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ABSTRACT

Initialization bias truncation is critically important for system performance assessment and warm-up length
estimation in discrete-event simulations. Most of the existing methods are for univariate signals, while
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multivariate truncation has been rarely studied. To fill such gap, this article proposes an efficient method,

called adaptive minimum confidence region rule (AMCR) for multivariate initialization bias truncation. It
determines the truncation point by minimizing the modified confidence volume with a tuning parameter
for the mean estimate. An elbow method is developed for adaptive selection of the tuning parameter.
Theoretical properties of the AMCR rule for both data with and without autocorrelations have been derived
for justification and practical guidance. The effectiveness and superiority of the AMCR rule over other
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existing approaches have been demonstrated through thorough numerical studies and real application.

Supplementary materials for this article are available online.

1. Introduction

In the practice of discrete-event simulations, the starting condi-
tion is often arbitrarily selected due to the lack of true system
performance. As a result, the system steady state will not be
achieved until the simulation is initiated for certain period of
time (Schruben 1982). This initial situation is often referred
to as a transient state, startup or warm-up period. Since the
startup period does not represent the true system performance,
the initialization bias may seriously contaminate the simulation
output. One natural way is to allow the program to run for a
certain amount of time before the output data are collected,
which is equivalent to removing some early portion of the
output. However, if too little of the early output is truncated,
the remaining bias may still affect the performance evaluation;
while ignorance of too much of the initial output will result
in insufficient or unnecessary waste of observations. On the
other hand, the length of the warm-up period itself may be an
important performance measure, which captures the recovering
speed of the system from transient state to steady state (Ju, Li,
and Horst 2017). For example, a long transient period in pro-
duction systems may result in substantial amount of production
loss. In the transient analysis, the warm-up length needs to be
identified. Therefore, an accurate method to find the truncation
point is critically important for both steady state performance
evaluation and warm-up period length estimation.

During the past few decades, tens of methods or rules have
been developed for initialization bias truncation. According
to Robinson (2014), these methods can be classified into five

categories: (1) graphic methods, which involve visual inspection
of the time-series output and human judgment. The typical
examples include various statistical process control (SPC) charts
(Rossetti, Li, and Qu 2005; Robinson 2007), where the steady
state observations are selected conservatively to construct the
SPC chart and then use the constructed chart to determine
the truncation point. (2) Heuristic approaches, which provide
simple rules to determine when to truncate the data, with few
underlying assumptions. One well-known heuristic approach
is the marginal standard error rule (MSER) (White Jr. 1997;
White Jr., Cobb, and Spratt 2000; Wu, Zhou, and Li 2013), which
selects as the truncation point the one that minimizes the width
of the marginal confidence interval about the estimated steady
state mean. (3) Statistical methods, which are based on statistical
principles. One typical example is the Kelton and Law’s method
(Linton and Harmonosky 2002), which tests the regression slope
of the times series starting from the end. Once the slope is no
longer zero with certain significance level, the point is selected
as the truncation point. (4) Initialization bias tests, which test
whether there is any initialization bias in the data. One represen-
tative method is the batch mean test (Goldsman, Schruben, and
Swain 1994), where the output series is divided into successive
b batches of equal length, and then these batches are grouped
into two sets of b’ and b — b’ successive batches. The mean
of each batch is calculated, and the variances for the b and
b — b’ batches are estimated using the calculated means. The
ratio of the two variances is used as test statistic to test if there is
any initialization bias. (5) Hybrid methods (Pawlikowski 1990;
Jackway and Desilva 1992), which combines the initialization
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bias tests with truncation methods to determine the warm-up
period.

However, all of these aforementioned methods are for
univariate output. In many applications, multiple performance
measures, which are often correlated, may be of interest. For
example, in the simulation of serial production lines (Kang, Ju,
and Zheng 2017), several performance measures are of particu-
lar interests, including production rate (PR), consumption rate
(CR), scrap rate (SR), and work-in-process (WIP), which are all
correlated. To get an accurate performance evaluation, all the
performance measures or even their correlations have to be in
a steady state. One possible approach is to select the truncation
point based on an aggregate of all the output variables, for
example, the mean time series. However, this may result in
loss of important information regarding the initialization bias.
Another natural method would be to apply a certain univariate
truncation method to each univariate output individually, and
then select the largest truncation point as the starting point of
the steady state time series. However, similar to SPC charts
(Montgomery 2009), truncating each dimension separately
may not be effective when all dimensions have small biases.
Considering all dimensions together would “aggregate” all the
biases of each dimension and thus enhance the capability of
truncating small biases. Besides, a univariate method is not
able to detect the initialization bias in terms of dependencies
or correlations. Therefore, the multivariate initialization bias
truncation method is desirable.

There are a very limited number of multivariate methods
in existing literature. To our best knowledge, there are only
two multivariate truncation methods. One was developed by
Shruben (1981), who proposed to select a truncation point
based on Hotellings T? statistic. In this method, the obser-
vations are divided into small batches. It is assumed that the
simulation run is long enough so that the last batch can be
assumed to be at steady state. Then a Hotelling’s T2 control chart
is developed based on the observations of the last batch. The T2
statistic for each batch is calculated, and the truncation point
is selected as the first in-control batch with a certain significant
level . However, this method requires that there are sufficient
observations in the steady state so that the mean and covariance
matrix can be accurately estimated. When the dimension of the
multivariate output is very large while the number of steady
state observations is low, this method may not be effective.
Another method was developed by Gallagher, Bauer, and May-
beck (1994), who proposed a special state space model to cap-
ture the evolution of the mean output and measured output, and
then applied the multiple model adaptive estimation (MMAE)
based Kalman filter to estimate the mean sequentially. Once the
sequentially estimated mean is sufficiently close to the mean
in the steady state, the time index is selected as the truncation
point. However, in this method, the state-space transition model
uses a rigid autoregressive model, which is not flexible or gen-
eral. Besides, the prior selection in the MMAE is very subjective.

To fill the gap, an efficient method, called adaptive minimum
confidence region rule (AMCR), is developed in this article
for multivariate initialization bias truncation. It is an extension
of the univariate MSER method to multivariate cases. More
specifically, this method is to find a truncation point that mini-
mizes the confidence region (volume) of the mean estimate of

the observations after truncation. To make the method more
sensitive to initialization bias and more robust to signals of
various initialization bias shapes and severity, an innovative
tuning parameter is incorporated into the confidence volume
calculation, and can be adaptively selected through a devel-
oped elbow method. Various theoretical properties regarding
the average behavior of this method for both data with and
without autocorrelations have been derived, which provides
theoretical foundation and insightful guidance on methodol-
ogy understanding and designing. Although the AMCR rule is
mainly for mean bias truncation, it can also be effectively applied
to remove initialization variance or covariance matrix biases, as
theoretically and numerically shown in this article.

The rest of this article is organized as follows. Section 2 pro-
vides a detailed description of the AMCR rule. In Section 3, var-
ious theoretical properties have been derived to facilitate deep
understanding of this method and provide insightful application
guidance. Numerical illustrations, tuning parameters selection,
performance evaluation, and real applications are given in Sec-
tion 4. Section 5 presents the conclusions.

