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1 Introduction

Reggeon Field Theory (RFT) of Quantum Chromodynamics (QCD) is a putative effective

theory that is meant to describe scattering at asymptotically high energies. Development

of this theory during the last three decades lead to understanding of many features of high

energy scattering as well as phenomenological applications to HERA, RHIC and LHC data.

Nevertheless, much work notwithstanding the theoretical framework of RFT is incomplete.

The basic pre-QCD ideas of RFT go back to Gribov [1], who considered a very general

picture and properties of high energy exchanges in a local field theory. These ideas have

been adopted to QCD and furhter developed over the years in many works [2–39]. Direct

derivation of some elements of RFT from QCD has been given. In particular the Hamil-

tonian of RFT that governs the evolution of physical scattering amplitudes with energy

has been derived in two limits - the dilute-dilute limit, where both scattering objects (the

projectile and the target) are considered to be small and perturbative (which we refer to
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as “dilute”), and the dilute-dense limit, where one of the objects is dilute and the other

one is “dense”, i.e. contains a nonpertubratively large gluonic density. The appropriate

evolution in the first limit is given by the BFKL equation [2, 3], while in the second by

the so-called JIMWLK equation [40–45, 47–49] (and its dual KLWMIJ [46]). The direct

relation between the JIMWLK and BK evolution equations [34, 35, 40–45], or Color Glass

Condensate (CGC) [47–49] and the RFT has been recognized in [50].

The JIMWLK evolution equation is derived directly from QCD in the leading order

perturbative expansion in the dense-dilute regime. As such it does not contain some im-

portant effects, like higher order perturbative corrections and the so called Pomeron loops.

The NLO corrections to JIMWLK have been derived [51–55] with the conformal part of

the kernel known today at the three loop level [56, 57].

The hunt after Pomeron loops on the other hand has not concluded yet. The Pomeron

loops are important when both, the density effects in the wave function and multiple effects

in scattering are equally important. Some 15 years ago the activity aimed at incorporating

the effects of the Pomeron loops into the CGC framework has been very lively [38, 58–

65]. Some interesting progress has been made to include both the “splitting” and the

“merging” Pomeron processes into the high energy evolution. This activity unfortunately

has not converged to a universally accepted form of high energy evolution and RFT.

JIMWLK evolution is valid only in a limited domain of rapidities, i.e. only as long as

one of the colliding objects is dilute. The limitation of the JIMWLK evolution to a dense-

dilute scattering is a genuine physical restriction. Even though nominally the JIMWLK

equation applies to the evolution of a dense system, the fact that the scattering of this

large system is allowed to be perturbative (target is dilute) leads to some paradoxical

features. For example, as was anticipated in [21] and explicitly demonstrated in [20], when

interpreted as the evolution of QCD wave function of a dense object, JIMWLK evolution

leads to appearance of negative probabilities. The negative probabilities accompany states

arising in the evolution with smaller number of gluons than the number of gluons at the

outset of the evolution. Physically one expects of course that the number of gluons in

the QCD wave function increases with energy, while within the JIMWLK framework the

number decreases but the low gluon number states appear with negative probability. This

strange behavior nevertheless produces correct energy dependence of the S-matrix but only

as long as one of the colliding objects is dilute. The violation of unitarity is a precursor

of the eventual breakdown of the JIMWLK evolution at high enough energy. At high

energy the Pomeron loops must become important and their effect on the evolution must

be significant.

This issue of the unitarity violation in the JIMWLK limit motivates us to reconsider

the problem of including Pomeron loops. More precisely we take up a limited goal to

try and extend HJIMWLK in a way that it becomes consistent with a very important

property of RFT - the self duality. It has been established in [66] that the Hamiltonian

that generates the high energy evolution must be invariant under the dense-dilute duality

transformation. Physically the self duality has a very simple meaning. It expresses the

fact that a scattering amplitude for a scattering of any two hadrons does not depend on

which one of them is right moving and which one is left moving, i.e. which one of them we
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call the target and which one the projectile. As discussed many times in the literature, the

JIMWLK evolution explicitly violates the self duality property which one expects to hold

in RFT, since within the domain of validity of JIMWLK the target and the projectile are

very different and thus are explicitly treated differently in HJIMWLK .

Although self duality alone may not be sufficient to restore unitarity of the evolution, in

a zero dimensional toy model addressed in [21] it was shown that the unitary Hamiltonian is

indeed seld-dual. Motivated by this, in the present paper we explore possible generalization

of the JIMWLK Hamiltonian which restores self duality. Our approach here does not rely

on direct derivation from QCD, but instead is akin to typical effective field theory (EFT)

attitude: identify relevant degrees of freedom and impose appropriate symmetries. We

also require that in the dense-dilute limit the Hamiltonian reproduces both HJIMWLK and

HKLWMIJ . We find a family of such Hamiltonians which all reduce to HJIMWLK in the

dense-dilute limit and are self dual. We note that one of these Hamiltonians is similar in

structure to the so called “diamond action” introduced some years ago in [67] and discussed

in [68]. However a more detailed analysis presented below shows that our construction

does not support the condition imposed on the product of Wilson loops in [67], which was

crucial in the approach of [67] to maintain self duality. Thus our current suggestion is not

equivalent to the diamond action of [67]. Additionally we note that our approach relies

on the development of RFT formalizm in [20], and thus provides directly an algorithm for

calculation of scattering amplitudes once the Hamiltonian HRFT is specified.

We thus find a family of self-dual RFT Hamiltonians that reproduces all the known

limits. Unfortunately it turns out to be technically involved to check whether the evolution

generated by these Hamiltonians is unitary and we are currently unable to answer this

question. We are nevertheless encouraged by many similarities with the zero dimensional

toy model where the very analogous construction provided a solution to the unitarity

problem. The quantitative analysis of this question is left for further research.

The plan of this paper is as follows. In section 2 we recap the formulation of RFT, its

algebra of operators and Hilbert space structure discussed in [20]. In section 3 we present

the construction of HRFT imposing the discrete symmetries of HJIMWLK in addition to

self duality. In section 4 we show that in the dense-dilute limit our HRFT reproduces the

JIMWLK and KLWMIJ evolutions. In section 5 we discuss the continuous symmetries of

HRFT . This discussion is perturbative, and we conclude that the continuous symmetry

group of our HRFT is somewhat surprisingly SU(N) × SU(N) × SU(N).1 In section 6 we

consider the relation with the diamond action [67], and show that the so called “diamond

condition” on the Wilson lines is violated at second order in g. We conclude with discussion

in section 7.

1We have abused the notation here somewhat. The symmetry group is not in fact a direct product of

three factors of SU(N). The more appropriate way to characterize it is to say that the generators contain

three linearly independent sets of generators of SU(N). The commutation relations between some of these

generators are quite complicated to calculate and thus the full group structure is not known. We will expand

on this in the body of the paper.
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2 The Reggeon Field Theory: scattering amplitudes and field algebra

In this section we briefly recap the general formulation of the Hamiltonian Reggeon Field

Theory given in [20].

Consider an S matrix element Sfi for scattering from the initial QCD state

|Ψi〉 = |x1, a1; . . . ;xN , aN 〉T |y1, c1; . . . ;yM , cM 〉P to the final state

|Ψf 〉 = |x1, b1; . . . ;xN , bN 〉T |y1, d1; . . . ;yM , dM 〉P . Here the target state (subscript T ) con-

tains N gluons, and the projectile state (subscript P ) contains M gluons. The states are

labeled by the transverse coordinates and color indexes of the gluons. At high energy in

the eikonal approximation this is given by

Sif ≡ 〈Ψi|Ŝ|Ψf 〉 = 〈L|Ua1b1(x1) . . . U
aN bN (xN )Ū c1d1(y1) . . . Ū

cMdM (yM )|R〉 (2.1)

where the left and right RFT Fock vacuum states satisfy

〈L|Ūab = δab〈L|; Uab|R〉 = δab|R〉. (2.2)

The projectile and target adjoint Wilson line operators are defined in terms of the projectile

color charge denstity ρa(x) as

Ū(x) = e
Ta δ

δρa(x) ; U(x) = eigT
a
∫
y
φ(x−y)ρa(y) (2.3)

with

αa(x) =

∫

y

φ(x− y)ρa(y); φ(x− y) =
g

2π
ln

|x− y|

L
. (2.4)

Here αa is the potential at point x produced by the charge distribution of the target.

The scale L is arbitrary and does not enter calculations of any physical quantities. The

SU(N) generators in the adjoint representation are defined in terms of the SU(N) structure

constants as

T a
bc = −ifabc. (2.5)

These equations imply non-trivial commutation relations, between U and Ū , which

constitute the algebra of the RFT in analogy with Heisenberg algebra of fields in the

ordinary QFT. In order to calculate the scattering amplitude eq. (2.1) one uses the algebra

of U and Ū to commute the factors of U to the right of Ū , at which point they disappear

by virtue of eq. (2.2).

This algebra encodes the diagrammatic calculation of scattering amplitudes in the

operator language. Consider for example the scattering of one gluon on one gluon. The

scattering amplitude up to second order in αs is given by

〈L|Uab(x)Ū cd(y)|R〉 =

δabδcd − igφ(x− y)T i
abT

i
cd +

[

1

2!
igφ(x− y)

]2

(T iT j)ab[(T
iT j)cd + (T jT i)cd] + . . .

(2.6)

This corresponds to the sum of one and two gluon exchange diagrams in figure 1-a. In fact

as was shown in [20], higher order terms organize themselves into all possible diagrams
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Figure 1. The one, two (a) and three (b) gluon exchange contributions to the algebra.

where the relative order of the vertices on the target gluon line is permuted in all possible

ways. These are the relevant diagrams for eikonal scattering in the Lorentz gauge. The

O(α3
s) contributions correspond to the three gluon exchange diagrams (figure 1-b).

With the algebra encoded in eq. (2.3) and the rule for calculating scattering amplitudes

eq. (2.1), the framework of the QCD RFT is defined. To complete the RFT framework

one needs to specify the Hamiltonian HRFT that generates the evolution of the scattering

amplitude in energy. We will spend some time discussing this Hamiltonian below. But

before setting along this route let us recap unitarity constraints on any RFT state as

derived in [20]. These constraints must be preserved by energy evolution of the scattering

amplitudes. This implies a non-trivial constraint on HRFT [20].

Eq. (2.1) is easily extended for scattering of a state which is a superposition of states

with fixed number of gluons. For example, starting with the initial QCD projectile state

|Ψi〉P =
∑

n;xi;ai

Ca1,a2...an |x1, a1; . . . ;xn, an〉 (2.7)

the eikonal scattering can only produce a state of the form

|Ψf 〉P =
∑

n;xi;bi

Cb1,b2...bn |x1, b1; . . . ;xn, bn〉. (2.8)

The same holds for the target

|Ψi〉T =
∑

m;yj ;cj

C̄c1,c2...cm |y1, c1; . . . ;ym, cm〉 (2.9)

the eikonal scattering can only produce a state of the form

|Ψf 〉T =
∑

m;yj ;di

C̄d1,d2...dm |y1, d1; . . . ;ym, dm〉 (2.10)

The S-matrix element is given by

Sif = 〈L|WT [U ]WP [Ū ]|R〉 (2.11)

with

WP =
∑

n,{a,b;x}

Fn({a, b;x})

n
∏

i=1

[Ūaibi(xi)] (2.12)
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Fn({a, b;x}) = Ca1,a2...an(x1 . . .xn)C
∗
b1,b2...bn

(x1 . . .xn) (2.13)

and

WT =
∑

m,{c,d;y}

F̄n({c, d;y})

m
∏

i=1

[U ci,di(yi)] (2.14)

F̄m({c, d;y}) = C̄c1,c2...cm(y1 . . .ym)C̄∗
d1,d2...dm

(y1 . . .ym). (2.15)

As is obvious from eqs. (2.13), (2.15), the functions F and F̄ must satisfy the properties

of s-channel unitarity [20]

Fn({a, a;x}) ≥ 0;
∑

n,{a}

∫

{x}
Fn({a, a;x}) = 1; (2.16)

and the same for F̄ .

