
Kill Two Birds with One Stone: Auto-tuning
RocksDB for High Bandwidth and Low Latency

Yichen Jia
Computer Science and Engineering

Louisiana State University
yjia@csc.lsu.edu

Feng Chen
Computer Science and Engineering

Louisiana State University
fchen@csc.lsu.edu

Abstract—Log-Structured Merge (LSM) tree based key-value
stores are widely deployed in data centers. Due to its complex
internal structures, appropriately configuring a modern key-value
data store system, which can have more than 50 parameters with
various hardware and system settings, is a highly challenging
task. Currently, the industry still heavily relies on a traditional,
experience-based, hand-tuning approach for performance tuning.
Many simply adopt the default setting out of the box with no
changes. Auto-tuning, as a self-adaptive solution, is thus highly
appealing for achieving optimal or near-optimal performance in
real-world deployment.

In this paper, we quantitatively study and compare five
optimization methods for auto-tuning the performance of LSM-
tree based key-value stores. In order to evaluate the auto-tuning
processes, we have conducted an exhaustive set of experiments
over RocksDB, a representative LSM-tree data store. We have
collected over 12,000 experimental records in 6 months, with
about 2,000 software configurations of 6 parameters on different
hardware setups. We have compared five representative algo-
rithms, in terms of throughput, the 99th percentile tail latency,
convergence time, real-time system throughput, and the iteration
process, etc. We find that multi-objective optimization (MOO)
methods can achieve a good balance among multiple targets,
which satisfies the unique needs of key-value services. The more
specific Quality of Service (QoS) requirements users can provide,
the better performance these algorithms can achieve. We also
find that the number of concurrent threads and the write buffer
size are the two most impactful parameters determining the
throughput and the 99th percentile tail latency across different
hardware and workloads. Finally, we provide system-level expla-
nations for the auto-tuning results and also discuss the associated
implications for system designers and practitioners. We hope this
work will pave the way towards a practical, high-speed auto-
tuning solution for key-value data store systems.

I. INTRODUCTION

In today’s data centers, Log-Structured Merge (LSM)
tree [46] based key-value data stores (e.g., LevelDB [24]
and RocksDB [4]) are being widely deployed for high-speed
data processing. Due to its complex internal structures, a
modern key-value data store offers a number of configurable
parameters (e.g., buffer size, thread number, table size, etc.),
allowing users to tune system performance for different hard-
ware and workloads. After years of optimizations, such a set
of configurable parameters becomes indispensable for users
to gain fine-grained customizability for performance tuning.
For example, RocksDB, a highly popular key-value data store

in industry, exposes over 50 tunable parameters to system
administrators in its latest release [4].

Appropriately configuring a key-value store is crucial to the
runtime performance. Each configuration parameter controls
a certain aspect of the system behavior, such as parallelism
degree, I/O size, event-triggering frequency, etc. A selected
configuration profile in effect determines the observed perfor-
mance. Further considering the highly diverse workload and
hardware properties in real-world deployment, a configuration
that works optimally in one particular scenario may not work
equally well in another. In other words, it is difficult to have
a universally optimal setting for all cases. For this reason,
performance tuning in the deployment of key-value data stores
is an important but notoriously tedious, time-consuming, and
case-by-case work.

In the current practice, the industry still heavily relies on
a traditional, experience-based hand-tuning approach, which
significantly increases the administration cost and delays the
time to deploy. Auto-tuning, as an automatic self-adaptive
approach, is thus highly appealing. As a general system
solution, auto-tuning was originally proposed to overcome
the unscalability of manual tuning. It has been studied in
various scenarios, such as cloud storage, databases, parallel
systems, and many others [5], [20], [34], [38], [40]. These
prior works focus on optimizing for one objective function,
such as throughput, power consumption, or monetary cost, etc.
However, such a solution cannot readily satisfy the need for
quick deployment of a key-value store system.

A unique challenge for auto-tuning key-value data stores
is that we must achieve multiple Service Level Objectives
(SLOs) [36], [49], simultaneously. In a typical enterprise-class
application scenario, the data store system needs to guarantee
to achieve two important but sometimes conflicting optimiza-
tion goals, throughput and latency1. Such a requirement makes
auto-tuning in LSM-tree based key-value data stores even more
challenging.

In this paper, we have quantitatively studied and compared
five representative optimization methods for auto-tuning the
performance of RocksDB, a highly popular LSM-tree based
key-value store optimized for flash SSDs, to meet its unique

1The main optimization targets for the latency SLOs are typically the 95th,
99th or even 99.9th percentile tail latency [16], [28], [36], [49], [55].



Quality of Service (QoS) requirements. To the best of our
knowledge, this is the first work that presents quantitative anal-
ysis on the efficacy and efficiency of auto-tuning algorithms on
RocksDB and provides system-level explanations for the auto-
tuning process. Our study has been conducted in two stages.
• Stage 1: Data collection: In order to quantitatively demon-
strate the ability of the auto-tuning algorithms, we have
evaluated RocksDB with over 2,000 software configurations,
4 hardware setups, and 3 representative workloads. We have
executed more than 12,000 experimental runs over 6 months.
The performance metrics and the related information are
maintained in an MySQL [3] database for offline references.
The information includes hardware and workload details,
parameter settings, throughput, tail latency, etc. In this paper,
we focus on optimizing for two major SLOs, throughput and
tail latency (the 99th percentile). The methodology that we
have used in this paper can also be applied to achieve other
optimization goals, such as power consumption and monetary
cost, etc.
• Stage 2: Algorithm Analysis: We select five opti-
mization algorithms for auto-tuning, namely Genetic Algo-
rithms (GA) [8], Non-dominated Sorting Genetic Algorithm
II (NSGA-II) [19], Speed-constrained Multi-objective Parti-
cle Swarm Optimization (SMPSO) [44], ✏-constraint Method
(ECM) [56], and Weighted Sum Method (WSM) [43], and
apply them to the collected real experimental data to find the
(near-)optimal configurations. In our study, the selected five
algorithms cover both single- and multi-objective optimization
methods, and represent three common techniques (prior, pos-
teriori, and no-preference methods as discussed in Section II)
used to solve multi-objective optimization problems. Our ex-
perimental results show that, although their efficacy differs, all
the five algorithms are able to eventually converge to provide
stable performance, if given enough time. However, the best
algorithm differs according to the QoS requirements. We
also find that the multi-objective optimization algorithms can
achieve a good balance among multiple goals. We present 12
findings in this work, which summarize our key observations
and understandings on the auto-tuning algorithms, and also
provide the optimization recommendations for RocksDB.

It is worth noting that our focus is not to find a good
parameter setting for a specific hardware or system setup,
which may vary on different platforms. Rather, our main
objective is to compare and understand the practical efficacy of
applying auto-tuning algorithms, especially the multi-objective
optimization algorithms, on RocksDB and to gain important
insight on how they behave in real-world deployment. We
hope that our findings and the associated system implications
will pave the way for system designers and practitioners
towards developing a practical, efficient, and effective auto-
tuning solution for key-value data stores.

The rest of the paper is organized as follows. Section II
gives the background. Section III introduces the methodology.
Section IV presents the comparative analysis on the five auto-
tuning algorithms. Section V discusses the impact of hyper-
parameters. Section VI describes the system implications.

Section VII discusses the limitations of this work and the
future work. Related work is presented in Section VIII. The
final section concludes this paper.

