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1 Introduction

Reggeon Field Theory (RFT) of Quantum Chromodynamics (QCD) is a putative effective
theory that is meant to describe scattering at asymptotically high energies. Development
of this theory during the last three decades lead to understanding of many features of high
energy scattering as well as phenomenological applications to HERA, RHIC and LHC data.
Nevertheless, much work notwithstanding the theoretical framework of RFT is incomplete.

The basic pre-QCD ideas of RFT go back to Gribov [1], who considered a very general
picture and properties of high energy exchanges in a local field theory. These ideas have
been adopted to QCD and furhter developed over the years in many works [2-39]. Direct
derivation of some elements of RFT from QCD has been given. In particular the Hamil-
tonian of RFT that governs the evolution of physical scattering amplitudes with energy
has been derived in two limits - the dilute-dilute limit, where both scattering objects (the
projectile and the target) are considered to be small and perturbative (which we refer to



as “dilute”), and the dilute-dense limit, where one of the objects is dilute and the other
one is “dense”, i.e. contains a nonpertubratively large gluonic density. The appropriate
evolution in the first limit is given by the BFKL equation [2, 3], while in the second by
the so-called JIMWLK equation [40-45, 47-49] (and its dual KLWMIJ [46]). The direct
relation between the JIMWLK and BK evolution equations [34, 35, 40-45], or Color Glass
Condensate (CGC) [47-49] and the RFT has been recognized in [50].

The JIMWLK evolution equation is derived directly from QCD in the leading order
perturbative expansion in the dense-dilute regime. As such it does not contain some im-
portant effects, like higher order perturbative corrections and the so called Pomeron loops.
The NLO corrections to JIMWLK have been derived [51-55] with the conformal part of
the kernel known today at the three loop level [56, 57].

The hunt after Pomeron loops on the other hand has not concluded yet. The Pomeron
loops are important when both, the density effects in the wave function and multiple effects
in scattering are equally important. Some 15 years ago the activity aimed at incorporating
the effects of the Pomeron loops into the CGC framework has been very lively [38, 58—
65]. Some interesting progress has been made to include both the “splitting” and the
“merging” Pomeron processes into the high energy evolution. This activity unfortunately
has not converged to a universally accepted form of high energy evolution and RFT.

JIMWLK evolution is valid only in a limited domain of rapidities, i.e. only as long as
one of the colliding objects is dilute. The limitation of the JIMWLK evolution to a dense-
dilute scattering is a genuine physical restriction. Even though nominally the JIMWLK
equation applies to the evolution of a dense system, the fact that the scattering of this
large system is allowed to be perturbative (target is dilute) leads to some paradoxical
features. For example, as was anticipated in [21] and explicitly demonstrated in [20], when
interpreted as the evolution of QCD wave function of a dense object, JIMWLK evolution
leads to appearance of negative probabilities. The negative probabilities accompany states
arising in the evolution with smaller number of gluons than the number of gluons at the
outset of the evolution. Physically one expects of course that the number of gluons in
the QCD wave function increases with energy, while within the JIMWLK framework the
number decreases but the low gluon number states appear with negative probability. This
strange behavior nevertheless produces correct energy dependence of the S-matrix but only
as long as one of the colliding objects is dilute. The violation of unitarity is a precursor
of the eventual breakdown of the JIMWLK evolution at high enough energy. At high
energy the Pomeron loops must become important and their effect on the evolution must
be significant.

This issue of the unitarity violation in the JIMWLK limit motivates us to reconsider
the problem of including Pomeron loops. More precisely we take up a limited goal to
try and extend Hj;ywirk in a way that it becomes consistent with a very important
property of RFT - the self duality. It has been established in [66] that the Hamiltonian
that generates the high energy evolution must be invariant under the dense-dilute duality
transformation. Physically the self duality has a very simple meaning. It expresses the
fact that a scattering amplitude for a scattering of any two hadrons does not depend on
which one of them is right moving and which one is left moving, i.e. which one of them we



call the target and which one the projectile. As discussed many times in the literature, the
JIMWLK evolution explicitly violates the self duality property which one expects to hold
in RFT, since within the domain of validity of JIMWLK the target and the projectile are
very different and thus are explicitly treated differently in Hjrpwik-

Although self duality alone may not be sufficient to restore unitarity of the evolution, in
a zero dimensional toy model addressed in [21] it was shown that the unitary Hamiltonian is
indeed seld-dual. Motivated by this, in the present paper we explore possible generalization
of the JIMWLK Hamiltonian which restores self duality. Our approach here does not rely
on direct derivation from QCD, but instead is akin to typical effective field theory (EFT)
attitude: identify relevant degrees of freedom and impose appropriate symmetries. We
also require that in the dense-dilute limit the Hamiltonian reproduces both H jryw ik and
Hirwurs. We find a family of such Hamiltonians which all reduce to Hjrywik in the
dense-dilute limit and are self dual. We note that one of these Hamiltonians is similar in
structure to the so called “diamond action” introduced some years ago in [67] and discussed
in [68]. However a more detailed analysis presented below shows that our construction
does not support the condition imposed on the product of Wilson loops in [67], which was
crucial in the approach of [67] to maintain self duality. Thus our current suggestion is not
equivalent to the diamond action of [67]. Additionally we note that our approach relies
on the development of RFT formalizm in [20], and thus provides directly an algorithm for
calculation of scattering amplitudes once the Hamiltonian Hgrpr is specified.

We thus find a family of self-dual RFT Hamiltonians that reproduces all the known
limits. Unfortunately it turns out to be technically involved to check whether the evolution
generated by these Hamiltonians is unitary and we are currently unable to answer this
question. We are nevertheless encouraged by many similarities with the zero dimensional
toy model where the very analogous construction provided a solution to the unitarity
problem. The quantitative analysis of this question is left for further research.

The plan of this paper is as follows. In section 2 we recap the formulation of RFT, its
algebra of operators and Hilbert space structure discussed in [20]. In section 3 we present
the construction of Hrpp imposing the discrete symmetries of Hjrywix in addition to
self duality. In section 4 we show that in the dense-dilute limit our Hgpp reproduces the
JIMWLK and KLWMIJ evolutions. In section 5 we discuss the continuous symmetries of
Hpgrpr. This discussion is perturbative, and we conclude that the continuous symmetry
group of our Hrpr is somewhat surprisingly SU(N) x SU(N) x SU(N).! In section 6 we
consider the relation with the diamond action [67], and show that the so called “diamond
condition” on the Wilson lines is violated at second order in g. We conclude with discussion
in section 7.

We have abused the notation here somewhat. The symmetry group is not in fact a direct product of
three factors of SU(N). The more appropriate way to characterize it is to say that the generators contain
three linearly independent sets of generators of SU(N). The commutation relations between some of these
generators are quite complicated to calculate and thus the full group structure is not known. We will expand
on this in the body of the paper.



2 The Reggeon Field Theory: scattering amplitudes and field algebra

In this section we briefly recap the general formulation of the Hamiltonian Reggeon Field
Theory given in [20].

Consider an S matrix element Sy; for scattering from the initial QCD state
|W,) = |X1,a1;. .. 5XN, aN)T|Y1, €15 - ;Y M, CM) P to the final  state
W) = |x1,b15...;XN, bN)7|Y1,dis - .5y, dar) p. Here the target state (subscript T°) con-
tains N gluons, and the projectile state (subscript P) contains M gluons. The states are
labeled by the transverse coordinates and color indexes of the gluons. At high energy in
the eikonal approximation this is given by

Sif = <\I/z|§|\11f> = (LU (x1) .. . UWON (x ) U () ...UM (y 1) | R) (2.1)
where the left and right RFT Fock vacuum states satisfy
(L|\Uqp = dap(L|; Uap|R) = dap|R). (2.2)

The projectile and target adjoint Wilson line operators are defined in terms of the projectile
color charge denstity p?(x) as

Ux) = 7570, Ulx) = 97y 990" ) (2.3)
with ‘ ’
0 = [ox-ytl obx-y) = Lw (24)
y

Here a“ is the potential at point x produced by the charge distribution of the target.
The scale L is arbitrary and does not enter calculations of any physical quantities. The
SU(N) generators in the adjoint representation are defined in terms of the SU(N) structure
constants as

Tl;lc = —ifabc- (2.5)

These equations imply non-trivial commutation relations, between U and U, which
constitute the algebra of the RFT in analogy with Heisenberg algebra of fields in the
ordinary QFT. In order to calculate the scattering amplitude eq. (2.1) one uses the algebra
of U and U to commute the factors of U to the right of U, at which point they disappear
by virtue of eq. (2.2).

This algebra encodes the diagrammatic calculation of scattering amplitudes in the
operator language. Consider for example the scattering of one gluon on one gluon. The
scattering amplitude up to second order in ay is given by

(LU (x) U (y)|R) =

o 2 o o (2.6)
5 — ig(x — Y T Tl + | ioo(x —3) | (Tl TT)ea + (FIT)ed + .

This corresponds to the sum of one and two gluon exchange diagrams in figure 1-a. In fact
as was shown in [20], higher order terms organize themselves into all possible diagrams
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Figure 1. The one, two (a) and three (b) gluon exchange contributions to the algebra.
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where the relative order of the vertices on the target gluon line is permuted in all possible
ways. These are the relevant diagrams for eikonal scattering in the Lorentz gauge. The
O(a?) contributions correspond to the three gluon exchange diagrams (figure 1-b).

