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Spatial Pyramid Pooling with 3D Convolution 
Improves Lung Cancer Detection   
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Stubblefield, Jason H Moore, Yuanfang Guan and Xiuzhen Huang 

Abstract—Lung cancer is the leading cause of cancer deaths. Low-dose computed tomography (CT) screening has been 
shown to significantly reduce lung cancer mortality but suffers from a high false positive rate that leads to unnecessary 
diagnostic procedures. The development of deep learning techniques has the potential to help improve lung cancer screening 
technology. Here we present the algorithm, DeepScreener, which can predict a patient’s cancer status from a volumetric lung 
CT scan. DeepScreener is based on our model of Spatial Pyramid Pooling, which ranked 16th of 1972 teams (top 1%) in the 
Data Science Bowl 2017 competition (DSB2017), evaluated with the challenge datasets. Here we test the algorithm with an 
independent set of 1449 low-dose CT scans of the National Lung Screening Trial (NLST) cohort, and we find that DeepScreener 
has consistent performance of high accuracy. Furthermore, by combining Spatial Pyramid Pooling and 3D Convolution, it 
achieves an AUC of 0.892, surpassing the previous state-of-the-art algorithms using only 3D convolution. The advancement of 
deep learning algorithms can potentially help improve lung cancer detection with low-dose CT scans. 

Index Terms—Lung cancer screening, Low-dose CT scan, Deep learning algorithm, Convolutional neural network (CNN), 
Medical imaging 

——————————      —————————— 

1 INTRODUCTION

ung cancer is the leading cause of cancer deaths and the 
second most common cancer in both men and women 

in the United States [1]. Since lung cancer is most often di-
agnosed at an advanced stage, the overall 5-year survival 
is poor (at 18%). Therefore, early detection is the key to im-
prove survival by intervention. Compared with radio-
graphs, low-dose CT can provide more detailed infor-
mation and has been reported to lead to a 20% lower mor-
tality rate [2]. Low-dose CT has been recommended for 
lung cancer screening by the US Preventive Services Task 
Force [3]. 

Traditional lung cancer screening studies based on ex-
amination by human experts have reported false-positive 
rates as high as 58% [4]. A high false-positive rate not only 
increases the cost of further tests and surgical procedures 
but also causes unnecessary anxiety for patients and their 
families. The development of powerful computer-aided 

approaches for early lung cancer screening is critical to im-
prove the current clinical practice of CT imaging assess-
ment. Computer-aided approaches aim to produce auto-
mated solutions for early lung cancer screening and a re-
duced false positive rate in diagnosis. 

Numerous computer-aided approaches have been de-
veloped for chest image analysis in the past fifty years. 
Ginneken [5] reviews computer analysis in chest imaging 
and illustrates how the three types of approaches — rule-
based image processing, machine learning, and deep learn-
ing — have been applied. Moreover, the article showed 
how deep learning is currently becoming the dominant ap-
proach with very promising results [6]. Most computa-
tional approaches to date focus on finding and analyzing 
nodules in lung CT images [7], [8], [9], [10], [11]. However, 
depending on predefined objects of interest requires detec-
tion and segmentation steps that are difficult to automate 
and limit the applicability of these approaches for auto-
mated screening. 

Here in this paper, we present the algorithm Deep-
Screener, which can predict a patient’s cancer status from 
a volumetric lung CT scan. The algorithm is based on the 
model of Spatial Pyramid Pooling, which we developed in 
2017 for the Data Science Bowl (DSB) 2017 competition, 
with a final rank 16th of 1972 teams (top 1%). The Spatial 
Pyramid Pooling model employed a pseudo-3-D model 
considering context information of consecutive slices of a 
participant’s lungs. Here we evaluate the model’s ability to 
generalize beyond the DSB competition datasets by apply-
ing it to an independent cohort drawn from the National 
Lung Screening Trial (NLST) [2]. We find that the model 
has consistent performance on the independent cohort. 
Furthermore, when this model is combined with the model 
of 3D convolution, it achieves an improved AUC of 0.892, 
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surpassing the previous state-of-the-art approach using 
only 3D convolution. 