II. BACKGROUND

A. LSM-tree based Databases
LSM-tree based data stores are widely used nowadays in

industry, such as LevelDB [24], RocksDB [4], and Apache
Cassandra [2], etc. LSM-tree based key-value stores have two
important components: in-memory write buffers and on-disk
Sorted Sequence Table (SST) files. The incoming traffic is
first accumulated in write buffer, which is implemented as a
skiplist [47], and then becomes Immutable Table (ImmuTable)
when the write buffer is full. Then the ImmuTables are flushed
to the underlying storage device for persistence. This design
guarantees that the storage only receives large, sequential I/Os,
benefiting the I/O performance. Meanwhile, a Write Ahead
Log (WAL) is maintained for the recovery purpose. SST data
files are organized into multiple levels (from Level-0 to Level-
N) of increasing size. Level-0 files are special, since they
may have overlapping key ranges, while files in each of the
other levels have non-overlapping key ranges. A background
merging process, called Compaction, routinely runs to remove
the deleted and obsolete key-value items. For example, when
the number of files in Level-0 reaches a predefined threshold,
multiple Level-0 files are merged with the Level-1 files that
have overlapping key ranges with these Level-0 files. Once
completed, the input Level-0 and Level-1 files are deleted and
replaced by the newly generated Level-1 files. The compaction
processes at the other levels are similar. A Manifest file
maintains the metadata of the SST files.

B. Multi-objective Optimization Algorithms
Multi-objective Optimization (MOO) methods deal with

optimization problems that have multiple conflicting goals. As
defined in prior work [17], the multi-objective optimization
problem can be generalized as follows:

Minimized
x

: F (x) = [F1(x), F2(x), ..., Fk(x)]
T (1)

Subject to:
xL
i  xi  xU

i ; i = 1, 2, ..., n

gj(x)  0; j = 1, 2, ...,m

where k is the number of targets, n is the number of variables,
and m is the number of constraints. x 2 Rn is a collection
of variables xi 2 [xL

i , x
U
i ], gj(x) are the constraint functions,

and F (x) 2 Rk is a collection of objective functions Fi(x).
Typically, there is no single solution that can simultane-

ously optimize all the objectives. A solution is called Pareto
optimal [51], [54], if no objective can be improved without
degrading the other objectives. If there is no additional infor-
mation about user-specific preference, all the Pareto optimal
solutions are considered equally good.

According to the articulation of preferences, the multi-
objective optimization algorithms can be classified into three



Parent 1

Parent 2

Data Store

RocksDB

RocksDB

Block Size Buffer Size

4

32

8

16

Child 1

Child 2

RocksDB

RocksDB

4

32

16

8

Fig. 1: Illustration of Crossover in GA.

!"

#"

$%
$&

$'

Rejected

Non-dominated 
sorting

("

!")%
Crowding distance 

sorting

Fig. 2: An Illustration of NSGA-II [19].

Current velocity 
influence

Particle memory 
influence

Sw
arm

 

influ
ence

!"#

!"$%#

&"#

'"#

'"$%#&"(

Fig. 3: Position Update in PSO [52].

main categories: (1) Algorithms with a priori articulation
of preferences: These methods allow users to specify their
preferences in terms of the relative importance of different
objectives. (2) Algorithms with a posteriori articulation of
preferences: When the users cannot provide an explicit pref-
erence function, it is effective to allow users to choose from
a collection of possible solutions. (3) Algorithms with a no
articulation of preferences: when the users cannot define their
preference explicitly, this group of methods assume that all
the objectives are equally important.

C. Applied Methods
Multi-objective optimization (MOO) has been extensively

studied in the fields of science and engineering [10], [15], [18],
[27], [29], [33], [45], [48], [51]. In this work, we choose five
mature and widely deployed auto-tuning algorithms for our
study, including one single-objective algorithm (GA) and four
multi-objective optimization algorithms (NSGA-II, SMPSO,
ECM, and WSM).

Genetic Algorithm (GA). Single-objective genetic algo-
rithm [8] belongs to the family of evolutionary algorithms
that are designed based on the natural selection process and
have been extensively studied [9], [29], [41]. The initial
population is randomly generated. The population size is
defined according to the nature of the problem. The fittest
portions of the current population are selected based on
the user-defined fitness function to create a new generation,
during each successive generation. This process guarantees
that better genes are inherited with higher probability. The
next generation is generated through a combination of genetic
operators: crossover and mutation. The selection process is
repeated until reaching the termination condition. Figure 1
illustrates an example of the cross-over process in GA, in
which a cross point is selected and the tails of the two parents
(Buffer Size) are swapped to generate new offsprings.

Non-dominated Sorting Genetic Algorithm (NSGA-II).
As one of the most well known and widely deployed MOO al-
gorithms [57], NSGA-II [19] can find a diverse set of solutions
with fast non-dominated sorting and diversity preservation.
The process of NSGA-II is illustrated in Figure 2.

Firstly, the population is initialized randomly with a pre-
defined population size. All the chromosomes are sorted in
the Pareto front based on Pareto Non-dominated sets. The

chromosomes in the Pareto front are ranked based on euclidean
distance or I-dist between solutions, which are defined in
NSGA-II. Typically, solutions that are far from others will
have a higher probability to be selected to improve diversity
and to avoid a crowded solution set. Then the best ones in the
current population are put into the mating pool. During the
mating process, tournament selection, crossover and mating
are conducted to generate offsprings. The offsprings and the
current population are combined and sorted to pick the best
N chromosomes into new population. The selection process
continues until reaching the maximum number of generations.
Finally, the highest ranked Pareto optimal solutions from the
latest population are chosen as the final solutions.

Speed-constrained Multi-objective Particle Swarm Op-
timization (SMPSO). Particle Swarm Optimization (PSO)
algorithm [52] simulates the social behaviors of animals, such
as insects, herds, fishes, and birds. These swarms cooperate
to find food by sharing information among members. In
comparison to other optimization algorithms, PSO needs to
adjust fewer parameters and thus is simpler for deployment
while still providing good performance [7]. Specifically, as
Figure 3 shows, PSO updates the new position of a particle
by combining the optimal position of the swarm and that of
its own, as well as its velocity. Particles keep updating their
states constantly until they reach the termination condition.
As defined in prior work [52], a particle i is defined by its
position vector, xi, and its velocity vector, vi. Every iteration,
each particle’s position is updated according to Equation 2 and
Equation 3:

vit+1 = !vit + c1r
t
1(p

g
t � xi

t) + c2r
t
2(p

i
t � xi

t) (2)

xi
t+1 = xi

t + vit+1 (3)

where pgt and pit respectively denote the best group position
and the best particle position, ! denotes inertia weight, c1
and c2 represent two positive constants, and r1 and r2 repre-
sent two random parameters within [0, 1]. Speed-constrained
Multi-objective Particle Swarm Optimization (SMPSO) [44]
introduces a velocity constraint mechanism which restricts
the value within the variable ranges and vanishes the erratic
movements. SMPSO is believed to deliver higher accuracy
with less time than traditional PSO.



Epsilon Constrained Method (ECM). According to prior
work [56], ✏-constrained Method selects and minimizes a
primary objective by expressing the other objectives with
inequality constraints:

Minimize
x

: Fp(x) (4)

subject to Fi(x)  ✏i, for i = 1...k, i 6= p. For example,
in key-value data store, we may maximize the throughput by
meeting the latency SLO requirement. This bounded function
method is robust and efficient for converting a multi-objective
optimization problem into a single-objective one [42].

Weighted Sum Method (WSM). WSM is one of the most
common approaches [42]. According to prior work [43], the
weighted sum method realizes the multi- to single-objective
problem conversion by constructing a simple weighted sum
of all the objectives:

Minimize
x

: F (x) =
kX

i=1

(!i ⇥ Fi(x)) (5)

As Equation 5 shows, the single final target F (x) is the
weighted sum of each individual target Fi(x). The challenge
of this approach is how to determine the weighting coefficients
to each of the objectives. Besides, summing up two objectives,
such as throughput and tail latency, requires the normalization
to be semantically meaningful.

The above summarizes the five methods briefly. More details
can be found in their related papers [8], [19], [43], [52], [56].