With the algebra encoded in eq. (2.3) and the rule for calculating scattering amplitudes
eq. (2.1), the framework of the QCD RFT is defined. To complete the RFT framework
one needs to specify the Hamiltonian Hgrpr that generates the evolution of the scattering
amplitude in energy. We will spend some time discussing this Hamiltonian below. But
before setting along this route let us recap unitarity constraints on any RFT state as
derived in [20]. These constraints must be preserved by energy evolution of the scattering
amplitudes. This implies a non-trivial constraint on Hrpr [20].

Eq. (2.1) is easily extended for scattering of a state which is a superposition of states
with fixed number of gluons. For example, starting with the initial QCD projectile state

‘\Ij Z Cal,az an|X17a17-'~;xnaan> (27)

n;Xq;04

the eikonal scattering can only produce a state of the form

(5D p = Coy byt [X1,b15 i X, bir). (2.8)

n;X450;

The same holds for the target

’\II Z Cq,cg cm|Y17017---;Ym,Cm> (29>

m;y;;cj

the eikonal scattering can only produce a state of the form

e =Y Caydyedn Y1615 Yoy din) (2.10)
7y37d

The S-matrix element is given by
Sis = (LIWr[U]Wp[U]|R) (2.11)

with

Wp= Y F'({a,b;x}) ﬁ Ut (x (2.12)
=1

n,{a,b;x}



F"({a,b;x}) = Cq, a0...an (X1 - - .xn)C[:hb%bn (X1...%Xp) (2.13)

and
Wr= Y F'({e.diy}) [JIU°% (y)] (2.14)
m,{c,d;y} i=1
F"({c,d;y}) = Ceyeneven Y1+ Ym)Ciy gy, (Y1 Yim)- (2.15)

As is obvious from egs. (2.13), (2.15), the functions F' and F' must satisfy the properties
of s-channel unitarity [20]

Fr({a, a;x}) > 0; Z/{}FH({G,G;X})_L (2.16)
ot/ &

and the same for F.
As shown in [20] some these conditions are violated in JIMWLK evolution, which leads
to negative probabilities £ when evolving the state of a dense target.

3 The RFT Hamiltonian

The subject of RFT is the evolution of scattering amplitudes with energy. In general the
energy evolution is generated by the action of the RFT Hamiltonian Hgpr[U,U]. The
S-matrix element of eq. (2.1) evolved to rapidity Y is given by

Sip(Y) = (LU (x1) ... UNON (x )Y HrerUUIgendy (y ) - gremdar (y ) )[RY. (3.1)

3.1 JIMWLK/KLWMIJ Hamiltonians

Exploring the functional form of Hgrpp is the subject of this paper. Ideally we would like to
derive it directly from a QCD calculation. This has been achieved in the dense-dilute limit,
where one of the scattering objects is dense and the other one is dilute. The two versions
of the Hamiltonian related by the duality transformation have been derived in [40-49].

When the target is dense and the projectile dilute, the relevant limit is the JIMWLK
Hamiltonian:

Qs (X—Z)'(y—Z) a Fra a a a a
Hymwik =5 3 /x’y7z()cz)2(}fz)2 |:2\7L (x)Th(y) U™ (2) =Tt (x)Ti(y) = Ts(x) T(y) |-
(3.2)
Here the right and left rotation operators are defined as [69]
JL(x) = lTe 0 th 1TGL -1 " b(x)
L1275 \ 7 27 S P 33)

7809 = (575505 (oo [37°509 ] +1)) T,



The function on the right hand side as usual should be understood as a power series
expansion. For a single variable ¢ we have

t N e AL
_ _ _ m _ —um
ML(t):2<coth2—1)—et_1—Z - —ZCt
t BT XL '
r(t) 5 (cot 5+ ) T mz_:o o mz_:ocmt

Here B,, and B, are Bernoulli numbers. They have the properties that B, = B;rn
for all even integers 2n while B, ,, = B;n 41 = 0 for all odd integers 2n + 1 except
By = —% = —B;. Also the relations M (t) = Mg(t)e~" and Mp(t) = M(t)e! can be
readily verified.

The operators J7 (x), J5(x) act as left rotation and right rotation on the Wilson line
™ (x),

[TE(), U™ (y)] = —(T°U(y)""d(x —y),
[TR(x), U™ (y)] = —=(U(y)T*)™d(x —y).

One seemingly peculiar feature of these definitions is that when considered as operators

(3.5)

on the standard Hilbert space of functions of p, the operators Jr,g) are not Hermitian

I #Tu; T # Tr (3.6)

However one has to keep in mind that the operation of Hermitian conjugation of the
operators in QCD Hilbert space does not correspond to naive Hermitian conjugation in the
RFT space. Without going into detailed discussion here, we refer the reader to [70] where
it was shown that the RFT transformation that corresponds to Hermitian conjugation in
the QCD Hilbert space is

[QCD operator]’ — (L < R)* (3.7)

Under this transformation indeed we have
J. = JIp=JL; Jr— Jr =Jr (3.8)

as is required for Hermitian operators in the QCD Hilbert space.
The evolution in the reverse situation (dilute target and dense projectile) is governed
by the so called KLWMIJ Hamiltonian,

HMWMU:;;xyﬂgzggtggFﬁ@ﬂ%wwwﬂégﬁﬂﬂw%%@ﬂﬂw
o (3.9)
where 77,y are defined as
a —1 0 1 e: e 1 e: e be
Ti(x) = 7 5P ) [2T iga’(x) <coth [QT iga (x)] — 1>} , 510)

a

—7 0 1
%Wzgmwﬂ

S T¥ig0c () (coth [;Teigof(x)} 4 1)} "



with a®(x) defined in eq. (2.4). These satisfy

(U™ (y), I1(x)]
(U™ (y), Tr(%)]

—(T"U(y))"™(x —y),

(3.11)
—(U@)T*)"™"o(x —y).

The two sets of operators satisfy two copies of SU(N) x SU(N) commutation relations:
(%), TL(y)] = if* TE(x)8(x — y),

JL
[Th(x), Th(¥)] = =i [ T(x)(x ~ ) (3.12)
JL(x), Ti(y)] = 0.

and
T (%), T} (y)] = —if*"Ti (x)d(x — y),
[Zh(x), Tr(y)] = if " Tr(x)6(x — y) (3.13)
2% (%), Zx(y)] = 0.

The commutation relations between J and Z are rather complicated and we will not
attempt to derive them here.

The Hamiltonian of RFT must possess a property of self duality, i.e. it has to be
invariant under the transformation that interchanges the projectile and the target. This is
obvious from the point of view of QCD, since it is immaterial which one of the colliding
objects we call the target, and which one the projectile. Thus scattering of an N gluon
projectile on an M gluon target is the same as scattering of an M gluon projectile on an N
gluon target. The JIMWLK (and likewise KLWMIJ) Hamiltonian is not self dual, since it
is only meant to be valid in the very asymmetric regime where one of the colliding objects is
dense and one is dilute. This lack of self duality means among other things, that JIMWLK
cannot be used at asymptotically high energies, where the projectile becomes dense as well.
It is thus clearly desirable to find a self dual extension of Hjrywirk.-

Some years ago a considerable effort has been dedicated to a search for a self dual
extension of the Hamiltonian. One such extension in the context of large N. Pomeron
theory was suggested by Braun [31-33]. The solutions to the Braun theory however exhibit
a nonphysical bifurcating behavior [71] which was an original motivation for the study
of [21]. It was shown in [21] that Braun’s theory suffers from unitarity violation. Other
attempts based on the QCD path integral approach were reported in [67, 68]. Those
works have proposed the so called “diamond action” as a self dual effective action of
RFT. Although the question has not been settled, in recent years this effort has only been
simmering on a back burner.

Here we return to this problem motivated by considerations of unitarity. As we showed
in [20], the JIMWLK Hamiltonian violates QCD unitarity constraints when acting on the
dense target wave function. In view of the discussion in [21] of the zero dimensional toy
model, it seems likely that the self duality of Hgrpr is necessary in order to restore unitarity.
In this section we present a self dual Hrpr and show that it reduces to Hyrywirkx and
Hyrwarg in the appropriate dense-dilute limit.



3.2 The self dual extension
3.2.1 The symmetries

Our strategy in this paper is similar to that of EFT: we are not going to attempt to derive
Hppr from first principles, but will rather construct a family of Hamiltonians which on
the one hand reduce to Hjryrwirx and Hirwarrs in the appropriate limits, and on the
other hand are symmetric under the known symmetries of Hjrprwrx in addition to being
self dual.