2 METHODS 
For this study, regarding the National Lung Screening 
Trial (NLST) dataset (https://cdas.cancer.gov/nlst/), data 
collection has ended, and information is complete through 
December 31, 2009; NLST has the ClinicalTrials.gov regis-
tration number NCT00047385 (Refer to: https://clinicaltri-
als.gov/ct2/show/NCT00047385). Ethics approval on the 
study using the NLST dataset was through National Can-
cer Institute. For this study, regarding the code develop-
ment, we followed the rules of the Data Science Bowl 2017 
(Refer to: https://www.kaggle.com/c/data-science-bowl-
2017/rules).  
 
2.1 Datasets for training, validation, and testing  
We carefully selected and prepared the datasets for train-
ing, validating and testing our algorithm. We used the fol-
lowing datasets: (1) the LIDC/IDRI cohort data, (2) the 
LUNA16 Challenge data, (3) the DSB2017 Competition 
data, and (4) a subset of the NLST cohort data. IRB ap-
proval is not required for using these datasets, and permis-
sion was granted from NCI to access the NLST data. 

The LIDC/IDRI data, LUNA16 data and DSB2017 Com-
petition data have been previously used for various bio-
medical imaging studies and computational approach de-
velopment and testing. The NLST data is NCI-controlled 
data; different research groups get their own permission to 
use the NLST data set/subset for their study. Please refer 
to the NCI website for the list of publications related to the 
NLST cohort (https://biometry.nci.nih.gov/cdas/publi-
cations/?study=nlst).  

The Lung Image Database Consortium image collection 
(LIDC/IDRI) [12] consists of diagnostic CT data sets with 
annotated lesions for 1018 participants. Each study in-
cludes images from a clinical thoracic CT scan and an as-
sociated XML file that records the results of a two-phase 
image annotation process performed by four experienced 
thoracic radiologists. The radiologists annotated each scan 
by marking regions of interest in three classes: "nodule ≥ 
3mm", "nodule < 3mm", and "non-nodule".  Each nodule in 
the "nodule ≥ 3mm" class was then given a malignancy 
score and a detailed segmentation. The LUNA16 Chal-
lenge [13] released a list of additional nodules, which were 
missed by expert readers who originally annotated the 
LIDC/IDRI data. 

The Kaggle Data Science Bowl 2017 [14] dataset is com-
prised of 2101 chest CT studies. Among them, 1595 were 
initially released in stage I of the challenge, with 1397 be-
longing to the training set and 198 belonging to the testing 
set. The remaining 506 were released in stage II as a final 
testing set. Each CT study was labeled as “with cancer” if 
the associated patient was diagnosed with cancer within 
one year of the scan, and ‘without cancer’ otherwise. Cru-
cially, the location or size of nodules is not labeled. This 
data was partially drawn from the NLST cohort. Care was 
taken in selecting our test cohort to be independent, as ex-
plained below. 

We tested the performance of the algorithm using data 
from the National Lung Screening Trial (NLST). 1663 
screens with 1000 negative screens and 663 positive screens 
were originally selected for this current study. The ground 
truth labels for each study were defined as the presence or 
absence of a cancer diagnosis during the NLST trial period 
[2]. We eliminated 5 screens due to missing image data at 
the point in time where the screen was marked as “posi-
tive”. An additional 209 screens were eliminated due to an 
overlap with training data from DSB2017 (202), 
LIDC/IDRI (3), or both (4). To identify overlapping im-
ages, we applied an image fingerprinting method based on 
comparing intensity histograms of selected slices from 
each scan in all three primary source cohorts (LIDC/IDRI, 
DSB2017, NLST). LUNA16 is a subset of LIDC/IDRI. Fin-
gerprints for individual slices were produced by loading 
the pixel values from the DICOM image and transforming 
the pixel intensities to Hounsfield Units (HU). Then an in-
tensity histogram containing 20 bins that are roughly cen-
tered in regions representing different tissue densities was 
generated. Bin boundaries were fixed to the following HU 
values: [-1024, -500, -300, -150, -125, -100, -80, -40, -20, 0, 20, 
40, 60, 80, 100, 125, 150, 300, 500, 1024, 2048]. Histograms 
were calculated in this way for each of the first and last ten 
slices of each scan, ordered by the Instance Number DI-
COM attribute. The histograms were combined into a fin-
gerprint vector that was utilized for comparing the mean 
squared error (MSE) of all possible combinations of images 
from each dataset. This method was chosen to be both rel-
atively computationally efficient and robust against possi-
ble changes made to images when migrating from their 
original datasets into the competition cohort (such as re-
sampling voxel dimensions, reversing the superior/infe-
rior axis, or missing/duplicated slices). We found no evi-
dence of such changes; all overlaps we discovered had an 
MSE < 0.001, with a large gap between matches and non-
matches (MSE > 200). The lowest scoring non-matches 
were examined visually to confirm that they were not 
modified versions of the same scans. 