As shown in [20] some these conditions are violated in JIMWLK evolution, which leads

to negative probabilities F̄ when evolving the state of a dense target.

3 The RFT Hamiltonian

The subject of RFT is the evolution of scattering amplitudes with energy. In general the

energy evolution is generated by the action of the RFT Hamiltonian HRFT [U, Ū ]. The

S-matrix element of eq. (2.1) evolved to rapidity Y is given by

Sif (Y ) = 〈L|Ua1b1(x1) . . . U
aN bN (xN )eY HRFT [U,Ū ]Ū c1d1(y1) . . . Ū

cMdM (yM )|R〉. (3.1)

3.1 JIMWLK/KLWMIJ Hamiltonians

Exploring the functional form of HRFT is the subject of this paper. Ideally we would like to

derive it directly from a QCD calculation. This has been achieved in the dense-dilute limit,

where one of the scattering objects is dense and the other one is dilute. The two versions

of the Hamiltonian related by the duality transformation have been derived in [40–49].

When the target is dense and the projectile dilute, the relevant limit is the JIMWLK

Hamiltonian:

HJIMWLK =
αs

2π2

∫

x,y,z

(x−z)·(y−z)

(x−z)2(y−z)2

[

2J a
L(x)J

b
R(y)Ū

ab(z)−J a
L(x)J

a
L(y)−J a

R(x)J
a
R(y)

]

.

(3.2)

Here the right and left rotation operators are defined as [69]

J a
L(x) =

[

1

2
T e δ

δρe(x)

(

coth

[

1

2
T e δ

δρe(x)

]

− 1

)]ba

ρb(x) ,

J a
R(x) =

[

1

2
T e δ

δρe(x)

(

coth

[

1

2
T e δ

δρe(x)

]

+ 1

)]ba

ρb(x) ,

(3.3)
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The function on the right hand side as usual should be understood as a power series

expansion. For a single variable t we have

ML(t) ≡
t

2

(

coth
t

2
− 1

)

=
t

et − 1
=

∞
∑

m=0

B−
mtm

m!
=

∞
∑

m=0

C−
mtm

MR(t) ≡
t

2

(

coth
t

2
+ 1

)

=
t

1− e−t
=

∞
∑

m=0

B+
mtm

m!
=

∞
∑

m=0

C+
mtm.

(3.4)

Here B−
m and B+

m are Bernoulli numbers. They have the properties that B−
2n = B+

2n

for all even integers 2n while B−
2n+1 = B+

2n+1 = 0 for all odd integers 2n + 1 except

B−
1 = −1

2 = −B+
1 . Also the relations ML(t) = MR(t)e

−t and MR(t) = ML(t)e
t can be

readily verified.

The operators J a
L(x),J

a
R(x) act as left rotation and right rotation on the Wilson line

Ūmn(x),

[J a
L(x), Ū

mn(y)] = −(T aŪ(y))mnδ(x− y) ,

[J a
R(x), Ū

mn(y)] = −(Ū(y)T a)mnδ(x− y) .
(3.5)

One seemingly peculiar feature of these definitions is that when considered as operators

on the standard Hilbert space of functions of ρ, the operators JL(R) are not Hermitian

J †
L 6= JL; J †

R 6= JR. (3.6)

However one has to keep in mind that the operation of Hermitian conjugation of the

operators in QCD Hilbert space does not correspond to naive Hermitian conjugation in the

RFT space. Without going into detailed discussion here, we refer the reader to [70] where

it was shown that the RFT transformation that corresponds to Hermitian conjugation in

the QCD Hilbert space is

[QCD operator]† → (L ↔ R)∗ (3.7)

Under this transformation indeed we have

JL → J ∗
R = JL; JR → J ∗

L = JR (3.8)

as is required for Hermitian operators in the QCD Hilbert space.

The evolution in the reverse situation (dilute target and dense projectile) is governed

by the so called KLWMIJ Hamiltonian,

HKLWMIJ =
αs

2π2

∫

x,y,z

(x−z)·(y−z)

(x−z)2(y−z)2

[

2Ia
L(x)I

b
R(y)U

ab(z)−Ia
L(x)I

a
L(y)−Ia

R(x)I
a
R(y)

]

(3.9)

where IL(R) are defined as

Ia
L(x) =

−i

g

δ

δαb(x)

[

1

2
T eigαe(x)

(

coth

[

1

2
T eigαe(x)

]

− 1

)]ba

,

Ia
R(x) =

−i

g

δ

δαb(x)

[

1

2
T eigαe(x)

(

coth

[

1

2
T eigαe(x)

]

+ 1

)]ba

,

(3.10)
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with αa(x) defined in eq. (2.4). These satisfy

[Umn(y), Ia
L(x)] = −(T aU(y))mnδ(x− y) ,

[Umn(y), Ia
R(x)] = −(U(y)T a)mnδ(x− y) .

(3.11)

The two sets of operators satisfy two copies of SU(N)×SU(N) commutation relations:

[J a
L(x),J

b
L(y)] = ifabcJ c

L(x)δ(x− y) ,

[J a
R(x),J

b
R(y)] = −ifabcJ c

R(x)δ(x− y)

[J a
L(x),J

a
R(y)] = 0 .

(3.12)

and

[Ia
L(x), I

b
L(y)] = −ifabcIc

L(x)δ(x− y) ,

[Ia
R(x), I

b
R(y)] = ifabcIc

R(x)δ(x− y)

[Ia
L(x), I

a
R(y)] = 0 .

(3.13)

The commutation relations between J and I are rather complicated and we will not

attempt to derive them here.

The Hamiltonian of RFT must possess a property of self duality, i.e. it has to be

invariant under the transformation that interchanges the projectile and the target. This is

obvious from the point of view of QCD, since it is immaterial which one of the colliding

objects we call the target, and which one the projectile. Thus scattering of an N gluon

projectile on an M gluon target is the same as scattering of an M gluon projectile on an N

gluon target. The JIMWLK (and likewise KLWMIJ) Hamiltonian is not self dual, since it

is only meant to be valid in the very asymmetric regime where one of the colliding objects is

dense and one is dilute. This lack of self duality means among other things, that JIMWLK

cannot be used at asymptotically high energies, where the projectile becomes dense as well.

It is thus clearly desirable to find a self dual extension of HJIMWLK .

Some years ago a considerable effort has been dedicated to a search for a self dual

extension of the Hamiltonian. One such extension in the context of large Nc Pomeron

theory was suggested by Braun [31–33]. The solutions to the Braun theory however exhibit

a nonphysical bifurcating behavior [71] which was an original motivation for the study

of [21]. It was shown in [21] that Braun’s theory suffers from unitarity violation. Other

attempts based on the QCD path integral approach were reported in [67, 68]. Those

works have proposed the so called “diamond action” as a self dual effective action of

RFT. Although the question has not been settled, in recent years this effort has only been

simmering on a back burner.

Here we return to this problem motivated by considerations of unitarity. As we showed

in [20], the JIMWLK Hamiltonian violates QCD unitarity constraints when acting on the

dense target wave function. In view of the discussion in [21] of the zero dimensional toy

model, it seems likely that the self duality of HRFT is necessary in order to restore unitarity.

In this section we present a self dual HRFT and show that it reduces to HJIMWLK and

HKLWMIJ in the appropriate dense-dilute limit.

– 8 –
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3.2 The self dual extension

3.2.1 The symmetries

Our strategy in this paper is similar to that of EFT: we are not going to attempt to derive

HRFT from first principles, but will rather construct a family of Hamiltonians which on

the one hand reduce to HJIMWLK and HKLWMIJ in the appropriate limits, and on the

other hand are symmetric under the known symmetries of HJIMWLK in addition to being

self dual.

The symmetries of HJIMWLK have been analyzed for example in [50] and [72].

HJIMWLK possesses the continuous symmetry group SUL(N) × SUR(N) generated by

JL(R). In addition it has the discrete ZS
2 × ZC

2 symmetry group with the two discrete

transformations acting in the following way:

1. The signature ZS
2

SUS† = U †; SŪS† = Ū †; SJLS
† = −JR; SILS

† = −IR. (3.14)

2. The charge conjugation ZC
2 .

For simplicity we choose to work in the basis where the generators in the fundamental

representation ta are either real and symmetric or imaginary and antisymmetric. In this

basis the charge conjugation symmetry corresponds to changing the sign of the real gener-

ators since this has the effect ta → −ta∗ which interchanges the generators in fundamental

and anti fundamental representations. Defining the matrix

cab = −2tr[tat∗b] (3.15)

the “second quantized” form of the transformation is

CJ a
L(R)C

† = cabJ b
L(R); CIa

L(R)C
† = cabIb

L(R). (3.16)

The eikonal factors in fundamental (UF ) and adjoint (U) representations transform as

CUFC
† = U∗

F ; CŪFC
† = Ū∗

F . (3.17)

CUabC
† = cacUcdcdb; CŪabC

† = cacŪcdcdb. (3.18)

We expect both the discrete symmetries of HJIMWLK to remain the symmetries of

the general HRFT since they directly reflect the symmetries of QCD. The situation with

SUL(N) × SUR(N) is less clear. It is certainly true that we expect the diagonal vector

subgroup SUV (N) to be a symmetry of HRFT , since it descends directly from the global

color group of QCD as it rotates simultaneously the initial and final scattering states. The

left rotation acts only on the initial states and may be an accidental symmetry of the dense-

dilute limit. Thus we will not insist on SUL(N) and SUR(N) to be separate symmetries

but will return to this question later.

In addition to these symmetries which are symmetries of JIMWLK limit, we will also

require HRFT to be invariant under the dense dilute duality ZD
2 . To understand how the
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duality transformation acts on the field variables in the current RFT setup, we recall that

physically it simply interchanges the projectile and the target. In other words for basic

scattering amplitude we should have

〈L|Ua1b1(x1) . . . U
aN bN (xN )Ū c1d1(y1) . . . Ū

cMdM (yM )|R〉 → (3.19)

〈L|Ud1c1(y1) . . . U
dM cM (yM )Ū b1a1(x1) . . . Ū

bNaN (xN )|R〉.

Self duality, or invariance, under ZD
2 is a realization of the fact that the two amplitudes

must be equal at any collision enery

〈L|Ua1b1(x1) . . . U
aN bN (xN )Ū c1d1(y1) . . . Ū

cMdM (yM )|R〉 (3.20)

= 〈L|Ud1c1(y1) . . . U
dM cM (yM )Ū b1a1(x1) . . . Ū

bNaN (xN )|R〉.

When considered as a transformation acting on a function of the basic fields ρ and δ
δρ
, the

ZD
2 transformation can be written as

F [ρ,
δ

δρ
] → F †[−

i

g

δ

δαa
, igαa]. (3.21)

In terms of individual operators this is [66]

ρa → −
i

g

δ

δαa
,

δ

δρa
→ −igαa (3.22)

U → Ū ; JL(R) → I†
R(L).

However, in addition to this action one has to take an overall Hermitian conjugation of the

whole expression which is being transformed. Note that due to this additional action of

Hermitian conjugation the duality transformation ZD
2 cannot be represented by an action of

a unitary operator on the RFT Hilbert space. This is similar to time reversal in quantum

mechanics, which is not a unitary but an anti unitary transformation. Recall that anti

unitary transformation involves complex conjugation of an operator function in addition

to the transformation of basic variables. The duality is not an anti unitary transformation

either, since it involves hermitian conjugation rather than a simple complex conjugation of

a function F . Nevertheless, just like the time reversal in quantum mechanics, it is a bona

fide linear transformation in the Hilbert space and thus should be considered on par with

other symmetries of the theory.

