one layer 
can manifest significant defects in the final part. In-situ quality 
monitoring and control are currently limited for AM processes 
and cause low repeatability. Recently. advanced imaging is 
increasingly invested in AM and leads to the proliferation of 
layerwise imaging data, which provides an opportunity to 
transform quality control of AM from post-build inspection to 
in-situ quality monitoring. However, existing methodologies for 
in-situ inspection primarily focus on key characteristics of image 
profiles that tend to be limited in the ability to analyze the 
variance components, as well as root causes and failure patterns 
that are critical to process improvement. This paper presents an 
Additive Gaussian Process with dependent layerwise correlation 
(AGP-D) to model the spatio-temporal correlation of layerwise 
imaging data for AM quality monitoring. The AGP-D consists of 
three independent GP modules. The first GP approximates the 
base profile, whereas the second and third GP capture the 
correlation within the same layer and among layers, 
respectively. Based on posterior predictions of new layers, 
Hotelling 𝑻𝑻𝟐𝟐  and generalized likelihood ratio (GLR) control 
tests are formulated to detect process shifts in the newly 
fabricated layer and analyze root causes. The proposed 
methodology is evaluated and validated using both simulation 
data and real-world case study of a cylinder build fabricated by 
a laser powder bed fusion (LPBF) machine. Experimental results 
show the proposed AGP-D is effective for real-time modeling 
and monitoring of layerwise-correlated imaging data. 
 
Index Terms: Additive manufacturing, Gaussian process, 
process control, statistical monitoring, spatiotemporal 
correlation. 
 

I. INTRODUCTION 

ROM the advances in 3D printing that have led to surging 
demand for prototyping and on-demand fabrication, 

modern industry is shifting to a next-generation 

manufacturing paradigm that is highly adaptive and flexible 
to customized designs. Additive Manufacturing (AM) is an 
enabling technology for the direct transition of digital designs 
to functional 3-dimensional parts via layer-upon-layer 
deposition of materials. This, in turn, enables the creation of 
complex shapes that are otherwise difficult, or even 
impossible, to construct by traditional manufacturing 
technologies, e.g., subtractive manufacturing, with the added 
advantage of shorter lead times and the ability to customize 
on the fly. Therefore, AM overcomes conventional design and 
manufacturing constraints, especially for designs that involve 
complex geometries. Traditional post-build inspection uses 
optical methods such as scanning laser optical tomography 
(SLOT) to detect potential quality issues in finalized builds 
[1]. On the other hand, sensor-based monitoring allows 
manufacturers to find misprints and respond quickly to 
alleviate potential greater problems, reducing scraps and 
reworks. However, real-time quality control is usually limited 
for AM processes [2][3]. As a result, widespread application 
of AM is hampered by the yield and broad distribution in 
performance metrics, which can arise from the accumulation 
of minor errors during the print. As such, advanced sensing 
(e.g., optical or thermal imaging) is increasingly adopted to 
increase information visibility during AM processes, where 
well-placed sensing units capture and convert real-time 
process information into imaging data.  

Although the availability of layerwise imaging data 
provides an opportunity to shift quality control of AM from 
post-build inspection to in-situ process monitoring, new 
analytical tools are urgently needed to extract useful 
information from imaging data and analyze stochastic 
variations in AM processes. Traditional statistical process 
control (SPC) measures the variability of a process using a 
large number of parts manufactured from the same design. 
However, AM is often used for prototyping and 
customization, thus it is not uncommon that only a few 
identical parts are fabricated. The poor repeatability in quality 
measurements poses significant challenges to conventional 
quality monitoring practices for AM processes. As shown in 
Fig. 1(a)-(c), SPC has achieved success in automotive and 
semiconductor industries in the past few decades. SPC 
methods have evolved from monitoring univariate features, 
multiple quality measurements to functional profiles. 
Nonetheless, traditional SPC is currently limited in the ability 
to model and analyze high-dimensional data [4], for example,  
layerwise imaging data as in Fig. 1(d). This, in turn, calls upon 
the development of new image-guided SPC methods. 

Gaussian Process Monitoring of Layerwise-
dependent Imaging Data  

Runsang Liu1, Bryan D. Vogt2 and Hui Yang1,*, Senior Member, IEEE  

F 
Manuscript received: February 8th, 2021; Revised: April 12th, 2021; 

Accepted: June 13th, 2021.  
This paper was recommended for publication by Editor Dana Kulic upon 

evaluation of the Associate Editor and Reviewers’ comments. 
The authors would like to thank National Science Foundation (NSF)  

CMMI-2011289 for supporting this work. 
1R. Liu and H. Yang* are with the Complex Systems Monitoring, 

Modeling and Control lab, The Pennsylvania State University, University 
Park, PA, 16802 USA (*corresponding author: huy25@psu.edu).  

2B. D. Vogt is with the Department of Chemical Engineering, The 
Pennsylvania State University, University Park, PA, 16802 USA (e-mail: 
bdv5051@psu.edu). 

Digital Object Identifier (DOI): see top of this page 

 



IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2021        2 

 
Commonly, layerwise imaging data involve complex 

structures, within-layer and across-layer correlated variations. 
Real-world uncertainty in layerwise finishes of the build leads 
to stochastic variations in each image profile. Feature-based 
methods such as linear transformations [5][6], deep learning 
[7][8], multifractal analysis [9], and community-based 
statistics [10] are proposed to extract key characteristics and 
features from image profiles for statistical monitoring of 
manufacturing processes. However, feature-based methods 
tend to focus on one or more aspects of the engineering intent 
(e.g., the plume size, average temperature from melt pool 
images), as opposed to modeling the image profile as a 
random function. As a result, features are limited in the ability 
to analyze different types of variance components, as well as 
root causes and out-of-control patterns that are critical to 
process improvement. 