The remaining 1449 images consisted of chest CT im-
ages with spacing along the superior/inferior axis ranging 
from 0.0 - 390.0mm (mean: 1.781mm).  This wide range is 
due to a small number of defects in some images (dis-
cussed in more detail later).  Ignoring images where these 
defects were present, the slice thickness range is 0.625 – 
10.0mm. (mean: 1.771mm).  Spacing along the 2-d (x,y) axis 
of each slice (lateral/medial, anterior/posterior) is in the 
range 0.480 - 0.977mm (mean: 0.662mm). Images were cap-
tured with X-ray peak tube voltage (kVp) in the range 120.0 
- 140.0kV (mean: 121.58kV). 

2.2 DeepScreener: a novel algorithm to predict 
lung cancer with low-dose CT scans  
DeepScreener provides an automated solution to predict 
whether a patient has lung cancer based on a low-dose 
screening CT scan. Please refer to Figure 1 for an overview 
of the framework of the deep learning algorithm and the 
training and validation workflow. 
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Our training and testing strategy can be summarized as 
follows. First, we trained the image analysis stage of the 
model for nodule identification using the images and radi-
ologist annotations for nodules in the LIDC/IDRI cohort. 
We also included annotations for additional nodules re-
leased by the LUNA16 Challenge. Then we trained the 
classification stage of the model for predicting the proba-
bility of the presence of lung cancer given the input CT im-
age without a-priori nodule annotations.  This probability 
is translated to a binary label by comparing with a thresh-
old, which was chosen as 0.5 for our initial training/test-
ing. For this purpose, we used the DSB2017 Competition 
[14] stage one CT data for training and stage II CT data for 
validation. The classification stage was trained by mini-
mizing log-loss with respect to the ground truth classifica-
tions provided by the DSB2017 competition. Finally, the 
generalization testing of the algorithm was conducted with 
the selected cohort of low-dose CT images from the NLST 
study and the results reported here. 

The algorithm, DeepScreener, is based on our model of 
Spatial Pyramid Pooling. We developed the model in 2017 
in the DSB2017 competition, which performed well when 
evaluated using the competition datasets. In the following, 
we describe the key technical parts of the model in detail. 

2.3 Our model of Spatial Pyramid Pooling 
The model of Spatial Pyramid Pooling uses consecutive 
slices and multi-task features to determine whether a nod-
ule is likely to be cancer, and a spatial pyramid to detect 
nodules at different scales. 

 
Pseudo 3-D Model to Extract Consecutive Information across 

Slices. We considered a CT scan as a 3-dimensional volume. 
For example, a typical chest CT scan is about 512 x 512 x N, 
where N is the number of slices. The resolution within the 
2-D slices may be different than between slices. A standard 
convolutional network can only handle 2-D data, and the 

scan has to be processed as N individual slices of 512 x 512. 
Such slice-based processing loses almost all contextual in-
formation along the third dimension. For example, a blood 
vessel facing the z-dimension (perpendicular to the image 
in an axial view orientation) appears as a sphere and might 
be mistaken treated as a small nodule. Notice that a 3-D 
convolutional network could be used to handle the 3-D in-
formation, but a 3-D network its limitations. For example, 
compared with a 2-D model, a 3-D convolutional network 
has many more parameters and thus more difficult to train. 
Training a 3-D network typically requires a much larger 
training data set. Instead, we chose to use a pseudo-3-D 
model. Our approach takes advantage of the fact that an 
image can have multiple (typically 3) channels and encode 
neighboring slices as multiple channels of a single image. 
Specifically, for each slice processed, we use the slice itself 
as the “green” channel of the image and add one slice 
above as the “blue” channel and once slice below as the 
“red” channel, each at a distance of 4mm; see Figure 2. 