D. Exploitation and Exploration
The exploitation and exploration tradeoff is well-known

in auto-tuning systems to acquire new knowledge and to
maximize the uncertain payoffs. Exploitation means to probe a
limited portion of the search space, expecting to improve the
existing promising solution. This operation tries to leverage
the vicinity of the current candidate to figure out a better
solution. On the other hand, exploration means to probe a large
search space to avoid being trapped into a local optimum.
The tradeoff between exploitation and exploration is among
our interests in this paper to illustrate the effectiveness and
efficiency of the selected algorithms.

III. METHODOLOGY

In this section, we describe the details of hardware envi-
ronments, workload characteristics, parameter space and our
implementation of the optimization algorithms.

Hardware. Our experiment platform is an Intel W2600CR
server with 32 HT virtual cores on two 8-core Intel Xeon
E5-2690 2.9GHz processors and 128 GB memory. We use an
800GB Intel 750 PCIe SSD and a 240GB Intel 530 SATA
SSD as storage devices in our experiments. In order to collect
performance data with different hardware setups, we have
defined four machine configurations as listed in Table I. Based
on their computing, memory, and storage capabilities, we
categorize the four hardware setups as Baseline, CPU-plus,
MEM-plus and STOR-minus to illustrate the effect of different
computer components to the performance.

Software and Workloads. We use Ubuntu 14.04 with
Linux Kernel 4.4.0, Ext4 file system and RocksDB 5.17.0 in
our experiments. In order to cover different workload patterns,
we have enhanced RocksDB’s default benchmarking tool,
db bench, to generate three workloads following typical key
distributions. (1) Zipfian. It is a distribution pattern following
true Zipf’s law [23], [30], [58], where a small portion of
items receives most of the requests, and the rest items are
requested rarely. (2) Hotspot. A majority (80%) of its GET
requests access a relatively small portion (20%) of the entire
data set. (3) Random. All the records in the database are
accessed randomly with an equal probability. Among the three
distributions, Zipfian has the most skewed access pattern.

The working-set size has an obvious effect to the duration
of experiments. Since we mainly focus on exploring a large
parameter space within a practical time period, we choose to
set the working set size to be 100 GB. This large working
set can guarantee that all experiments can be finished within a
reasonably long time (six months in our case). We have also re-
peated part of the experiments when the working set is 200 GB
to validate our findings. For each test, after warming up the
system, we run the experiment for 180 seconds, which is long
enough to collect stable evaluation results. Our experimental
results show a wide range of performance numbers and are
suitable for applying and evaluating auto-tuning algorithms.

Parameter Space. Compared with LevelDB, RocksDB
has adopted several schemes particularly optimized for fully
exploiting the rich internal parallelism features of flash
SSDs [13], [14]. For example, multiple immutable Memta-
bles are used to avoid write stalls. Flushes and compaction
operations are multi-threaded with separated thread pools and
execution priorities. Since RocksDB is optimized for parallel
operations, users are suggested to parallelize requests at the
application level. Furthermore, RocksDB keeps multiple files
in Level 0 and triggers the compaction process when the num-
ber of Level-0 files reaches a predefined threshold. RocksDB
also keeps a read cache to accelerate READ operations.

Because of the aforesaid rich features, RocksDB maintains
over 50 tunable parameters. Apparently we are unable to
exhaustively study all combinations of the 50 parameters.
Since our goal is to study the efficacy of applying different
optimization methods for auto-tuning RocksDB, we desire to
study a parameter space that is large enough to cover the
important parameters. Based on the observations from prior
work [22], [40], we select and focus on six most important
parameters that have a significant impact to performance.
Table II shows the parameters and the value range of each
parameter.

Experiments and Implementations. Our experimental
studies have been performed in two stages.
Stage 1: Exhaustive Experiments. We first run experiments
with an exhaustive combination of the six configurations as
listed in Table II, with the selected workloads and machine
setups (see Table IV). Over a period of 6 months, we have
completed over 12,000 experimental runs. After that, we
store all the system configurations, workload and hardware



Machine Server ID CPU Model vCores Memory Storage Connection OS
Baseline M1 Intel Xeon 2.9GHz 4 8GB Intel 750 SSD PCIe Ubuntu 14.04

CPU-plus M2 Intel Xeon 2.9GHz 32 8GB Intel 750 SSD PCIe Ubuntu 14.04
MEM-plus M3 Intel Xeon 2.9GHz 32 16GB Intel 750 SSD PCIe Ubuntu 14.04

STOR-minus M4 Intel Xeon 2.9GHz 32 16GB Intel 530 SSD SATA Ubuntu 14.04

TABLE I: Experimental Machine Configurations.
Parameter Abbr. Values Description

Write Buffer (x32MB) WB 1,2,4,8,16 The number of write buffers. Each buffer is 32MB.
Concurrent Threads CT 1,2,4,8 The number of application-level requesting threads.

Flush Writers FW 1,2,4 The maximum number of background flush operations.
Read Cache Size (GB) CS 1,2,4 The size of read cache.

Cleanup File Num CF 1,2,4,8 The number of Level-0 files when background compaction process is triggered.
Concurrent Compactor CC 1,2,4 The maximum number of background compaction operations.

TABLE II: RocksDB Parameter Space.

information, and the benchmarking results in an MySQL [3]
database for the emulation in Stage 2.
Stage 2: Auto-tuning Emulation. We emulate the process of
auto-tuning key-value storage systems by running the opti-
mization algorithms and querying MySQL for the evaluation
results. In this way, we can avoid running the experiments
against RocksDB each time. Since we focus on multi-objective
optimization approaches, we choose to optimize both through-
put and latency (the 99th percentile tail latency) simulta-
neously in all our experiments. We believe that the same
methodology can be used when other objectives, such as power
consumption, are considered.

We have implemented a client to make use of Platypus [1],
which is an open source Python library for multi-objective
optimization, for all of our experiments. We further convert
the parameters in RocksDB into the algorithm-related ones.
For example, we define write buffer number as gene, and each
configuration as a chromosome. A sufficient number of con-
figurations are measured as the evolution process continues.

The above-said experiment process provides two benefits.
First, we only need to complete an experiment for each
configuration once (Stage 1). In the algorithm evaluation
(Stage 2), we can simply run the algorithms and query the
MySQL database to collect the corresponding data without
actually running the experiments. This significantly saves the
experimental time and allows us to repeat this evaluation
process quickly. Second, since we have already completed all
the experiments exhaustively, we can know the global optimal
configurations, which allows us to quantitatively measure how
close each algorithm can reach the global optimum.

IV. EXPERIMENTAL RESULTS

A. Motivations
In this section, we first demonstrate the parameter space

and its effect on the two key performance metrics, throughput
and latency. Due to space constraint, we select three scenarios
(Zipfian and Hotspot workloads running on two hardware
setups, M1 and M3) for illustration, as shown in Figure 4, 5,
and 6. Each point represents one RocksDB configuration. In
the figures, we also mark the configurations that deliver the
maximum throughput, the minimum latency, and the default
configuration. We can obtain several important clues from the

figures. (1) The RocksDB configurations have a significant
performance impact. For example, as Figure 4 shows, the
achievable maximum throughput is 211 kop/s, while the tail
latency is around 254 µs; the lowest achievable tail latency is
49 µs, while the throughput is only 82 kop/s. There is a clearly
a tradeoff between these two goals. (2) The configurations are
clustered in several groups, rather than uniformly distributed.
This means that the parameters do not have an equal effect on
the performance, and some parameters could have a dominant
effect on the performance. (3) The default configuration cannot
achieve the optimum, in all three cases. Also, we can find in
the figures that the default setting tends to optimize for tail
latencies rather than high throughput. As shown in Figure 4,
the default setting achieves an average tail latency of about
83 µs, while the throughput is only about 60 kop/s. (4) The
effect of different RocksDB configurations varies significantly
across different hardware setups and workloads, which is
clearly illustrated in the figures with the distinct shapes of
the clouds of configuration points.