2. Adaptive Minimum Confidence Region Rule for
Multivariate Initialization Bias Truncation

In the simulation output, the data are often autocorrelated and
may not follow normal distributions. However, the iid Gaus-
sian assumption is often the basic assumption in many initial-
ization bias truncation methods. To address the nonnormal-
ity issue, many existing truncation methods (Shruben 1981;
Robinson 2007) propose to perform a series of independent
replications. Based on the central limit theorem, the sample
mean at each time interval tends toward normality. To handle
the autocorrelation issue, the batch means method is com-
monly used (Shruben 1981; Goldsman, Schruben, and Swain
1994; Runger and Willemain 1996; Robinson 2007). By dividing
observations into batches, the batch means become approxi-
mately uncorrelated as the batch size increases. Since the non-
normality and autocorrelation issues can be solved through
these data preprocessing steps, we assume that the multivari-
ate output to be truncated already follow iid normal distribu-
tions. In Section 3, we will theoretically show that the proposed
approach can also be effectively applied to the data with auto-
correlations.

Suppose the steady state p-dimension multivariate output
X1, X,...,X, follow iid normal distributions, that is, X; ~
N (u,X) fori = 1,...,n Denote the mean of the output by
X, thatis, X = 1 37 | X;, then

n(X—p) 27X —p) ~ 53 (1)
where X; is the chi-squared distribution with p degree of free-

dom. A joint 100 (1 — @)% confidence region for the mean
satisfies

2
o Y 2)

=

where x, is the upper 100ath percentile of x7 distribution.
Clearly, the confidence region is a p-dimensinal eﬁipsoid (ellipse



2
for p = 2) with semi-axes 4/ ’%‘“lf,f =1,2,...,pwhere A;,i =
1,2,...,p are eigenvalues of the covariance matrix ¥ satisfying
A=Ay = --- = Ay > 0. The volume of the confidence region
can be calculated as (Wilson 2010)

2nt (&)P’z
rE\

2 p/2
i (X‘*) 2. )
)

When X is unknown, which is usually the case in practice,

the sample covariance could be used instead. Denote the sample
covariance matrix by S, which is calculated as

Vi) =

n

1 _ _
S:n_IZ(X,'—X)(X;—X)T. (4)
i=1
Then
2 = Tl #is 2 P(ﬂ i 1)
T°=n (X = p,) S (X = ,u,) ~ Tp,n—l = H—_I)Fp,n—p,
(5)

where T2, is a Hotelling T2 distribution and F,,,_, is the F-
dlStrlbuthl’l with p and n — p degrees of freedom (Hotelling
1931). Similarly, the volume of the 100 (1 — «) % confidence
region can be obtained as

e /2

272 (p(n—1) P

pr (§) (n(n —p) FP’”‘P"”) B W
2

Here |§| is the sample generalized variance used to measure
the spread of observations. Whenn > p,(n — 1) /(n —p) =~ 1.
For the sake of simplicity we approximate the volume by

Vi) =

2 | Sl 1/2

V(a)"“ ( )(Ppn pcr) ﬁ (7)

Suppose the p—dhnensmnal simulation output is {X;, X5,. ..,

X}, which may have initialization bias. We determine the trun-

cation point ¢* by minimizing the volume of the confidence
region for any confidence level 1 — a:

1/2
&= arg min |Sc—i—1m! / = arg min ( |Sc+1:ni ) , {8)
msez0 \ (M— )p/? n>c=0 \ (1 —0O)F

where S.y1., is the sample covariance matrix for output
{Xcr1,Xeq2, . . .- X} Note that F, ,,_p o is excluded in Equation
(8). The reason is that when n is large, according to the law

Xp r‘!P
Xop/ (1—p)
not depend on n. When p = 1, Equation (8) is exactly the
MSER for univariate output. As observed in the experiment,
the truncation rule given in Equation (8) often fails to truncate
all the bias, especially when the process noise is large. Part of
the initialization bias is often immersed by system noise and
thus not detectable. To make the method more flexible, we use
the following truncation rule by replacing the exponent of the
denominator with a tuning parameter h:

&= argmin( |Sc Ll ) : (9)

ase=0 \(1— C)h

of large numbers, Fp,_, = — )(; /p> which does
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Here h is a tuning parameter used to adjust the sensitivity
of bias truncation, and it satisfies p>h > 0. Equation (9) can
be better interpreted using the following equivalent form with a
log-transformation:

¢* = argmin (log |Sct x| — Aplog (n —0)), (10)

=0

where —Aplog (n — ¢) can be treated as a penalty term favoring
more observations, and A = h/pe(0, 1] is a penalty coefficient.
If there is no bias within Y, 1.,, it is easy to show that log |Scy 14|
will converge in probability to the constant log | 2|. In such case,
more observations or smaller ¢ would be more preferable. How-
ever, if there are initialization biases within Y.y 1., log [Scy1:nl
will increase as more biased observations are added. Therefore,
A controls the tradeoff between the number of observations and
biases. In the following section, we will theoretically show why
and how h influences the sensitivity of bias detection. The tuning
parameter h may play a decisive role on the truncation accuracy.
In Section 4, an adaptive tuning parameter selection method,
called elbow method, will be developed and numerically illus-
trated for the tuning parameter selection. We call the pro-
posed method adaptive minimum confidence region (AMCR)
rule. In the following section, several theoretical properties for
the proposed truncation rule are provided for justification and
guidance.

3. Theoretical Foundation for AMCR

For notational convenience, we denote the AMCR statistic by R
and define

— isf’:n | ! (1 1)

(4 1)

In this section, several theoretical properties are derived for
R, which lays the foundation for the AMCR rule. The first
property is regarding the behavior of R if another observation
following the same distribution is added to the existing iid
observations. Specifically, we will show that for a set of iid
observations with a sufficiently large sample size from a normal
distribution, adding an extra independent observation from the
same distribution will reduce the expectation and variance of R.
This property is presented in Theorem 1 as follows.

Theorem 1. Suppose X;,X>,. .., X, follow iid normal distribu-
tions of dimension p, that is, X; ~ N (u, ) fori = 1,...,n
Define R, Jﬂl where 0 < h<p<n, then

1. Whenn > g (p,h) =
e h-+h—p)’ —4ph(h—
(P*+ph+ p)+‘/(P2+P ) il ptl) ,E(R,) decreases

monotonically w1th nandlim, ., E(R,;) =0;

2. When n > g(p,h) where g(p,h) is a function of
p and h, var(R,) decreases monotonically with n and
lim,_, o var (R,) = 0.