 
Multi-Task Learning for Feature Extraction for Cancer Clas-

sification of the Detected Nodules. A segmentation network 
[15, 17] only produces a 2-dimensional shape for each nod-
ule detected, and the shape boundary is typically blurry 
due to low decision confidence. It is possible to extract a 
few features, like area, average confidence and aspect ra-
tio, but such features extracted solely based on a 2-D shape 
cannot capture all the characteristics of a nodule that are 
visible to an expert viewing the original volumetric image. 

The LIDC/IDRI dataset [2] provides expert annotation 
of about 1000 CT scans. In addition to nodule contours, a 
series of descriptive features are provided for each nodule, 
e.g. subtlety, sphericity, lobulation, etc. We designed a 
multi-task convolutional network to simultaneously fit 9 
such features (see Figure 3): subtlety, sphericity, margin, 
lobulation, spiculation, texture, malignancy, calcification-1 
and calcification -2. We did not use all of the available cat-
egorical features provided by LIDC/IDRI because we 
found some features are redundant. We split the categori-
cal feature “calcification” into two binary features. The fea-
ture extraction network was trained using the LIDC/IDRI 
annotations as ground truth, with the goal of producing 
the same numeric ratings for each of these features. The 
feature extraction network can further increase the infor-
mation available to the subsequent machine-learning mod-
ule, i.e. gradient boosting decision trees (GBDT) [18] and 
improve classification stage accuracy. 

 

Fig. 1. DeepScreener (upper half) takes a 3-D chest CT image as
input and uses a classification model based on convolutional neural
networks and gradient boosting decision trees to output a prediction
(in the range [0,1]) representing the likelihood that the patient has
lung cancer.  Training and validation workflow is shown in lower-left
flow chart.  Lower-right shows the structure of the ensemble model. 

 

Fig. 2. Pseudo-3-D image produced by “stacking” three individual
slices from the 3-D CT image into the blue (B), green (G), and red
(R) color channels of a 2-D 3-channel image. 
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Feature Pooling with Spatial Pyramid to Detect Tumors of 

Different Scales. After segmentation, nodule detection and 
feature extraction, we converted each CT volume into a list 
of nodule location (x, y, z) and features (size, subtlety, etc). 
For subsequent learning with GBDT, we pooled this list of 
variable lengths into a vector of a fixed number of dimen-
sions. We applied the spatial pyramid approach [19] for 
such pooling. Specifically, we defined a fixed number of 
regions with overlap, by partitioning the 3-D volume in 
multiple ways. The image in Figure 4 shows two sample 
partitions, each with four regions. For each region, we used 
the feature vector of the largest nodule as the region fea-
ture vector, or zeros if no nodule is detected within this re-
gion.  We then concatenated the feature vectors from all 
regions to produce a feature vector representing the full CT 
volume. Even though the spatial pyramid generated a ho-
listic representation of a full CT scan, we can also use it to 
represent an individual nodule, simply by removing all 
other nodules detected from the same CT scan. In this way, 
we can apply the GBDT classifier model to assign a confi-
dence score for each nodule. The patient-level classifier uti-
lizes this ensemble of scores to produce a single confidence 
score in the range [0,1] which is translated to the binary 
“cancer” or “no cancer” label by thresholding (default 
threshold:  0.5). 