These figures show that although we may not find an
optimal solution for both goals simultaneously, there is enough
tradeoff and optimization space to fit the specific preferences
of users. In the following section, we will discuss the per-
formance of the five optimization algorithms for auto-tuning
RocksDB.

B. Comparative Analysis

In this section, we compare the five optimization algorithms,
whose configurations are shown in Table III. We use the terms,
optimal and near-optimal, to represent configurations that
provide 100% and 95% of the maximum achievable through-
put respectively and restrict the 99th percentile tail latency
within 250 µs as the QoS requirement in our experiments.
For brevity, we focus on comparing and analyzing the auto-
tuning behaviors with the PCIe SSD on M3 and the SATA
SSD on M4 in this section.

As shown in Figure 7 and Figure 8, given enough time,
all the five algorithms can converge to relatively stable per-
formance. Specifically, as Figure 7 shows, on M3 with the
PCIe SSD, GA, NSGA-II, SMPSO, and ECM can achieve
comparable peak throughout (about 205 kop/s) with minimum
318 minutes. Accordingly, the corresponding 99th percentile



Fig. 4: Zipfian, M3. Fig. 5: Hotspot, M3. Fig. 6: Zipfian, M1.

Fig. 7: Throughput vs. Time on PCIe SSD. Fig. 8: Throughput vs. Time on SATA SSD. Fig. 9: Performance on PCIe vs. SATA SSD.

Fig. 10: Intermediate and Final Results. Fig. 11: CDF of Tuning Time on PCIe SSD. Fig. 12: CDF of Tuning Time on SATA SSD.

Algorithms Optimizations Targets QoS Requirements
GA Throughput No consideration

NSGA-II Throughput and latency are treated equally No consideration
SMPSO Throughput and latency are treated equally No consideration

ECM Throughput 250µs
WSM throughput/current max throughput - latency/current max latency Considered in the combined target

TABLE III: Auto-tuning Algorithm Configurations.

tail latency is about 250 µs. WSM shows a totally different
behaviors. We have combined the throughput and the 99th
percentile tail latency into one single target using the weighted
sum method. The single final target is defined as

T =
throughput

curr max throughput
� latency

curr max latency
(6)

We use curr max throughput and curr max latency
to denote the maximum throughput and latency respectively
until the current step. Since the normalized throughput (first
component in Equation 6) and latency (second component

in Equation 6) make positive and negative contributions to
the combined final target respectively, we try to increase
the throughput and decrease the latency by maximizing the
combined goal. We can see that the maximum throughput
achieved by WSM is about 78 kop/s and the corresponding
99th percentile tail latency is around 64 µs. In this case, WSM
with the defined optimization target does not find the Pareto
optimal configuration. There exists one better configuration,
which has a higher throughput (82 kop/s) and a lower cor-
responding 99th percentile tail latency (49 µs), as Figure 4
shows.



Compared to the auto-tuning process with PCIe SSD on
M3, the behaviors of these algorithms with SATA SSD on
M4 show different trends. In Figure 8, GA, WSM, NSGA-II,
and SMPSO exhibit similar behaviors in finding (near-)optimal
configurations. It takes them at least 324 minutes to achieve
the maximum throughput which is about 150 kop/s and the
related 99th percentile tail latency is around 542 µs. However,
the maximum throughout achieved by ECM is only about
62 kop/s and the corresponding 99th percentile tail latency
is about 240 µs. The reason is that in order to meet the QoS
requirements (250 µs in our experiments), some parameters
in RocksDB, such as the number of concurrent threads, have
to be set significantly smaller than other algorithms. Thus, the
maximum throughput achieved by ECM is remarkably lower
than the other approaches. The performance differences of
ECM as shown in Figure 7 and Figure 8 is because the much
faster PCIe SSD provides a larger search space than SATA
SSD while constraining the 99th percentile tail latency within
250 µs. As a consequence, ECM achieves higher throughput
on PCIe SSD by comparing more possible genes (parameters)
and chromosomes (configurations). It means that based on the
Quality of Services requirements provided by the users, we
should choose the proper auto-tuning approach to identify the
best configuration.

Finding#1: All of the algorithms can converge to stable
performance if given enough time. Most of them can
reach the (near-)optimal configuration eventually.

Finding#2: The performance features of underlying
hardware, such as storage devices, have non-trivial
impact on the auto-tuning behavior of the optimization
algorithms.

We have also noticed that WSM shows very different
behaviors on PCIe and SATA device as Figure 7 and Figure 8
show. To give a direct impression on the differences, we have
illustrated the effect of the storage device to performance in
Figure 9. Each dot in Figure 9 represents one configuration
and the data with different devices are marked in different
colors. We can see in Figure 9 that the tail latency range on
SATA SSD (78 µs–1.6 ms) is significantly larger than that
on PCIe SSD (49 µs–382 µs), while the throughput range
difference is relatively smaller. As a consequence, the weight
of latency component in the combined target, as Equation 6
shows, becomes significantly weaker on SATA SSD. Thus,
WSM tends to tune the system to achieve near-maximum
throughput on SATA SSD, and in contrast, to probe the system
to produce moderate throughput on PCIe SSD.

Finding#3: ECM tends to achieve a relatively lower
throughput than other algorithms on a slower storage
hardware. On the contrary, our defined WSM produces
a lower throughput on a faster storage hardware.

Finding#4: ECM and WSM behave differently on PCIe
and SATA SSDs, and the reasons are distinct: ECM has
to meet the QoS requirements while WSM optimizes
the combined final target.

To have a better understanding on the auto-tuning process,
Figure 10 shows the intermediate and final tuning results of
ECM on machine M3. We can see that the algorithm has
gone through 23 intermediate configurations before finding the
near-optimal configuration. By constraining the 99th percentile
tail latency within 250 µs, the maximum throughput ECM
achieves is about 199 kop/s. Compared with the peak through-
put (about 210 kop/s) we have observed, ECM can achieve
95% of the maximum throughput while meeting users’ latency
requirements. Note that we have also observed experiments
that produce no solutions when the QoS requirements are set
extremely low (e.g., 20µs).

Finding#5: ECM improves its solutions based on its
intermediate results, but may produce no solutions
when the users’ QoS requirements are not properly set.

We have also compared the speed of the five auto-tuning
methods in finding the near-optimal configurations on PCIe
(see Figure 11) and SATA (see Figure 12) SSDs. The Y
axis shows the percentage of total runs (1,000) that can find
near-optimal configurations within certain period of time (X
axis). Apparently, the faster the better. Figure 11 shows that
ECM takes longer than the other algorithms to find the near-
optimal configuration on PCIe SSD. Specifically, 90% of the
experiments take 37 hours for ECM to achieve near-optimal
performance, compared to less than 21 hours for GA, NSGA,
WSM, and SMPSO. Similarly, on SATA SSD, as Figure 12
shows, ECM remains to be the most time-consuming approach
among the five algorithms—90% of the experiments take about
40 hours to find the near-optimal configuration, while the other
algorithms take less than 20 hours.

Based on our observations, ECM is the most time consum-
ing approach on both PCIe and SATA SSDs. The reason is that
the population in ECM is updated with only the configurations
that meet the QoS requirements. In our experiments, only
offsprings that constraint the latency within 250 µs are picked
for the next-generation population. As a consequence, the gene
diversity is reduced because of more strict selection conditions.
Since gene diversity is one of the key factors that determine
auto-tuning time, the total time taken by ECM is the longest
among all the algorithms. This unique operation in ECM, as
a consequence, prolongs the tuning duration.

Finding#6: ECM is the most time consuming algorithm
among the five algorithms, although it meets the QoS
requirements to the best.