3.2.2 The “left” and “right” Wilson lines

To construct HRFT let us introduce the following Wilson line like operators in the funda-

mental representation

VL(x) = Exp

{

i

∫

y

gφ(x− y)teJ e
L(y)

}

VR(x) = Exp

{

−i

∫

y

gφ(x− y)teJ e
R(y)

}

V̄L(x) = Exp

{

i

∫

y

gφ(x− y)teIe
L(y)

}

V̄R(x) = Exp

{

−i

∫

y

gφ(x− y)teIe
R(y)

}

.

(3.23)
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These expressions resemble our reggeized gluon operators U and Ū . However they are

defined in terms of SU(N) generators JL(R) and IL(R) rather than commuting variables ρ.

The reason to introduce these operators is that they look like appropriate building

blocks for HRFT . Recall that we need HRFT to reduce to HJIMWLK in the dense dilute

limit, i.e. in the leading order of expansion in powers of ρ. Now HJIMWLK is a simple

function when written in terms of JL(R) rather than the regular Wilson line operators U .

It therefore seems likely that in order to extend it beyond the dense-dilute limit the basic

building blocks also should be simple function of J ’s. On the other hand HJIMWLK is

also a simple function of Ū . Given that we want to impose self duality on HRFT it is

reasonable to choose our building blocks to be in some way similar to Wilson lines. Hence

the motivation to introduce the operators in eq. (3.23). We chose to discuss these operators

in fundamental representation for simplicity. As we will show later, the construction we

propose works with an arbitrary representation of SU(N), thus providing an infinite set of

Hamiltonians that satisfy our requirements.

When calculating the RFT “correlators” of these operators with U and Ū , the ordering

of the vertices is important, unlike in the calculation of correlators of U ’s and Ū ’s among

themselves. For example consider the simplest correlator

〈L|V αβ
L (x)Ū cd(y)|R〉 = δαβδcd − igφ(x− y)tiαβT

i
cd +

1

2!
[igφ(x− y)]2 (titj)αβ(T

jT i)cd + . . .

(3.24)

where the ellipsis denotes contributions of order g6 and higher, i.e. three and higher gluon

exchange diagrams. For comparison, a similar correlator for the fundamental Wilson line

defined as

V (x) = UF (x) = Exp

{

i

∫

y

φ(x− y)teρe(y)

}

is

〈L|V αβ(x)Ū cd(y)|R〉 =

δαβδcd − igφ(x− y)tiαβT
i
cd +

[

1

2!
igφ(x− y)

]2

(titj)αβ [(T
iT j)cd + (T jT i)cd] + . . .

(3.25)

At the two gluon exchange level the difference between the two is

〈L|V αβ
L (x)Ū cd(y)|R〉 − 〈L|V αβ(x)Ū cd(y)|R〉 = −

1

4
[igφ(x− y)]2 (titj)αβ [T

i, T j ]cd (3.26)

which corresponds to the diagram in figure 2. Note that this difference is a two gluon

exchange in the octet channel, and may be viewed simply as the reggeization correction to

a single gluon exchange.

In general if one thinks about VL as representing a fundamentally charged parton in

the target wave function, the parton in question would be something of a black sheep.

It would always scatter on the projectile only after all the other partons have had their

day. As an example, a sample diagram corresponding to the calculation of the correlator

〈L|U(x1)U(x2)VL(z)Ū(y)|R〉 is depicted on figure 3. Note that all the gluons exchanged
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− =

Figure 2. Reggeization corrections to a single gluon exchange.

Figure 3. A sample diagram for a correlator that includes VL.

between Ū and VL attach to the Ū line to the left of any gluon exchanged between Ū and

any of the U ’s. This follows since VL contains only left rotation generators of Ū . Similarly,

VR only contains right rotation operators, and therefore in a scattering diagram always

exchanges gluons with the projectile before any other exchanges with target gluons.

Also note that operatorially VL and VR do not commute with U , although they

commute with each other. Similar comments apply to V̄L(R).

3.2.3 Constructing HRFT

Let us now consider the following expression

H
(1)
RFT =

1

πg2

∫

d2xTr[∂2VL(x)V̄L(x)VR(x)V̄R(x) + VL(x)V̄L(x)∂
2VR(x)V̄R(x)

+ 2∂iVL(x)V̄L(x)∂iVR(x)V̄R(x)]

=
1

πg2

∫

d2x V̄ βγ
L (x)V̄ δα

R (x)∂2[V αβ
L (x)V γδ

R (x)]

=
1

πg2

∫

d2x ∂2[V̄ βγ
L (x)V̄ δα

R (x)]V αβ
L (x)V γδ

R (x)

(3.27)

where in the last line we have integrated by parts assuming that the boundary terms vanish.

Note that the order of factors is important, since the operators V and V̄ do not commute

with each other. In (3.27) all factors VL, VR are understood as positioned to the right of

any factor V̄L, V̄R. The diagram that schematically represents the color flow between the

four Wilson lines is shown in figure 4.

We start with this expression since as we will see shortly it reproduces both, the

JIMWLK and the KLWMIJ Hamiltonians in the appropriate dense-dilute limit. Following

our EFT like strategy we would like to impose on HRFT the discrete symmetries discussed

above. It turns out that it is quite easy to do.

We start with the duality transformation ZD
2 . We perform the transformation in two

steps. First we perform the canonical transformation

ρa ↔ −
i

g

δ

δαa
,

δ

δρa
↔ −igαa (3.28)
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VL VR

V̄L

V̄R

α

β γ

δ

Figure 4. The Reggeon field theory Hamiltonian H
(1)
RFT

. The arrows indicate the directions of

color charge flow.

under which

J a
L ↔ Ia†

R , J a
R ↔ Ia†

L (3.29)

or equivalently,

VL → V̄ †
R, VR → V̄ †

L .

V̄L → V †
R, V̄R → V †

L .
(3.30)

Second, in accordance with eq. (3.21) we take the Hermitian conjugation of the transformed

Hamiltonian to obtain

H
(1)dual
RFT =

(

1

πg2

∫

dxV †βγ
R (x)V †δα

L (x)∂2[V̄ †αβ
R (x)V̄ †γδ

L (x)]

)†

=
1

πg2

∫

dx ∂2[V̄ βα
R (x)V̄ δγ

L (x)]V γβ
R (x)V αδ

L (x) = H
(1)
RFT .

(3.31)

Thus we find that H
(1)
RFT is self dual already.

The next in line is the signature transformation eq. (3.14)

VL ↔ VR, V̄L ↔ V̄R, (3.32)

It is easily seen that H
(1)
RFT is invariant under this transformation.

The only remaining discrete symmetry is charge conjugation. Although H
(1)
RFT itself is

not invariant it is easy to rectify this.

According to eq. (3.16) the charge conjugation transformation acts on the left and

right Wilson lines. From the definition of J a
L(R) and Ia

L(R), taking complex conjugate, one

obtains

CVLC
† ≡ V c

L = exp

{

−ig

∫

y

φ(x− y)te∗J e
L(y)

}

,

CVRC
† ≡ V c

R = exp

{

ig

∫

y

φ(x− y)te∗J e
R(y)

}

,

CV̄LC
† ≡ V̄ c

L = exp

{

−ig

∫

y

φ(x− y)te∗Ie
L(y)

}

,

CV̄RC
† ≡ V̄ c

R = exp

{

ig

∫

y

φ(x− y)te∗Ie
R(y)

}

.

(3.33)
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Applying the charge conjugation on H
(1)
RFT we obtain

CH
(1)
RFTC

† ≡ H
(1)c
RFT =

1

πg2

∫

dx V̄ c,βγ
L (x)V̄ c,δα

R (x)∂2
[

V c,αβ
L (x)V c,γδ

R (x)
]

. (3.34)

It is easy to see that H
(1)c
RFT is by itself invariant under the signature and duality trans-

formations. Therefore, the following Hamiltonian is invariant under all relevant discrete

symmetries:

HRFT =
1

2

(

H
(1)
RFT +H

(1)c
RFT

)

=
1

2πg2

∫

d2x
(

V̄ βγ
L (x)V̄ δα

R (x)∂2
[

V αβ
L (x)V γδ

R (x)
]

+V̄ c,βγ
L (x)V̄ c,δα

R (x)∂2
[

V c,αβ
L (x)V c,γδ

R (x)
])

.

(3.35)

So far we have not discussed the continuous symmetries of HRFT . We will postpone

this discussion to section 5 after we consider the dense-dilute limit.

We have found a candidate RFT Hamiltonian which is self dual. In fact the construc-

tion above defines a family of self dual Hamiltonians. In particular rather than using the

fundamental representation for defining VL(R) and V̄L(R) we could have used any represen-

tation of the color group. Any one of these variations is self dual and, as we will see later

reduces to the JIMWLK Hamiltonian in the dense-dilute limit. We do not have any a priori

reason to prefer one of these versions to another, although it may seem unnatural to involve

very high representations of the color group. One should also note that for representations

that have vanishing N -ality, like the adjoint representation one has H
(1)
RFT = H

(1)c
RFT which

is a simplifying feature.

In this paper we will be working with the fundamental representation defined in

eq. (3.23) when deriving the JIMWLK and KLWMIJ limits so that not to loose gener-

ality. We will show that H
(1)
RFT and H

(1)c
RFT separately reduce to HJIMWLK and HKLWMIJ

in appropriate limits and that this feature extends to any representation of SU(N).

4 The dense-dilute limit

The most important test for HRFT is that it must reproduce HJIMWLK in the dense-dilute

limit. In this section we demonstrate explicitly that this is indeed the case.

The dense-dilute limit arises when the number of gluons in the projectile is of order

one, while the number of gluons in the target is large, parametrically n ∼ O(1/α2
s). Thus

we are considering the amplitude in eq. (2.1) and eq. (3.1) where the number of factors

Ū is of order one, and the number of factors U is of order 1/α2
s. In this limit several

simplifications occur.

We will first give a simplified argument, and then complete the mathematical details

of the demonstration.

First of all, note that at weak coupling any given projectile gluon can exchange at

most two gluons with any given target gluon. However, since the number of gluons in the

target is large, a projectile gluon can multiply scatter on many gluons of the target. A
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Figure 5. A representative diagram for scattering of a single projectile gluon in the dense-dilute

limit. Here we have drawn the projectile gluon on the top of the figure and the target gluons at the

bottom.

U

U
_

U
_

U

U
_

U
_

+ +

U

U
_

U
_

Figure 6. A representative diagram for scattering of a single target gluon in the dense-dilute

limit. Here we have drawn the target gluon on the bottom of the figure and the projectile gluons

at the top.

representative diagram for scattering of a single projectile gluon is depicted on figure 5. The

diagram in figure 5 contains single and double gluon exchanges between individual pairs

of gluons. If a single gluon exchange is present such a diagram contributes to an inelastic

amplitude as the final state of the scattering process is necessarily different from the initial

state. The elastic amplitude has contribution only from two gluon exchanges where the

two gluons are in the color singlet. Since every two gluon exchange carries a factor α2
s, and

there are in total O(1/α2
s) target partons that can participate in the scattering, the total

elastic scattering amplitude in the dense-dilute limit is of order unity.2

On the other hand since the projectile is dilute, every target gluon can only scatter

either on one or two projectile gluons. The appropriate diagrams are represented on figure 6.

Technically this means that in the dense-dilute limit all factors of U have to be expanded

to second order in ρ. This insures that once two gluons are exchanged between a target

gluon and the projectile, the target gluon does not participate in any further scattering.