2.4 The 3D Convolutional Model of grt123 
The 3D Convolution model we consider is the algorithm 
grt123, which is the winning algorithm of the DSB2017 
competition. This 3D convolutional neural network is a 
unified framework of lung nodule detection and cancer 
classification. For lung nodule detection, the network is 
composed of five groups of 3D residual blocks interleaved 
with four pooling layers, and a set of lateral and feedback 
connections. For cancer classification, the model selects top 
five proposals based on the confidence score in the detec-
tion network. The model extracts the last convolutional 

layer of the detection network for each proposal, which is 
a 32 by 32 by 32 cube of 128 features. For the details of the 
3D Convolutional model of the algorithm grt123, refer to: 
https://github.com/lfz/DSB2017/blob/master/solution-
grt123-team.pdf. 

3 EVALUATION METRICS 

The following statistical criteria are used to test the perfor-
mance of the different models: Accuracy, sensitivity, spec-
ificity, AUC, the f1-score and LogLoss. 
Accuracy is defined as acc=(TP+TN)/N, where TP repre-
sents the number of true positives, TN represents the num-
ber of true negatives, and N represents the total number of 
scans considered. Sensitivity is defined as 
sen=TP/(TP+FN), where TP is the number of true posi-
tives and FN is the total number of false-negative (i.e. 
missed positive) scans. Specificity is defined as 
spc=TN/(TN+FP), where TN is the number of true nega-
tives and FP is the number of false-positive scans. We use 
AUC to refer to the area under the receiver operating char-
acteristic curve, which plots the true-positive rate against 
the false-positive rate under varying classification thresh-
old values [22]. We used AUPRC to refer to the area under 
the Precision-Recall curve, which plots the trade-off be-
tween precision and recall (recall is synonymous with sen-

sitivity).  

The f1-score is a measure of accuracy involving both 

precision and sensitivity [23], defined as 𝐹ଵ ൌ 2 ⋅
௉௥௘௖௜௦௜௢௡⋅ௌ௘௡௦௜௧௜௩௜௧௬

௉௥௘௖௜௦௜௢௡ାௌ௘௡௦௜௧௜௩௜௧௬
 where𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ

்௉

்௉ାி௉
. Log-Loss is de-

fined as 𝐿𝑜𝑔𝐿𝑜𝑠𝑠 ൌ െ
ଵ

ே
∑ே
௜ୀଵ ሾ𝑦௜ ⋅ 𝑙𝑜𝑔௘ሺ𝑦పෝሻ ൅ ሺ1 െ 𝑦௜ሻ ⋅

𝑙𝑜𝑔௘ሺ1െ 𝑦పෝሻሿ, where 𝑦పෝ  is the predicted probability of the 

image belonging to a patient with cancer, 𝑦௜ is 1 if the di-

agnosis is cancer, 0 otherwise, 𝑙𝑜𝑔௘ሺ⋅ሻ is the natural (base 

𝑒) logarithm. 

 

4 RESULTS 
Our algorithm, DeepScreener, can predict a patient’s can-
cer status from a volumetric lung CT scan (refer to Figure 
1). We test the performance of our algorithm with the in-
dependent set of low-dose CT scans of the NLST cohort. 

In the following, we provide the performance details 
of the three models: our model of Spatial Pyramid Pooling, 

 

Fig. 3. Multi-task convolutional network simultaneously computes 9
features corresponding to those annotated in the LIDC/IDRI cohort:
subtlety, sphericity, margin, lobulation, spiculation, texture, malig-
nancy, calcification-1 and calcification-2. 

 

Fig. 4. Example of two partitioning schemes: Each partitioning
scheme defines four regions, which may overlap. 
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the model of 3D Convolution, and the combined model.  
See Table 1 for a summary of the performance of all mod-
els.  

 

4.1 The performance of our model of Spatial 
Pyramid Pooling on the NLST cohort  

We tested the performance of our model of Spatial Pyra-
mid Pooling using 1449 low-dose CT studies obtained 
from Cancer Imaging Archive [16] with permission from 
the National Cancer Institute. The model was able to make 
predictions for 1359 of 1449 CT scans with an accuracy of 
78.2%, AUC of 0.858, the area under Precision-Recall curve 
(AUPRC) of 0.788, and log-loss of 0.484. Refer to Figure 5 
for the ROC curve and the Precision-Recall curve resulting 
from this analysis. The model correctly identified 148 of 
432 positive examples (sensitivity 34.3%) and 915 of 927 
negative examples (specificity 98.7%). Refer to the Discus-
sions section for an exploration of why the sensitiv-
ity/specificity are imbalanced for both our model and 
grt123, and potential remediations. 