These shortcomings have driven the design of alternative 
model-based methods. For example, parametric functions 
[11][12] are first proposed to approximate the profile and then 
monitor the parameter vector. To further increase the model 
performance, non-parametric models such as Gaussian 
Process (GP) [13] and spline modeling [14] are proposed and 
utilized. Among popular non-parametric models, GP is more 
favorable due to several key advantages. First, GPs have been 
demonstrated to successfully model complex profiles 
[15][16]. Second, GPs are flexible enough to be extended to 
higher input dimensions when compared to other non-
parametric approaches. Third, stochastic GPs and posterior 
predictions allow a natural transition to the design of new SPC 
methods. With these advantages, several GP models have 
been proposed to model and analyze manufacturing data. For 
example, composite GP is used to model the smoothness of 
titanium alloy pieces [17], while additive GP with 
independent layers (AGP-I) uses two GPs to model the 
variation of wafer thickness profiles [13]. However, most 
existing model-based methods focus on the modeling of 
imaging data with an assumption of layerwise independence 
and are not developed to fully address layerwise correlation 
of imaging data from AM fabrication processes. 

This paper presents an Additive Gaussian Process with 
dependent layerwise correlation (AGP-D) to characterize the 
spatio-temporal correlation of layerwise imaging data for 
real-time quality monitoring of AM fabrications. The AGP-D 

consists of three independent GP modules. The first GP 
approximates the base profile, whereas the second and third 
GPs capture the correlation within the same layer and across 
different layers. Based on posterior distributions of the new 
layer from AGP-D modeling, Hotelling 𝑇𝑇2 and generalized 
likelihood ratio (GLR) tests are formulated to detect process 
deviations in a newly fabricated layer and analyze root causes. 
A real-time monitoring framework that combines the AGP-D 
model and multivariate control charts is also developed to 
enable in-situ quality monitoring of layerwise imaging data 
from AM fabrication procedures. The proposed methodology 
is evaluated and validated using simulation studies and a real-
world case study of a cylinder build fabricated by a laser 
powder bed fusion (LPBF) machine. Experimental results 
show the proposed AGP-D and multivariate control charts are 
effective for real-time monitoring of layerwise-correlated 
imaging data.  

This paper is organized as follows: Section II provides a 
literature review on relevant methods of image-based quality 
monitoring. Section III presents the proposed AGP-D and 
statistical monitoring methodology. Section IV shows the 
detailed experimental design and results using both 
simulations and a real-world case study. Section V discusses 
and concludes this study. 

II. RESEARCH BACKGROUND 
Quality control in AM remains an enduring challenge 

despite advancements in sensing technology and SPC 
methods. Slight changes in process conditions can cause non-
negligible impacts on the quality of AM builds [18]. As a 
result, image-guided monitoring that utilizes the selection of 
the cameras to provide opportunities for real-time process data 
is among the highest priorities for AM quality control. For 
example, infrared cameras detect thermal signals of layerwise 
builds to provide temperature history information, and can 
further be utilized to detect material discontinuities [19][20]. 
High-resolution cameras with multiple flash modules that 
enable immediate layer imaging after recoating and laser 
exposure are used to identify common defects such as 
porosities and poor surface finishes [21]. These sensors bring 
a wealth of high-dimensional imaging data that can further 
enable shape analysis on the print, for example, height, 
trajectory, and textures [22]. The plethora of process 
information necessitates the development of new analysis 
tools and SPC methods.  

The imaging data stream collected by advanced cameras 
during manufacturing processes usually contains linear, 
nonlinear, and irregular information [23]. Therefore, feature-
based methods focus on monitoring aggregated attributes 
extracted from layerwise imaging data. For example, principal 
component analysis (PCA) [5], Fourier transforms [6] and 
Pearson correlation coefficient (PCC) [24] can be used to 
extract linear features, while nonlinear and irregular features 
can be characterized using deep learning [7], and multifractal 
analysis [9], respectively. Low-rank tensor decomposition 
techniques are also used to extract key characteristic features 

Fig. 1.  The evolution of statistical process control (SPC) from (a) Univariate 
monitoring; (b) Joint monitoring of multiple features; (c) Function profile 
monitoring;  to (d) high-dimensional imaging data. 

(a) (b) 

(c) (d) 
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from high-dimensional image profiles [25]. Note that features 
extracted from thermal images such as plume size and average 
temperature of melt pool images are investigated to monitor 
the stability of melting conditions [26]. Active contours are 
also extracted for the characterization of layerwise images, 
where the plane-wise deviations are monitored by computing 
the distance between the nominal and the extracted contour 
[27]. Although feature-based approaches are shown to have 
certain advantages, very little has been done to model the 
image profile as a random function. Traditional feature-based 
approaches focus on the extraction of features from image 
profiles (e.g., infrared or optical images), while Gaussian 
process modeling is an alternative approach to model the 
image profile as a random function. The present investigation 
focuses on three random components in each layerwise 
image, i.e., (i) the base profile, (ii) within-layer, and (iii) 
across-layer correlated components that capture correlated 
deviations within the same layer and between different layers. 
Then, in-situ monitoring is formulated as a hypothesis testing 
problem, instead of classification or clustering problems with 
multiple feature descriptors. The development of alternative 
strategies for monitoring AM processes with layerwise 
images is useful due to distinct advantages and disadvantages 
of these methodologies.  

Therefore, model-based approaches such as splines 
monitoring [14], support vector regression [28], and GP [13] 
have been proposed to estimate and characterize spatial image 
profiles. In addition, deep learning is not only used to extract 
features but also to predict material continuity based on the 
signatures developed from multiple cameras [8]. Among 
popular non-parametric models, GPs have gained noticeable 
attention for modeling complex patterns due to their 
flexibility and versatility. GPs are demonstrated to 
successfully model and predict complex profiles such as 
turbulent flows [29], liquefaction triggering procedures [30], 
heterogeneous land data in remote sensing [31]. In addition, 
GP was used to model complex shape and free-form surfaces 
of 3D point cloud data from a laser scanner [32]. Therefore, 
several GP models and their variants are being used to model 
profiles from manufacturing processes. For example, a series 
of GP models are used to model the polishing stages on a 
titanium alloy workpiece [17]. Additive GP with independent 
layers [13] is proposed to model and monitor the silicon wafer 
thickness profile considering both standard thickness and 
correlation in the measurement locations within the same 
wafer. However, most of existing model-based methods are 
mainly focused on modeling within-layer correlations and 
assume layerwise independence but are less concerned about 
across-layer correlated variations among imaging data in the 
process of AM fabrication. The ability to delineate within-
layer and across-layer correlated components is critical to 
quality monitoring of AM fabrication processes in a layer-by-
layer fashion and further mitigate incipient defects. 