Now consider the diagrams as in figure 6 but which, instead of one of the factors Ū

contain a factor V̄L that appears in the RFT Hamiltonian.

As we have discussed above, the only difference between these two sets of diagrams is

that all the gluons exchanged between V̄L and any given factor U connect to the left of any

other gluons that might be exchanged by this U and a different factor of Ū present in the

amplitude. However any given U can exchange at most two gluons. If these two gluons

2Single gluon exchanges behave a little differently. One does not add single gluon exchange amplitudes

between a given projectile gluon and different target gluons since those lead to different final states of the

target and do not contribute to the same S matrix element. Instead the single gluon exchanges with distinct

target gluons lead to appearance of many nonvanishing off diagonal matrix elements of the S matrix albeit

each such matrix element is of order αs. The number of such nonvanishing matrix elements is O(1/α2
s).

– 15 –



J
H
E
P
1
0
(
2
0
2
0
)
1
8
5

Figure 7. An αs suppressed correction to a correlator containing V̄L which is negligible in the

weak coupling limit.

are exchanged between U and V̄L, no further gluons are exchanged and the action of V̄L

is identical to the action of V̄ . If U exchanges only one gluon with V̄L and another gluon

with some other factor of Ū , it is still true that as far as elastic amplitude is concerned the

action of V̄L and V̄ is identical. The difference only appears in the inelastic amplitude, but

here again it appears as αs suppressed correction through a diagram analogous to that of

figure 2, see figure 7. This correction is not enhanced by the number of target gluons, and

thus is indeed negligible in the dense-dilute limit. We therefore conclude that in the dense

dilute limit we can safely replace V̄L by V̄ . The same is obviously true for V̄R. Thus in the

dense-dilute limit in HRFT we can replace

V̄L → V̄ ; V̄R → V̄ † (4.1)

Another simplification follows since any factor of U , VL or VR can be expanded to

second order as only two gluons can be exchanged by any of the target gluons. Thus in

the dense-dilute limit we have

VL(x) = 1 +

∫

y

igφ(x− y)teJ e
L(y)−

g2

2

∫

y,z

φ(x− y)φ(x− z)tetdJ e
L(y)J

d
L(z) ,

VR(x) = 1−

∫

y

igφ(x− y)teJ e
R(y)−

g2

2

∫

y,z

φ(x− y)φ(x− z)tetdJ e
R(y)J

d
R(z) .

(4.2)

With these simplification we now consider the RFT Hamiltonian. Let us concentrate on

H
(1)
RFT

H
(1)
RFT ≈

1

πg2

∫

x

V̄ βλ(x)V̄ †κα(x)∂2
[

V αβ
L (x)V λκ

R (x)
]

. (4.3)

with the understanding that VL, VR are expanded to second order. The zeroth order in

expansion, the product VLVR is a constant and does not contribute to the Hamiltonian

due to derivative acting on it. The first order also vanishes because it involves a factor

Tr(ta) = 0. At second order there are three terms

V αβ
L (x)V λκ

R (x)=
g2

2

∫

y,z

iφ(x−y)iφ(x−z)
[

−2teαβt
d
λκJ

e
L(y)J

d
R(z)+(tetd)αβδ

λκJ e
L(y)J

d
L(z)

+(tetd)λκδ
αβJ e

R(y)J
d
R(z)

]

.

(4.4)
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Substituting the above expression into HRFT , one obtains

H
(1)
RFT =

1

2π

∫

x,y,z

∂2
x[iφ(x−y)iφ(x−z)]

(

−2V̄ βλ(x)V̄ †κα(x)[teJ e
L(y)]αβ [t

dJ d
R(z)]λκ

+[teJ e
L(y)]αβ [t

dJ d
L(z)]βα+[teJ e

R(y)]αβ [t
dJ d

R(z)]βα

)

=
1

4π

∫

x,y,z

∂2
x[iφ(x−y)iφ(x−z)]

[

−2Ū ed(x)J e
L(y)J

d
R(z)+J e

L(y)J
e
L(z)+J e

R(y)J
e
R(z)

]

=
1

2π

∫

x,y,z

[i∂xφ(x−y)i∂xφ(x−z)]
[

−2Ū ed(x)J e
L(y)J

d
R(z)+J e

L(y)J
e
L(z)+J e

R(y)J
e
R(z)

]

.

(4.5)

Note that the spatial derivatives generate other terms

∂2
x(φ(x−y)φ(x−z))= [∂2

xφ(x−y)]φ(x−z)+φ(x−y)[∂2
xφ(x−z)]+2∂xφ(x−y)∂xφ(x−z).

(4.6)

However, with ∂2
xφ(x − y) = gδ(x − y) and ∂2

xφ(x − z) = gδ(x − z), performing the

integration over x and using the relations Ū ed(y)J e
L(y) = J d

R(y) and Ū ed(z)J d
R(z) = J e

L(z),

these addtional terms cancel each other. Thus only the term where the two derivatives

separately act on φ(x − y) and φ(x − z) survives. Performing the same calculation for

H
(1)c
RFT we find to this order an identical result. Thus in the dense-dilute approximation

we get

HRFT →HJIMWLK (4.7)

=
1

2π

∫

x,y,z

[i∂xφ(x−y)i∂xφ(x−z)]
[

−2Ū ed(x)J e
L(y)J

d
R(z)+J e

L(y)J
e
L(z)+J e

R(y)J
e
R(z)

]

.

There is one subtlety in this derivation which we need to address, i.e. at what order

does the correction to eq. (4.1) affect the calculation. To answer this we need to develop a

controlled expansion of HRFT in the dense-dilute limit. To do this we note that although we

have justified eqs. (4.1) and (4.2) by analyzing the contributions to the S-matrix generated

by exchanges of at most two gluon, the same result can be obtained formally by taking the

limit of small ρ. It is obvious that at small ρ, the operators VL and VR should be simply

expanded in power series in JL(R) to the leading order to which the Hamiltonian does not

vanish, leading to eq. (4.2). On the other hand at small ρ we should also expand IL(R) to

leading order in ρ, which gives

Ia
L = Ia

R =
−i

g

δ

δαa(x)
; V̄L = V ; V̄R = V̄ †. (4.8)

In fact expansion in powers of ρ is the proper formal way to derive the form of the Hamil-

tonian in the dense-dilute limit.

Formally expanding H
(1)
RFT in powers of ρ we see that HJIMWLK arises at order ρ2 by

multiplying the O(1) term in V̄LV̄R and O(ρ2) term in VLVR. However we also have to

consider a possible contribution arising from O(ρ) term in V̄LV̄R (the first order correction
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to eq. (4.8)) multiplied by O(ρ) term in VLVR. We write this additional term as

δHJIMWLK =
1

πg2

∫

x

(

V̄ βλ
L (x)V̄ †κα + V̄ βλV̄ κα

R (x)
)

∂2
[

V αβ
L (x)δλκ + δαβV λκ

R (x)
]

=
1

πg2

∫

x

(

(V̄LV̄
†)βα + (V̄ V̄R)

βα
)

[

ig2teαβJ
e
L(x)

]

+
(

(V̄ †V̄L)
κλ + (V̄RV̄ )κλ

) [

−ig2tdλκJ
d
R(x)

]

(4.9)

Here V̄L and V̄R are understood as expanded to O(g), however we will not need the explicit

from of this expansion, since we will show that this expression vanishes.

We use the two identities

V̄ †
λαt

e
αβV̄βγ = Ū edtdλγ (4.10)

and

Ū †de(x)J e
L(x) = J d

R(x). (4.11)

Here, as before V̄ † = exp{−ta δ
δρa

} and V̄ = exp{ta δ
δρa

} are defined in the fundamental

representation while Ū = exp{T a δ
δρa

} is defined in the adjoint representation. We then

calculate

(V̄LV̄
†)βαteαβJ

e
L = V̄ βλ

L

[

Ū edtdλγ V̄
†γβ
]

J e
L = J d

Rt
d
λγ(V̄

†V̄L)
γλ (4.12)

and

(V̄ V̄R)
βαteαβJ

e
L =

[

Ū edV̄αλt
d
λγ

]

V̄ γα
R J e

L = J d
Rt

d
λγ(V̄RV̄ )γλ. (4.13)

Thus the four terms in eq. (4.9) pairwise cancel.

We have thus proved that when expanded to second order in ρ, the Hamiltonian H
(1)
RFT

reproduces HJIMLWK . It is obvious that the same is true for H
(1)c
RFT , since HJIMWLK is

charge conjugation invariant.

If instead of expanding in powers of ρ, we expand in powers of δ/δρ, the leading order

expansion gives HKLWMIJ , eq. (3.9). This is easily done explicitly, but the final result is

obvious by duality.

Finally we note that the exact same result is obtained if we were to use the left and

right Wilson lines not in the fundamental but in any other representation of SU(N). The

only property of the SU(N) matrices that is needed to derive HJIMWLK in eq. (4.5) is

Tr[V̄ †teV̄ td] =
1

2
Ū ed (4.14)

for a fundamental matrix V̄ and an adjoint matrix Ū . However a similar relation holds for

SU(N) matrices in any representation D

Tr[Ū †
DT

a
DŪDT

b
D] =

C2(D)RD

N2 − 1
Ūab. (4.15)

Here ŪD is a matrix and TD is a generator in an arbitrary representation D of SU(N),

and C2(D) and RD are the second Casimir and the dimensionality of D respectively. Thus

using UD and ŪD in any representation in the definition of HRFT will reproduce HJIMWLK

and HKLWMIJ in expansion once the overall normalization is adjusted.
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5 Continuous symmetries

Let us now discuss the continuous symmetries of HRFT . As we have mentioned above, both

the JIMWLK and the KLWMIJ Hamiltonians have a continuous SU(N)×SU(N) symmetry,

albeit those are distinct symmetry transformations. The SU(N) × SU(N) symmetry of

HJIMWLK is generated by the charges

Qa
L =

∫

d2zJ a
L(z); Qa

R =

∫

d2zJ a
R(z) (5.1)

while the SU(N)× SU(N) symmtery of HKLWMIJ by

Q̄a
L =

∫

d2zIa
L(z); Q̄a

R =

∫

d2zIa
R(z). (5.2)

It is an interesting question which of these symmetries are also the symmetries of the

self dual HRFT eq. (3.35). The question is not completely straightforward to answer even

though we do have an explicit representation of the charge operators on the RFT Hilbert

space. The reason is that the commutation relations between JL(R) and V̄L(R) as well

as between IL(R) and VL(R) are quite complicated. We will nevertheless try to answer

this question, using a perturbative expansion. Our answer is somewhat surprising: the

symmetry of HRFT appears to be SU(N)× SU(N)× SU(N).3

We start with discussing the vector part of the group, which is the easiest and can be

analyzed without recourse to perturbation theory.

To better organize the calculation, we rescale the charge density ρ̃a(x) = gρa(x) and

also introduce φ̃(x − y) = 1
g
φ(x − y). Then J a

L ,J
a
R, I

a
L, I

a
R can be Taylor expanded by

counting the powers of the coupling constant g. We will use this expansion in this and

the next sections. We will refer to this counting in powers of the coupling constant as the

“BFKL counting”, since it is equivalent to simultaneous expansion in powers of ρ and δ/δρ.