We found that several of the images in our test cohort 
exhibited some kind of unusual defect. For example, some 
images contained uneven “slice spacing” — the spacing 
between slices along the superior/inferior axis was not 
consistent given the spacing information from the image’s 
associated metadata. If the spacing varied enough to sug-
gest a “gap” or missing slice, the image was rejected.  Such 
instances did not appear to be due to systematic or “pur-
poseful” varying of slice thickness – instead, we believe 
they represented a data quality issue within the image file 
structure. We also noticed that some images contained one 
or more “duplicate” slices — the pixels in the 2-D slice 
were identical to the pixels in another 2-D slice within the 
scan. In these cases, we dropped the duplicate slice in pre-
processing. In total, our Spatial Pyramid Pooling model re-
jected 90 CT studies due to inconsistencies. 

 

4.2 The performance of 3D Convolution of the 
winning algorithm grt123 of DSB2017 on the 
NLST cohort   

As a performance comparison to Spatial Pyramid Pool-
ing, We then test the performance of the 3D Convolution 
of the winning algorithm grt123 of Data Science Bowl 2017 
for lung cancer detection (ref: https://datascience-
bowl.com/2017algorithms/). On this NLST cohort of low-
dose CT scans, the performance of the model of 3D Convo-
lution is very close to the model of Spatial Pyramid Pool-
ing. The 3D Convolution of the algorithm grt123, was able 
to process 1449 of the 1449 CT scans with an accuracy of 
82.1%, AUC of 0.885, area under the Precision-Recall curve 
(AUPRC) of 0.837, and log-loss of 0.434. Refer to Figure 6 
for the ROC curve and the Precision-Recall curve. The al-
gorithm correctly identified 222 of 469 positive examples 
(sensitivity 47.3%) and 967 of 980 negative examples (spec-
ificity 98.7%). Note that grt123 did not require strict image 
quality control on input images and did not reject any of 
the input images. 

 

4.3 The Ensemble Model, with Spatial Pyramid 
Pooling and 3D Convolution, outperforms the 
model using only 3D convolution.  

We then test the performance of the ensemble model with 
Spatial Pyramid Pooling and 3D Convolution, using the 
NLST cohort of low-dose CT scans. See Figure 1 (lower-
right) for a diagram of the ensemble architecture. The en-
semble model surpasses the performance of the two indi-
vidual models: Spatial Pyramid Pooling and 3D Convolu-
tion; refer to Figure 7. While Spatial Pyramid Pooling has 
an AUC of 0.858, and 3D Convolution has an AUC of 0.885, 
the ensemble model (on the 1359 images predicted by both 
models) achieves an AUC of 0.892 on this NLST cohort, 
with accuracy of 81.1%, area under the Precision-Recall 
curve (AUPRC) of 0.848, and log-loss of 0.430. The ensem-
ble correctly identified 183 of 432 positive examples (sensi-
tivity 42.4%) and 919 of 927 negative examples (specificity 
99.1%). Through complementing the 3D Convolution 
model with Spatial Pyramid Pooling, the ensemble model 
improves lung cancer detection with lung screening low-
dose CTs.   

We can see that the deep learning models all achieve 
consistent performance of high accuracy, when tested with 
the independent set of 1449 low-dose CT scans of the NLST 
cohort. And when combined the model of Spatial Pyramid 
Pooling with the model of 3D convolution, it surpasses the 
previous state-of-the-art approaches using only 3D convo-
lution.     

 

Fig. 5. Performance characteristics for our model of Spatial Pyramid 
Pooling applied to the selected NLST subset. (a) Receiver operating 
characteristic curve. Area under the ROC curve is 0.858. (b) Preci-
sion-Recall curve. Area under the PR curve is 0.788. 