To prove Theorem 1, it is essential to obtain E(|S;.,| and
var(|S1:z|). These two terms can be calculated as (Montgomery
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2009; Muirhead 2009)

H 1("1
E(|S1:n]) = T |>:;
TR =D (n—j+2) — [ (n— ]
Var(|sl:n|) — (H — 1)2P
x |B[2 (12)

The detailed proof of Theorem 1 is provided in Section 1 of the
supplementary materials. In Theorem 1, g (p, h) and g>(p, h) are
two constants that depend on both p and h. g2(p, h) does not
have analytical forms, and needs to be numerically calculated.
These two constants are often small compared with the number
of steady state observations in applications. It should be noted
the actual lower ends of the decreasing intervals are often much
smaller than these two constants. g; and g, are just upper bounds
for the lower ends of the decreasing intervals. For the special
case where h = p, g1(p, h) can be simplified as gy = p +
vpP?— 1. When h = p = 1, we can see that E(R,,) decreases
monotonically for all n>1. It is also worth noting that if the
exact volume of the confidence region in Equation (6) is used,
the monotonicity property will be satisfied for all n, which can be
shown numerically. The reason is that F, ,_,» decreases rapidly
with n when » is small.

Theorem 1 tells us that the mean curve of R,, is monotonically
decreasing and the confidence band of R, becomes narrower
and narrower as we add more observations from the same
stationary process. Indeed, the variance of R,, converges so fast
(~ O(n,—iz,;)) that we can even safely treat R,, as a deterministic
and monotonically decreasing function when #» is sufficiently
large. When applied to the proposed AMCR rule, this theorem
tells us that the truncation point ¢* is very likely to be on the
left of the true steady state transition time cy, that is, c*=<c,.
The reason is that starting from the end to the beginning of the
simulation output sequence, adding steady state observations
tends to reduce the confidence volume, that is, R;.,. As often
observed in simulations, when there is no initialization bias,
c* = 0 s often selected as the truncation point using the AMCR
rule.

The next step is to investigate the behavior of R if indepen-
dent transient observations are added to the steady state obser-
vations. For simplicity, we assume that there is only mean shift
for the observations in the transient period, while the covariance
matrix is unchanged. First consider the simple case where only
one transient observation is added to the steady state sequences.
To investigate the mean behavior of R, the calculation of the
expectation of the generalized variance is the main challenge,
which is given in Theorem 2 as follows.

Theorem 2. Suppose X;, X3, ..., X, follow iid normal distribu-
tions of dimension p, that is, X; ~ N (ug, X) fori = 1,...,n,
and X1 ~ N(u,X) where p#po. Define the noncentrality

matrix T = Y 74! (ui — i) (i — p)7 where p; = po for
ntl
i=1,....0 fny1 = w,and i = Z'jgl‘" Let ki(j = 1,....p)

with k;j>k;>...>k, be the real and nonnegative roots of the
determinantal equation |T szl = 0, then

1. kj=0forj=2,...,pand

B=—"_(u—p)' = w—pe). (13)

n+1

etk

- (n — ) (14)

E(|Slm+1 I) =

The proof of Theorem 2 is provided in Supplementary Sec-
tion 2. Based on this theorem, we can conveniently derive the
behavior of the expected AMCR statistic, which is summarized
in Theorem 3 (see Supplementary Section 3 for proof).

Theorem 3. Suppose X;,X>,...,X, follow iid normal distribu-
tions of dimension p, that is, X; ~ N (o, ) fori=1,...,n.If
one independent observation X,,11 ~ N(u, X) where pu#£py is
added, then E (R,11) > E(R,) iff

(n _P) (}1 SE l)h—i—l
n — 1)f ph—p+1

—(n+1).
(15)

(n— o) =71 (1 — po) >

ty, (n P)("Jr_l,}m — (n + 1)~h (Sup-

plementary Section 3), and {,u, {.L[))T 1 (u — po) is just
the squared Mahalanobis distance or the squared generalized
distance between p and 1o, which measures the severity of the
initialization bias. For notational convenience, we define

In the above inequali

=@ —p)TZ7 (1 — o). (16)

Theorem 3 tells us that adding an independent observation with
a different mean to the steady state sequence will increase the
expected AMCR statistic as long as the mean shift is sufficiently
large, for example, D? > h. We can also show that the difference
E (Ry11) — E(R,) increases as we reduce h. If we ignore the
change of variance (when n is large, the variance is almost negli-
gible), the lower the value A, the more likely the AMCR statistic
will increase when adding an observation from a distribution
with a different mean. Therefore, the tuning parameter h con-
trols the sensitivity of the AMCR rule in detecting initialization
bias. It should be noted that / also controls the decreasing rate
of E(R) for steady state observations, which can be easily seen
from the proof of Theorem 1. The higher the parameter h, the
higher the decreasing rate of E(R) for steady state sequences
and thus the less likely the occurrence of over-truncation, that
is, some steady state observations are truncated as initialization
bias. Therefore, the tradeoff between truncation sensitivity and
over-truncation needs to be considered in the selection of the
tuning parameter h.

Theorem 3 provides some insight into the behavior of the
expected AMCR statistic when adding only one observation
from the transient period. In practice, however, the multivariate
output often evolves slowly from transient period to steady state
period. In other words, the initialization bias becomes less and
less severe in the transient period and eventually diminishes
after entering the steady state period. That means, the bias of
observations right before the true steady state time is so small
that these observations may not cause the AMCR statistic to
increase. Therefore, it is necessary to investigate the cumulative
influence of successive biased observations on the AMCR statis-
tic. In other words, the problem of how many biased observa-
tions are needed for E(R) to increase needs to be investigated,



which is very important since it directly determines the bias
truncation capability or sensitivity.

In practice, the mean paths of the multivariate output in
transient period often vary across different applications. For
simplicity, we assume that the mean of the observations changes
linearly while the covariance matrix is fixed in transient period.
Besides simplicity, the linear-form assumption of the initializa-
tion bias has another two advantages. First, in many cases, the
functional form within a short time period just before the true
steady state time can be well approximated by a linear function.
Second, by specifying a linear form, we can conveniently set the
mean shifting rate, or the severity of the initialization bias, and
thus are able to investigate how the severity of initialization bias
affects the truncation accuracy. The theoretical results for the
case of linear initialization bias are summarized in Theorem 4
as follows (see Supplementary Section 4 for proof).

Theorem 4. Suppose p-dimensional vector X, X3, ..., X, in the
transient period follow independent normal distributions with
X;~N(ui,X)fori=1,...,c, where

i | =
G-D@o—Hb) ;1500
c
and pp is the mean of the first observation. Suppose p-
dimensional vector X.,;,X.45,...,X.1, in the steady state
period follow iid normal distributions with X; ~ N (uo, £) ,i =
¢+ 1,...,¢c + n. Assume t biased observations right before

steady state time are added. Define the noncentrality matrix

AT
T= Y (i~ &) (i — )7 where i = Zis=teild et
kj,c—r—i—l:n—l—c(j =1...,p) with kl,c—H—l:n—l—c L kp,c—l‘+1:n+c
be the real and nonnegative roots of the following determinantal
equation |T — k2X| = 0, then

i = pp+ (17)

1. kj,c—t—l—l:n—l—c =0 fOl'j =T s P and
Dif(n,c, 1)
k%,c—t—l—l:n—l—c — m’ {18)

where

f(nct) = lm2 4104 Z [—2nc

i=c—t+1

+2(f—1)(n+t)—(2c—t—1)t]2}. (19)