The symmetries of Hjrywrx have been analyzed for example in [50] and [72].
Hjrvwirk possesses the continuous symmetry group SUL(N) x SUgr(N) generated by
Jr(r)- In addition it has the discrete Zég X ZQC symmetry group with the two discrete
transformations acting in the following way:

1. The signature Z5

Sust=ut,  SUST =0, S7ST=—-Jr < SI.ST=-Ip  (3.14)

2. The charge conjugation Z§'.

For simplicity we choose to work in the basis where the generators in the fundamental
representation t* are either real and symmetric or imaginary and antisymmetric. In this
basis the charge conjugation symmetry corresponds to changing the sign of the real gener-
ators since this has the effect t* — —t%* which interchanges the generators in fundamental
and anti fundamental representations. Defining the matrix

Cap = —2tr [t (3.15)
the “second quantized” form of the transformation is
CItpC = cThry  OTipCl = ¢TI} . (3.16)
The eikonal factors in fundamental (Ug) and adjoint (U) representations transform as

CURCT = Uj: CURCT = U} (3.17)
CUabC’Jr = CacUcdCap; CUabCT = Cacﬁcdcdb‘ (318)

We expect both the discrete symmetries of Hjrpywirkx to remain the symmetries of
the general Hrpr since they directly reflect the symmetries of QCD. The situation with
SUL(N) x SUR(N) is less clear. It is certainly true that we expect the diagonal vector
subgroup SUy (N) to be a symmetry of Hgpr, since it descends directly from the global
color group of QCD as it rotates simultaneously the initial and final scattering states. The
left rotation acts only on the initial states and may be an accidental symmetry of the dense-
dilute limit. Thus we will not insist on SUL(N) and SUgr(N) to be separate symmetries
but will return to this question later.

In addition to these symmetries which are symmetries of JIMW LK limit, we will also
require Hrpr to be invariant under the dense dilute duality Z2D . To understand how the



duality transformation acts on the field variables in the current RFT setup, we recall that
physically it simply interchanges the projectile and the target. In other words for basic
scattering amplitude we should have
(LIUMY (x1) ... UWNN (x ) UAD () ... UMM (ya)|R) — (3.19)
<L]Udlc1 (y1) ... Udmen (yM)Ublal(xl) N A (xn)|R).

Self duality, or invariance, under Z# is a realization of the fact that the two amplitudes
must be equal at any collision enery

(LIUMb (x1) ... UNON (x )TN () ... UMD (y ) |R) (3.20)
= (LIUM (yy) ... UMM (y ) TP (x1) ... UNN (xn)|R).

When considered as a transformation acting on a function of the basic fields p and %, the
ZP transformation can be written as

) i 0
Flp,—] = F'[———,iga"]. 21
In terms of individual operators this is [66]
i 9
a_y 2 - —iga” 3.22
p phvE 5 i (3.22)

However, in addition to this action one has to take an overall Hermitian conjugation of the
whole expression which is being transformed. Note that due to this additional action of
Hermitian conjugation the duality transformation Z2D cannot be represented by an action of
a unitary operator on the RFT Hilbert space. This is similar to time reversal in quantum
mechanics, which is not a unitary but an anti unitary transformation. Recall that anti
unitary transformation involves complex conjugation of an operator function in addition
to the transformation of basic variables. The duality is not an anti unitary transformation
either, since it involves hermitian conjugation rather than a simple complex conjugation of
a function F'. Nevertheless, just like the time reversal in quantum mechanics, it is a bona
fide linear transformation in the Hilbert space and thus should be considered on par with
other symmetries of the theory.

3.2.2 The “left” and “right” Wilson lines

To construct Hgrpr let us introduce the following Wilson line like operators in the funda-
mental representation

Vi(x) = Exp { ' / go(x — y)tejf(y)}

—Exp{ i [ gotx— )tejﬁ(y)}

(3.23)

= Exp

=
Exp{ solx - VT )}
{- /ygqu Wi |



These expressions resemble our reggeized gluon operators U and U. However they are
defined in terms of SU(NV) generators Jrg) and Zpg) rather than commuting variables p.

The reason to introduce these operators is that they look like appropriate building
blocks for Hrpr. Recall that we need Hrpr to reduce to Hjrywirk in the dense dilute
limit, i.e. in the leading order of expansion in powers of p. Now Hjrywrk is a simple
function when written in terms of Jr,(g) rather than the regular Wilson line operators U.
It therefore seems likely that in order to extend it beyond the dense-dilute limit the basic
building blocks also should be simple function of [J’s. On the other hand Hjrywirk is
also a simple function of U. Given that we want to impose self duality on Hppp it is
reasonable to choose our building blocks to be in some way similar to Wilson lines. Hence
the motivation to introduce the operators in eq. (3.23). We chose to discuss these operators
in fundamental representation for simplicity. As we will show later, the construction we
propose works with an arbitrary representation of SU(N), thus providing an infinite set of
Hamiltonians that satisfy our requirements.

When calculating the RFT “correlators” of these operators with U and U, the ordering
of the vertices is important, unlike in the calculation of correlators of U’s and U’s among
themselves. For example consider the simplest correlator

o r7C afi cc . % % L ) j e
(LIVEP () T)| R) = 6776 — igo(x — y)thgTia + o7 [i90(0x = ¥ (E4)ap(TIT g + ..
(3.24)
where the ellipsis denotes contributions of order g% and higher, i.e. three and higher gluon

exchange diagrams. For comparison, a similar correlator for the fundamental Wilson line
defined as

V() = Up(x) = Exp { [ ot - y>t6p6<y>}
Yy
LIV ()T )| ) =

2
575 —ig(x — y)thsTiy + [21!i9¢(x - y)] ) ap[(T'T? )eq + (TVT")ca) + - .-
(3.25)

At the two gluon exchange level the difference between the two is

L ligo(x — )P (£ )as [T, TV )ea (3:26)

(LIVEP ()T (y)[R) — (L|VP ()T (y)|R) =
which corresponds to the diagram in figure 2. Note that this difference is a two gluon
exchange in the octet channel, and may be viewed simply as the reggeization correction to
a single gluon exchange.

In general if one thinks about Vj as representing a fundamentally charged parton in
the target wave function, the parton in question would be something of a black sheep.
It would always scatter on the projectile only after all the other partons have had their
day. As an example, a sample diagram corresponding to the calculation of the correlator
(L|U(x1)U(x2)VL(z)U(y)|R) is depicted on figure 3. Note that all the gluons exchanged
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Figure 2. Reggeization corrections to a single gluon exchange.
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between U and V7, attach to the U line to the left of any gluon exchanged between U and
any of the U’s. This follows since V7, contains only left rotation generators of U. Similarly,
Vgk only contains right rotation operators, and therefore in a scattering diagram always
exchanges gluons with the projectile before any other exchanges with target gluons.

Also note that operatorially Vi and Vg do not commute with U, although they
commute with each other. Similar comments apply to VL( R)-

3.2.3 Constructing Hrpr

Let us now consider the following expression
1 _ _ _ _
Hhr =~ / dPXTr[0PV (%) Vi (3) Vi () Vi () + V2 (%) V1 (3) 02V () V()

+ 20,V (x) Vi (x)0; Vr(x) VR (x)]

_ _ 3.27
=7fq2 d*x V7 (x) V3 (x) Vi (x) VR’ (x)] (320
—ngg Px (VP () Ve ()IVEP (Vi ()

where in the last line we have integrated by parts assuming that the boundary terms vanish.
Note that the order of factors is important, since the operators V and V do not commute
with each other. In (3.27) all factors V7, Vg are understood as positioned to the right of
any factor V7, Vz. The diagram that schematically represents the color flow between the
four Wilson lines is shown in figure 4.

We start with this expression since as we will see shortly it reproduces both, the
JIMWLK and the KLWMIJ Hamiltonians in the appropriate dense-dilute limit. Following
our EFT like strategy we would like to impose on Hgpr the discrete symmetries discussed
above. It turns out that it is quite easy to do.

We start with the duality transformation Z. We perform the transformation in two
steps. First we perform the canonical transformation

i 0 o
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Figure 4. The Reggeon field theory Hamiltonian HI%);T. The arrows indicate the directions of
color charge flow.

under which
Jee T, JseTd (3.29)

or equivalently,
Vi, — V};, VR — VLJ[

Vi = Vi VeV

Second, in accordance with eq. (3.21) we take the Hermitian conjugation of the transformed

(3.30)

Hamiltonian to obtain

= (= [axviP v vl v

F (3.31)
s 1
= 5 [ PV GV IV (Vi (o) = Hyho.
Thus we find that Hg}),T is self dual already.
The next in line is the signature transformation eq. (3.14)
Vi < Vg, VL Vg, (3.32)

It is easily seen that Hl(%l}),T is invariant under this transformation.

The only remaining discrete symmetry is charge conjugation. Although HI%)UT itself is
not invariant it is easy to rectify this.

According to eq. (3.16) the charge conjugation transformation acts on the left and
right Wilson lines. From the definition of 7. g( and IL( R)’ taking complex conjugate, one

obtains
cVCT = Vl—wmp{—ﬂ{/¢( ﬁ”JWY&
CVrCT = V5 =exp zg/ d(x—y)t" Iy

(3.33)

CV,CT = V§ = exp zg p(x — y)te*Ie(y)}

CVrCT = V5 = exp {zg/ d(x —y)t"Ii(y }
y
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Applying the charge conjugation on HS%T we obtain

c ]‘ [ 7C [ 7C,0Q¢ Cc,, C.
CHY)Ct = HG ) = 7 / ax Vo)V ()02 VeV (] (334)

It is easy to see that Hg})fT is by itself invariant under the signature and duality trans-
formations. Therefore, the following Hamiltonian is invariant under all relevant discrete

symmetries:
1 1 e
Hrrr =5 (HI(%})?T + Hz(%l)wT)
1 2 B 76 2 |y raB 76 3.3
a 35
s [ (V7 i 00 [V G0V o) (3.35)
VPPV )07 [Vl v ()] )

So far we have not discussed the continuous symmetries of Hrrr. We will postpone
this discussion to section 5 after we consider the dense-dilute limit.