III. RESEARCH METHODOLOGY 
In this section, we propose an online framework of AM 

process monitoring based on imaging data. As shown in Fig. 
2, in-control layerwise imaging data are first pre-processed to 
create the stack of region of interests (ROIs) to focus on the 
fabrication area in the AM build and exclude nuisance 
information in the background area of powders. Next, the 
AGP-D model is trained on the in-control ROIs to model the 
imaging data in terms of the base profile, within and across 
layer correlations. The trained AGP-D model is then used to 
obtain the posterior distribution of pixel intensities in a new 
image profile. Finally, Hotelling 𝑇𝑇2  and generalized 
likelihood ratio (GLR) tests are performed to detect process 
changes and/or variations based on confidence intervals from 
posterior distributions in the ROI of the newly fabricated 
layer. If the new layer is in-control, it is added to the training 
data and the AGP-D model is updated. Otherwise, in-situ 
rectification actions should be taken, where the choice of 
corrective actions can be determined via a sequential 
optimization framework as discussed in [33].  

 
3.1 Additive Gaussian Process (AGP-D) Modeling 

The stream of layerwise imaging data involves complex 
data structures and stochastic variations, which call upon the 
development of new analytical models for AM process 
monitoring. In particular, the sum of layerwise deviations is 
of interest, as well as mean functions and covariance 
functions. This motivates the development of new Gaussian 
process models to represent layerwise deviations as random 
functions. Note that the proposed model specifically takes 
across-layer correlations into consideration, which explicitly 
assumes that there is dependence in the deviations between 
layerwise image profiles. Let 𝑥𝑥𝑖𝑖𝑖𝑖

(𝑙𝑙) be the (𝑖𝑖, 𝑗𝑗)𝑡𝑡ℎ pixel location 

of the 𝑙𝑙𝑡𝑡ℎ  ROI, and 𝑦𝑦𝑖𝑖𝑖𝑖
(𝑙𝑙)  be the pixel intensity at the 

corresponding location. Fig. 3 shows layerwise image profiles 
are not independent of each other. Rather, two major types of 
correlation (within-layer and across-layer correlation) impact 
the distribution of intensities in the imaging data, which we 
refer to as the spatio-temporal correlation. Therefore, the 
distribution of the intensities is modeled as the sum of three 

Fig. 2.  Flow diagram of the proposed methodology 

 

Fig. 3.  Within-layer and across-layer correlation in layerwise ROIs. 
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independent functions: 

𝑦𝑦𝑖𝑖𝑖𝑖
(𝑙𝑙) = 𝑏𝑏�𝑥𝑥𝑖𝑖𝑖𝑖

(𝑙𝑙)� + 𝑐𝑐𝑤𝑤𝑤𝑤�𝑥𝑥𝑖𝑖𝑖𝑖
(𝑙𝑙)� + 𝑐𝑐𝑎𝑎𝑎𝑎�𝑥𝑥𝑖𝑖𝑖𝑖

(𝑙𝑙)� +  𝜀𝜀 (1) 

where 𝜀𝜀~𝑁𝑁(0,𝜎𝜎𝑛𝑛2) is the observation noise, 𝑏𝑏~𝐺𝐺𝐺𝐺(𝐦𝐦𝑏𝑏,𝐊𝐊𝑏𝑏 ) 
is a realization of the base profile with mean 𝐦𝐦𝑏𝑏  and 
covariance matrix 𝐊𝐊𝑏𝑏 , 𝑐𝑐𝑤𝑤𝑤𝑤~𝐺𝐺𝐺𝐺(0,𝐊𝐊𝑤𝑤𝑤𝑤) and 𝑐𝑐𝑎𝑎𝑎𝑎~𝐺𝐺𝐺𝐺(0,𝐊𝐊𝑎𝑎𝑎𝑎) 
capture within and across layer correlation, with zero mean 
and covariance matrices 𝐊𝐊𝑤𝑤𝑤𝑤 ,𝐊𝐊𝑎𝑎𝑎𝑎, accordingly. In this paper, 
we use the squared exponential covariance function, therefore 
the covariance matrix can be computed as: 

𝐊𝐊�𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖′𝑗𝑗′� = 𝜎𝜎2 exp �−�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖′𝑗𝑗′�
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔−1(𝑎𝑎)�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖′𝑗𝑗′�� (2) 

where 𝜎𝜎 is the standard deviation and 𝑎𝑎  is the length-scale 
that quantifies the correlation neighborhood. The base profile 
mathematically describes the standard geometric profile. The 
within-layer component 𝐜𝐜𝑤𝑤𝑤𝑤~𝐺𝐺𝐺𝐺(0,𝐊𝐊𝑤𝑤𝑤𝑤)  only contains the 
covariance within the same layer and the across-layer 
component 𝐜𝐜𝑎𝑎𝑎𝑎~𝐺𝐺𝐺𝐺(0,𝐊𝐊𝑎𝑎𝑎𝑎) only contains covariance across 
different layers. The formulations of covariance structures 
grant each component to capture different patterns within the 
imaging data.  Please note that covariance structures 𝐊𝐊𝑤𝑤𝑤𝑤 ,𝐊𝐊𝑎𝑎𝑎𝑎 
are defined differently as follows: 