[Z[(n+t—1+ k%,c—t—l—l:n+c)

E(|Sc—t11msel) = (n+t—1)P (n +t—1 —P)

p
x[[n+t—1-19). (20)
i=1
3. If E(R._¢y1-nic) Starts to increase with t when t > t*, then

t* can be approximated by

i -
W B
where r; is the mean shifting rate defined as
= Ty-1 =
o Ds _ Vo — )T -1 (o m,)_ 22)

C c
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From Equation (21) we can clearly see that the number
of biased observations needed for E(R._ti1:n4c) to increase
depends on both the tuning parameter 4 and the mean shifting
rate r;. t* is an increasing function of h, which is consistent
with Theorem 3 that increasing h will reduce the bias truncation
sensitivity. Besides, t* monotonically decreases with the mean
shifting rate r,, which is expected since increasing r; will enlarge
the bias severity, and consequently reduce the number of biased
observations for E(R) to increase. Note that in Equation (21),
whenr, > /h,the expected AMCR statistic will increase imme-
diately when a biased observation is added to the steady state
sequences, which is exactly the result obtained in Theorem 3.
Therefore, Equation (21) could provide us insightful guidance
in understanding the behavior and designing of the AMCR rule.

Although the proposed AMCR is based on the assumption
that all observations are independent, it can also be effec-
tively applied to initialization bias truncation problems with
autocorrelations. Due to the introduction of autocorrelation,
however, the expectation of the determinant of the sample
covariance matrix E([Sg.,|) is extremely difficult to obtain
analytically, if not impossible. Instead, we derive the asymptotic
form of E(|Skn|), which is given in Theorem 5. For simplicity
yet without loss of generality, we assume that the stochastic
process is a first-order vector autoregressive process, denoted
by VAR(1). To prove Theorem 5, Lemma 1 is first given as
follows.

Lemma 1. Suppose X = (xi,..
(0’;), and suppose ii,..., i, are indices from {1,2,...
they need not all be distinct, then

m
2 2
E (x,'] Xiy. - .x;r) = Z Z Hiy - - '”f:"jljz' . 'o‘fzk—ljzk’ (23)
14-2k=r

.sXp) ~ Np(u, X) where ¥ =
,p} and

where £™ sums over all m = ﬁf‘lﬁ permutations {iy. . .ijj1j2. . .
jak} of {i1,. .., i} giving distinct terms allowing for the symme-
try of X.

The proof of Lemma 1 can be found in Withers (1985). Based
on Lemma 1, we can get Theorem 5 as follows.

Theorem 5. Suppose X; is a stable p-dimensional VAR(1) pro-
cess with Xy = pu + A (X¢—1 — p) + us, where p is the steady
state mean vector, all the eigenvalues cy, . . ., ap of the matrix A
have modulus less than 1 (stability condition), that is, |a;| < 1,
and u; is the iid noise terms with u; ~ N(0, Z,). Suppose
Xy ~ N(pg, ) and the covariance matrix is stable, that is,
T = ATAT+ X, orvec(T) = (I — A®A) ™! vec(Z,) where ®
is the Kronecker product. Define b; = p; — p as the mean bias
at the time step 7, then we have

1.

- S C
E|S}:+l:n|:|zl 1+mi§lbiz b,‘—|——n_k

1
(7))

(24)

where §; i = ”n;f;—lSka, C is a constant independent
of kand n.
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Figure 1. The monotonicity of E(Rp) and var(Rp) for steady state observations with different p and h: (a) E(Rn) for p = 4; (b) E(Rn) for p = 8; (c) var(Rp) for p = 4; and (d)

var(Rp) forp = 8.

2. E(Rgy,.,) starts to increase once b{E—lbk > h as we
decrease k. The optimal truncation point can be approxi-
mated by

t*~max{arg(b] ' b; > h)}. (25)
k

The proof is provided in Supplementary Section 5. From
Theorem 5, we can see that |Sky1.x| is actually an asymptotically
unbiased estimator of the generalized variance | X|, even if there
exist initialization biases and autocorrelations. It is worth noting
that although VAR(1) is assumed in Theorem 5, the results can
be applicable to the general cases, as long as (i) the autocorrela-
tions decay to 0 exponentially or even faster as the lag increases,
and (ii) the mean of the bias asymptotically approaches zero, that

nop
is, lim,; s 0o E'—;—*_’fkﬁ = 0. This generalization can be easily ver-

ified based on the proof in Supplementary Section 5. These two
conditions are often satisfied for almost all the autoregressive
processes, and Theorems 1-4 are actually special cases of this
generalization.

It should be pointed out that the proposed AMCR rule may
also be able to handle the initial-transient covariance matrix
problem, though such case has not been considered in almost
all the existing literature. Based on the definition of the AMCR
statistic, it is intuitive that for multivariate output of fixed mean,
if the determinant of covariance matrix in the transient period is
much larger than the steady-state period, then adding transient
observations will increase the expectation of the R statistic.
However, this problem is extremely complicated because of the
intractable expectation. Here, we roughly derive the following
result through approximation for the purpose of completeness.

Proposition 1. Suppose the p-dimensional vector X3, X5, ..., X,
follow independent normal distributions N (u, %) and

Xct1s....Xc1n follow independent normal distributions
N (i, Zp). Then E (Rp:nyc) > E (Reg1ingc) if
h Py T (n—d)
m (049" (m=)) 8
—i .
| Zol ( c )P [ (=)
n+c—1 (c—li-”

The derivation of the above result is provided in Supple-
mentary Section 6. Note that the right-hand side of Equation
(26) is only an upper bound for the lower end of the increasing
interval. This upper bound increases as h increases. It should
also be noted that if both mean and covariance matrix have ini-
tialization bias, it would be easier for the AMCR rule to find an
accurate truncation point than with only one single type of bias.
In the following section, we will present the numerical studies
for illustration, performance evaluation, and real application.

4. Numerical Studies

4.1. Hlustration of Theoretical Properties

In this section, we numerically illustrate the theoretical
properties provided in Section 3. Since the monotonicity of
E(R,) or var(R,) is independent of |X|, we use log (E%Q)

and log(%) instead for illustration. Figure 1 shows the

monotonicity of these two functions with different p and A.
Clearly, both E(R,) and var(R,) are monotonically decreasing
when n is larger than a small constant. As we enlarge the tuning
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Figure 2. The behavior of E(R._;.{ 1.c..n) with different h and c for observations containing initialization bias: (a) E(R;_¢ 1:c4n) for ¢ = 200; (b) E(Rc_¢ 1.cqp) forh =2

(c) the increasing point t* for ¢ = 200; and (d) the increasing point * for h = 2.

parameter h, the decreasing rate is increased, and the lower
end of the decreasing interval is reduced. All the results are
consistent with what we get from Theorem 1.