C. Instantaneous Performance

Besides comparing the performance of near-optimal con-
figurations, another aspect to consider is the instantaneous



Fig. 13: Instantaneous Throughput. Fig. 14: Impact of Leader Size. Fig. 15: Impact of Mutation Rate.

performance during the auto-tuning process. To find a sat-
isfactory configuration, a reasonably large exploration space
is necessary, but it is desirable to avoid under-performing
configurations as much as possible. A better algorithm is able
to spend less time on bad configurations.

Figure 13 shows the instantaneous throughput (Y-axis) over
time (X-axis) for one run for each method on PCIe SSD
on machine M3. We can see that GA and SMPSO are the
two methods that perform the best in terms of instantaneous
throughput. They occasionally pick a configuration worse than
the current one during the auto-tuning process, and they both
have the ability to discard these unpromising configuration and
evolve based on the satisfactory ones. Specifically, only 16%
and 26% of the overall auto-tuning time show a throughput
that is below 100 kop/s for GA and SMPSO, respectively.
In contrast, the throughput of ECM and NSGA-II drops
frequently, because ECM and NSGA-II have tried noticeably
more “bad” configurations. In specific, 45% and 32% of the
auto-tuning time undergoes a throughput lower than 100 kop/s
for ECM and NSGA-II, respectively.

GA works by assigning the probability of surviving to the
next generation based on the fitness value (i.e., throughput).
Configurations with lower throughput values have a lower
chance to be picked as parents, thus their genes (parameter
values) have a lower chance to survive in the next generation.
SMPSO can recognize and discard the unpromising configu-
rations, because it chooses new configurations by considering
the previous one, group best, and particle best solutions (see
Section II). The combination of these three components help
SMPSO keep focusing on the promising configurations.

The throughput degradation of ECM and NSGA-II is due
to the fact that the two algorithms, as typical multi-objective
optimization methods, consider both throughput and latency
simultaneously when selecting the next generation genes. All
Pareto optimal configurations are treated equally good and
selected. The difference between ECM and NSGA-II is that
ECM also considers the latency constraints, and only the
configurations that can meet the latency requirements will
be selected. As a consequence, they do not always try to
maximize one single target, such as throughput in Figure 13.

Different from the other four algorithms, WSM shows a
totally different behaviors. WSM achieves significantly lower
instantaneous throughput than the others. Specifically, 77%
of the tested configurations provide a throughput lower than

100 kop/s. It means that WSM gives configurations that
provide moderate throughput more opportunities to survive in
the next generation. That is because in WSM, the optimization
targets have been combined into a single target as defined in
Equation 6. WSM tries to balance multiple goals, including
throughput and tail latency, rather than a single target.

Finding#7: When exploring the configuration space,
the MOO algorithms choose the candidate configura-
tions for testing by making different tradeoff decisions
between multiple objectives, which leads to distinct
instantaneous and final performance.

D. Summary: Guidance for Algorithm Selection

The five selected optimization algorithms show different
behaviors when auto-tuning RocksDB with various workloads
and hardware setups. Our observations show that no algorithm
outperforms the others in all the cases. Although the main
goal of this work is not to identify certain universally good
algorithm, we can provide some rules of thumb as guidance
for selecting an algorithm for auto-tuning.

First, ECM should be among the top picks when users
can provide specific QoS requirements. ECM is the most
time-consuming method among the selected five approaches,
however, it outperforms the others in finding the proper
solutions when specific QoS requirements are set. Second,
both NSGA-II and SMPSO can be considered when users
cannot provide explicit preferences for their optimization
objectives. They can achieve similar performance in finding
the optimal or near-optimal configurations with multiple hard-
ware settings, although they simulate different evolutionary
processes. Third, WSM is generally a sub-optimal choice when
multiple optimization objectives are semantically different.
The behaviors of WSM are hard to predict when auto-tuning
RocksDB, since it shows significantly different behaviors with
various hardware settings in our experiments. Fourth, GA
should be evaluated before being applied for multi-objective
optimizations. Simply optimizing one single objective, such as
throughput, may not be sufficient when other metrics, such as
power consumption, also need to be considered.

V. IMPACT OF HYPER-PARAMETERS

In the multiple-objective optimization methods, the hyper-
parameters, i.e., the optimization algorithms’ own parame-



ters, play an important role in determining the total auto-
tuning time. In this section, we discuss the impact of hyper-
parameters from the perspective of exploitation and explo-
ration (see Section II-D).

A. Effect of Exploitation: Leader Size in SMPSO

In SMPSO, leader size means the number of the best parti-
cles at current stage, which determines the selection pressure
for the next movement. Typically, a higher selection pressure,
caused by a smaller leader size, pushes the search toward
exploitation and expects a shorter tuning time. However,
according to Figure 14, leader size does not have a noticeable
influence on the overall tuning time. We have conducted the
experiments by changing the leader size from 4 to 64 and the
total tuning time remains almost the same. For example, 90%
of the experiments can reach the near-optimal configuration
within 25.6 hours. This is because some alleles (parameter
values) play a dominant role in determining the performance.
These alleles will be selected even though only four leaders are
selected during the selection process. These surviving alleles
further produce offsprings which achieve good performance.
We have a detailed discussion about alleles in Section VI-1.

B. Effect of Exploration: Mutation Rate in NSGA-II

Figure 15 shows that mutation rate in genetic algorithm
plays a significant role for determining the total tuning time.
For example, when mutation rate is 1%, the total time con-
sumed to find the (near-)optimal configuration is 15.9 hours
for 90% of the experiments. As we increase the mutation rate
to 64%, the tuning time increases to 28 hours for 90% of the
runs. Typically, a mutation operator modifies genes in each
individual in a random manner with a given probability. Thus
the increasing structural diversity of the population pushes
the search toward exploration. However, a high mutation rate
(64%) causes the “good” gene disappear easily in the next
generation, while a relative low mutation rate achieves a better
balance for gene diversity and stability.

Finding#8: Since only a few alleles play dominant role
in determining the system performance, a relatively
small exploitation space is sufficient for finding a sat-
isfactory configuration, while a large exploration space
may cause performance degradation when auto-tuning
RocksDB.

VI. INSIGHT AND SYSTEM IMPLICATIONS

We have studied the auto-tuning behaviors of popular multi-
objective optimization methods for RocksDB on SATA and
PCIe SSDs. Despite successful deployment of these algorithms
on auto-tuning complex key-value systems, little is known
how and why some approaches work better than others for
certain target. In this section, we attempt to open the “black-
box” algorithms and gain insight into their internals based on
the behaviors of these algorithms and our knowledge about
the key-value systems. We further present several important

system implications for designers and practitioners to effec-
tively optimize RocksDB based on their Quality of Services
requirements.

1) Alleles: It is expected that as the auto-tuning process
moves forward, there will be some alleles (parameter values)
dominant in the population (configurations). We present the
alleles of genetic algorithm in Figure 16 as an example to
demonstrate the evolution of each system parameter. The Y-
axis shows 6 genes (parameters) as listed in Table II, while
each row represents one allele (parameter value). The X-axis
shows the evolution over the first 30 generations. Each cell is
colored based on the frequency of alleles appearing in each
generation. The darker colors indicate more frequent alleles.

Fig. 16: Alleles of Genetic Algorithm.

In the first generation, the number of write buffers being 8
and concurrent thread number being 4 are dominant. However,
as the evolution proceeds, write buffer number being 16 and
concurrent thread number being 8 becomes more dominant
than other alleles. Since GA simulates the natural selection
process where alleles with better fitness are more likely to
survive, this indicates that GA prefers more write buffers and
more concurrent threads when optimizing the throughput. For
some other parameters, such as concurrent compactors and
cleanup file number, their alleles become more diverse as
the evolution proceeds, which means that they do not have
significant impact to the overall throughput, compared to write
buffer size and concurrent thread number.