5.1 The vector SUV (N) symmetry

The analysis of the vector symmetry is facilitated by the following simple observation

QL −QR = Q̄R − Q̄L. (5.3)

To prove this we note that

J a
L(z)− J a

R(z) = ρ̃b(z)T a
bc

δ

δρ̃c(z)
(5.4)

Ia
R(z)− Ia

L(z) = α̃b(z)T a
bc

δ

δα̃c(z)
=

∫

d2yφ̃(z− y)ρ̃b(y)T a
bc∂

2
z

δ

δρ̃c(z)
. (5.5)

Integrating by parts we find

Q̄R− Q̄L =

∫

d2zd2yφ̃(z−y)ρ̃b(y)T a
bc∂

2
z

δ

δρ̃c(z)
=

∫

d2zρ̃b(z)T a
bc

δ

δρ̃c(z)
= QL−QR. (5.6)

3To be precise, while SU(N)×SU(N) is there, the third SU(N) does not necessary form a direct product

with the first two. We have not attempted to write down the full algebra of the currents, which appears to

be quite complicated.
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It is now straightforward to check that the vector SUV (N) transformation generated by

QL −QR is the symmetry of HRFT . By virtue of eq. (5.3) the charge Qa
V ≡ Qa

L −Qa
R acts

as a rotation generator on all the currents, i.e.

[

Qa
V ,J

b
L

]

= ifabcJ c
L ,

[

Qa
V ,J

b
R

]

= ifabcJ c
R .

[

Qa
V , I

b
L

]

= ifabcIc
L ,

[

Qa
V , I

b
R

]

= ifabcIc
R .

(5.7)

It then follows that for a finite group transformation

Ŵ = exp {iλaQa
V } (5.8)

we have

Ŵ †J a
L(R)(x)Ŵ = Wab

A J b
L(R)(x); Ŵ †Ia

L(R)(x)Ŵ = Wab
A Ib

L(R)(x); (5.9)

with

Wab
A =

[

eiλ
dT d
]ab

. (5.10)

As a consequence

Ŵ †V αβ
L (x)Ŵ =

(

WFVL(x)W
†
F

)αβ
(5.11)

with the fundamental representation matrix

Wκβ
F =

[

eiλ
ete
]κβ

. (5.12)

The same transformation as in eq. (5.11) applies to VR(x), as well as to V̄L(R). It is now

obvious that HRFT is invariant under SUV (N).

5.2 Is SUL(N) there?

Let us now consider other transformations generated by the left and right charges. The

analysis for all of them is similar, and we will concentrate on QL. The question we are

asking, does QL commute with HRFT ?

What is the action of Qa
L on the building blocks of HRFT ? The answer for VL and VR

is obvious. Under the SUL(N) transfromation

Ŝ = exp {iλaQa
L} (5.13)

we have

Ŝ†J e
L(z)Ŝ = Sed

A J d
L(z); Ŝ†J e

R(z)Ŝ = J e
R(z) (5.14)

with

Sed
A (x) =

[

eiλ
aTa
]ed

. (5.15)
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As a consequence,

Ŝ†V αβ
L (x)Ŝ = Sαγ

F V γκ
L (x)S†κβ

F ; Ŝ†V αβ
R (x)Ŝ = V αβ

R (x) (5.16)

with

Sκβ
F =

[

eiλ
ete
]κβ

. (5.17)

What is the transformation of V̄L and V̄R? Examining the expression for HRFT we see

that if the transformation was

Ŝ†V̄ βγ
L (x)Ŝ = Sβκ

F V̄ κγ
L (x); Ŝ†V̄ βγ

R (x)Ŝ = V̄ βκ
R Sκγ

F (x); (true or false ?) (5.18)

the Hamiltonian would be invariant under SUL(N). Indeed if instead of V̄L and V̄R we had

V̄ and V̄ †, this would be the case. This is precisely what happens in the JIMWLK limit.

The transformation eq. (5.18) is equivalent to the commutation relation

[

Qa
L, V̄

αβ
L (x)

]

= −
(

taV̄L(x)
)αβ

(true or false?) (5.19)

and similarly for V̄R.

We were unable to calculatie the commutation relation in eq. (5.19) in a closed form.

However we were able to calculate first several orders in perturbative expansion in g.

We performed the calculation in the BFKL counting of orders of g. The details of the

calculation are presented in the appendix A. Our results are the following.

We have calculated the commutator between Qa
L and V̄L up to order g3 and found that

relation eq. (5.19) holds up to order g2, but is violated at order g3.

We have also calculated the commutator of Qa
L with the Hamiltonian [Qa

L, HRFT ] up

to order g6. We have found that this commutator vanishes up to this order. This leads us

to believe that even though eq. (5.19) is not satisfied, the SUL(N) is indeed a symmetry

of HRFT . We stress that we do not have a closed form proof of this, but only perturbative

calculation to order g6.

The analysis of Q̄a
L is identical, since Q and Q̄ are related by duality transformation.

Thus we believe that Q̄a
L also commutes with the Hamiltonian.

If this is indeed the case, the continuous symmetry of HRFT is at least SU(N) ×

SU(N)× SU(N). In fact the symmetry could be even larger since we have not calculated

the commutators [QL, Q̄L]. If this commutator does not close on any of the four charges

(or their products) QL(R), Q̄L(R) the symmetry group is larger. We have not investigated

this question any further.

6 Is this the “Diamond action”?

The family of Hamiltonians that we have identified carries uncanny resemblance to the so

called “Diamond action” suggested in [67] and also discussed in [68]. There is of course a

host of differences between our approach and that of [67] and [68]. On the technical level

we are dealing with the Hamiltonian formulation of RFT together with the accompanying

field algebra and the structure of the RFT Hilbert space, while these references strive
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to derive the effective action in terms of certain Wilson line functions. On the other

hand [67] and [68] derive the action directly from QCD (although in both cases certain not

entirely straightforward approximations are utilized) whereas our expression is an ansatz

constrained by the expected symmetries and the appropriate limiting forms.

Nevertheless, abstracting ourselves from these differences we can compare HRFT with

the effective action of [67]. We concentrate on the Hamiltonian eq. (3.35) defined with

Wilson line in the adjoint representation.

UL(x) = Exp

{

i

∫

y

gφ(x− y)T eJ e
L(y)

}

UR(x) = Exp

{

−i

∫

y

gφ(x− y)T eJ e
R(y)

}

ŪL(x) = Exp

{

i

∫

y

gφ(x− y)T eIe
L(y)

}

ŪR(x) = Exp

{

−i

∫

y

gφ(x− y)T eIe
R(y)

}

.

(6.1)

In this case the two terms in eq. (3.35) are equal and we have

HA
RFT =

1

2πg2N

∫

d2x ∂2[Ū bc
L (x)Ūda

R (x)]Uab
L (x)U cd

R (x) . (6.2)

It is easily checked that with the correspondence

UL → W−∞, UR → W †
∞, ŪL → V−∞, ŪR → V †

∞ (6.3)

our eq. (6.2) looks identical to the effective action suggested in [67]. However beyond the

looks there are significant differences between the two. In particular in [67] the four Wilson

lines are not independent, but satisfy the so called diamond condition

V †
∞W−∞V−∞W †

∞ = 1 . (6.4)

This relation was essential in the derivation of [67] and only using this relation the effective

action obtained in [67] could be written in the form eq. (6.2). On the other hand in our

framework, although all four Wilson line operators are expressible in terms of ρ and δ/δρ,

there is no such condition that constrains the four.

We can check eq. (6.4) explicitly, expanding all the operators UL,R and ŪL,R to first

order in the respective left and right charge densities. In our notations eq. (6.4)) corre-

sponds to

ŪR(x)UL(x)ŪL(x)UR(x) = 1 . (6.5)
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We will calculate the l.h.s. of eq. (6.5) to second order in g. To this order we need

J a
L(x) =

1

g

[

1

2
gT e δ

δρ̃e(x)

(

coth

[

1

2
gT e δ

δρ̃e(x)

]

− 1

)]ba

ρ̃b(x) ,

=
1

g
ρ̃a(x)−

1

2
ρ̃b(x)T e

ba

δ

δρ̃e(x)
+O(g)

(6.6)

J a
R(x) =

1

g

[

1

2
gT e δ

δρ̃e(x)

(

coth

[

1

2
gT e δ

δρ̃e(x)

]

+ 1

)]ba

ρ̃b(x) ,

=
1

g
ρ̃a(x) +

1

2
ρ̃b(x)T e

ba

δ

δρ̃e(x)
+O(g).

(6.7)

Ia
L(x) =

−i

g
∂2 δ

δρ̃b(x)

[

1

2
igT e 1

∂2
ρ̃e(x)

(

coth

[

1

2
igT e 1

∂2
ρ̃e(x)

]

− 1

)]ba

,

=
−i

g
∂2 δ

δρ̃a(x)
−

1

2
T e
ba∂

2 δ

δρ̃b(x)

∫

z

φ̃(x− z)ρ̃e(z) +O(g).

(6.8)

Ia
R(x) =

−i

g2
∂2 δ

δρb(x)

[

1

2
T eig2

1

∂2
ρe(x)

(

coth

[

1

2
T eig2

1

∂2
ρe(x)

]

+ 1

)]ba

,

=
−i

g
∂2 δ

δρ̃a(x)
+

1

2
T e
ba∂

2 δ

δρ̃b(x)

∫

z

φ̃(x− z)ρ̃e(z) +O(g).

(6.9)

From the definition of Ia
L and Ia

R, one obtains

ig2
∫

y

φ̃(x− y)T eIe
L(y)

=ig2
∫

y

φ̃(x− y)T e

(

−i

g
∂2
y

δ

δρ̃e(y)
−

1

2
∂2
y

δ

δρ̃b(y)
T a
be

∫

z

φ̃(y − z)ρ̃a(z) +O(g)

)

=gT e δ

δρ̃e(x)
−

1

2
ig2T eT e

ab

∫

y,z

φ̃(x− y)φ̃(y − z)∂2
y

δ

δρ̃b(y)
ρ̃a(z) +O(g3)

=gT e δ

δρ̃e(x)
−

1

2
ig2T eT e

ab

∫

y

φ̃(x− y)
δ

δρ̃b(y)
ρ̃a(y)−

1

2
ig2T eT e

ab

∫

z

φ̃(x− z)
δ

δρ̃b(x)
ρ̃a(z)

− ig2T eT e
ab

∫

y,z

∂yφ̃(x− y)∂yφ̃(y − z)
δ

δρ̃b(y)
ρ̃a(z) +O(g3).

(6.10)

We have used integration by parts. As a consequence

ŪL(x)= exp

{

ig2
∫

y

φ̃(x−y)T eIe
L(y)

}

=1+gT e δ

δρ̃e(x)
−
1

2
ig2T eT e

ab

∫

y

φ̃(x−y)
δ

δρ̃b(y)
ρ̃a(y)−

1

2
ig2T eT e

ab

∫

z

φ̃(x−z)
δ

δρ̃b(x)
ρ̃a(z)

−ig2T eT e
ab

∫

y,z

∂yφ̃(x−y)∂yφ̃(y−z)
δ

δρ̃b(y)
ρ̃a(z)+

1

2!
g2T eT d δ

δρ̃e(x)

δ

δρ̃d(x)
+O(g3)

(6.11)
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and

ŪR(x)= exp

{

−ig2
∫

y

φ̃(x−y)T eIe
R(y)

}

=1−gT e δ

δρ̃e(x)
−
1

2
ig2T eT e

ab

∫

y

φ̃(x−y)
δ

δρ̃b(y)
ρ̃a(y)−

1

2
ig2T eT e

ab

∫

z

φ̃(x−z)
δ

δρ̃b(x)
ρ̃a(z)

−ig2T eT e
ab

∫

y,z

∂yφ̃(x−y)∂yφ̃(y−z)
δ

δρ̃b(y)
ρ̃a(z)+

1

2!
g2T eT d δ

δρ̃e(x)

δ

δρ̃d(x)
+O(g3).