To illustrate the behavior of E(R) for observations with linear
initialization bias, we set p = 10, n = 400, o = (1, 1,..., DT,
ny = 0,0,...,00T, and © = 0.1I, where I, is the p-
dimensional identity matrix. The shifting rate for the mean can
be calculated as r; = 10/c. Figure 2 shows the behavior of
E(R,_t41.c4n) with different ¢ and h. From Figures 2(a) and (b),
we see that E(R._¢41.c4n) continues to decrease at the beginning,
and then monotonically increases as more and more biased
observations are added. Figures 2(c) and (d) show the true and
approximated critical point (or delay time) #* using Equation
(21). As we can see, the approximated t* is very close to the
true values. Besides, t* increases with both ¢ and h, which is
consistent with Equations (21) and (22) that t* is approximately
linear with +// and c.

4.2. Hlustration of the AMCR Rule

To illustrate the AMCR rule and evaluate its performance, four
types of mean bias functions, that is, linear, quadratic, expo-
nential, and oscillating functions are used, as shown in Table 1.
These bias functions consist of an initial transient period and
steady-state period, and have been widely used to test the ini-
tialization bias truncation algorithms in discrete-event simula-
tions (Cash et al. 1992; White Jr, Cobb, and Spratt 2000; Hoad,
Robinson, and Davies 2010; Hou, Wu, and Chen 2016; Wu et al.
2016; Wu, Chen, and Zhou 2016).

To illustrate how the algorithm works, four-dimensional
(p = 4) signals are simulated with each bias function simulating
one dimension. The parameters in Table 1 are set to H =
1,N = 600,f = 30. Two initialization bias changing rates
are considered, cp = 200 and ¢p = 400. The signal noise is set to
2 = 0.01l4. The tuning parameter for the AMCR rule is set to
h = 1. Figure 3 shows the initialization bias truncation process
for the two randomly generated four-dimensional output. As
we can see, if we decrease i, the statistic R;.y decreases first
for steady state observations, and then increases when biased
observations are added. Note that due to signal noises, the
statistic R;n is not monotonically decreasing or increasing.
The optimal truncation points are ¢* = 192 and ¢* = 374,
respectively, which are very close to the true values.

We also illustrate the truncation process with only covariance
matrix bias, though such scenario is not the major focus of this
article. Two cases are considered, as shown in Figure 4. In the
first case, the signal parameters are settop = 2,u = 0,¢p =

1 0.6
300,N = 600,%; = 0.01]5, %y = 0.01x [06 1 ] . In this
case, the determinant ratio is |%;- | =21.6. For the second case,

the parameters are set to p = 2, o, o = 300,N = 600, Xy; =
30(0—H1/0x0. 01, for i = 1,...,c0, and ¥g = 0.01L. In
this case, the noise variance exponentially decreases before cp
and then becomes steady. Clearly, the AMCR rule can effectively
truncate the biased observations. Note that for the first case with
correlation change, all the univariate truncation methods will
not work at all.
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Table 1. Four mean bias functions and their shapes.

Bias type Functional form

b4 )
'c—oH, i=1,....q
Linear y(i)=
H, i=c+1,....N

(i—q)—1)2:| :
H|1-— i =
Quadratic y)= [ 3 0

H, i=c¢q+1,....N

Shape
i
H[1 —10@ ] =Tz
Exponential y(i) =
0.9H, i=c+1,....N

Oscillating y ()=

|
|
|
|
0 100 ?DD 300 400 500 0 100 200 300

0 100 200 300 400 500 0 100 200 300 400 500
i i

Figure 3. lllustration ofinitialization bias truncation through AMCR rule: (a) cp = 200, optimal truncation pointc* = 192; (b) ¢g = 400, optimal truncation point c* = 374.
The vertical dashed lines denote the optimal truncation points obtained by AMCR rule.
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c* = 298; (b) ¢ = 300, T7 = 300~ +1D/0x%0 01} fori = 1,...,c0 and g = 0.01/, optimal truncation point ¢* = 271. The vertical dashed lines denote the

optimal truncation points obtained by AMCR rule.

4.3. Elbow Method for Tuning Parameter Selection

In practical applications, the tuning parameter h needs to be
selected appropriately. Section 3 tells us that the higher the A,
the more rapidly the R will decrease as the length of steady
state observations increases, which is preferred to reduce over-
truncation. On the other hand, too large / will reduce the sen-
sitivity of bias detection, which may result in under-truncation
or insufficient truncation. Therefore, an appropriate & may play
a decisive role on the truncation accuracy of certain signals.

One approach is that we roughly estimate the mean and noise
covariance matrix using the steady state observations (e.g., sec-
ond half of the sequence), and then generate a training database
through simulation using various initialization bias functions,
for example, the ones shown in Table 1, with different steady
state times ¢p. The optimal h can be selected by minimizing
the overall truncation error. This method may be effective in
selecting an h that has an optimal overall performance, but may
not be uniformly optimal for each multivariate signal. Besides,
this method is time consuming. In this article, we propose a
simpler and more effective method, named the elbow method
for its similarity to the one widely used in cluster analysis
(Thorndike 1953).

To illustrate the elbow method, we use simulated signals of
dimension p = 10 where each dimension is simulated by a bias
function randomly selected from Table 1. The other parameters
are setto H = 1,N = 600, X = o2Ijo. Figure 5 shows the
truncation point as a function of / with different ¢y (top row:
200; bottom row: 300) and noise o (left column: 0.06; middle
column: 0.1; right column: 0.14).

As we can see, all the curves decrease sharply first and then
decrease slowly when # is increased from 0 to p. The reason is
that for small h, E(R;y) decreases very slowly as we reduce i
in the steady state period. Due to the existence of signal noise,
the optimal truncation point by AMCR rule may be any point
within the steady state period, and this point is very sensitive to
the value of h. As h is increased, there will occur one or more
consecutive sharp decreases and then c* becomes very close to
the true value. After that, the sensitivity of ¢* to h is significantly

reduced due to the occurrence of initialization bias, which can
be seen from Figure 5 that ¢* is unchanged or decreases with
a small value when h continues to increase. The higher the
changing rate of the bias, the less the sensitivity of c* to h.
Therefore, the “elbow point” can be selected as the optimal h
and the corresponding truncation point c*. The “elbow point”
can be selected visually, for example, the point of the last sharp
decrease. In this article, it is automatically selected by fitting
two connected line segments through total least squares, with
the first line passing through the first point and the second
line passing through the endpoint, and the connection point
is on the curve. The “elbow point” is the connection point that
minimizes the total sum of squared distances between the points
and the fitted line. The identified elbow points with this method
are shown in Figure 5. Clearly, this method is very effective and
the identified c* is very close to the true value co.