 

Fig. 6. Performance characteristics for the model of 3D Convolution
of the grt123 algorithm applied to the selected NLST subset. (a) Re-
ceiver operating characteristic curve. Area under the ROC curve is
0.885. (b) Precision-Recall curve. Area under the PR curve is 0.837.
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We would like to point out two interesting points from 
our testing: (1) The performance of these deep learning 
models, (including our model of Spatial Pyramid Pooling 
and the 3D Convolution model of algorithm grt123), re-
mained stable with respect to a challenging new dataset 
(an independent dataset of NLST), indicating that deep 
learning models can be more broadly applied. (2) The met-
ric used for scoring this particular competition of DSB2017 
pushed both the winning algorithm grt123 and our own 
model toward a particular performance profile that exhib-
its good detection of "large" cancers at the expense of an 
undesirably high false-negative rate (seen in results as a 
high specificity but low sensitivity). 

 
Table 1. Performance metrics for our model of Spatial Pyramid Pool-
ing of DeepScreener, the model of 3D Convolution of grt123, and 
the ensemble model. 

Performance 
Metric 

Spatial 
Pyramid 
Pooling 

 
grt123 
Model 

Ensemble 
Model 

Total  1359  1449  1359 

# Positive  432  469  432 

# Negative  927  980  927 

AUC  0.858  0.885  0.892 

AUPRC  0.788  0.837  0.848 

Accuracy  0.782  0.821  0.811 

LogLoss  0.484  0.434  0.430 

f1‐score  0.500  0.631  0.587 

Sensitivity  0.343  0.473  0.424 

Specificity  0.987  0.987  0.991 

# False Pos.  12  13  8 

# False Neg.  284  247  249 
 

5 DISCUSSIONS 
Computed tomography screening has been shown to aid 
in early detection of lung cancer in at risk patients, leading 
to reductions in lung cancer death rates [2]. Unfortunately, 
CT screening is also associated with high rates of false-pos-
itive diagnoses. Currently most computer-aided diagnosis 
(CAD) tools focus on evaluating lung nodules, which must 
be identified a-priori, either by a radiologist or with an au-
tomated tool. Here we chose to instead focus on risk pre-
diction at the patient level, taking into account information 
from the whole lung. Our approach could be combined 
with others to provide a layered strategy for identifying 
and diagnosing lung cancer. Our approach combines con-
volutional neural network models to predict the presence 
of lung cancer at the whole-image level. We chose to test 
our strategy on low-dose CT scan data from the National 
Lung Cancer Screening Trial (NLST).  

On the NLST cohort of 1449 low-dose CT scans, we 
tested our deep learning algorithm for predicting lung can-
cer status with whole low-dose CT scans of the patients. 

Our algorithm, DeepScreener, was able to make predic-
tions with an AUC of 0.892. From the testing results on the 
NLST cohort, we anticipate deep learning algorithms can 
achieve a performance potentially comparable to human 
experts and radiologists for lung cancer prediction and de-
tection with low-dose CT scans. Through the development 
of more sophisticated models, as well as training and 
learning from CT images of even a larger population, deep 

learning algorithms will yield sensitive, stable, consistent 
and reliable lung cancer screening with the potential of re-
ducing the human effort and cost of screening.  

The initial framework of our model of Spatial Pyramid 
Pooling was developed in 2017 for the DSB2017 competi-
tion, and was optimized according to the performance 
metric used by the competition (minimizing log-loss) [14]. 
One of our goals for developing automated screening tools 
is to reduce the false-positive rate associated with lung 
screenings performed by radiologists. However, the par-
ticular metric chosen by the DSB2017 competition may 
have skewed the model too far in the direction of reducing 
false positives at the expense of missed cancers (false-neg-
ative rate). In addition, the cohort we used for this valida-
tion procedure was selected to include cases where the 
original NLST study contained a likely “false negative” 
screen. We did this by querying for cases where the pa-
tient’s cancer diagnosis followed a negative screen and 
adding those cases to our query for patients who screened 
as “positive”. Therefore, our testing cohort itself may be 
expected to elicit a higher-than-normal false-negative rate. 
More work needs to be done to balance the trade-off to lev-
els that are clinically acceptable. In evaluating both our 
competition model and the winning model against a pre-
viouslyunseen set of challenging CT screening images, we 
gained some insight into the value of such competition 
models in real-world applications.  Our results also hint 
that the choice of a competition scoring metric may induce 
performance biases in the models that need to be ad-
dressed before wider application.  