(6.12)

On the other hand, from

ig2
∫

y

φ̃(x− y)T eJ e
L(y)

= ig2
∫

y

φ̃(x− y)T e

(

1

g
ρ̃e(y)−

1

2
ρ̃b(y)T a

be

δ

ρ̃(y)
+O(g3)

)

= ig

∫

y

φ̃(x− y)T eρ̃e(y)−
1

2
ig2T eT e

ab

∫

y

φ̃(x− y)ρ̃b(y)
δ

ρ̃a(y)
+O(g3).

(6.13)

one obtains

UL(x) = exp

{

ig2
∫

y

φ̃(x− y)T eJ e
L(y)

}

= 1 + ig

∫

y

φ̃(x− y)T eρ̃e(y)−
1

2
ig2T eT e

ab

∫

y

φ̃(x− y)ρ̃b(y)
δ

ρ̃a(y)

+
1

2!
(ig)2

∫

y,z

φ̃(x− y)φ̃(x− z)T eT dρ̃e(y)ρ̃d(z) +O(g3).

(6.14)

UR(x) = exp

{

−ig2
∫

y

φ̃(x− y)T eJ e
R(y)

}

= 1− ig

∫

y

φ̃(x− y)T eρ̃e(y)−
1

2
ig2T eT e

ab

∫

y

φ̃(x− y)ρ̃b(y)
δ

ρ̃a(y)

+
1

2!
(ig)2

∫

y,z

φ̃(x− y)φ̃(x− z)T eT dρ̃e(y)ρ̃d(z) +O(g3).

(6.15)

At order O(g) it is obvious that eq. (6.5) is satisfied, and the first nontrivial check of

the relation is at O(g2). At this order we obtain

ŪR(x)UL(x)ŪL(x)UR(x)

=1−ig2T eT e
ab

∫

z

φ̃(x−z)
δ

δρ̃b(x)
ρ̃a(z)−2ig2T eT e

ab

∫

y,z

∂yφ̃(x−y)∂yφ̃(y−z)
δ

δρ̃b(y)
ρ̃a(z)

+ig

∫

y

φ̃(x−y)T aρ̃a(y)gT b δ

δρ̃b(x)
+gT b δ

δρ̃b(x)
(−ig)

∫

y

φ̃(x−y)T aρ̃a(y)

=1−2ig2T eT e
ab

∫

y,z

∂yφ̃(x−y)∂yφ̃(y−z)
δ

δρ̃b(y)
ρ̃a(z)−2ig2T eT e

ab

∫

z

φ̃(x−z)
δ

δρ̃b(x)
ρ̃a(z) 6=1.

(6.16)
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Thus we have established that at order O(g2), the diamond condition is not satisfied by

our Wilson line like operators.

We thus conclude that in spite of certain similarities, the self dual RFT Hamiltonian

eq. (6.2) is not the same as the effective action of [67]. The status of this comparison is

further discussed in the next section.

7 Discussion

In this paper we have revisited the problem of constructing a self dual Reggeon Field

Theory Hamiltonian HRFT . We have followed the EFT strategy by imposing the relevant

symmetries and also required that HRFT reduces to HJIMWLK (or HKLWMIJ) in the

dense-dilute limit.

As a result we have found a family of Hamiltonians that satisfy these requirements.

These Hamiltonians are constructed from Wilson line - like operators in different repre-

sentations of the SU(N) group. We note that any of these Hamiltonians in addition to

reproducing the dense dilute limit, also generates correct Pomeron loops. The simplest

way to see this is to perform the coupling constant expansion using the BFKL counting

introduced in section 5. This is equivalent to simultaneous expansion in powers of ρ and

δ/δρ. At order αs the Hamiltonian reduced to HBFKL, while at order α2
s it contains both

splitting and merging vertices (ρ2(δ/δρ)4 and ρ4(δ/δρ)2) with correct coefficients. As dis-

cussed in [38, 58–65, 69] these vertices are responsible both for a certain set of reggeization

corrections, and for the QCD Pomeron loops.

We have analyzed the continuous symmetries of HRFT . This is an interesting question

since both HJIMWLK and HKLWMIJ possess an SUL(N)×SUR(N) symmetry group, but

the generators of these transformations are not the same in the two dense-dilute cases.

For HRFT we are able to show nonperturbatively the existence of one SUV (N) symmetry,

which is the diagonal subgroup of the symmetry group in both JIMWLK and KLWMIJ

limits. We established the fact that the two diagonal subgroups are identical explicitly

using the algebra of the generators in the RFT Hilbert space. We have also shown that

HRFT is invariant under the left and right rotations at least to O(g6) in perturbative

expansion. This is a strong indication that the continuous symmetry group is at least

SU(N)× SU(N)× SU(N).

One member of the family of the Hamiltonians we found is very similar to the “di-

amond action”[67, 68]. Our Hamiltonian RFT framework is different from the effective

action approach of [67, 68] which somewhat hampers direct comparison. Nevertheless if we

juxtapose our HRFT defined in terms of adjoint Wilson lines directly with the effective ac-

tion of [67, 68], the two look identical. There is however one significant difference between

our result and that of [67]. Namely the action in [67] is written in terms of four Wilson

loops that satisfy the diamond condition, eq. (6.4). This condition played a very impor-

tant role in [67]. In fact the effective action derived in [67] directly from QCD is equivalent

to the “KLWMIJ+” Hamiltonian suggested in [73, 74], whereby KLWMIJ Hamiltonian

is generalized by including nonlinear corrections in the solution for classical field. This

Hamiltonian is not explicitly self dual, and only with the help of the diamond condition it
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was recast in [67] in the form which looks self dual, at least superficially. However whether

the “diamond action” is in fact self dual or not remained an open question. To check the

self duality one has to verify that the duality transformation is canonical, or in the quantum

sense a linear transformation on the RFT Hilbert space. This was not possible to do with

the tools of [67], as no operator realization of the algebra of Wilson lines was explicitly

presented. In the present paper we operate within the RFT Hilbert space with well defined

operator algebra; and therefore we have explicit realization of the duality transformation

in the Hilbert space. We find within this consistent framework that the diamond action

(RFT Hamiltonian) is self dual, but the diamond condition between the Wilson lines is not

satisfied. The condition is violated starting with order O(g2) in perturbative expansion. In

this sense our paper is closer to [68], where the diamond action is derived as a self dual form

of the action in the dense-dilute limit without assuming the diamond constraint between

the Wilson lines. In [68] the constraint was shown to hold in the first order in perturbation

theory, which is consistent with our conclusion here, but was not checked at higher orders.

Our “bottom up” approach does not allow us to decide which one of the candidate

hamiltonians we have found is the right one, and in fact whether any one of them is the

correct QCD RFT Hamiltonian. Even though we have used the EFT methodology to

determine possible terms in HRFT , we are at a disadvantage here compared to standard

applications of EFT in quantum field theory. The generic situation is that one is searching

for local operators that can be incorporated into the EFT Lagrangian (or Hamiltonian) in

the situation where there is only a finite number of possible operators of a given dimension.

The higher the dimension of the operator the stronger the suppression of its contribution

to low energy observables. Thus EFT organizes the possible operators according to their

importance in the interesting kinematics. In our case the situation appears to be different.

Although RFT is the effective theory of QCD at high energy, all the operators we have

found may contribute at leading order in E−1. We do not see any obvious parameter

which would order the possible contributions. The similarity with the diamond action may

suggest that one should work with the Wilson lines in the adjoint representation. However

as is clear from the derivation in [68] the diamond action is not the full story, but is only

a leading term in an expansion away from the abelian limit. Thus it is possible that the

other candidate terms we have found also play a role in the full RFT Hamiltonian.

It would be interesting to find a criterion which could discriminate between the pos-

sible terms. One possibility is to compare HRFT with NLO JIMWLK. Although we have

no reason to expect that HRFT contains all, or even most NLO terms, it does contain

some such terms. Comparing those to NLO JIMWLK could be instructive and possibly

discriminatory.

Another interesting question is the unitarity of HRFT . As we have mentioned in the

introduction, our main motivation to search for the self dual HRFT was the unitarity vio-

lation in HJIMWLK . The question of unitary really has two parts: the t-channel unitarity

and the s-channel unitarity.

Although we have not studied this in detail here, it is broadly believed that the t-

channel unitarity, which has been a cornerstone of Gribov’s RFT is ensured by the self-

duality ofHRFT . This connection is rooted in boost invariance of the scattering amplitudes.
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On one hand Lorentz invariance requires self-duality of RFT [66], and at the same time,

boost invariance has been argued to be equivalent to the t-channel unitarity, see [75] for

latest discussion. On the technical level we note that the coupling constant expansion of

HRFT (in the BFKL counting discussed above) in the large Nc limit generates the Gribov

Pomeron calculus. Scattering amplitudes are then represented in terms of the exchanges

of the BFKL Pomerons and their interactions via the “merging” and “splitting” three

Pomeron vertexes. Such a theory is known to satisfy the t-channel unitarity, and we are

therefore confident that our HRFT indeed is t-channel unitary.

As for the s-channel unitarity, the situation here is more complex. We have formulated

the conditions for s-channel unitarity in [20]. Given HRFT one can in principle follow

the procedure explained in [20] to determine whether its action corresponds to unitarity

evolution of QCD states in energy.

This entails taking a generic QCD projectile state

|Ψi〉P = C in
b1,b2...bm

|y1, b1; . . . ;ym, bm〉

and evolving it to infinitesimally higher energy. The result of the evolution in general can

be represented in the form:

|Ψ〉 →
∑

n;xi;ai

Ca1,a2...an |x1, a1; . . . ;xn, an〉

The energy evolution of the scattering amplitude of this evolved state on a fixed target

is given by the action of HRFT as in eq. (3.1). Next, one has to construct a probability

function F defined in (2.15) and verify the unitarity condition (2.16). The unitarity should

hold for any initial state |Ψi〉P .

In principle one should be able to pursue this calculation, since the algebra of RFT is

explicitly known, and therefore the action of HRFT on an unevolved amplitude is completely

defined. Unfortunately analyzing the unitarity conditions beyond the JIMWLK limit is

technically a complicated problem, due to complicated algebra of the Wilson lines, which

at this point we are not able to solve. We believe it is a very important question and are

planning to address it in future work.
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A Checking SUL(N)

In this appendix we calculate perturbatively the commutator of Qa
L with the Hamiltonian.

A.1 [Qa
L, V̄L(x)]

We start by trying to verify the conjectured commutation relation:
[

Qa
L, V̄

αβ
L (x)

]

= −
(

taV̄L(x)
)αβ

(???) (A.1)

We calculate the commutator perturbatively using the BFKL counting. We express

J a
L(z) =

1

g
Ba

(−1)(z) +Ba
(0)(z) + gBa

(1)(z) + g3Ba
(3)(z) + . . . (A.2)

with

Ba
(−1) = ρ̃a(z) ,

Ba
(0) = −

1

2
ρ̃b(z)T e

ba

δ

δρ̃e(z)
,

Ba
(1) =

1

12
ρ̃bz(T

e1T e2)ba
δ

δρ̃e1z

δ

δρ̃e2z
,

Ba
(3) = −

1

720
ρ̃bz(T

e1T e2T e3T e4)ba
δ

δρ̃e1z

δ

δρ̃e2z

δ

δρ̃e3z

δ

δρ̃e4z
,

(A.3)

To expand V̄L we need

Ie
L(y) =

1

g
E(−1)(y) + E(0)(y) + gE(1)(y) + g3E(3)(y) + . . . (A.4)

with

Ea
(−1) = −i∂2

y

δ

δρ̃ay

Ea
(0) = −

1

2
∂2
y

δ

δρ̃by
T e
ba

1

∂2
ρ̃ey

Ea
(1) =

i

12
∂2
y

δ

δρ̃by
(T e1T e2)ba

1

∂2
ρ̃e1y

1

∂2
ρ̃e2y

Ea
(3) =

i

720
∂2
y

δ

δρ̃by
(T e1T e2T e3T e4)ba

1

∂2
ρ̃e1y

1

∂2
ρ̃e2y

1

∂2
ρ̃e3y

1

∂2
ρ̃e4y .