4.4. Performance Evaluation and Comparison

The performance measures for initialization bias truncation
often include the closeness of the estimated truncation point to
the actual one, the percentage of bias removed by truncation,
and the steady-state mean estimation accuracy (Hoad, Robin-
son, and Davies 2010). If the focus is to estimate the length
of the transient period, then the closeness measure alone is
adequate for truncation performance evaluation. While if the
steady state performance is of interest, the estimation accuracy
of performance parameters needs to be considered. Here we use
both the detection closeness and parameter estimation accuracy
to evaluate and compare the performance. Specifically, the root
mean squared errors for closeness and the mean squared error
for parameter accuracy are used and defined as

N
1 _ _
MSE, = N E (X — #f)T X — p)»
i=1

(27)
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Figure 5. Tuning parameter selection through elbow method: (a) g = 200, ¢ = 0.06; (b) cp = 200,00 = 0.1;(c) ¢g = 200,00 = 0.14; (d) g = 300, ¢ = 0.06; (e)
cp = 300,0 = 0.1; and (f) cp = 300, = 0.14. The intersection of two dashed lines is identified as the optimal h and corresponding truncation point c*.

where Nj is the total number of multivariate output sequences,
¢! and ¢;o are the truncation point and true value, respectively, X;
and p; are the estimated and true steady state mean, respectively,
for the ith multivariate output. To show how many signals are
under-truncated, another metric called the under-truncation
rate (UTR) is used as an ancillary metric, which is the propor-
tion of signals under-truncated out of all multivariate signals.

In the performance evaluation and comparison, p = 4 and
10 are selected and each dimension is simulated using a bias
function randomly selected from the four given in Table 1. The
height of the signal is set to H = 1. To simulate different
bias severity, two levels for ¢y which controls the changing rate
of the initialization bias are selected: ¢ = 200 and 300. It
is assumed that all dimensions reach steady state at the same
time. The length of the signal is set to be N = 600. Five types
of Gaussian noise are used to test the algorithm: (1) no auto-
correlation and no correlation or dependence among variables,
denoted by AR(0); (2) first-order autoregressive correlation and
no correlation, denoted by AR(1); (3) second-order autoregres-
sive correlation and no correlation, denoted by AR(2); (4) no
autocorrelation but with correlation among variables, denoted
by CR; and (5) first-order vector autoregressive model, denoted
by VAR(1). The noises types and their parameters are listed
in Table 2. Different noise amplitudes are also considered: for
AR(0), CR, and VAR(1), 0 = 0.06,0.1,0.14; for AR(1) and
AR(2), o = 0.055,0.089,0.13 and 0 = 0.045,0.071,0.106,
respectively, to match the noise variances of AR(0) and CR.
For CR and VAR(1), all the off-diagonal elements (correlation
coefficients) of C, are set to 0.6. For VAR(1), A is randomly
generated with modulus of eigenvalues less than 1. Each signal
is replicated 100 times in the simulation.

The proposed AMCR rule is compared with the well-known
MSER method (White Jr 1997; White Jr, Cobb, and Spratt 2000;
Wu, Zhou, and Li 2013), Hotelling T2 method (Shruben 1981)
and batch means test (BMT) (Goldsman, Schruben, and Swain
1994; White Jr, Cobb, and Spratt 2000). For both AMCR and
MSER methods, when the truncation point is close to the end
of the time series, due to large sampling error, the truncation
statistics may get very low values. Typically the truncation point
of MSER is restricted to the first half of the time series (Pasu-
pathy and Schmeiser 2010). Here we ignore the last 50 observa-
tions when finding the minimum of the truncation statistics for
both AMCR and MSER. Since MSER and BMT are univariate
methods, they are applied to each dimension of the multivariate
signal and then the largest truncation point is selected as the
optimal truncation point. The batching parameters for BMT are
setat b = 16 and b’ = 8, as recommended by Cash et al. (1992).
For the T? method, the second half of the multivariate signal
is used to construct the T2 control chart. The first in-control
observation from the beginning of the output with a certain
significant level « is selected as the truncation point. In Shruben
(1981), « is set to 0.05. However, as observed in our simulation,
a = 0.05 would result in a very large RMSE and a UTR of
almost 100%. In fact, the T? based initialization bias trunca-
tion is just the reverse process of T2 based statistical quality
control. For statistical quality control, T? should be sufficiently
large to reduce the alpha error. However, for initialization bias
truncation, the T? statistic should be sufficiently close to 0 to
reduce WSE and UTR. Therefore, we select o = 0.95, which
is very close to the optimal value in terms of overall RMSE,.
The other multivariate truncation method by Gallagher, Bauer,
and Maybeck (1994) is not used for comparison since it is only
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Type Equation Parameter

AR(0) e —ey e~ N (o,a2rp)

AR(1) V= 1¥1 + & e~ N (0,02p), 41 — 04

AR(2) Ve =davi 1 +d3vt2 +er et~ N(0,02p), 47 = —025,43 =05

R R et ~N (o,a2c,)

VAR(1) Ut =Avi_1 + et Yo ~N(@©0,X),Z =062Cret ~N(O0,Zy), T = ATAT + 5,

Table 3. Detailed comparison of AMCR, MSER, Tz, and BMT for the case of p = 4.

Signal RMSE, MSE,, UTR
Noise @ oy AMCR MSER I BMT AMCR MSER 2 BMT AMCR MSER 12 BMT
0.06 120 189 226 25.2 0.0107 0.0109 0.0108 0.0108 0.84 0.99 0.58 0.85

200 0.10 17.2 281 284 426 0.0118 0.0121 0.0120 00020 0.81 1.00 0.76 0.92

AR(0) 0.14 214 36.3 37.1 37.2 0.0119 0.0122 0.0128 0.0125 0.82 1.00 0.82 0.98
0.06 179 309 313 304 0.0095 0.0098 0.0096 0.0097 0.84 1.00 0.75 0.94

300 0.10 246 1.8 438 421 0.0109 0.0113 0.0113 0.0112 0.85 0.99 0.83 0.93

0.14 347 56.9 50.7 49.7 0.0112 0.0119 0.0119 0.0119 0.89 1.00 0.89 0.98

0.06 125 175 213 276 0.0107 0.0108 0.0108 0.0096 0.76 0.98 0.56 0.83

200 0.10 183 271 274 36.2 0.0119 0.0121 0.0119 0.0103 0.90 0.99 0.70 0.94

AR(1) 0.14 20.7 349 321 335 0.0119 0.0126 0.0120 0.0115 0.82 1.00 0.76 0.96
0.06 16.5 27.0 33.0 28.8 0.0095 0.0097 0.0097 0.0097 0.82 0.99 0.71 0.86

300 0.10 246 441 443 375 0.0109 0.0114 0.0114 0.0117 0.84 1.00 0.85 0.92

0.14 306 54.5 55.4 494 0.0120 0.0116 0.0119 0.0127 0.88 1.00 0.97 0.97

0.06 122 17:2 238 19.2 0.0107 0.0108 0.0108 0.0104 0.65 0.98 0.52 0.85

200 0.10 16.6 245 293 303 0.0118 0.0120 0.0119 0.0107 0.70 0.99 0.67 0.93

AR(2) 0.14 208 379 36.2 443 0.0119 0.0122 0.0124 0.0127 0.84 1.00 0.74 0.92
0.06 139 254 26.7 214 0.0095 0.0096 0.0095 0.0105 0.82 0.99 0.60 0.95