𝑲𝑲𝑤𝑤𝑤𝑤 �𝑥𝑥𝑖𝑖𝑖𝑖
(𝑙𝑙), 𝑥𝑥𝑖𝑖′𝑗𝑗′

(𝑙𝑙) � = 𝜎𝜎𝑤𝑤𝑤𝑤2 𝑒𝑒𝑒𝑒𝑒𝑒 �− �𝑥𝑥𝑖𝑖𝑖𝑖
(𝑙𝑙) − 𝑥𝑥𝑖𝑖′𝑗𝑗′

(𝑙𝑙) �
𝑇𝑇
𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔−1(𝑎𝑎𝑤𝑤𝑤𝑤) �𝑥𝑥𝑖𝑖𝑖𝑖

(𝑙𝑙) − 𝑥𝑥𝑖𝑖′𝑗𝑗′
(𝑙𝑙) �� (3) 

𝑲𝑲𝑎𝑎𝑎𝑎 �𝑥𝑥𝑖𝑖𝑖𝑖
(𝑙𝑙), 𝑥𝑥𝑖𝑖′𝑗𝑗′

(𝑙𝑙′)� = 𝜎𝜎𝑎𝑎𝑎𝑎2 𝑒𝑒𝑒𝑒𝑒𝑒 �− �𝑥𝑥𝑖𝑖𝑖𝑖
(𝑙𝑙) − 𝑥𝑥𝑖𝑖′𝑗𝑗′

(𝑙𝑙′)�
𝑇𝑇
𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔−1(𝑎𝑎𝑎𝑎𝑎𝑎) �𝑥𝑥𝑖𝑖𝑖𝑖

(𝑙𝑙) − 𝑥𝑥𝑖𝑖′𝑗𝑗′
(𝑙𝑙′)�� (4) 

The three functions are assumed to be independent of each 
other. As a result, the observed pixel intensity 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑙𝑙)  is 
essentially the sum of three GPs, i.e., 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑙𝑙)~𝐺𝐺𝐺𝐺(𝐦𝐦𝑏𝑏,𝐊𝐊𝑏𝑏 +
𝐊𝐊𝑤𝑤𝑤𝑤 + 𝐊𝐊𝑎𝑎𝑎𝑎), which we refer to as the AGP-D model. Assume 
the ROI stack of image profiles has the dimension of 𝑁𝑁𝑝𝑝 =
𝑛𝑛𝑥𝑥 × 𝑛𝑛𝑦𝑦 × 𝐿𝐿, where 𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦  are the number of pixels in 𝑥𝑥,𝑦𝑦 
directions and 𝐿𝐿 is the number of layers. The linearized in-

control location data become 𝐗𝐗 = �𝑥𝑥11
(1), … 𝑥𝑥11

(2), … 𝑥𝑥𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦
(𝐿𝐿) �

𝑇𝑇
 

and pixel intensities are 𝐲𝐲 = �𝑦𝑦11
(1), …𝑦𝑦11

(2), …𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦
(𝐿𝐿) �

𝑇𝑇
, which 

has the dimension of 𝑁𝑁𝑝𝑝 × 3 and 𝑁𝑁𝑝𝑝 × 1, respectively. Let 
𝛃𝛃 = [𝛉𝛉𝑏𝑏,𝛉𝛉𝑤𝑤𝑤𝑤 ,𝛉𝛉𝑎𝑎𝑎𝑎] , where 𝛉𝛉 = [𝜇𝜇,𝜎𝜎2,𝑎𝑎 ] , be the set of all 
hyperparameters in the AGP-D model, and 𝛍𝛍�𝐲𝐲 be the mean 
estimates of in-control pixel intensities. The estimator 𝛃𝛃� for 
the set of hyperparameters can be computed by maximizing 
the log-likelihood function: 

𝛃𝛃� = arg max
𝛃𝛃

�−
1
2

log(det𝐊𝐊(𝐗𝐗,𝐗𝐗))

−
1
2
�𝐲𝐲 − 𝛍𝛍�𝒚𝒚�

𝑇𝑇 × �𝐊𝐊(𝐗𝐗,𝐗𝐗)�−1          

× (𝐲𝐲 − 𝛍𝛍�𝒚𝒚)� 

(5) 

In-control dataset is used to estimate the hyperparameters for 
each component in the AGP-D model by maximizing the log-
likelihood function using a conjugate gradient optimizer. This 
study does not assume that all previous layers are normal. 
Commonly, defects can occur right at the beginning of the 
fabrication, or in the middle, or at the final phase. Type II 
errors can lead to the biased estimation of defective 
probability in a new layer. If accumulated, defective layers 
can be potentially mixed into in-control training dataset and 

thereby decrease the power of the proposed GP models. In the 
general practice, practitioners may opt to manually inspect 
and choose zero-defect layers (ROIs) to establish in-control 
training dataset. The model can only be updated with the 
addition of new layers that are closely inspected to be in-
control. Although manual inspection is labor-intensive, 
practitioners can also opt to automatically update the model 
with new layers that are identified by the model to achieve a 
high probability to be in-control. Also, note that the 
computation of covariance function and model update is 
based on the majority of in-control datasets, instead of a single 
layer that may be defective. 