We have found a candidate RF'T Hamiltonian which is self dual. In fact the construc-
tion above defines a family of self dual Hamiltonians. In particular rather than using the
fundamental representation for defining Vrg) and VL( g) we could have used any represen-
tation of the color group. Any one of these variations is self dual and, as we will see later
reduces to the JIMWLK Hamiltonian in the dense-dilute limit. We do not have any a priori
reason to prefer one of these versions to another, although it may seem unnatural to involve
very high representations of the color group. One should also note that for representations
that have vanishing N-ality, like the adjoint representation one has HS}T = gng which
is a simplifying feature.

In this paper we will be working with the fundamental representation defined in
eq. (3.23) when deriving the JIMWLK and KLWMIJ limits so that not to loose gener-
ality. We will show that HS}T and Hg}(i[ separately reduce to Hjrywirrx and Hirwarg
in appropriate limits and that this feature extends to any representation of SU(N).

4 The dense-dilute limit

The most important test for Hgrpr is that it must reproduce H jrpw ik in the dense-dilute
limit. In this section we demonstrate explicitly that this is indeed the case.

The dense-dilute limit arises when the number of gluons in the projectile is of order
one, while the number of gluons in the target is large, parametrically n ~ O(1/a?). Thus
we are considering the amplitude in eq. (2.1) and eq. (3.1) where the number of factors
U is of order one, and the number of factors U is of order 1/a2. In this limit several
simplifications occur.

We will first give a simplified argument, and then complete the mathematical details
of the demonstration.

First of all, note that at weak coupling any given projectile gluon can exchange at
most two gluons with any given target gluon. However, since the number of gluons in the
target is large, a projectile gluon can multiply scatter on many gluons of the target. A
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Figure 5. A representative diagram for scattering of a single projectile gluon in the dense-dilute
limit. Here we have drawn the projectile gluon on the top of the figure and the target gluons at the

bottom.
U] u — U
—3 U] U V]
+ +
— ¢ U U : U

Figure 6. A representative diagram for scattering of a single target gluon in the dense-dilute
limit. Here we have drawn the target gluon on the bottom of the figure and the projectile gluons
at the top.

representative diagram for scattering of a single projectile gluon is depicted on figure 5. The
diagram in figure 5 contains single and double gluon exchanges between individual pairs
of gluons. If a single gluon exchange is present such a diagram contributes to an inelastic
amplitude as the final state of the scattering process is necessarily different from the initial

state. The elastic amplitude has contribution only from two gluon exchanges where the

2

<, and

two gluons are in the color singlet. Since every two gluon exchange carries a factor «
there are in total O(1/a2) target partons that can participate in the scattering, the total
elastic scattering amplitude in the dense-dilute limit is of order unity.?

On the other hand since the projectile is dilute, every target gluon can only scatter
either on one or two projectile gluons. The appropriate diagrams are represented on figure 6.
Technically this means that in the dense-dilute limit all factors of U have to be expanded
to second order in p. This insures that once two gluons are exchanged between a target
gluon and the projectile, the target gluon does not participate in any further scattering.

Now consider the diagrams as in figure 6 but which, instead of one of the factors U
contain a factor V7, that appears in the RFT Hamiltonian.

As we have discussed above, the only difference between these two sets of diagrams is
that all the gluons exchanged between V7, and any given factor U connect to the left of any
other gluons that might be exchanged by this U and a different factor of U present in the
amplitude. However any given U can exchange at most two gluons. If these two gluons

2Single gluon exchanges behave a little differently. One does not add single gluon exchange amplitudes
between a given projectile gluon and different target gluons since those lead to different final states of the
target and do not contribute to the same S matrix element. Instead the single gluon exchanges with distinct
target gluons lead to appearance of many nonvanishing off diagonal matrix elements of the S matrix albeit
each such matrix element is of order as. The number of such nonvanishing matrix elements is O(1/a2).
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Figure 7. An a, suppressed correction to a correlator containing V which is negligible in the
weak coupling limit.

are exchanged between U and V7, no further gluons are exchanged and the action of V7,
is identical to the action of V. If U exchanges only one gluon with V;, and another gluon
with some other factor of U, it is still true that as far as elastic amplitude is concerned the
action of V7, and V is identical. The difference only appears in the inelastic amplitude, but
here again it appears as «; suppressed correction through a diagram analogous to that of
figure 2, see figure 7. This correction is not enhanced by the number of target gluons, and
thus is indeed negligible in the dense-dilute limit. We therefore conclude that in the dense
dilute limit we can safely replace V7, by V. The same is obviously true for V. Thus in the
dense-dilute limit in Hrpr we can replace

VL — V; VR — VT (4.1)

Another simplification follows since any factor of U, Vi or Vi can be expanded to
second order as only two gluons can be exchanged by any of the target gluons. Thus in
the dense-dilute limit we have

2
Vil =1+ [ igobx-yedi) - % [ otx—yiotx - 2t iy) Ta).
Y Ve (4.2)

2
Vi) = 1= [ igotx—y)eeTaly) - G [ ot - y)olx— )t Tiy) Tia).

With these simplification we now consider the RF'T Hamiltonian. Let us concentrate on
(1)
Hyppr
1 L [ o8y A
Hapr =~ | VAV 00 [V vt (4.3)
X
with the understanding that Vi, Vgr are expanded to second order. The zeroth order in
expansion, the product Vi Vg is a constant and does not contribute to the Hamiltonian
due to derivative acting on it. The first order also vanishes because it involves a factor
Tr(t*) = 0. At second order there are three terms
2
g . .
VRGOV = [ iblxy)iotx—2) |2t T (5 THEH (100 T (3) T3 2
Y.z

(t)0 0 T (¥) TH(2)
(4.4)
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Substituting the above expression into Hgpr, one obtains

Hittr =g [ oRlio0ey)iotx—m)( 20V 0l T 0 )aslt T
[t T Naslt"TE @) ot [ T3 s T (2)]50)

Zﬁ / 02lio(x—y)io(x~2)] |20 (x)T5 (v) TA(2)+ TE () T (2)+ Th(¥) Th(2)]
1

e | lionox-y)ioeo(x—a)) (2060 T} () Th@) + T )T (2)+ T3 Ti(2)].
(4.5)

Note that the spatial derivatives generate other terms

03 ($(x—y)p(x—2)) = [026(x—y)|p(x —2)+ d(x—y)[02d(x —2)|+ 205 p(x —y) Oxp(x—2).

(4.6)
However, with 024(x —y) = gd(x —y) and 02¢(x — z) = g6(x — z), performing the
integration over x and using the relations U (y) 7 (y) = J&(y) and U%(2) Td(z) = J£(z),
these addtional terms cancel each other. Thus only the term where the two derivatives
separately act on ¢(x —y) and ¢(x — z) survives. Performing the same calculation for
Hg});CT we find to this order an identical result. Thus in the dense-dilute approximation
we get

Hrpr — HiyrmwiLk (4.7)

= o [ lieotxy idnotx— ] [-20° ) TE TR E)+ TE ) TE @)+ Th3) T
X,y,z

There is one subtlety in this derivation which we need to address, i.e. at what order
does the correction to eq. (4.1) affect the calculation. To answer this we need to develop a
controlled expansion of Hgpp in the dense-dilute limit. To do this we note that although we
have justified egs. (4.1) and (4.2) by analyzing the contributions to the S-matrix generated
by exchanges of at most two gluon, the same result can be obtained formally by taking the
limit of small p. It is obvious that at small p, the operators Vi and Vi should be simply
expanded in power series in Jr,(g) to the leading order to which the Hamiltonian does not
vanish, leading to eq. (4.2). On the other hand at small p we should also expand Tr(r) to
leading order in p, which gives

ooge -0 0 gy vt (4.8)
L=oR ™ g Sa0(x)’ L ’ R
In fact expansion in powers of p is the proper formal way to derive the form of the Hamil-
tonian in the dense-dilute limit.

Formally expanding Hl(%l}),T in powers of p we see that Hrywik arises at order p? by
multiplying the O(1) term in V; Vg and O(p?) term in Vi Vgz. However we also have to
consider a possible contribution arising from O(p) term in ViV (the first order correction
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to eq. (4.8)) multiplied by O(p) term in V,Vr. We write this additional term as
1 [/ [/ [/ [/ « K « K
(5HJ[MWLK = 71'g2/ (VfA(X)VJma + V/B/\Vﬁa(x)> 82 [VLﬂ(X)(V\ + ) ’BVI%‘ (X)]

_ 7;2 (VP + (VVR)*) [ig%T% ()] Y

+ (V172 + (VaV)™) | —igt,. T

Here V7, and V are understood as expanded to O(g), however we will not need the explicit
from of this expansion, since we will show that this expression vanishes.
We use the two identities
Y/ r/ rred,d
Vi 1o 5 Vay = Ut (4.10)

and

U1 (%) TE (x) = T (x). (4.11)

Here, as before VI = exp{—t“%} and V = exp{t“%} are defined in the fundamental
representation while U = exp{T“%} is defined in the adjoint representation. We then

calculate
(Ve Vhete, T = VP [0, V17| 5 = T, (Vv ™ (4.12)

and
(VVR) 15T = [UVarts, | VA" TE = T, (VaV ), (4.13)

Thus the four terms in eq. (4.9) pairwise cancel.

We have thus proved that when expanded to second order in p, the Hamiltonian H g}),T
reproduces Hjryrowk. It is obvious that the same is true for Hg},%, since HjrpywiLk 1S
charge conjugation invariant.