300 0.10 211 373 37T 327 0.0108 0.01M 0.0113 0.0004 0.77 1.00 0.82 0.94

0.14 313 54.5 52.6 494 0.0110 0.0121 0.0118 0.0112 0.82 1.00 0.92 0.92

0.06 176 18.5 23.0 27.1 0.0107 0.0108 0.0107 0.0129 0.70 0.99 0.63 0.87

200 0.10 19.0 276 28.5 28.1 0.0118 0.0120 0.0119 0.0110 0.74 1.00 0.75 0.94

CR 0.14 20.2 37.5 381 374 0.0120 0.0128 0.0122 0.0112 0.80 1.00 0.83 0.94
0.06 183 278 288 32.2 0.0095 0.0097 0.0097 0.0103 0.76 0.98 0.70 0.87

300 0.10 25.7 13 49.0 47.2 0.0109 0.0113 0.0118 0.0104 0.85 1.00 0.88 0.93

0.14 279 51.8 46.6 514 0.0120 0.0115 0.0125 0.0124 0.86 1.00 0.85 0.97

0.06 184 218 343 30.8 0.0121 0.0119 0.0122 0.0122 0.81 0.95 0.48 0.90

200 0.10 19.5 295 358 359 0.0292 0.0285 0.0290 0.0284 0.68 1.00 0.69 0.95

VAR(1) 0.14 254 389 36.0 116 0.0594 0.0596 0.0601 0.0594 0.73 1.00 0.73 0.97
0.06 211 296 304 333 0.011 0.0118 0.0122 0.0119 0.72 1.00 0.59 0.98

300 0.10 353 42.0 395 50.8 0.0283 0.0291 0.0296 0.0284 0.76 0.99 0.84 0.97

0.14 35.0 58.5 55.9 64.6 0.0522 0.0534 0.0541 0.0524 0.84 1.00 0.84 0.97

Overall 222 36.6 373 386 0.0153 0.0156 0.0157 0.0153 0.80 0.99 0.74 0.93

applicable to certain autoregressive data and is unnecessarily
complex.

The detailed truncation results and comparison in terms of

RMSE,, MSE,,, and UTR are shown in Tables 3 and 4 for p = 4
and p = 10, respectively. The main findings and discussions are
listed as follows:

117

The proposed AMCR outperforms MSER, T2, and BMT sig-
nificantly for all cases in terms of RMSE.. MSER is slightly
better than T2 and BMT in terms of overall RMSE,. For
the mean estimate accuracy MSE,,, the AMCR is also better
than the other three methods. However, the advantage is
not significant. The reason is that the biases shortly before
the steady state period are so small that including these
biased observations may not influence the mean estimation
much. Among these four methods, MSER has the largest
UTR, which is consistent with White et al’s finding that

MSER often fails to truncate all biases (White Jr, Cobb, and
Spratt 2000). Compared with MSER, the proposed AMCR
has much lower UTR, though slightly higher than T2.
Increasing ¢, or noise o will increase RMSE_, MSE,,, and
UTR for all methods. The reason is that the higher noise or
smaller mean shifting rate, the more initialization bias will
be immersed into signal noise and become undetectable.
The performances are almost the same under different noise
types for all four methods. Although these methods are
designed under the assumption of Gaussian noise without
autocorrelation, they are still applicable for autoregressive
noises.

Increasing the dimension from p = 4 to p = 10, the
performances ( RMSE,, MSE,, /p, UTR) of all methods are
improved. It is a key advantage of multivariate truncation
method over univariate method. For AMCR, increasing p
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Table 4. Detailed comparison of AMCR, MSER, TZ, and BMT for the case of p = 10.

Signal RMSE, MSE,, UTR
Noise @ oy AMCR MSER 12 BMT AMCR MSER 12 BMT AMCR MSER 72 BMT
0.06 8.5 109 205 279 0.0259 0.0260 0.0259 0.0259 0.74 1.00 0.44 0.73

200 0.10 10.7 188 230 36.8 0.0276 0.0279 0.0277 0.0277 0.64 1.00 0.49 0.78

AR(0) 0.14 111 26.0 220 258 0.0283 0.0282 0.028 0.0286 0.76 1.00 0.67 0.87
0.06 13.9 178 20.2 21.0 0.0246 0.0247 0.0245 0.0246 0.74 1.00 0.50 0.82

300 0.10 209 286 279 269 0.0261 0.0264 0.0261 0.0261 0.79 0.99 0.70 0.83

0.14 274 1.5 348 30.2 0.0262 0.0272 0.0264 0.0274 0.88 1.00 0.79 0.93

0.06 95 11.0 194 238 0.0259 0.0260 0.0259 0.0249 0.69 0.96 0.44 0.67

200 0.10 14.0 185 263 29.1 0.0277 0.0278 0.0276 0.0269 0.76 0.98 0.50 0.83

AR(1) 0.14 17.6 26.6 225 243 0.0279 0.0280 0.0282 0.0280 0.69 1.00 0.65 0.88
0.06 133 183 283 27.1 0.0246 0.0247 0.0245 0.0256 0.73 0.99 0.57 0.66

300 0.10 18.8 30.0 25.1 238 0.0261 0.0264 0.0262 0.0286 0.76 1.00 0.75 0.84

0.14 241 40.2 311 298 0.0275 0.0269 0.0272 0.0292 0.80 1.00 0.84 0.95

0.06 8.7 96 255 20.5 0.0259 0.0260 0.0259 0.0222 0.68 0.96 048 0.65

200 0.10 13.5 170 243 26.2 0.0277 0.0278 0.0276 0.0231 0.73 0.99 0.50 0.84

AR(2) 0.14 17.6 286 285 385 0.0281 0.0280 0.0279 0.0278 0.83 1.00 0.65 0.88
0.06 10.7 16.1 233 219 0.0246 0.0246 0.0246 0.0263 0.77 0.96 0.51 0.82

300 0.10 19.7 28.7 233 245 0.026 0.0264 0.0261 0.0254 0.78 1.00 0.74 0.83

0.14 240 422 358 36.8 0.0265 0.0267 0.0271 0.0261 0.84 1.00 0.76 0.86

0.06 98 126 233 223 0.0259 0.0260 0.0259 0.0290 0.67 0.97 0.M 0.78

200 0.10 124 188 223 215 0.0277 0.0278 0.0277 0.0275 0.75 1.00 0.62 08

CR 0.14 14.7 279 228 222 0.0280 0.0281 0.0281 0.0281 0.78 1.00 0.70 0.88
0.06 14.2 188 238 238 0.0246 0.0247 0.0245 0.0253 0.81 0.98 0.49 0.77

300 0.10 18.2 299 35 30.8 0.0260 0.0264 0.0264 0.0255 0.84 1.00 0.66 0.89

0.14 255 43.2 375 333 0.0262 0.0269 0.0268 0.0265 0.82 1.00 0.82 0.92

0.06 8.2 129 311 18.1 0.0307 0.0304 0.0308 0.0304 0.75 0.92 034 0.90

200 0.10 133 199 274 272 0.0732 0.0722 0.0736 0.0726 0.77 0.99 047 0.83

VAR(1) 0.14 15.9 284 247 295 0.1454 0.1456 0.1481 0.1461 0.79 1.00 0.57 0.93
0.06 127 20.1 20.2 257 0.0279 0.0293 0.0300 0.0295 0.80 0.97 0.51 0.84