Next, the AGP-D model is used to characterize the 
layerwise image profiles and compute the confidence bounds 
of the surface finish in the next layer, which provides a 
baseline to monitor the ROI in newly fabricated layers. 
Specifically, the marginal distribution of pixel intensity 𝐲𝐲∗ =
𝐲𝐲(𝐿𝐿+1)  at location 𝐗𝐗∗  in the newly collected image ROI is 
expected to follow a joint multivariate Gaussian distribution 
with the prior distribution: 

�
𝐲𝐲
𝐲𝐲∗ � │𝐗𝐗,𝐗𝐗∗~𝒩𝒩��

𝛍𝛍�𝐲𝐲
𝛍𝛍�𝐲𝐲∗

� , � 𝐊𝐊(𝐗𝐗,𝐗𝐗) 𝐊𝐊(𝐗𝐗,𝐗𝐗∗)
𝐊𝐊(𝐗𝐗∗,𝐗𝐗) 𝐊𝐊(𝐗𝐗∗,𝐗𝐗∗)

�� (6) 

with the posterior distribution to be: 
𝐲𝐲∗|𝐲𝐲,𝐗𝐗,𝐗𝐗∗~𝒩𝒩(𝛍𝛍�∗,𝚺𝚺�∗) (7) 

and the corresponding mean and covariance:  
𝛍𝛍�∗ = 𝛍𝛍�𝐲𝐲∗ + 𝐊𝐊(𝐗𝐗∗,𝐗𝐗)(𝐊𝐊(𝐗𝐗,𝐗𝐗) + 𝜎𝜎𝑛𝑛2𝐈𝐈)−1�𝐲𝐲 − 𝛍𝛍�𝐲𝐲� (8) 

𝚺𝚺�∗ = 𝐊𝐊(𝐗𝐗∗,𝐗𝐗∗) − 𝐊𝐊(𝐗𝐗∗,𝐗𝐗)(𝐊𝐊(𝐗𝐗,𝐗𝐗) + 𝜎𝜎𝑛𝑛2𝐈𝐈)−1𝐊𝐊(𝐗𝐗,𝐗𝐗∗) (9) 
where 𝛍𝛍�𝐲𝐲,𝛍𝛍�∗ are mean estimates from in-control and newly 
collected ROIs. Therefore, the intensity distribution from the 
new image ROI is expected to follow a multivariate Gaussian 
distribution with mean 𝛍𝛍�∗  and covariance 𝚺𝚺�∗ . Although 
Gaussian Process is computationally expensive when the 
input dimension is large, there are serval ways to increase the 
computational efficiency. For example, fully independent 
training conditional (FITC) approximates covariance 
matrices using a smaller set of inducing inputs for a faster 
prediction. Block-wise matrix inversion allows a more 
efficient update of the AGP-D model after a new layer is 
regarded as normal and then added to the in-control training 
dataset. In addition, statistical sampling reduces the 
dimensionality of the input, thereby enabling a faster 
computation of GP modeling. Notably, statistical sampling in 
Gaussian process is different from feature selection. Feature-
based approaches focus on the extraction of features from 
image profiles (e.g., infrared or optical images) based on one 
or more aspects of the engineering intent (e.g., the plume size 
from melt pool images). On the other hand, Gaussian process 
modeling is an alternative approach to model the image 
profile as a random function, where statistical samples help 
estimate covariance structures and then model the posterior 
distribution of image profiles. 

3.2 Statistical Monitoring of Correlated Imaging Data  
The AGP-D model provides real-time mean and variance 

estimation of intensity distribution of the ROI in newly 
fabricated layers. Therefore, hypothesis tests can be created 
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to test whether the new layer is out-of-control. Equation (7) 
shows that the posterior distribution follows a multivariate 
Gaussian distribution with the estimated mean vector 𝛍𝛍�∗ and 
covariance matrix 𝚺𝚺�∗. As such, the hypothesis to test whether 
a new layer is in-control or defective can be formulated as:  

�
𝐻𝐻0:𝐲𝐲(𝐿𝐿+1)~𝒩𝒩�𝛍𝛍∗(𝐿𝐿+1),𝚺𝚺∗

(𝐿𝐿+1)�  
𝐻𝐻1: 𝐲𝐲(𝐿𝐿+1) ≁ 𝒩𝒩�𝛍𝛍∗(𝐿𝐿+1),𝚺𝚺∗

(𝐿𝐿+1)�
 (10) 

where 𝛍𝛍∗(𝐿𝐿+1)  is the true mean vector, 𝚺𝚺∗
(𝐿𝐿+1)  is the true 

covariance matrix, and 𝐿𝐿 + 1 is the layer index of a newly 
fabricated layer. Traditionally, the 𝜒𝜒2  statistic is often to 
perform this hypothesis testing when the population mean and 
covariance are known: 

𝜒𝜒𝐿𝐿+12 = �𝐲𝐲(𝐿𝐿+1) − 𝛍𝛍∗(𝐿𝐿+1)�𝑇𝑇(𝚺𝚺∗
(𝐿𝐿+1))−1�𝐲𝐲(𝐿𝐿+1) − 𝛍𝛍∗(𝐿𝐿+1)� (11) 

The upper control limit is 𝑈𝑈𝑈𝑈𝑈𝑈 = 𝜒𝜒2(𝑛𝑛(𝐿𝐿+1),𝛼𝛼), where 𝛼𝛼 is 
the significance level. Because the chi-square statistic is the 
squared term between the observational and true mean vector, 
the lower control limit is zero. The null hypothesis is rejected, 
if the test statistic is beyond the upper control limit. However, 
the population mean 𝛍𝛍∗(𝐿𝐿+1) and covariance 𝚺𝚺∗

(𝐿𝐿+1) are often 
unknown and need to be estimated from the in-control data as 
𝛍𝛍�∗  and 𝚺𝚺�∗ . If we replace 𝛍𝛍∗(𝐿𝐿+1)  and 𝚺𝚺∗

(𝐿𝐿+1)  in 𝜒𝜒𝐿𝐿+12  with 
estimated sample mean 𝛍𝛍�∗ and covariance 𝚺𝚺�∗, the test statistic 
in equation (11) becomes: 

𝑇𝑇𝐿𝐿+12 = �𝒚𝒚(𝐿𝐿+1) − 𝝁𝝁�∗
(𝐿𝐿+1)�

𝑇𝑇
(𝜮𝜮�∗

(𝐿𝐿+1))−1�𝒚𝒚(𝐿𝐿+1) − 𝝁𝝁�∗
(𝐿𝐿+1)� (12) 

which is called the Hotelling 𝑇𝑇2  statistic that is commonly 
used to test the hypothesis as equation (10) in the literature. 
In practice, control limits of the 𝑇𝑇2  statistic can be 
approximated by a chi-square distribution with 𝑛𝑛(𝐿𝐿+1) 
degrees of freedom, therefore, the null hypothesis is rejected 
when the 𝑇𝑇2 statistic is larger than 𝜒𝜒2(𝑛𝑛(𝐿𝐿+1),𝛼𝛼). 