If instead of expanding in powers of p, we expand in powers of §/dp, the leading order
expansion gives Hxrwarrg, €q. (3.9). This is easily done explicitly, but the final result is
obvious by duality.

Finally we note that the exact same result is obtained if we were to use the left and
right Wilson lines not in the fundamental but in any other representation of SU(N). The
only property of the SU(IN) matrices that is needed to derive H rywrk in eq. (4.5) is

L 1._
Te[Viteved] = iUed (4.14)

for a fundamental matrix V and an adjoint matrix U. However a similar relation holds for
SU(N) matrices in any representation D
— — C2(D)Rp —

[0 TR UpTY] = jv(g)lDUab. (4.15)
Here Up is a matrix and Tp is a generator in an arbitrary representation D of SU(N),
and Ca(D) and Rp are the second Casimir and the dimensionality of D respectively. Thus
using Up and Up in any representation in the definition of Hgpp will reproduce Hjryrw i
and Hgrwars in expansion once the overall normalization is adjusted.
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5 Continuous symmetries

Let us now discuss the continuous symmetries of Hgpp. As we have mentioned above, both
the JIMWLK and the KLWMIJ Hamiltonians have a continuous SU(N)xSU(N) symmetry,
albeit those are distinct symmetry transformations. The SU(N) x SU(N) symmetry of
Hjrywik is generated by the charges

@ = [Py Qh= [ daTie) (5.1)
while the SU(N) x SU(N) symmtery of Hxrwarrs by
@ = [ ez Q= [ Patia). (5.2)

It is an interesting question which of these symmetries are also the symmetries of the
self dual Hrpr eq. (3.35). The question is not completely straightforward to answer even
though we do have an explicit representation of the charge operators on the RFT Hilbert
space. The reason is that the commutation relations between Jr(g) and VL( R) as well
as between Zp(g) and Vi) are quite complicated. We will nevertheless try to answer
this question, using a perturbative expansion. Our answer is somewhat surprising: the
symmetry of Hppr appears to be SU(N) x SU(N) x SU(N).3

We start with discussing the vector part of the group, which is the easiest and can be
analyzed without recourse to perturbation theory.

To better organize the calculation, we rescale the charge density p%(x) = gp®(x) and
also introduce (]E(x —-y) = % (x —y). Then J}, J3,1},If can be Taylor expanded by
counting the powers of the coupling constant g. We will use this expansion in this and
the next sections. We will refer to this counting in powers of the coupling constant as the

“BFKL counting”, since it is equivalent to simultaneous expansion in powers of p and §/dp.

5.1 The vector SUy(N) symmetry

The analysis of the vector symmetry is facilitated by the following simple observation

QL—Qr=Qr— QL. (5.3)
To prove this we note that
a0
Tt() ~ Tl = @) s (54)
5 . 5
Th(s) ~Ti(a) = T ms = [ Pydla— POl (69

Integrating by parts we find

- - ~ J J
Qr-QL = / Pad’yoa—y)0 050, 5y = / P2 ()T sy = Qu—Qr- (56)

3To be precise, while SU(N) x SU(N) is there, the third SU(N) does not necessary form a direct product
with the first two. We have not attempted to write down the full algebra of the currents, which appears to

be quite complicated.
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It is now straightforward to check that the vector SUy (N) transformation generated by
Q1 — QR is the symmetry of Hrpr. By virtue of eq. (5.3) the charge Qf, = Q¢ — Q% acts
as a rotation generator on all the currents, i.e.

Q% T8 =it
Q5 Th| = if .

L (5.7)
Qv Tp| = if ™I,
Q. Th| =i T,
It then follows that for a finite group transformation
W = exp {i\"Q%} (5.8)
we have
with )
Wab = [eWTd] . (5.10)
As a consequence
« « af
WV )W = (Wevi(xw}) (5.11)
with the fundamental representation matrix
Hﬁ iAete HB
Wb = [e } . (5.12)

The same transformation as in eq. (5.11) applies to Vg(x), as well as to VL( R)- It is now
obvious that Hrpr is invariant under SUy ().

5.2 Is SUL(N) there?

Let us now consider other transformations generated by the left and right charges. The
analysis for all of them is similar, and we will concentrate on (J;. The question we are
asking, does ()1, commute with Hgpp?

What is the action of Q¢ on the building blocks of Hgpr? The answer for Vi, and Vg
is obvious. Under the SUL(N) transfromation

~

S =exp {iNQ%} (5.13)
we have
STi(2)S =S5 TH(z);  STTE(2)S = Thi(2) (5.14)
with o
Sed(x) = [eWT“} . (5.15)
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As a consequence,

STV (x)S = SEv R (x)SEP STVEP(x)8 = VP (x) (5.16)
with 5
s = [ei)‘ete} . (5.17)

What is the transformation of V7, and Vz? Examining the expression for Hpprr we see
that if the transformation was

STV (x)8 = SV (x); STV (x)S = VIS (x); (true or false 7)  (5.18)

the Hamiltonian would be invariant under SUy(N). Indeed if instead of V, and Vi we had
V and VT, this would be the case. This is precisely what happens in the JIMWLK limit.
The transformation eq. (5.18) is equivalent to the commutation relation

Q5. V22 (0)] = = (#70(0)™ (true o false?) (5.19)

and similarly for Vx.

We were unable to calculatie the commutation relation in eq. (5.19) in a closed form.
However we were able to calculate first several orders in perturbative expansion in g.
We performed the calculation in the BFKL counting of orders of g. The details of the
calculation are presented in the appendix A. Our results are the following.

We have calculated the commutator between Q¢ and Vi, up to order g% and found that
relation eq. (5.19) holds up to order g2, but is violated at order g°.

We have also calculated the commutator of Q¢ with the Hamiltonian [Q}, Hrpr] up
to order g%. We have found that this commutator vanishes up to this order. This leads us
to believe that even though eq. (5.19) is not satisfied, the SUf(N) is indeed a symmetry
of Hrpp. We stress that we do not have a closed form proof of this, but only perturbative
calculation to order ¢°.

The analysis of QaL is identical, since @ and @ are related by duality transformation.
Thus we believe that Q‘i also commutes with the Hamiltonian.

If this is indeed the case, the continuous symmetry of Hrpr is at least SU(N) x
SU(N) x SU(N). In fact the symmetry could be even larger since we have not calculated
the commutators [Qr, @r]. If this commutator does not close on any of the four charges
(or their products) Q L(R)> Q L(R) the symmetry group is larger. We have not investigated
this question any further.

6 Is this the “Diamond action”?

The family of Hamiltonians that we have identified carries uncanny resemblance to the so
called “Diamond action” suggested in [67] and also discussed in [68]. There is of course a
host of differences between our approach and that of [67] and [68]. On the technical level
we are dealing with the Hamiltonian formulation of RFT together with the accompanying
field algebra and the structure of the RFT Hilbert space, while these references strive
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to derive the effective action in terms of certain Wilson line functions. On the other
hand [67] and [68] derive the action directly from QCD (although in both cases certain not
entirely straightforward approximations are utilized) whereas our expression is an ansatz
constrained by the expected symmetries and the appropriate limiting forms.

Nevertheless, abstracting ourselves from these differences we can compare Hrpr with
the effective action of [67]. We concentrate on the Hamiltonian eq. (3.35) defined with
Wilson line in the adjoint representation.

- Bxp { )Tvﬁ(y)}
(6.1)
Exp{ /gqu— )T°Z5 (y )}
y
Exp{ z/ggb x —y)TTq(y )}
y
In this case the two terms in eq. (3.35) are equal and we have
Hitvr = 5oy | ExOUFRUR UL VR (). (62)
It is easily checked that with the correspondence
U = Weoo, Up = WL, Up = V_so, Ug — VL, (6.3)

our eq. (6.2) looks identical to the effective action suggested in [67]. However beyond the
looks there are significant differences between the two. In particular in [67] the four Wilson
lines are not independent, but satisfy the so called diamond condition

VIW VoW =1. (6.4)

This relation was essential in the derivation of [67] and only using this relation the effective
action obtained in [67] could be written in the form eq. (6.2). On the other hand in our
framework, although all four Wilson line operators are expressible in terms of p and d/dp,
there is no such condition that constrains the four.