Finding#9: As auto-tuning proceeds, the most dominant
alleles become clear for most parameters, such as write
buffer, concurrent threads and flush writers, etc.

2) Importance of Parameters: Based on the prior obser-
vations, an interesting question is what is the impact of
each parameter to the overall performance of RocksDB. To
answer this question, we have quantitatively studied the cor-
relations between each parameter and two performance metrics
(throughput and the 99th percentile tail latency).

As the parameters we have studied in this work are all
discrete numbers, whereas the throughput is continuous, we



Metric Machine ID Device CPU Cores MEM WL WB CT CC FW CF CS
Throughput M1 PCIe SSD 4 8 GB Zipfian 0.91 0.79 - - - -
Throughput M1 PCIe SSD 4 8 GB Random 0.90 0.96 - - - -
Throughput M2 PCIe SSD 32 8 GB Zipfian 0.91 0.87 - - - -
Throughput M3 PCIe SSD 32 16 GB Zipfian 0.91 0.74 - - - -
Throughput M3 PCIe SSD 32 16 GB Hotspot 0.92 0.89 - - - -
Throughput M4 SATA SSD 32 16 GB Zipfian 0.93 0.68 - - - -

99th Percentile Tail Latency M1 PCIe SSD 4 8 GB Zipfian 0.92 0.65 - - - -
99th Percentile Tail Latency M1 PCIe SSD 4 8 GB Random 0.77 0.86 - - - -
99th Percentile Tail Latency M2 PCIe SSD 32 8 GB Zipfian 0.81 0.82 - - - -
99th Percentile Tail Latency M3 PCIe SSD 32 16 GB Zipfian 0.66 0.89 - - - -
99th Percentile Tail Latency M3 PCIe SSD 32 16 GB Hotspot 0.84 0.70 - - - -
99th Percentile Tail Latency M4 SATA SSD 32 16 GB Zipfian 0.54 0.85 - - - -

TABLE IV: Importance of Parameters (measured by R2).

have taken a widely used approach to calculate the correlation
between discrete and continuous values [12]. We illustrate
with the Concurrent Threads (CT) as an example. We set
Concurrent Threads with 4 values (1,2,4,8) in our experiments.
We convert this parameter into 4 binary variables: x1, x2,
x3 and x4. If the thread number is set to be 1, we assign
x1 = 1 and x2, x3 and x4 are set to be 0. Let Y represent
the corresponding throughput values. We then do a linear
regression with Ordinary Least Squares (OLS) on Y and x1,
x2, x3 and x4. R2 is a commonly used metric to measure
how data fits a regression line [11], [53]. In our approach, R2

measures the the correlations between the selected parameter
and the received performance (throughput and tail latency).
Typically, R2 > 0.6 is an indicator that the parameter has
significant impact on the performance. Parameters with highest
R2 are colored green in Table IV. To find the second important
parameter, the same process is applied to the remaining
parameters, but with the first important parameter being fixed.
For example, we calculate R2 respectively by setting CT to be
1, 2, 4 and 8. We take the highest value as the R2 value for
this parameter. The second important parameters are colored
blue.

We have conducted experiments with different hardware
setups and workloads. As Table IV shows, the correlated
parameters remain the same across different platforms. Con-
current thread number and write buffer play the most important
roles in determining throughput and tail latency. However,
we also note that the number of concurrent threads affects
the tail latency more significantly than the throughput, while
the number of write buffers has a stronger influence on the
throughput than on the tail latency.

Finding#10: Write buffer and concurrent thread number
play dominant roles in determining the system perfor-
mance across hardware and workloads.

3) Implications to RocksDB Design: To further look into
RocksDB’s system design and verify our findings, we have
plotted the 99th percentile tail latency and throughput to
illustrate the effect of concurrent threads, write buffers and
compaction threads on M3 in Figure 17, 18, and 19. Each dot
on the figures represents one configuration.

We can see in Figure 17 that configurations with more
threads tend to produce a higher maximum throughput at a cost

of a higher tail latency. However, the performance ranges have
intersections when thread number differs. Furthermore, we find
that the corresponding set of dots (purple) for 8 threads has a
higher variance than the other sets. That means that when more
threads are used, other parameters tend to play an increasingly
more important role in determining the performance.

Figure 18 shows the performance with different numbers of
write buffers. We can see that more write buffers provide a
relatively higher throughput, while not necessarily increasing
the tail latency. Also, the changes of throughput and tail la-
tency when changing write buffer number is not as significant
as the changes with the number of concurrent threads.

Finally, Figure 19 shows the performance difference when
changing the number of background compaction operations.
We can observe an obvious throughput improvement when
increasing compaction operation number from 1 to 2. How-
ever, the throughput does not have an obvious change when
the parameter value further increases from 2 to 4. That is
because compaction is an expensive background operation in
RocksDB, and the further increase of the background oper-
ations has a diminishing effect on the foreground processes.
That explains why this parameter is not chosen as the most
influential ones in Table IV. Our observations about the perfor-
mance trend in this Section (Sec VI-3) are consistent with our
analysis about the optimization algorithms in Section VI-1 and
Section VI-2. These findings are helpful for system designer
to optimize and tune the system.

Finding#11: Selecting a proper user-level parallelism
degree and setting suitable write buffer size will be the
top choices for system designers and practitioners to
balance multiple objectives.

Finding#12: Other parameters, such as the number
of flush and compaction processes, have noticeable
impact to the performance, but the tuning space can
be restricted.

VII. LIMITATIONS AND FUTURE WORK

In this paper, we have presented the first comprehen-
sive study on the multi-objective optimization algorithms on
RocksDB. Auto-tuning the increasingly complex key-value
system is a challenging task. There are several works that



Fig. 17: Effect of Concurrent Threads. Fig. 18: Effect of Write Buffer. Fig. 19: Effect of Compaction Threads.

remain worth being explored in the future. (1) Optimization
targets. In this work, we mainly focus on throughput and
tail latency, two major optimization objectives in real-world
key-value system deployment. Other metrics, such as power
consumption and capital cost, are also of practical interests.
We plan to expand the work to also consider these optimization
objectives in the future work. (2) Workloads and parameter
space. In this paper, we collect the experimental data with
synthesized workloads, following the representative zipfian,
hotspot and random distributions. We plan to further explore
the possibility of repeating real enterprise workloads on our
platform. Moreover, we currently focus on six most influential
parameters in terms of performance. When including power
consumption as our optimization objective, the parameter
selection may need to change. We plan to extend the parameter
space, according to the optimization target and our evaluation
results, in the future. (3) Algorithm improvement. In this paper,
we have discussed the impact of hyper-parameters in the
algorithms. Based on our findings, we plan to improve the
traditional multi-objective optimization algorithms to make
them more robust for different workloads, hardware, and
optimization targets, by integrating them with new techniques,
such as penalty function or re-initialization, etc.

VIII. RELATED WORK

Auto-tuning computer systems has been extensively studied.
Prior works can be roughly divided into two categories, single-
and multiple-objective auto-tuning.

Single Objective Tuning. Auto-tuning technologies have
been widely studied to maximize one single objective, such
as throughput, in complex computer systems. For example,
Behzad et al. [9] propose to apply GA to HDF5 applications to
improve I/O performance. More recently, Li et al. [37] aim to
optimize Lustre with neural network-based deep reinforcement
learning. Aken et al. [5] use supervised and unsupervised
machine learning methods to identify (near-)optimal configura-
tions for database management systems. Alipourfard et al. [6]
try to find the best configuration for big data analytics in
cloud. Besides, GA is also used for other purposes, such as
storage system provisioning [50] and recovery [32]. Rafiki [40]
tires to tune the parameters of NoSQL database, such as
Cassandra and ScyllaDB, for HPC and dynamic metagenomics
workloads. Cao et al. [11] compare multiple black-box single-
objective auto-tuning approaches for storage systems. All these

prior works try to optimize one single goal. Our work presents
the first study of multi-objective auto-tuning for RocksDB.