 

Fig. 7. Performance characteristics for the model of Spatial Pyramid
Pooling, the model of 3D Convolution of grt123, and the ensemble 
model, when applied to the NLST cohort. Compared with the model 
of Spatial Pyramid Pooling, and the 3D Convolution model, the en-
semble model achieves an improved AUC of 0.892 on this NLST 
cohort. 
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The DSB2017 competition used the LogLoss metric for 
judging submissions, which is closely related to accuracy 
in a binary classification problem.  As the results show, the 
accuracy can be high (and LogLoss low) even if the perfor-
mance is not well balanced between sensitivity and speci-
ficity. To explore whether tuning could offset this effect, 
we examined the effect of modifying the decision thresh-
old (which was at the default 0.5 for the results reported 
here) with respect to the model’s output predictions on 
NLST and found that a lower threshold would have im-
proved the results.  A threshold setting of 0.29 would max-
imize the accuracy metric at 83.4%, (vs our reported result 
of 78.2%) and a threshold setting of 0.19 would maximize 
the sum of sensitivity and specificity at 69.2% and 87.6% 
respectively, comparatively more balanced than our re-
ported result (34.3% and 98.7%). Obviously, any such tun-
ing based on a-posteriori observations would need to be 
evaluated by re-training the model and performing an in-
dependent validation, but it suggested that training with 
an objective different than log-loss may be beneficial, as 
well as parameter tuning to guide the algorithm toward 
more balanced performance. We would suggest that future 
competition organizers consider this when choosing a 
scoring metric, especially when the application is in the 
medical domain. 

In the future, we hope to further develop the model to 
decrease the number of missed positives and also add vis-
ualization options to help make the model’s classification 
decisions interpretable for researchers and clinicians. 
These improvements will be necessary for tools like these 
to be accepted into the clinical diagnostic toolset. 

Note that there is a recent publication [25], closely re-
lated to our work here. In May 2019, Ardila et al. [25] from 
Google AI published a letter in Nature Medicine, which 
presented an application of deep learning models on the 
problem of end-to-end lung cancer screening in the low-
dose computed tomography modality. NLST dataset, as 
well as a proprietary validation set, were used in their ar-
ticle. They conducted reader studies with six experienced 
radiologists to compare against their algorithmic ap-
proach. Their model outperformed the radiologists in their 
panel on the study without prior imaging, with an 11% re-
duction in false positives and a 5% reduction in false neg-
atives. The model that they used was essentially a combi-
nation of several already known models, adapted to solve 
different parts of this problem. When evaluating the pre-
diction of localizations, they used the “Hit@N” measure as 
a metric. This measure suggests that if any of the top N 
proposed ROIs include any overlap with a ground truth 
region of interest, the ROI localization is declared a suc-
cess. It is not as strong a measure as Dice score or Intersec-
tion-over-Union, but they do have strong performance by 
this metric (100% when N=2). The code of their combina-
tion model is not available to the public; We cannot con-
duct the performance comparison of their algorithm and 
ours. 
 

DATA AVAILIBITY 
The LIDC/IDRI data (https://luna16.grand-chal-
lenge.org/data/), LUNA16 data (https://wiki.cancerim-
agingarchive.net/display/Public/LIDC-IDRI) and 
DSB2017 Competition data 
(https://www.kaggle.com/c/data-science-bowl-
2017/data) are publicly available through their individual 
websites and were previously used for biomedical imaging 
studies and computational approach development and 
testing by different research groups in the research field. 
The NLST data is NCI-controlled data; different research 
groups get their permission from NCI to use the NLST data 
for their study. Please refer to the NCI website for the in-
formation (https://biometry.nci.nih.gov/cdas/publica-
tions/?study=nlst). 

CODE AVAILIBITY  
The code is available through Github 
(https://github.com/aaalgo/plumo), and some interme-
diate files we processed and generated with this study 
could be made available to an investigator upon request 
for academic, research, and noncommercial use. 
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