We can check eq. (6.4) explicitly, expanding all the operators U, g and Uy g to first
order in the respective left and right charge densities. In our notations eq. (6.4)) corre-
sponds to

Ur(x)UL(x)UL(x)Ug(x) = 1. (6.5)
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We will calculate the L.h.s. of eq. (6.5) to second order in g. To this order we need

7109 = 5[5 7 (o 597 s ”):baﬁ el (6.6)
:;ﬁa(x)—; (%) Ty f(x)—f—O() |

7= [397 55 (oo 397 5] +1)] 7001 (6.7
= 100+ 3 )T + 0lo) |

7y = ot [ 82ﬁ( x) (corh [nge 82/36( o 1)) o
:;252 5(X) ; 15,0 s / 3(x — 2)5(2) + O(g). |
:?Z 25p5(x)+ $T0 /¢x—z “(2) + O(g). |

From the definition of Z{ and Zf, one obtains
i? / O(x — y)T*TE (y)
—ig /¢>x o (Tt - et [y - 2t +00)
Yoprly) 27000 (y) ), g
1 2perpe o 7 g ~q 3
=gT° 5/36(}{) — 5197 TTG ¢(X Y)o(y —2)0; Y57y (z) + O(g”)

0
T°— — fngTe /qb X —
6p°(x)

iTeTY, / Byd(x — ¥)0y(y — 2) e 5%(2) + O(g?).
y,Z

=9

We have used integration by parts. As a consequence

01x) =exp { i / <B<x—y>Tezz<y>}

=1+4¢T°

1 -
S TT / Hx—y) o (y)— Lig?TTs, [(G(x—2) 0 (2)

5 Losea_ 68

)
6p°(x)
—iQZTe / (9y<]5x y) y¢(y 2)6




and

() =exp { ~i? / - yTTiy) |

g1 s ST / 0c=y) s ()~ 5T [ S —2) i 7o
. erre 7 71 6 ~a 1 e 1) o)
ST TG | Oy ) s 1) T s s 0l
(6.12)
On the other hand, from
ig / 3(x - y)TTE(y)
—ig? [ yr (L) - gm0 (6.13)
- ~X* e ~e 712»2 ere x — ~b L 3
=iy [ G0 T ) = g T | 6P g+ O
one obtains
—exp{ 2/ x—y)T°JIr(y }
e~e 2rere 7 b Y
—1+zg/ B — )T DY) — 5ia°T°T /qs( W5y 61
Ter ~e ~d O
(ig)? / . — D) T*T(y)(2) + O(6P).
Ur( —exp{—192 qz~5x v)T°Th(y }
— x — e~e _72 2rperpe 7 b 0
—1 g/y¢>< YT gTTab/<z>< PO)5e (1)

At order O(g) it is obvious that eq. (6.5) is satisfied, and the first nontrivial check of
the relation is at O(g?). At this order we obtain

Ur(x)Ur(x)UL(x)Ur(x)

- 5 ~ ~ 4]
17Ty, [ d(x-2); ﬁ%z)—%g?TeT;b / Oy ey )y iy —2) s 2)

p(x)

. 7 a ~a b o b a a
+zg/y¢(X—Y)T p(y)gT 7 (x )+9T /cb x—y)T"p
; ere 7 7 erpe 0 a
:1_22g2T Tab/y’zay(;s(x_y)aygb(y_z) 5ﬁb(}’)p (Z)_2192T Tab/z(b(x_z) 5ﬁb(X)p (Z) 7é 1
(6.16)

— 24 —



Thus we have established that at order O(g?), the diamond condition is not satisfied by
our Wilson line like operators.

We thus conclude that in spite of certain similarities, the self dual RFT Hamiltonian
eq. (6.2) is not the same as the effective action of [67]. The status of this comparison is
further discussed in the next section.

7 Discussion

In this paper we have revisited the problem of constructing a self dual Reggeon Field
Theory Hamiltonian Hrppr. We have followed the EFT strategy by imposing the relevant
symmetries and also required that Hrpr reduces to Hyrywrx (or Hxrwarry) in the
dense-dilute limit.

As a result we have found a family of Hamiltonians that satisfy these requirements.
These Hamiltonians are constructed from Wilson line - like operators in different repre-
sentations of the SU(N) group. We note that any of these Hamiltonians in addition to
reproducing the dense dilute limit, also generates correct Pomeron loops. The simplest
way to see this is to perform the coupling constant expansion using the BFKL counting
introduced in section 5. This is equivalent to simultaneous expansion in powers of p and
0/0p. At order ag the Hamiltonian reduced to Hppg, while at order ozg it contains both
splitting and merging vertices (p?(3/0p)* and p*(6/8p)?) with correct coefficients. As dis-
cussed in [38, 58-65, 69] these vertices are responsible both for a certain set of reggeization
corrections, and for the QCD Pomeron loops.

We have analyzed the continuous symmetries of Hgpp. This is an interesting question
since both Hyrywirk and Hgpwarrg possess an SUL(N) x SUr(N) symmetry group, but
the generators of these transformations are not the same in the two dense-dilute cases.
For Hrpr we are able to show nonperturbatively the existence of one SUy (N) symmetry,
which is the diagonal subgroup of the symmetry group in both JIMWLK and KLWMIJ
limits. We established the fact that the two diagonal subgroups are identical explicitly
using the algebra of the generators in the RFT Hilbert space. We have also shown that
Hppr is invariant under the left and right rotations at least to O(g®) in perturbative
expansion. This is a strong indication that the continuous symmetry group is at least
SU(N) x SU(N) x SU(N).

One member of the family of the Hamiltonians we found is very similar to the “di-
amond action”[67, 68]. Our Hamiltonian RFT framework is different from the effective
action approach of [67, 68] which somewhat hampers direct comparison. Nevertheless if we
juxtapose our Hgpr defined in terms of adjoint Wilson lines directly with the effective ac-
tion of [67, 68], the two look identical. There is however one significant difference between
our result and that of [67]. Namely the action in [67] is written in terms of four Wilson
loops that satisfy the diamond condition, eq. (6.4). This condition played a very impor-
tant role in [67]. In fact the effective action derived in [67] directly from QCD is equivalent
to the “KLWMIJ+” Hamiltonian suggested in [73, 74], whereby KLWMIJ Hamiltonian
is generalized by including nonlinear corrections in the solution for classical field. This
Hamiltonian is not explicitly self dual, and only with the help of the diamond condition it
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was recast in [67] in the form which looks self dual, at least superficially. However whether
the “diamond action” is in fact self dual or not remained an open question. To check the
self duality one has to verify that the duality transformation is canonical, or in the quantum
sense a linear transformation on the RFT Hilbert space. This was not possible to do with
the tools of [67], as no operator realization of the algebra of Wilson lines was explicitly
presented. In the present paper we operate within the RFT Hilbert space with well defined
operator algebra; and therefore we have explicit realization of the duality transformation
in the Hilbert space. We find within this consistent framework that the diamond action
(RFT Hamiltonian) is self dual, but the diamond condition between the Wilson lines is not
satisfied. The condition is violated starting with order O(g?) in perturbative expansion. In
this sense our paper is closer to [68], where the diamond action is derived as a self dual form
of the action in the dense-dilute limit without assuming the diamond constraint between
the Wilson lines. In [68] the constraint was shown to hold in the first order in perturbation
theory, which is consistent with our conclusion here, but was not checked at higher orders.

Our “bottom up” approach does not allow us to decide which one of the candidate
hamiltonians we have found is the right one, and in fact whether any one of them is the
correct QCD RFT Hamiltonian. Even though we have used the EFT methodology to
determine possible terms in Hrpr, we are at a disadvantage here compared to standard
applications of EFT in quantum field theory. The generic situation is that one is searching
for local operators that can be incorporated into the EFT Lagrangian (or Hamiltonian) in
the situation where there is only a finite number of possible operators of a given dimension.
The higher the dimension of the operator the stronger the suppression of its contribution
to low energy observables. Thus EFT organizes the possible operators according to their
importance in the interesting kinematics. In our case the situation appears to be different.
Although RFT is the effective theory of QCD at high energy, all the operators we have
found may contribute at leading order in E~'. We do not see any obvious parameter
which would order the possible contributions. The similarity with the diamond action may
suggest that one should work with the Wilson lines in the adjoint representation. However
as is clear from the derivation in [68] the diamond action is not the full story, but is only
a leading term in an expansion away from the abelian limit. Thus it is possible that the
other candidate terms we have found also play a role in the full RFT Hamiltonian.

It would be interesting to find a criterion which could discriminate between the pos-
sible terms. One possibility is to compare Hrpr with NLO JIMWLK. Although we have
no reason to expect that Hrppr contains all, or even most NLO terms, it does contain
some such terms. Comparing those to NLO JIMWLK could be instructive and possibly
discriminatory.

Another interesting question is the unitarity of Hrpr. As we have mentioned in the
introduction, our main motivation to search for the self dual Hrpr was the unitarity vio-
lation in Hjrprwik- The question of unitary really has two parts: the t-channel unitarity
and the s-channel unitarity.

Although we have not studied this in detail here, it is broadly believed that the t-
channel unitarity, which has been a cornerstone of Gribov’s RFT is ensured by the self-
duality of Hrpp. This connection is rooted in boost invariance of the scattering amplitudes.
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On one hand Lorentz invariance requires self-duality of RFT [66], and at the same time,
boost invariance has been argued to be equivalent to the t-channel unitarity, see [75] for
latest discussion. On the technical level we note that the coupling constant expansion of
Hppr (in the BFKL counting discussed above) in the large N, limit generates the Gribov
Pomeron calculus. Scattering amplitudes are then represented in terms of the exchanges
of the BFKL Pomerons and their interactions via the “merging” and “splitting” three
Pomeron vertexes. Such a theory is known to satisfy the ¢-channel unitarity, and we are
therefore confident that our Hrpr indeed is t-channel unitary.

As for the s-channel unitarity, the situation here is more complex. We have formulated
the conditions for s-channel unitarity in [20]. Given Hgpp one can in principle follow
the procedure explained in [20] to determine whether its action corresponds to unitarity
evolution of QCD states in energy.

This entails taking a generic QCD projectile state

(Wi)p = Ci gy V1,015 -3 Y, )

and evolving it to infinitesimally higher energy. The result of the evolution in general can
be represented in the form:

‘\Ij> — Z Ca1,a2...an|xlaa1;---;anan>

n;X4304

The energy evolution of the scattering amplitude of this evolved state on a fixed target
is given by the action of Hrpr as in eq. (3.1). Next, one has to construct a probability
function F' defined in (2.15) and verify the unitarity condition (2.16). The unitarity should
hold for any initial state |¥;)p.