Multiple Objective Tuning. Multi-objective optimization
(MOO) approaches have been widely studied in various
fields [10], [15], [18], [27], [29], [33], [45], [48], [51]. Prior
studies also have applied multi-objective auto-tuning tech-
niques on computer systems [21], [25], [31], [35]. Durillo et al.
have discussed the advantages and drawbacks of exist-
ing single-objective and multiple-objective auto-tuning algo-
rithms [21]. Gschwandtner et al. have applied multi-objective
auto-tuning to parallel applications for optimizing execution
time, energy and resource usage simultaneously [25]. Jor-
dan et al. introduce framework to auto-tune compiler and run-
time components to optimize run-time and efficiency [31].
Kofler et al. try to enhance traditional multi-objective algo-
rithm with region division [35]. PSLO [36] attempts to enforce
the tail latency and throughput SLOs for consolidated virtual
machine (VM) storage by coordinating I/O concurrency level
and arrival rate for each VM issue queue. Starfish [26] aims
to tune the Hadoop software stack for big data analytics
by considering the resource utilization, time and monetary
cost, etc. ACIC [39] performs performance/cost predictions
by using machine learning techniques for cloud systems and
HPC applications to balance execution time and monetary cost.
Compared to traditional computer systems, key-value systems
are designed particularly for providing high-speed data ser-
vices, which demands to meet several strictly defined SLOs,
such as throughput and tail latency, etc. Some special storage
management mechanisms, such as the compaction process,
in the underlying LSM-tree data structure also make key-
value system’s performance behaviors unique and sensitive to
the system configurations. In this paper, we focus on auto-
tuning RocksDB, a popular key-value data store system, and
have gained important insight, providing important guidance
to system designers and practitioners for future optimizations.

IX. CONCLUSION

Auto-tuning system configurations for key-value stores is
important for achieving crucial performance goals, such as
throughput and tail latency. In this paper, we have conducted
a comprehensive study to understand the behaviors of multi-
objective optimization algorithms for auto-tuning RocksDB.
We have also discussed the instantaneous performance and
the impact of hyper-parameters of the auto-tuning approaches



from the perspective of exploitation and exploration. Based
on our observations, we have also presented the associated
system implications for designers and practitioners in future
optimizations. We believe the methodology developed in this
work can also be applied to other optimization targets and
systems.

ACKNOWLEDGMENTS

We thank our shepherd, Dr. Changwoo Min, and the anony-
mous reviewers for their insightful comments and valuable
suggestions. This work was partially supported by the U.S.
National Science Foundation under Grants CCF-1453705,
CCF-1629291, and CCF-1910958.

REFERENCES

[1] Platypus. https://github.com/Project-Platypus/Platypus, 2019.
[2] Apache Cassandra. http://cassandra.apache.org/, 2020.
[3] MySQL. https://www.mysql.com/, 2020.
[4] RocksDB. https://rocksdb.org/, 2020.
[5] D. V. Aken, A. Pavlo, G. J. Gordon, and B. Zhang. Automatic Database

Management System Tuning Through Large-scale Machine Learning. In
Proceedings of the 2017 ACM International Conference on Management
of Data (SIGMOD ’17), pages 1009–1024, New York, NY, USA, 2017.
ACM.

[6] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang. CherryPick: Adaptively Unearthing the Best Cloud Config-
urations for Big Data Analytics. In Proceedings of 14th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI ’17),
pages 469–482, Boston, MA, Mar. 2017. USENIX Association.

[7] B. Almeida and V. Leite. Particle Swarm Optimization: A Powerful
Technique for Solving Engineering Problems. 12 2019.

[8] D. Beasley, D. R. Bull, and R. R. Martinz. An Overview of Genetic
Algorithms : Part 1, Fundamentals. University Computing, 15(2):58–69,
1993.

[9] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt,
Q. Koziol, and M. Snir. Taming Parallel I/O Complexity with Auto-
tuning. In Proceedings of 2013 International Conference on High
Performance Computing, Networking, Storage and Analysis (SC ’13),
pages 1–12, Nov 2013.

[10] L. T. Bui, S. Alam, L. T. Bui, and S. Alam. Multi-Objective Optimization
in Computational Intelligence: Theory and Practice. IGI Global,
Hershey, PA, USA, 1 edition, 2008.

[11] Z. Cao, V. Tarasov, S. Tiwari, and E. Zadok. Towards Better Un-
derstanding of Black-box Auto-tuning: A Comparative Analysis for
Storage Systems. In Proceedings of the 2018 USENIX Conference on
Usenix Annual Technical Conference (USENIX ATC ’18), pages 893–
907. USENIX Association, July 11-13 2018.

[12] G. Casella and R. L. Berger. Statistical Inference, volume 2. Duxbury
Pacific Grove, CA, 2002.

[13] F. Chen, D. A. Koufaty, and X. Zhang. Understanding Intrinsic Char-
acteristics and System Implications of Flash Memory Based Solid State
Drives. In Proceedings of the 11th International Joint Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS ’09),
pages 181–192, New York, NY, USA, 2009. ACM.

[14] F. Chen, R. Lee, and X. Zhang. Essential Roles of Exploiting Internal
Parallelism of Flash Memory based Solid State Drives in High-Speed
Data Processing. In Proceedings of the 17th IEEE International
Symposium on High-Performance Computer Architecture (HPCA ’11),
San Antonio, TX, February 12-16 2011.

[15] D. Craft, T. Halabi, H. Shih, and T. Bortfeld. Approximating Convex
Pareto Surfaces in Multiobjective Radiotherapy Planning. Medical
Physics, 33:3399–407, 10 2006.

[16] J. Dean and L. A. Barroso. The Tail at Scale. Communications of the
ACM, 56:74–80, 2013.

[17] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley Sons, Inc., USA, 2001.

[18] K. Deb and R. Datta. Hybrid Evolutionary Multi-objective Optimization
and Analysis of Machining Operations. Engineering Optimization,
44(6):685–706, 2012.

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, April 2002.

[20] S. Duan, V. Thummala, and S. Babu. Tuning Database Configuration
Parameters with iTuned. In Proceedings of the 2009 Very Large Data
Bases (VLDB ’09), August 24-28 2009.

[21] J. Durillo and T. Fahringer. From Single-to Multi-objective Auto-tuning
of Programs: Advantages and Implications. Scientific Programming,
22(4):285–297, Oct. 2014.

[22] Facebook. DBBench. https://github.com/facebook/rocksdb/wiki/
Benchmarking-tools, 2019.

[23] B. F.Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud computing (SoCC ’10), Indianapolis,
Indiana, June 10-11 2010.

[24] S. Ghemawat and J. Dean. LevelDB. https://github.com/google/leveldb,
2020.

[25] P. Gschwandtner, J. J. Durillo, and T. Fahringer. Multi-Objective Auto-
Tuning with Insieme: Optimization and Trade-Off Analysis for Time,
Energy and Resource Usage. In F. Silva, I. Dutra, and V. Santos Costa,
editors, Proceedings of 2014 Europe Parallel Processing (Euro-Par ’14),
pages 87–98, Cham, 2014. Springer International Publishing.

[26] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. Cetin, and
S. Babu. Starfish: A Self-tuning System for Big Data Analytics. In
Proceedings of 5th Biennial Conference on Innovative Data Systems
Research (CIDR ’11), pages 261–272, 01 2011.

[27] N. Hochstrate, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiob-
jective Selection based on Dominated Hypervolume. European Journal
of Operational Research, 181:1653–1669, 02 2007.

[28] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and C. Yan.
Speeding Up Distributed Request-response Workflows. In Proceedings
of the ACM Conference on SIGCOMM (SIGCOMM ’13), pages 219–
230, New York, NY, USA, 2013. ACM.