The Hotelling 𝑇𝑇2  test is designed to detect changes and 
shifts in the AM processes. However, it is also imperative to 
further perform the root cause analysis. In the practice, the 
generalized likelihood ratio (GLR) test is often used to detect 
the process changes and further perform root cause diagnosis. 
Specifically, if the manufacturing process is out of control, 
the deviation is captured by the root cause component 𝛾𝛾: 

𝑦𝑦𝑖𝑖𝑖𝑖
(𝐿𝐿+1) = 𝑏𝑏�𝑥𝑥𝑖𝑖𝑖𝑖

(𝐿𝐿+1)� + 𝑐𝑐𝑤𝑤𝑤𝑤�𝑥𝑥𝑖𝑖𝑖𝑖
(𝐿𝐿+1)� 

              + 𝑐𝑐𝑎𝑎𝑎𝑎�𝑥𝑥𝑖𝑖𝑖𝑖
(𝐿𝐿+1)� + 𝛾𝛾�𝑥𝑥𝑖𝑖𝑖𝑖� + 𝜀𝜀 

(13) 

where 𝛾𝛾(𝑥𝑥𝑖𝑖𝑖𝑖) denotes the deviation due to assignable causes 
in the out-of-control process that is characterized by 
hyperparameter 𝛉𝛉𝛾𝛾 = [𝜇𝜇𝛾𝛾,𝜎𝜎𝛾𝛾2,𝑎𝑎𝛾𝛾]  to detect specific 
deviations in mean, variance, and roughness. Although the 
base profile remains the same, 𝛾𝛾 adds another degree of mean 
profile variations if there is any. This, in turn, offers the 
flexibility to model layers with different mean profiles and 
identify root causes. The hypothesis to test whether 𝛾𝛾(∙) is 
significantly different from zero can be formulated as: 

�
𝐻𝐻0:𝐲𝐲(𝐿𝐿+1)~𝒩𝒩�𝛍𝛍�∗

(𝐿𝐿+1),𝚺𝚺�∗
(𝐿𝐿+1)�                    

𝐻𝐻1:𝐲𝐲(𝐿𝐿+1)~𝒩𝒩(𝛍𝛍�∗
(𝐿𝐿+1) + 𝛍𝛍𝛾𝛾,𝚺𝚺�∗

(𝐿𝐿+1) + 𝚺𝚺𝛾𝛾) 
 (14) 

As such, the hypothesis can be reformulated as: 𝐻𝐻0:𝛉𝛉𝛾𝛾 =
0,  𝐻𝐻1:𝛉𝛉𝛾𝛾 ≠ 0  to test whether there are shifts in model 
parameters. Then, the GLR statistic can be computed as:  

𝑅𝑅𝐿𝐿+1 = 2ln
argmax

𝛉𝛉𝛾𝛾
Likelihood(𝐻𝐻1)

Likelihood(𝐻𝐻0)
 (15) 

which computes the ratio of likelihoods under 𝐻𝐻0  and 𝐻𝐻1 , 
respectively. Under 𝐻𝐻0, the likelihood is computed as: 

Likelihood(𝐻𝐻0) = 

(2π)−
𝑛𝑛(𝐿𝐿+1)

2 det �𝚺𝚺�∗
(𝐿𝐿+1)�

− 12 exp [−
1
2 �
𝐲𝐲(𝐿𝐿+1)

− 𝛍𝛍�∗
(𝐿𝐿+1)�

𝑇𝑇
(𝚺𝚺�∗

(𝐿𝐿+1))−1(𝐲𝐲(𝐿𝐿+1)

− 𝛍𝛍�∗
(𝐿𝐿+1))] 

(16) 

Similarly, the likelihood when 𝐻𝐻1 is true is computed as: 
Likelihood(𝐻𝐻1) = 

(2π)−
𝑛𝑛(𝐿𝐿+1)

2 det �𝚺𝚺�∗
(𝐿𝐿+1) + 𝚺𝚺�𝛾𝛾�

− 12 exp [−
1
2 �𝐲𝐲

(𝐿𝐿+1)

− 𝛍𝛍�∗
(𝐿𝐿+1) − 𝛍𝛍�𝛾𝛾�

𝑇𝑇
�𝚺𝚺�∗

(𝐿𝐿+1)

+ 𝚺𝚺�𝛾𝛾�
−1
�𝐲𝐲(𝐿𝐿+1) − 𝛍𝛍�∗

(𝐿𝐿+1) − 𝛍𝛍�𝛾𝛾�] 

(17) 

The GLR test rejects the null hypothesis 𝐻𝐻0  when the test 
statistic 𝑅𝑅𝐿𝐿+1 > 1

2
(𝜒𝜒2(1,𝛼𝛼) + 𝜒𝜒2(2,𝛼𝛼)) . When a defective 

layer is detected, hyperparameters in 𝛉𝛉�𝛾𝛾  can be further 
utilized to diagnose process changes of a specific type, e.g., 
mean shift, variance change, or roughness change.  

IV. EXPERIMENTAL DESIGN AND RESULTS 
In this investigation, we first evaluate and validate the 

effectiveness of the proposed AGP-D model, and statistical 
monitoring schemes using a simulation study. The simulation 
study aims to evaluate the effectiveness of layerwise 
correlated data estimation and further investigate the 
performance of statistical monitoring schemes under different 
types of process shifts. With the efficacy demonstrated using 
simulations, a real-world case study of a cylinder build from 
an LPBF machine is further conducted. 