In principle one should be able to pursue this calculation, since the algebra of RFT is
explicitly known, and therefore the action of Hzpp on an unevolved amplitude is completely
defined. Unfortunately analyzing the unitarity conditions beyond the JIMWLK limit is
technically a complicated problem, due to complicated algebra of the Wilson lines, which
at this point we are not able to solve. We believe it is a very important question and are
planning to address it in future work.
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A Checking SUL(N)
In this appendix we calculate perturbatively the commutator of )¢ with the Hamiltonian.

Al [Q%,VL(x)]

We start by trying to verify the conjectured commutation relation:

Q5. V7 (0] = = (7 0)* (272) (A1)
We calculate the commutator perturbatively using the BFKL counting. We express
To(z) = ;Bg_l)(z) By (2) + 9By (2) + g° By (2) + ... (A.2)
with
By =p"(2),
By =57 Tz
By = oA T s o )

To expand V7, we need

1
Zi(y) = ;E(—n(}’) + Eo)(y) + 9E0)(y) + ¢°Egy(y) + - - (A.4)
with
)
Ea_ - —Z82f
(=1 y5p§
a 1 2 d e 1 ~e
Elo) = —5% s T Py
2 Yopy, M0 A
i, 1 (A-5)
B — 762 (T61T62) el €2

O~ 2% b 2Py oty

] 1) 1 1 .1 .. 1.
Efy) = %@@(TQTQWBT%)M@P?@P?@P?’@P?'

Then V7, is expanded as

Vi = 94T A+ Aw) +9 A+

1 1 1
=1+94n) +¢° (A<2> + 2A<1>A<1>> +¢° (A(3> +5(AnAe) + Apdm) + 3 (A<1>)3>

(A.6)
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o py (A-8)
y

. / ayqxx_y)ﬁ / 5y¢(y—W)ﬁ3v>

0 1 1
d 2 ~ ~
—z/¢ x—y)t <126y5~b( elTel)bd82P6182PeQ>
)
(t61t62tb 2t€1tbt62+tbt61t82 /¢ X— y) y(5~b (;S(y Z1 pz1/ gf) y—29 pz2

(A.9)

12

In terms of coupling constant g, we check the commutator eq. (A.1) order by order.

[ / Bg_l)(z),A(l)(x)] " (A.10)

e O(g), the relation to be checked is

e O(g°) is satisfied.

Uz Biy(a) e + ;(A“))Z] + [/z ?0>(Z)7A(1>(X)] = —t"Aq). (A11)

First note that each individual term is

a 1 b 5 1 aze eqa 5

1 a
—5 (¢ A(l) Ayt®) (A12)
1 a
—5 [1% Aw] -

a 1 2 1 eqa aze d

1(2), 5(Aw)) } = — (1" + 1) —

U ? : 0% (A.13)

1
= =5 ([("Aa) + At

We have one additional term but it vanishes.

[ / B?—U(Z%A(z)] =- / (_%)thfd /y b(x — y)[028(y — 2)8"] /W By — W), = 0.

This vanishes due to 95 [, d(y —z) = 0.
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e O(g?), the relation to be checked is

1
B( N (A<1)A(2>+A<2)A<1>> 31 (Aw)’?

/[B 2) + A( )A(l)] +/z [B1)(2), Ay (A.15)

First note that

(A.16)

for the same reason as eq. (A.14). This is obviously a general property. Now we
evaluate each term.

a 1 1 a a
/Z [B(_l)(z), 5 AmAe) +A(2)A(1))] = —5(t"Ag) + A)t?) (A.17)

a 1 1 ay4eq e €e1page €14€210 5 5
1

=~ AmAn) + Aqt* Ay + A Awt?)
(A.18)
| B
/z [Bay(z), Ay = 5t (T'T 2)ea5~§1 552
56

= L g g gegee)

12 0P 0P
1 a a a
=~ A Ay = 240" Ag) + Ay A)t?)
1 (Z
(A.19)
1 1 5o
Boy(z), =Am)A ]:—(t“telt”—telt”t“) o —
0)(2), 5AmAq) &1 55
/z [ 2 ‘11 0px' 0P (A.20)
= —; (" AnAg) — ApAwt?).
Adding eqs. (A.18), (A.19), (A.20), one obtains
1 5o 1
R ) LY (- PR A21
Q) e o = 1 (2 1) (1)) (A.21)
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which is part of the right hand side of the relation eq. (A.15). To continue

1,y 0
/[B(o>(z)=A<2>]=/[ 3Pl 5zr 3 thbd/¢x y) y5~b/¢y w)p ]

(gt {tmsa) e [[dx—yiaigss [ty —w

(A(Q)ta — taA(Q)).

1
2

(A.22)

So eqs. (A.17), (A.22) adds up gives —t%A 9y, which is exactly the last piece on the
right hand side of eq. (A.15). To second order in g eq. (A.1) holds.

e O(g?). The relation to be proved is

a 1
[ By @5 (4a) + AnAg + AwAw)

1 1 4

+ 51 AmAmAe) + A A da) + Aedndm) + 5 (Aw) |
. 1 I

+ / By (@), Ay + 5 AmAe) +Agda)) + g(Au))d} (A.23)

1
+ / [B?l)(Z)7A(2>+§A<1)A(1)

a 1 1

= —t <A<3) +5(AmAe +AxAw) + 5(4a >)3> -

We calculate each commutator separately. The first one is easy to compute as we

know that
[ B @A) = e

(A.24)
/Z[B?_l)(z),A(n)] =0, forn>2
Using this relation, one obtains
. 1
/ Bt (@), 5 (Aw)” + A A + A Aw)
1 1 4
+51(AnAnde + Andede) + Apdnde) + 5(Aw)
1 a a 1 a a a a
= — 5 (t A(g) + A(3)t ) — 6 (t A(l)A(g) + A(l)t A(Q) +1 A(Q)A(l) + A(l)A(g)t
1
+ Apt"Ag) + A<2>A<1>t“) ~ 3 (t“Au)A(l)A(l) + A" AnAq)
+AnAnt*Aq) + A(l)A<1>A(1>t“)~
(A.25)
We also notice that
a 1 a a

~ 31—



for n = 1,2,3. It is possible that this relation holds for all the relevant n. Using this
relation, we calculate

a 1 1 3
/z [B(O) (2), Ay + 5(AmAp) + Axd) + 5;(Aw) }

1 1 1
25(14(3)#1 — taA(g)) + Z(A(l)ta — taA(l))A(g) + ZA(l)(A(Q)ta — taA(Q))
1 a a 1 a a 1 a a
+ 1 (At =t A4@))Aq) + 1A (At = t9Am) + 5 (A" = t"Am)Aq)Aq)
1 a a 1 a a
+ 5 An At = " Am)An) + SAnAn) (Ant" —t"An)
1 a a 1 a a a a
=5 (At —t"Ag) + Z(Au)A(z)t + A At — "AnAp) ~ A Ay)
1 a a
+ E(Au)A(l)A(l)t —t A<1>A<1>A<1>)-
(A.27)
From eq. (A.19), we know that
1 a a a

Usig this relation, one can compute

a 1
/z [3(1)(Z)7 §A(1)A(1)
1

T (taA“)A(l)A(l) =24 t" Ay Ay + A At An)

+ A0 AgyAg) — 240 A " A + A<1>A<1>A(1>ta)-

1 a a a a
=~ 31 (t AnAmAg) — Apt"AnAq) — A Ant"Aq) + An A At )
(A.29)
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The last piece we need to calculate is

[ [Bty(). 40 )]

1
12

.

1

*12(

(Ter T797°)), 7Tg;tp ( /

"1
1

i

/ﬁédzqs

0 ~ o
prpha P 4 (TPTY h D _ ~h
+54 <(T T"T)pat? + (TPT*T" )pat ) (5pb /Z¢(X z)p, 57

5
~h
p25~d5~b +2/ 25~d/ay¢

+ [ dtx-

_ T€1T62)ba%Tthp <_
2(Tde)qa TSt <

: ( (TprTd)hatp

o 6

z6~d/¢>x y)0 ~b¢( ))
5pz/ —Z)/wcb(y—

5pb oplL /w /¢

/ 0z — w pw)

o Oyd(y — ))

We have calculated the color structures for the two parts

(T°T? +

(T'T) g Tyt = —(TPT*T)pat?
TT) T t? = —(TPT T )pat? + (TIT*TP) "
= (TPT"T)t? + (TPTT")pat?

and performed the integration by parts

2 ~h
[ smsg oo viegse = [ oty —wil

5 6 [ - ) 5 5
- 5/3?( 6ﬁx W¢(X_W)pw_/¢(x "b 6~dpz
0 5
-9 ,b(z —
, 7% 074 /a¢z

and

/ i || 9030k ity )

571 ] 9
v [l [

pz(sd

/¢ ib

o Dy oy — 2).