[29] S. Jena, P. Patro, and S. S. Behera. Multi-Objective Optimization
of Design Parameters of a Shell Tube type Heat Exchanger using
Genetic Algorithm. International Journal of Current Engineering and
Technology, 3(4):1379–1386, 2013.

[30] Y. Jia, Z. Shao, and F. Chen. SlimCache: Exploiting Data Compression
Opportunities in Flash-based Key-value Caching. In Proceedings of
2018 IEEE 26th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS
’18), pages 209–222. IEEE, 2018.

[31] H. Jordan, P. Thoman, J. J. Durillo, S. Pellegrini, P. Gschwandt-
ner, T. Fahringer, and H. Moritsch. A Multi-objective Auto-tuning
Framework for Parallel Codes. In Proceedings of 2012 International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC ’12), pages 1–12, Nov 2012.

[32] K. Keeton, D. Beyer, E. Brau, A. Merchant, C. Santos, and A. Zhang.
On the Road to Recovery: Restoring Data After Disasters. SIGOPS
Oper. Syst. Rev., 40(4):235–248, Apr. 2006.

[33] I. Y. Kim and O. L. de Weck. Adaptive Weighted-sum Method for
Bi-objective Optimization: Pareto Front Generation. Structural and
Multidisciplinary Optimization, 29:149–158, 2005.

[34] A. Klimovic, H. Litz, and C. Kozyrakis. Selecta: Heterogeneous Cloud
Storage Configuration for Data Analytics. In Proceeding of 2018
USENIX Annual Technical Conference (USENIX ATC ’18), pages 759–
773, Boston, MA, 2018. USENIX Association.

[35] K. Kofler, J. J. Durillo, P. Gschwandtner, and T. Fahringer. A Region-
Aware Multi-Objective Auto-Tuner for Parallel Programs. In Proceed-
ings of 2017 46th International Conference on Parallel Processing
Workshops (ICPPW’ 17), pages 190–199, Aug 2017.

[36] N. Li, H. Jiang, D. Feng, and Z. Shi. PSLO: Enforcing the Xth
Percentile Latency and Throughput SLOs for Consolidated VM Storage.
In Proceedings of the Eleventh European Conference on Computer
Systems (EuroSys ’16), pages 28:1–28:14, New York, NY, USA, 2016.
ACM.

[37] Y. Li, K. Chang, O. Bel, E. L. Miller, and D. D. E. Long. CAPES:
Unsupervised Storage Performance Tuning Using Neural Network-based
Deep Reinforcement Learning. In Proceedings of 2017 International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC’ 17), pages 42:1–42:14, New York, NY, USA, 2017. ACM.

[38] Z. L. Li, C.-J. M. Liang, W. He, L. Zhu, W. Dai, J. Jiang, and G. Sun.
Metis: Robustly Tuning Tail Latencies of Cloud Systems. In Proceedings

https://github.com/Project-Platypus/Platypus
http://cassandra.apache.org/
https://www.mysql.com/
https://rocksdb.org/
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/google/leveldb


of 2018 USENIX Annual Technical Conference (USENIX ATC ’18),
pages 981–992, Boston, MA, 2018. USENIX Association.

[39] M. Liu, Y. Jin, J. Zhai, Y. Zhai, Q. Shi, X. Ma, and W. Chen.
ACIC: Automatic Cloud I/O Configurator for HPC Applications. In
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC ’13), pages 1–12,
2013.

[40] A. Mahgoub, P. Wood, S. Ganesh, S. Mitra, W. Gerlach, T. Harrison,
F. Meyer, A. Grama, S. Bagchi, and S. Chaterji. Rafiki: A Middleware
for Parameter Tuning of NoSQL Datastores for Dynamic Metagenomics
Workloads. In Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference (Middleware ’17), pages 28–40, New York, NY, USA, 2017.
ACM.

[41] S. Mardle, S. Pascoe, and M. Tamiz. An Investigation of Genetic Al-
gorithms for the Optimization of Multi-objective Fisheries Bioeconomic
Models. International Transactions in Operational Research, 7(1):33–
49, 2000.

[42] R. T. Marler and J. S. Arora. Survey of Multi-objective Optimization
Methods for Engineering. Structural and Multidisciplinary Optimization,
26:369–395, 2004.

[43] R. T. Marler and J. S. Arora. The Weighted Sum Method for Multi-
objective Optimization: New Insights. Structural and Multidisciplinary
Optimization, 41:853–862, 2010.

[44] A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. Coello Coello, F. Luna,
and E. Alba. SMPSO: A New PSO-based Metaheuristic for Multi-
objective Optimization. In Proceedings of 2009 IEEE Symposium on
Computational Intelligence in Multi-Criteria Decision-Making(MCDM
’09), pages 66–73, March 2009.

[45] G. O. Odu and O. E. Charles-Owaba. Review of Multi-criteria Optimiza-
tion Methods – Theory and Applications. IOSR Journal of Engineering
(IOSRJEN), 3:01–14, 2013.

[46] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The Log-structured
Merge-tree (LSM-tree). Acta Inf., 33(4):351–385, June 1996.

[47] T. Papadakis. Skiplist. https://en.wikipedia.org/wiki/Skip list, 1993.
[48] M. Sessarego, K. Dixon, D. Rival, and D. Wood. A Hybrid Multiob-

jective Evolutionary Algorithm for Wind-turbine Blade Optimization.
Engineering Optimization, 47(8):1043–1062, 2014.

[49] C. Stewart, A. Chakrabarti, and R. Griffith. Zoolander: Efficiently
Meeting Very Strict, Low-Latency SLOs. In Proceedings of the 10th
International Conference on Autonomic Computing (ICAC ’13), pages
265–277, San Jose, CA, 2013. USENIX Association.

[50] J. D. Strunk, E. Thereska, C. Faloutsos, and G. R. Ganger. Using
Utility to Provision Storage Systems. In Proceedings of the 6th USENIX
Conference on File and Storage Technologies (FAST ’08), pages 21:1–
21:16, Berkeley, CA, USA, 2008. USENIX Association.

[51] E. Triantaphyllou, B. Shu, S. N. Sanchez, and T. Ray. Multi-Criteria
Decision Making: An Operations Research Approach. Encyclopedia of
Electrical and Electronics Engineering, 15:175–186, 1998.

[52] D. Wang, D. Tan, and L. Liu. Particle Swarm Optimization Algorithm:
An Overview. Soft Computing, 22:387–408, January 2018.

[53] Wikipedia. Coefficient of Determination. https://en.wikipedia.org/wiki/
Coefficient of determination.

[54] Wikipedia. Multi-objective Optimization. https://en.wikipedia.org/wiki/
Multi-objective optimization.

[55] Z. Wu, C. Yu, and H. V. Madhyastha. CosTLO: Cost-effective Re-
dundancy for Lower Latency Variance on Cloud Storage Services. In
Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation (NSDI ’15), pages 543–557, Berkeley, CA,
USA, 2015. USENIX Association.

[56] Z. Yang, X. Cai, and Z. Fan. Epsilon Constrained Method for
Constrained Multiobjective Optimization Problems: Some Preliminary
Results. In Proceedings of the Companion Publication of the
2014 Annual Conference on Genetic and Evolutionary Computation
(GECCO Comp ’14), pages 1181–1186, New York, NY, USA, 2014.
ACM.

[57] Y. Yusoff, M. Ngadiman, and A. Zain. Overview of NSGA-II for
Optimizing Machining Process Parameters. Procedia Engineering, 15,
08 2011.

[58] G. K. Zipf. Relative Frequency as a Determinant of Phonetic Change.
Harvard Studies in Classical Philology, 40:1–95, 1929.

https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Multi-objective_optimization
https://en.wikipedia.org/wiki/Multi-objective_optimization