(A.5)

Then V̄L is expanded as

V̄L = egA(1)+g2A(2)+g3A(3)+g5A(5)+...

= 1 + gA(1) + g2
(

A(2) +
1

2
A(1)A(1)

)

+ g3
(

A(3) +
1

2
(A(1)A(2) +A(2)A(1)) +

1

3!
(A(1))

3

)

+ g4
(1

2
(A(2))

2 +
1

2
(A(1)A(3) +A(3)A(1)) +

1

3!
(A(1)A(1)A(2) +A(1)A(2)A(1)

+A(2)A(1)A(1)) +
1

4!
(A(1))

4
)

+ . . .

(A.6)
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with

A(1)= i

∫

y

φ̃(x−y)te
(

−i∂2
y

δ

δρ̃ey

)

= te
δ

δρ̃ex
(A.7)

A(2)= i

∫

y

φ̃(x−y)td
(

−
1

2
∂2
y

δ

δρ̃by
T e
bd

1

∂2
ρ̃e(y)

)

=
i

2
(tetb−tbte)

( δ

δρ̃bx

∫

w

φ̃(x−w)ρ̃ew+

∫

y

φ̃(x−y)
δ

δρ̃by
ρ̃ey

+2

∫

y

∂yφ̃(x−y)
δ

δρ̃by

∫

w

∂yφ̃(y−w)ρ̃ew

)

(A.8)

A(3)= i

∫

y

φ̃(x−y)td
(

i

12
∂2
y

δ

δρ̃b
(T e1T e1)bd

1

∂2
ρ̃e1

1

∂2
ρ̃e2
)

=−
1

12
(te1te2tb−2te1tbte2+tbte1te2)

∫

y

φ̃(x−y)∂2
y

δ

δρ̃by

∫

z1

φ̃(y−z1)ρ̃
e1
z1

∫

z2

φ̃(y−z2)ρ̃
e2
z2
.

(A.9)

In terms of coupling constant g, we check the commutator eq. (A.1) order by order.

• O(g0) is satisfied.
[
∫

z

Ba
(−1)(z), A(1)(x)

]

= −ta. (A.10)

• O(g), the relation to be checked is

[
∫

z

Ba
(−1)(z), A(2) +

1

2
(A(1))

2

]

+

[
∫

z

Ba
(0)(z), A(1)(x)

]

= −taA(1). (A.11)

First note that each individual term is

[
∫

z

Ba
(0)(z), A(1)(x)

]

=
1

2
tbT e

ba

δ

δρ̃ex
= −

1

2
(tate − teta)

δ

δρ̃ex

= −
1

2

(

taA(1) −A(1)t
a
)

= −
1

2

[

ta, A(1)

]

.

(A.12)

[
∫

z

Ba
(−1)(z),

1

2
(A(1))

2

]

= −
1

2
(teta + tate)

δ

δρ̃ex

= −
1

2

(

taA(1) +A(1)t
a
)

.

(A.13)

We have one additional term but it vanishes.

[
∫

z

Ba
(−1)(z), A(2)

]

= −

∫

z

(−
i

2
)tdT e

bd

∫

y

φ̃(x− y)[∂2
yδ(y − z)δba]

∫

w

φ̃(y −w)ρ̃ew = 0.

(A.14)

This vanishes due to ∂2
y

∫

z
δ(y − z) = 0.
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• O(g2), the relation to be checked is

∫

z

[

Ba
(−1)(z), A(3) +

1

2
(A(1)A(2) +A(2)A(1)) +

1

3!
(A(1))

3

]

+

∫

z

[

B(0)(z), A(2) +
1

2
A(1)A(1)

]

+

∫

z

[

B(1)(z), A(1)

]

=− ta
(

A(2) +
1

2
A(1)A(1)

)

.

(A.15)

First note that

∫

z

[

Ba
(−1)(z), A(3)

]

= 0 ,

∫

z

[

Ba
(−1)(z), A(2)

]

= 0 .

(A.16)

for the same reason as eq. (A.14). This is obviously a general property. Now we

evaluate each term.

∫

z

[

Ba
(−1)(z),

1

2
(A(1)A(2) +A(2)A(1))

]

= −
1

2
(taA(2) +A(2)t

a) (A.17)

∫

z

[

Ba
(−1)(z),

1

3!
(A(1))

3

]

= −
1

6
(tate1te2 + te1tate2 + te1te2ta)

δ

δρ̃e1x

δ

δρ̃e2x

= −
1

6
(taA(1)A(1) +A(1)t

aA(1) +A(1)A(1)t
a)

(A.18)
∫

z

[

B(1)(z), A(1)

]

= −
1

12
te(T e1T e2)ea

δ

δρ̃e1x

δ

δρ̃e2x

= −
1

12
(tate1te2 − 2te1tate2 + te1te2ta)

δ

δρ̃e1x

δ

δρ̃e2x

= −
1

12
(taA(1)A(1) − 2A(1)t

aA(1) +A(1)A(1)t
a)

= −
1

12

[[

ta, A(1)

]

, A(1)

]

(A.19)
∫

z

[

B(0)(z),
1

2
A(1)A(1)

]

= −
1

4
(tate1te2 − te1te2ta)

δ

δρ̃e1x

δ

δρ̃e2x

= −
1

4
(taA(1)A(1) −A(1)A(1)t

a).

(A.20)

Adding eqs. (A.18), (A.19), (A.20), one obtains

−
1

2
(tate1te2)

δ

δρ̃e1x

δ

δρ̃e2x
= −ta

(

1

2
A(1)A(1)

)

(A.21)
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which is part of the right hand side of the relation eq. (A.15). To continue
∫

z

[

B(0)(z), A(2)

]

=

∫

z

[

−
1

2
ρ̃pzT

q
pa

δ

δρ̃qz
,−

i

2
tdT e

bd

∫

y

φ̃(x− y)∂2
y

δ

δρ̃by

∫

w

φ̃(y −w)ρ̃ew

]

=

(

−
i

4
Tm
paT

n
pd +

i

4
T e
naT

e
md

)

td
∫

y

φ̃(x− y)∂2
y

δ

δρ̃my

∫

w

φ̃(y −w)ρ̃nw

=
1

2
(A(2)t

a − taA(2)).

(A.22)

So eqs. (A.17), (A.22) adds up gives −taA(2), which is exactly the last piece on the

right hand side of eq. (A.15). To second order in g eq. (A.1) holds.

• O(g3). The relation to be proved is
∫

z

[

Ba
(−1)(z),

1

2
((A(2))

2 +A(1)A(3) +A(3)A(1))

+
1

3!
(A(1)A(1)A(2) +A(1)A(2)A(1) +A(2)A(1)A(1)) +

1

4!
(A(1))

4
]

+

∫

z

[

Ba
(0)(z), A(3) +

1

2
(A(1)A(2) +A(2)A(1)) +

1

3!
(A(1))

3
]

+

∫

z

[

Ba
(1)(z), A(2) +

1

2
A(1)A(1)

]

=− ta
(

A(3) +
1

2
(A(1)A(2) +A(2)A(1)) +

1

3!
(A(1))

3

)

.

(A.23)

We calculate each commutator separately. The first one is easy to compute as we

know that
∫

z

[

Ba
(−1)(z), A(1)

]

= −ta,

∫

z

[

Ba
(−1)(z), A(n)

]

= 0, for n ≥ 2

(A.24)

Using this relation, one obtains
∫

z

[

Ba
(−1)(z),

1

2
((A(2))

2 +A(1)A(3) +A(3)A(1))

+
1

3!
(A(1)A(1)A(2) +A(1)A(2)A(1) +A(2)A(1)A(1)) +

1

4!
(A(1))

4
]

=−
1

2

(

taA(3) +A(3)t
a
)

−
1

6

(

taA(1)A(2) +A(1)t
aA(2) + taA(2)A(1) +A(1)A(2)t

a

+A(2)t
aA(1) +A(2)A(1)t

a
)

−
1

24

(

taA(1)A(1)A(1) +A(1)t
aA(1)A(1)

+A(1)A(1)t
aA(1) +A(1)A(1)A(1)t

a
)

.

(A.25)

We also notice that
∫

z

[

Ba
(0)(z), A(n)

]

=
1

2
(A(n)t

a − taA(n)). (A.26)
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for n = 1, 2, 3. It is possible that this relation holds for all the relevant n. Using this

relation, we calculate

∫

z

[

Ba
(0)(z), A(3) +

1

2
(A(1)A(2) +A(2)A(1)) +

1

3!
(A(1))

3
]

=
1

2
(A(3)t

a − taA(3)) +
1

4
(A(1)t

a − taA(1))A(2) +
1

4
A(1)(A(2)t

a − taA(2))

+
1

4
(A(2)t

a − taA(2))A(1) +
1

4
A(2)(A(1)t

a − taA(1)) +
1

12
(A(1)t

a − taA(1))A(1)A(1)

+
1

12
A(1)(A(1)t

a − taA(1))A(1) +
1

12
A(1)A(1)(A(1)t

a − taA(1))

=
1

2
(A(3)t

a − taA(3)) +
1

4

(

A(1)A(2)t
a +A(2)A(1)t

a − taA(1)A(2) − taA(2)A(1)

)

+
1

12

(

A(1)A(1)A(1)t
a − taA(1)A(1)A(1)

)

.

(A.27)

From eq. (A.19), we know that

∫

z

[

B(1)(z), A(1)

]

= −
1

12
(taA(1)A(1) − 2A(1)t

aA(1) +A(1)A(1)t
a). (A.28)

Usig this relation, one can compute

∫

z

[

Ba
(1)(z),

1

2
A(1)A(1)

]

=−
1

24

(

taA(1)A(1)A(1) − 2A(1)t
aA(1)A(1) +A(1)A(1)t

aA(1)

+A(1)t
aA(1)A(1) − 2A(1)A(1)t

aA(1) +A(1)A(1)A(1)t
a
)

.

=−
1

24

(

taA(1)A(1)A(1) −A(1)t
aA(1)A(1) −A(1)A(1)t

aA(1) +A(1)A(1)A(1)t
a
)

.

(A.29)
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The last piece we need to calculate is
∫

z

[

Ba
(1)(z), A(2)(x)

]

=

∫

z

[

1

12
ρ̃cz(T

e1T e2)ca
δ

δρ̃e1z

δ

δρ̃e2z
,
i

2
(tetb − tbte)

∫

y

φ̃(x− y)∂2
y

δ

δρ̃by

∫

w

φ̃(y −w)ρ̃ew

]

=
1

12
(T e1T e2)ba

i

2
T p
bet

p

(

−

∫

z

δ

δρ̃e1z

δ

δρ̃e2z

∫

y

φ̃(x− y)∂2
yδ(y − z)

∫

w

φ̃(y −w)ρ̃ew

)

+
1

12
(T eT d + T dT e)ha

i

2
T p
bet

p

(
∫

z

ρ̃hz
δ

δρ̃dz

∫

y

φ̃(x− y)∂2
y

δ

δρ̃by
φ̃(y − z)

)

=
1

12
(T bT d)qa

i

2
T p
qht

p

(

−

∫

z

δ

δρ̃bz

δ

δρ̃dz

∫

y

φ̃(x− y)∂2
yδ(y − z)

∫

w

φ̃(y −w)ρ̃hw

)

+
1

12
(T eT d + T dT e)ha

i

2
T p
bet

p

(
∫

z

ρ̃hz
δ

δρ̃dz

∫

y

φ̃(x− y)∂2
y

δ

δρ̃by
φ̃(y − z)

)

=
i

24

(

−(T pT bT d)hat
p
)(

−
δ

δρ̃bx

δ

δρ̃dx

∫

w

φ̃(x−w)ρ̃hw −

∫

z

φ̃(x− z)
δ

δρ̃bz

δ

δρ̃dz
ρ̃hz

− 2

∫

z

δ

δρ̃bz

δ

δρ̃dz
∂zφ̃(x− z)

∫

w

∂zφ̃(z−w)ρ̃hw

)

+
i

24

(

(T pT hT a)bdt
p + (T pT aT h)bdt

p
)

(

δ

δρ̃bx

∫

z

φ̃(x− z)ρ̃hz
δ

δρ̃dz

+

∫

z

φ̃(x− z)ρ̃hz
δ

δρ̃dz

δ

δρ̃bz
+ 2

∫

z

ρ̃hz
δ

δρ̃dz

∫

y

∂yφ̃(x− y)
δ

δρ̃by
∂yφ̃(y − z)

)

.