— 33 —

w)ﬁib)
y

erpd dre ~h 4 2 d -
+E(TT + TT) e 7Tptp (/p25pg/y¢( y) y5~b¢(y—z)>

3 (5~de

i . L
(TEITGQ)CG, ——, f(tetb — tbte) / ¢(X - Y)82 N / ¢(y - W)ﬁsv]
o z1 5Pz2 2 y y(spg, w

i [ Sk vegaty—=) [ oy -,

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)



The commutation [ [Bf‘l) (), Aga)(x)] , for the relation eq. (A.23) to be correct, should
be equal to

1

— 13 A A+t A Ay + A At + A At =240t A (o) —2415)" Ay
1 a a

=—35 ([ A A [+ Aw)] Aw])

L 5 5 [ - i
:—E([[t AV ]atb])TdhX2<5ﬁg 5ﬁi/w¢(x—vv)p'$v

~b/¢x y) ~d,oy+2 ~b/ayqsx ) ~d/ayczsy w)p )

__ 112 ((TanTh)bd+<TpTaTh)bd)tp < % 550 /¢x w)p

5b/¢x y) ~dpy+2 ~b/ayqsx y) ~d/ayczsy w)i >

(A.35)
We used
182, 80,67) + ([t 0], 21T = (Toalt™, 6] + Tt 1) T
= (Tg,T0 7 + T3, TPAP) T (A.36)
= ((TanTh)bd + (TpTaTh)bd> tr
The difference is
a 1 a
18 2. A )] - ( 3 ([ A0) Aw] + [, Aw)]  A))
:;j5pb 5p / d(x — ( (T*TPT" Yo + (TPTT" ) + (TPTT)y, ) &P
2 i / 3(x 5 py ((T“TpTh)bd FO(TPTT™ )y + (TpThT“)bd> P
~ 5 5 a a
/¢ x= Pg(rd 5~b (TPT"T*)pa + (TPTT")pa + (TPTT) o)
+ ﬁﬁ / 8yd>(x — "d / 8y¢ Yy — W) ((TanTh)bd + (TpTaTh)bd>
i[5 5,
+ — /5 b5~d / Dy (2 — W)l (TPTOT?) o t?
il a TPTMT) g + (TPTOT" )tp
iz ), 0= V) 0yl —2) (( Jou + (TP T°T")oq
(A.37)

This clearly does not vanish, and so eq. (A.1) is violated at O(g?).
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A.2 Checking [Q},Hrrr] =0

We now directly calculate the commutator of Q¢ with Hrpr.

The calculation is organized as expansion in powers of g

Q7 Hrrr| = Zgn [Q%, Hrrrl ()

n=0

(A.38)
= [Q%. Hrrrl (o) + 91Q%, Hrerl ) + 9° Q1. HrpT) (o) + - -

where the subscript “(n)” indicates the n-th order in g.

Using [Q¢, Vg] = 0 and { %, VLO‘B(X)} = —(t*VL)B 4 (Vi t4)*8, we can write

Q7. Hrpr
= [ [@s. v 0] Vireoo: (Vi v o) + Vo) [Q4. Vi o] 0 (v v o)
+ (V)M VE (x) = VI ) (Vet)* ) 02 (Vi Vi ()

= [ {([en. 7]+ vy v v ([, Vi) = (meey) o2 (Vi v o)

(A.39)
Here we have rescaled Hppr by the overall factor mg? for simplicity.
Let us denote
dy = [QCL VLB’Y} + (V)7
S . o (A.40)
dif = Q4. VA | = (Vat®y™
then
a Fae" (7 o «@ §
Q4. Hrer) = [ (a4 + Vi) 32 (Vi ooV o) (A1)
Symbolically we write
VL = exp {gA(l) + gQA(Q) + ggA(g,) + gsA(g)) + .. } , (A 42)
Ve =exp{—gAn) + 9*Ap) — °A@) — 6" As) — -},
and
Vi =e X+ Xy + ¢ X3y + ¢ Xy + ...},
L =exp{9Xq) + 9" X +9° X3 + 9" X + -} (A.43)

Vi = exp {—gX(1) + 9" X2) — 9° X3 — 6" X5y — -}
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Expansion of 92 (VLO‘ p (X)Vg6 (x)) starts at order g

22 (Vi v ()

_ 92 @ 0 B 76
=g0*(—4 5X(71) +X()67°)
P (X 1 X [} 1 «Q «
+g°0? (5 o (726) T 5( (21))76) + (X(zf + 5(}<(21)) 7§78 — Xd?)ﬂ&i)

1 1 ”
392 3
+ %0 (_ 5oB (X(3) + 5()((1))((2) + X(Q)X(l)) + 3!X(1)> (A.44)

1 1o\ s
+ <X<3> + 5 (XX + X X)) + 3!X<1)> o

) o
L x%0 (x4 S x2 " X +1X2 BXW‘S
o (1@ T 5 @t 540 (1)
+ ...

Thus the expansion of the Hamiltonian Hgrpp starts at order O(g). On the other hand
recall that

1_ _ _ _
Qi = By + B +9Ba) + 9°Be) + - (A.45)

So the commutation relation [Q} , Hrpr] formally starts at order O(1), but from eq. (A.39)
it is obvious that at O(1) the commutator vanishes.

The results of the previous subsection we have calculated explicitly dp,) for n < 3.
Although we have not explicitly calculated dp,), this calculation up to n = 3 is identical
to that of dr,) and thus we have

dr) =dpa) =dre) =0,
dr(2) = dpr(1) = dg() = 0. (A.46)
dr(z) = dr)

As a consequence

[Q%, Hrrrly = 0,
[Q%, Hrrrl2) =0, (A.47)
[Q%, Hrrr)(3) = 0.

o [QF, HrrT](4)-

At order g*, the possible contributions are
a « a « é
Q% Hrprl ) = / (570 + 67l ) 02 (Vi )V () N (A.48)

However, this expression vanishes after substituting the first order result in eq. (A.44)
and using the identity

(_5aﬁX’y5

0+ X080 = 0. (A.49)

—i—X(l)
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Therefore
[Q%, Hrrrlg) =0 (A.50)

o [QF, Hrrrl(5)-
The possible contributions at order ¢° are
Q% Hrrr)(s)

_ / (d%)é‘s"‘ +6° 7d(zs%ofs)) Ox (VLa BVJ%(S) 2)

(ot + Aty o (v

+ / (a7 0™ + 07 djgy ) 02 (ViPviy) N

(A51)

Note that the last term vanishes due to eq. (A.49). Let us focus on the other two
terms. From eq. (A.44), one obtains

/x (dizg)‘saa + 55%%23)) ; (Vfﬁvfgé) @

(A.52)
_/XQTI" [(dL(S) +dR(3))82X(2)]
and
By da By 2 aly, v
/(du)( AR + (AT ity ) 2 (ViVa >(1>
x (A.53)
= / Tr [(dr(3) + dre)(0° Xy A) — A0 X))
Recall the expressions
a 5 a ~a
Aqy(x) =t () Xy(x y y)t s (y),
(A.54)

. (16
X(2) Zl/¢(X—Y)t < 555 eTban>-
Yy

Using this one obtains

PX Ay — A0 Xy = i(t"t° — ") (x) = iT% 15" (x)

6p°(x) 6p°(x)  (A.55)

2

As a consequence the contributions in eq. (A.52) and eq. (A.53) cancel each other.

We have proved that [Q7, Hrrr(5) = 0.

o [QF, HrFrl(6)-
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The possible contributions at order g% are

[Q%, Hrerl 6

/x (7550 + 07 dii ) 0 (VQBVW)@)
/ (2 Vit + Vit i) 9% (VEVR)

. / (d27,0% + 67 dls,) o2 (vﬁﬁvg‘;)@) (A.56)
/ (0 Vit + Vit i) 0% (VE“VA')
/ (23 VA% + Vit diis)) 2 (VEVA')
/ (a7 0% + o7y ) 02 (viova?)

The first term vanishes due to eq. (A.49). The second and third terms add up to zero
because of eq. (A.55). Now we focus on the fourth, fifth and sixth terms.

1
(2)

®3)

For the sixth term, note that

5o (Vf‘ﬁvvé)( . = (X2 Xq) — X(1)X(2))75
By 0 s (A.57)
o (VL& Vi > = (X)X — X X))
®3)
Using these relations, one calculates
By s B aBy 6
/x (507 + 07y ) 0 (VEPVR')
- / Tr () = da)%(Xe X = X0 Xe)] (A.58)

Here we have used the relation dp3) = dg3)-

For the fifth term,
B Sa a2/y By 70 . 1 9
dp i3 Va(yd (VL Vi )@ = —Tr [dus) (X(2)+2X(1)> A(l)}

1 2
—Tr [dL(S)A(l) (X(2)+2X(1)>} +Tr [dr ) X 1) Aqy X ()]
(A.59)

and

Y/ « a 0 1
Vi diita) (Ve Vi ey =T [dR@)A(l) (X o+35X (21>>]

1 2
+Tr [dmz) <X<2>+2X(1)> A(l)] —Tr [dre X Am X )]
(A.60)
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The sum of these two terms vanishes due to equality dr3) = dp(3)-

For the fourth term

700 6 ) 1 1
A0 Vit (Vi VR )y = —Tx [dL@)X(l)(A(Z) +2A?1>)] +Tr [dus) (A2 +2A?1>)X<1>}
(A.61)
and

[/ «a « 8 1 1
Vit iy (Vi VD = =T [dR(?’) (Ae)+3 A?n)X(l)] h [dR@)X(l)(A(z) +2A?1>>}
(A.62)

These two terms also cancel each other due to dr3) = dp(3). We therefore proved
that [Q%, HRFT](G) = 0.

Thus we see that up to order O(g®) the left rotation generator ()¢ commutes with the

Hamiltonian.
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