4.1 AGP-D Modeling Performance 
We first show that the proposed AGP-D model is sufficient 

to estimate the surface finishes and capture the layerwise 
correlation from image profiles in AM processes using 
simulated data. In this simulation, we use the following 
sinusoid function to be the base profile:  

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) = cos(𝑥𝑥1) + sin �
𝑥𝑥1
5 �

cos (𝑥𝑥2) (18) 

with 𝑥𝑥1 ∈ [−3,3] and 𝑥𝑥2 ∈ [−3,3] . The within-layer and 
across-layer correlation are generated from two independent 
GPs with hyperparameter of: 𝛉𝛉𝑤𝑤𝑤𝑤 = [𝜇𝜇𝑤𝑤𝑤𝑤 = 0,𝑎𝑎𝑤𝑤𝑤𝑤 =
(0.5,0.5,0.5),𝜎𝜎𝑤𝑤𝑤𝑤 = 1.5] and 𝛉𝛉𝑎𝑎𝑎𝑎 = [𝜇𝜇𝑤𝑤𝑤𝑤 = 0,𝑎𝑎𝑎𝑎𝑎𝑎 =
(2,2,2.5),𝜎𝜎𝑎𝑎𝑎𝑎 = 1.5] , respectively. These simulated spatio-
temporal correlations will result in a more realistic correlation 
across the layers. To generate the layerwise correlated data, 
we utilize the Cholesky factorization: 

𝐲𝐲 = 𝐟𝐟 + 𝑐𝑐ℎ𝑜𝑜𝑜𝑜(𝐊𝐊) × 𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛆𝛆 (19) 
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where 𝐊𝐊  is the covariance matrix, 𝑟𝑟𝑟𝑟𝑟𝑟~𝑍𝑍(0,1)  is the 
standard normal random variable, and 𝛆𝛆~(0,1𝑒𝑒 − 4) is the 
random noise. 

As shown in Fig. 4, we generated in-control layers that 
have varying intensities over time, simulating the layerwise 
image profiles of AM build during layer-upon-layer 
fabrication procedures. We compare the proposed 
methodology with the original GP (OGP) with noisy 
measurements [34] and AGP-I (i.e., independent layerwise 
correlation) proposed in [13]. The hyperparameters for the 
three GP models are estimated using the maximum log-
likelihood method, and a total of 400 randomly sampled data 
points are used to predict the prior distribution of the in-
control profile. The negative log-likelihood (NLL) of the 
predicted distribution is used to quantify the performance of 
model estimation. Because we aim to estimate the distribution 
and then compute the confidence bounds of unseen layers, the 
likelihood that quantifies the goodness of fit of the model is 
more suitable than the commonly used root mean squared 
error (RMSE). NLL shows how well the model fits the data 
based on the likelihood of the fit, and a smaller NLL value 
indicates the model has a better fit. 

As shown in Fig. 5 (a)-(c), the difference among mean 
predictions from AGP-D, AGP-I, and OGP is not significant, 
and all three methods predict the mean of the layer close to 
the simulated layer. Shown in Fig. 5 (d)-(f) is the estimated 
covariance structure, where the predicted covariance is 
overlaid with the simulated covariance to demonstrate the 
difference in covariance magnitude. The less gray area we can 
see, the better the prediction. As shown in Fig. 5 (d)-(f), the 
AGP-D and AGP-I have similar predicted covariance 
structures, only with minute differences. However, the OGP 
is limited in the ability to predict the simulated covariance 

structure, leaving the largest area of shades. This is because 
the OGP did not take spatio-temporal correlations into 
consideration. Through our experiments, the AGP-D has an 
NLL of 532, while AGP-I and OGP has an NLL of 907 and 
1647, respectively. This comparison demonstrates that 
although three models are equally effective in mean 
estimation, the proposed AGP-D is overall more effective to 
model layerwise correlated image profiles.  

4.2 Performance comparisons of Monitoring Schemes 
In this section, we examine the performance of the 

proposed statistical monitoring scheme under different types 
of defects. Based on engineering knowledge, three types of 
process-change scenarios are observed on the surface during 
layerwise fabrication: shift in mean, change in variance, and 
change in roughness. Therefore, we use an additional GP 
𝛾𝛾�𝑥𝑥𝑖𝑖𝑖𝑖�  with mean 𝜇𝜇𝛾𝛾 , variance 𝜎𝜎𝛾𝛾 , and length scale 𝑎𝑎𝛾𝛾  to 
model the three types of shifts, correspondingly. Note that in 
the squared exponential covariance function mentioned in 
section III, when the length scale is increased, the covariance 
structure is flatter, hence the resulting deviation is smoother. 

To investigate the performance of the proposed statistical 
monitoring schemes, we generated 6 layers using the same 
setting as in section 4.1, with the additional GP added to the 
6𝑡𝑡ℎ  layer to simulate process shifts. The first 5 layers are 
treated as in-control layers, while the proposed AGP-D model 
is utilized to predict the image profile of the 6𝑡𝑡ℎ layer. Both 
the GLR and 𝑇𝑇2 tests are used to determine if the new layer 
conforms with the predicted distribution. The performance of 
the proposed statistical monitoring scheme is quantified with 
type II error under three types of process changes since type 
II error describes the occurrence of error when the test falsely 
accepts the null hypothesis, i.e., a layer is not defective. The 
control limits for both tests are computed based on the 
significance level 𝛼𝛼 = 0.05, and the proposed AGP-D model 
is benchmarked with AGP-I and OGP.  

Fig. 6 shows the operation characteristic (OC) curves of 
different types of shifts under three different GP models. The 
OC curves show that both GLR and 𝑇𝑇2 tests are capable to 
detect process changes. Specifically, all three GP models are 

Fig. 6.   Performance comparison of Type II errors from AGP-I, AGP-D, and 
OGP models in detecting different types and magnitudes of process shifts: (a) 
Mean shift; (b) Variance change and (c) roughness change. 
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Fig. 4.  Simulated layerwise-correlated data  

Fig. 5.  Predicted means and covariances of the first layer using different GP 
models: (a) AGP-D (proposed) predicted mean; (b) AGP-I predicted mean; 
(c) OGP predicted mean; (d) AGP-D predicted covariance; (e) AGP-I 
predicted covariance and (f) OGP predicted covariance. 