300 0.10 20.1 309 29.0 335 0.0754 0.0759 0.0778 0.0767 0.69 1.00 0.66 0.88

0.14 27.2 442 35.7 426 0.1446 0.1450 0.1474 0.1463 0.82 1.00 0.81 0.88

Overall 16.8 26.6 26.8 28.1 0.0378 0.0379 0.0382 0.0379 0.76 0.99 0.60 0.83

will increase the mean shifting rate r; as defined in Equation
(22) in the transient period, and thus will result in more
accurate estimation. For T? method, increasing p leads to
an increased truncation closeness and also reduced UTR.
It can be explained by the fact that for T2 control charts,
if there are comparable mean shifts in all dimensions, the
detection power ( 1 — B where B is the beta error) of the full
T? control will always be higher than the one with reduced
dimensionality, that is, using partial dimensions. For MSER
with multiple univariate truncation, the truncation point is
getting closer and closer to the true value from the left as the
dimension is increased, while the UTR is almost unchanged
(near 100%). It can be explained as follows: suppose the

truncation for ith dimension is ¢f, i = 1,...,p, then
c*(p) = max(ct,... ,c;). Since ¢* < ¢p for almost all the
cases, max(c}, ..., c;)gmax (c*, s ,c;H) <cg. Therefore,

c* will get closer to ¢y from the left as p increases. BMT also
has similar behavior as MSER.

4.5. Application to Transient Analysis of Serial Production
Lines With Perishable Products

The AMCR rule is applied to the transient analysis of serial pro-
duction lines with perishable products (Ju, Li, and Horst 2017).

In many production systems, the products, for example, yogurt,
have a fixed maximum allowable waiting time, exceeding which
the item will be scrapped due to quality deterioration. These
products are referred to as perishable products. Due to dynamic
changes and frequent disruptions in the manufacturing process,
the production system often operates partially or even entirely
in the transient regime. The traditional steady state performance
measures ignore the substantial amount of production loss due
to the transient behavior, and thus are insufficient to capture the
system performance. Therefore, transient analysis of production
lines with perishable products is critically important.

In the transient analysis, one critical characteristic is the
settling time, or the length of the transient period. Accurate
estimation of the settling time is essential in performance eval-
uation, real-time production optimization and control. Suppose
there is a serial production line with two Bernoulli reliability
machines (m; and m,), a finite buffer B; and perishable prod-
ucts, as shown in Figure 6. Both machines have constant and
identical processing time, which is slotted with cycle time. The
two machines follow the Bernoulli reliability model. In each
cycle, the machine m;,i = 1,2 is capable of producing a part
with probability p; and fails to do so with probability 1 — p;.
The buffer B; has a finite capacity of N, with first-in-first-out
outflow process. Atthe beginning of operation, there are ny parts
in the buffer with waiting time of the first one being 7. The
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Figure 6. Bernoulli line with perishable products.
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Figure 7. Simulation output and initialization bias truncation for p1 =
0.9256,p; = 0.9070,Ny = 2, Tmax = 2,ng = 0,79 = 0. The vertical dashed
lines denote the truncation point ¢* = 35.

maximum allowable waiting cycle in buffer B; is Tnax. When a
part’s waiting time exceeds T .y, it is scrapped from the buffer.
For other details, please refer to (Ju, Li, and Horst 2017).

The performance measures that are of particular interests
are: (1) production rate PR(#)—the expected number of parts
produced by machine m; in the fth cycle; (2) consumption rate
CR(f)—the expected number of parts consumed by machine
m; in the tth cycle; (3) scrap rate SR(f)—the expected number
of scrapped parts in the fth cycle; and (4) work-in-process
WIP(t)—the expected number of parts in buffer B; at the end
of the tth cycle.

Figure 7 shows the four performance measures through
discrete-event simulation with p; = 0.9265, p; = 0.9070, N}, =
2, Tmax = 2,19 = 0,1y = 0. The initialization bias truncation
through AMCR rule is also provided in the bottom row, where

Table 5. Simulation parameters and steady state performance measures.
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the identified truncation point is 35. To compare AMCR
with the other three methods, another two sets of simulation
parameters used in Ju, Li, and Horst (2017) are also included to
generate the data. The three sets of simulation parameters and
the corresponding steady state performance measures are given
in Table 5. The AMCR identified truncation times are 35,110,
and 140, respectively. As the true steady state transition times
are unknown, we use the MSE,, as the evaluation metric. The
MSE,, for AMCR, MSER, T2, and BMT are 0.004309, 0.004317,
0.004312, and 0.00431, respectively. Therefore, the proposed
AMCR has higher estimation accuracy than the other three
methods.

5. Conclusion

In this article, an efficient method named AMCR has been devel-
oped for initialization bias truncation of multivariate output
in discrete-event simulations. The basic idea of this method is
to determine the optimal truncation point that minimizes the
confidence volume of the mean estimate using the observations
after truncation. To adjust the sensitivity of bias truncation
and enhance the robustness, a tuning parameter is innovatively
incorporated, which can be adaptively selected through elbow
method. Several theoretical properties in terms of the expected
behavior of the truncation statistic on both autocorrelated data
and data without autocorrelation have been derived, which pro-
vide theoretical foundations and insightful guidance for under-
standing and methodology designing in practical applications.
The performance of the proposed method has been thoroughly
evaluated through intensive simulation and real case studies.
The evaluation and comparison results indicate that the pro-
posed method can accurately estimate the truncation point for
various multivariate output of different bias shapes and severity,
and is superior to the existing methods in terms of truncation
accuracy.

Along this research direction, there are several issues worthy
of further investigation. First, the bias truncation accuracy is
significantly influenced by the measurement noise levels. As the
noise increases, small initialization bias before the steady state
period may not be detectable. To further increase the sensi-
tivity of the proposed method to small bias, a moving average
scheme, such as EWMA could be incorporated. Secondly, we
only considered the confidence region of the mean parameter
in the current work. In fact, we can also take into account the
confidence region of the covariance matrix parameter, or the
joint confidence region of both the mean and the covariance
matrix parameters. Last but not least, in some applications, not
all the dimensions of the output reach the steady state at the
same time. Similar to the sparse mean-shift issue in SPC charts,
using the joint confidence region of all the means may not be
the optimal choice.

Simulation parameters

Steady state performance

Setting o 27} Ny Tmax np 10 PR( c0) SR(oa) CR(o0) WIP(cc)
1 0.9256 0.9070 2 2 0 0 0.9102 0.093 0.9324 0.6102
2 0.8305 0.7623 6 6 0 0 0.7631 0.071 0.8219 0.3806
3 0.8554 0.7273 5 6 1 1 0.7318 0.0801 0.8321 0.3997
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Supplementary Materials

The proofs for Theorems 1-5 and Proposition 1 are provided in online
supplementary materials.
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