(a)  (b)  (c)  

(d)  (e)  (f)  
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capable to detect process shifts in terms of mean and variance, 
while OGP is limited in the ability to detect changes in 
roughness. This is because OGP does not consider 
correlations in layerwise imaging data. However, the AGP-D 
is shown to have a higher sensitivity in terms of detecting all 
three types of process changes when compared to the AGP-I 
and OGP models. Therefore, we conclude the proposed AGP-
D yields a superior result when monitoring process changes 
in layerwise-correlated imaging data. 

4.3 Real-world Case Study 
To further evaluate the effectiveness of the proposed 

methodology, a real-world case study is conducted on the 
imaging dataset collected at Penn State CIMP-3D as shown 
in Fig. 7(a). The cylinder build is fabricated under a direct 
metal laser sintering (DMLS) process by an EOSINT M280 
LPBF machine with a Titanium alloy material. Fig. 7(b) 
shows an example of the layerwise imaging data of the build, 
where each AM image contains 1000×1017 pixels.  

 

 
The layerwise imaging data are first processed using image 

registration to obtain ROIs and eliminate background noises 
(e.g., powders). In this study, a total of 58 layerwise images 
are collected, where 30 of them are closely inspected to be 
defect free and are thus used as the training dataset.  The rest 
28 layers are used as testing data. To increase computational 
efficiency, a total of 1000 samples are drawn from the in-
control ROI stack.  Next, the proposed AGP model is trained 
on in-control ROIs and then predicts the posterior distribution 
of the newly collected ROI. Finally, for each new ROI, we 
use the proposed GLR and 𝑇𝑇2 control chart to detect whether 
it is in-control or not.  

Fig. 8 shows the variations of GLR and 𝑇𝑇2 test statistics 
collected with respect to the index of testing layers. We can 
observe that 8 layers have a test statistic that significantly lies 
above the threshold, which is computed using significance 
level 𝛼𝛼 = 0.05. This indicates these 8 layers are tested to be 

defective. In addition, two statistical monitoring schemes 
have reached a consensus on the detection of out-of-control 
layers. To further investigate root causes of abnormal 
changes, we show examples of ROI from layers tested as 
defective and in-control in Fig. 9(i)-(iv). It may be noted that 
the porosity defects cause the nonconformity of intensity 
distributions which lead to a test statistic beyond the UCL. 
For the remaining layers, we can observe test results fluctuate 
but are still below the threshold, which indicates the process 
is in control. The average computation time for one layer is 
5.39 seconds, while the minimum time to fabricate a layer is 
28.12 seconds. The computation time is estimated with the 
use of a laptop computer with Intel Core i7 2.60GHz, 16GB 
RAM, and can be further improved with high-performance 
industrial computers. In our case study, the computational 
speed to update the AGP-D model is fast enough for the 
implementation of hypothesis testing and real-time 
monitoring objectives. 

 

V. DISCUSSION AND CONCLUSIONS  
Product quality is a key determinant for the broad adoption 

of new manufacturing technologies. Although AM has gained 
increasing attention due to its flexibility and capability to 
fabricate complex shapes, AM processes are currently limited 
in their in-situ quality monitoring, which poses challenges to 
the wide adoption of AM in commercial applications. With 
the rising investment by manufacturers in advanced sensing, 
real-time imaging data has now become available for quality 
monitoring. Such a plethora of high-dimensional imaging 
data necessitates the development of new image-guided SPC 
methods to effectively utilize the newfound data for real-time 
process control. Traditional image profile monitoring 
methods tend to focus on key characteristics (e.g., the plume 
size, average temperature from melt pool images), as opposed 
to modeling the image profile as a random function. 

In this paper, we present a new Additive Gaussian Process 
model to characterize and model spatio-temporal correlations 
of layerwise imaging data for real-time quality monitoring of 
AM fabrications. The developed AGP-D represents each 
image profile with three stochastic components, i.e., the base 
profile, within-layer and across-layer correlation profiles. 
After training the AGP-D model with in-control imaging data, 
the posterior distribution of a newly fabricated layer is 
obtained, which is then incorporated into GLR and 𝑇𝑇2 tests to 
detect process shifts. If the newly fabricated layer passes the 
hypothesis test, it is added to in-control dataset. Otherwise, 
correction actions shall be taken. The proposed methodology 
is evaluated and validated using both simulation studies and a 
real-world case study. Experimental results show that the 
proposed AGP-D has strong potentials for modeling 
layerwise imaging data in AM and further enabling in-situ 
quality monitoring.  

(a)  (b)  

Fig. 7.  (a) The cylinder build; (b) a layerwise image of the build. 

Fig. 8. (a) GLR and (b) 𝑇𝑇2 control charts on layerwise imaging data of the 
cylinder build. The red line is the control limit computed using 𝛼𝛼 = 0.05. (i)-
(iv) are examples of in-control and out-of-control layers. 
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Fig. 9.  Example images that are in-control (ii, iv) and defective (i, iii). 
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Although this study focuses on the cylinder build, Gaussian 
processes are flexible enough to model complex shapes and 
free-form surfaces. It may be noted that shape-to-image 
registration between CAD drawings and layerwise profiles 
can be performed to delineate ROIs from the background 
noise (e.g., powder areas) and improve the model robustness. 
If a new layer has a different shape from previous layers, this 
actually does not impact the computation of covariance 
structures. Simply, the covariance matrix can be defined and 
computed within the ROI boundary. In other words, although 
the geometric boundary will generally vary between layers in 
an AM build, this will not impact the computation of the 
covariance matrix, nor the ability to model experimentally 
resolvable local minute variations in each individual layer. 
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