(A.30)

We have calculated the color structures for the two parts

(T bT d)qaT
p
qht

p = −(T pT bT d)hat
p (A.31)

(T eT d + T dT e)haT
p
bet

p = −(T pT hT d)bat
p + (T dT aT p)hbt

p

= (T pT hT a)bdt
p + (T pT aT h)bdt

p
(A.32)

and performed the integration by parts

−

∫

z

δ

δρ̃bz

δ

δρ̃dz

∫

y

φ̃(x− y)∂2
yδ(y − z)

∫

w

φ̃(y −w)ρ̃hw

=−
δ

δρ̃bx

δ

δρ̃dx

∫

w

φ̃(x−w)ρ̃hw −

∫

z

φ̃(x− z)
δ

δρ̃bz

δ

δρ̃dz
ρ̃hz

− 2

∫

z

δ

δρ̃bz

δ

δρ̃dz
∂zφ̃(x− z)

∫

w

∂zφ̃(z−w)ρ̃hw

(A.33)

and
∫

z

ρ̃hz
δ

δρ̃dz

∫

y

φ̃(x− y)∂2
y

δ

δρ̃by
φ̃(y − z)

=
δ

δρ̃bx

∫

z

φ̃(x− z)ρ̃hz
δ

δρ̃dz
+

∫

z

φ̃(x− z)ρ̃hz
δ

δρ̃dz

δ

δρ̃bz

+ 2

∫

z

ρ̃hz
δ

δρ̃dz

∫

y

∂yφ̃(x− y)
δ

δρ̃by
∂yφ̃(y − z).

(A.34)
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The commutation
∫

z
[Ba

(1)(z), A(2)(x)] , for the relation eq. (A.23) to be correct, should

be equal to

−
1

12

(

taA(1)A(2)+taA(2)A(1)+A(1)A(2)t
a+A(2)A(1)t

a−2A(1)t
aA(2)−2A(2)t

aA(1)

)

=−
1

12

([[

ta,A(1)

]

,A(2)

]

+
[[

ta,A(2)

]

,A(1)

])

=−
1

12

(

[[ta, tb], tm]+[[ta, tm], tb]
)

Tm
dh×

i

2

(

δ

δρ̃bx

δ

δρ̃dx

∫

w

φ̃(x−w)ρ̃hw

+
δ

δρ̃bx

∫

y

φ̃(x−y)
δ

δρ̃dy
ρ̃hy+2

δ

δρ̃bx

∫

y

∂yφ̃(x−y)
δ

δρ̃dy

∫

w

∂yφ̃(y−w)ρ̃hw

)

=−
1

12

(

(T aT pT h)bd+(T pT aT h)bd

)

tp×
i

2

(

δ

δρ̃bx

δ

δρ̃dx

∫

w

φ̃(x−w)ρ̃hw

+
δ

δρ̃bx

∫

y

φ̃(x−y)
δ

δρ̃dy
ρ̃hy+2

δ

δρ̃bx

∫

y

∂yφ̃(x−y)
δ

δρ̃dy

∫

w

∂yφ̃(y−w)ρ̃hw

)

.

(A.35)

We used

[[ta, tb], tm] + [[ta, tm], tb]Tm
dh =

(

T s
ba[t

s, tm] + T s
ma[t

s, tb]
)

Tm
dh

= (T s
baT

p
mst

p + T s
maT

p
bst

p)Tm
dh

=
(

(T aT pT h)bd + (T pT aT h)bd

)

tp.

(A.36)

The difference is

∫

z

[Ba
(1)(z), A(2)(x)]−

(

−
1

12

([[

ta, A(1)

]

, A(2)

]

+
[[

ta, A(2)

]

, A(1)

])

)

=
i

24

δ

δρ̃bx

δ

δρ̃dx

∫

w

φ̃(x−w)ρ̃hw

(

(T aT pT h)bd + (T pT aT h)bd + (T pT bT d)ha

)

tp

+
i

24

δ

δρ̃bx

∫

y

φ̃(x− y)
δ

δρ̃dy
ρ̃hy

(

(T aT pT h)bd + 2(T pT aT h)bd + (T pT hT a)bd

)

tp

+
i

24

∫

z

φ̃(x− z)ρ̃hz
δ

δρ̃dz

δ

δρ̃bz
((T pT hT a)bd + (T pT aT h)bd + (T pT bT d)ha)t

p

+
i

12

δ

δρ̃bx

∫

y

∂yφ̃(x− y)
δ

δρ̃dy

∫

w

∂yφ̃(y −w)ρ̃hw

(

(T aT pT h)bd + (T pT aT h)bd

)

tp

+
i

12

∫

z

δ

δρ̃bz

δ

δρ̃dz
∂zφ̃(x− z)

∫

w

∂zφ̃(z−w)ρ̃hw(T
pT bT d)hat

p

+
i

12

∫

z

ρ̃hz
δ

δρ̃dz

∫

y

∂yφ̃(x− y)
δ

δρ̃by
∂yφ̃(y − z)

(

(T pT hT a)bd + (T pT aT h)bd

)

tp.

(A.37)

This clearly does not vanish, and so eq. (A.1) is violated at O(g3).
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A.2 Checking [Qa
L, HRFT ] = 0

We now directly calculate the commutator of Qa
L with HRFT .

The calculation is organized as expansion in powers of g

[Qa
L, HRFT ] =

∞
∑

n=0

gn [Qa
L, HRFT ](n)

= [Qa
L, HRFT ](0) + g [Qa

L, HRFT ](1) + g2 [Qa
L, HRFT ](2) + . . .

(A.38)

where the subscript “(n)” indicates the n-th order in g.

Using [Qa
L, VR] = 0 and

[

Qa
L, V

αβ
L (x)

]

= −(taVL)
αβ + (VLt

a)αβ , we can write

[Qa
L, HRFT ]

=

∫

x

[

Qa
L, V̄

βγ
L (x)

]

V̄ δα
R (x)∂2

x

(

V αβ
L (x)V γδ

R (x)
)

+ V̄ βγ
L (x)

[

Qa
L, V̄

δα
R (x)

]

∂2
x

(

V αβ
L (x)V γδ

R (x)
)

+
(

(taV̄L)
βγ V̄ δα

R (x)− V̄ βγ
L (x)(V̄Rt

a)δα
)

∂2
x

(

V αβ
L (x)V γδ

R (x)
)

=

∫

x

{([

Qa
L, V̄

βγ
L

]

+ (taV̄L)
βγ
)

V̄ δα
R + V̄ βγ

L

([

Qa
L, V̄

δα
R

]

− (V̄Rt
a)δα

)}

∂2
x

(

V αβ
L (x)V γδ

R (x)
)

(A.39)

Here we have rescaled HRFT by the overall factor πg2 for simplicity.

Let us denote

dβγL =
[

Qa
L, V̄

βγ
L

]

+ (taV̄L)
βγ

dδαR =
[

Qa
L, V̄

δα
R

]

− (V̄Rt
a)δα

(A.40)

then

[Qa
L, HRFT ] =

∫

x

(

dβγL V̄ δα
R + V̄ βγ

L dδαR

)

∂2
x

(

V αβ
L (x)V γδ

R (x)
)

(A.41)

Symbolically we write

V̄L = exp
{

gA(1) + g2A(2) + g3A(3) + g5A(5) + . . .
}

,

V̄R = exp
{

−gA(1) + g2A(2) − g3A(3) − g5A(5) − . . .
}

,
(A.42)

and

VL = exp
{

gX(1) + g2X(2) + g3X(3) + g5X(5) + . . .
}

,

VR = exp
{

−gX(1) + g2X(2) − g3X(3) − g5X(5) − . . .
}

,
(A.43)
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Expansion of ∂2
x

(

V αβ
L (x)V γδ

R (x)
)

starts at order g

∂2
x

(

V αβ
L (x)V γδ

R (x)
)

=g∂2(−δαβXγδ

(1) +Xαβ

(1)δ
γδ)

+ g2∂2

(

δαβ(Xγδ

(2) +
1

2
(X2

(1))
γδ) + (Xαβ

(2) +
1

2
(X2

(1))
αβ)δγδ −Xαβ

(1)X
γδ

(1)

)

+ g3∂2

(

− δαβ
(

X(3) +
1

2
(X(1)X(2) +X(2)X(1)) +

1

3!
X3

(1)

)γδ

+

(

X(3) +
1

2
(X(1)X(2) +X(2)X(1)) +

1

3!
X3

(1)

)αβ

δγδ

+Xαβ

(1)

(

X(2) +
1

2
X2

(1)

)γδ

−

(

X(2) +
1

2
X2

(1)

)αβ

Xγδ

(1)

)

+ . . .

(A.44)

Thus the expansion of the Hamiltonian HRFT starts at order O(g). On the other hand

recall that

Qa
L =

1

g
B̄(−1) + B̄(0) + gB̄(1) + g3B̄(3) + . . . (A.45)

So the commutation relation [Qa
L, HRFT ] formally starts at order O(1), but from eq. (A.39)

it is obvious that at O(1) the commutator vanishes.

The results of the previous subsection we have calculated explicitly dL(n) for n ≤ 3.

Although we have not explicitly calculated dR(n), this calculation up to n = 3 is identical

to that of dL(n) and thus we have

dL(2) = dL(1) = dL(0) = 0 ,

dR(2) = dR(1) = dR(0) = 0.

dR(3) = dL(3)

(A.46)

As a consequence

[Qa
L, HRFT ](1) = 0,

[Qa
L, HRFT ](2) = 0,

[Qa
L, HRFT ](3) = 0.

(A.47)

• [Qa
L, HRFT ](4).

At order g4, the possible contributions are

[Qa
L, HRFT ](4) =

∫

x

(

dβγ
L(3)δ

δα + δβγdδαR(3)

)

∂2
x

(

V αβ
L (x)V γδ

R (x)
)

(1)
(A.48)

However, this expression vanishes after substituting the first order result in eq. (A.44)

and using the identity

(−δαβXγδ

(1) +Xαβ

(1)δ
γδ)δδα = 0. (A.49)
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Therefore

[Qa
L, HRFT ](4) = 0 (A.50)

• [Qa
L, HRFT ](5).

The possible contributions at order g5 are

[Qa
L, HRFT ](5)

=

∫

x

(

dβγ
L(3)δ

δα + δβγdδαR(3)

)

∂2
x

(

V αβ
L V γδ

R

)

(2)

+

∫

x

(

dβγ
L(3)(−Aδα

(1)) +Aβγ

(1)d
δα
R(3)

)

∂2
x

(

V αβ
L V γδ

R

)

(1)

+

∫

x

(

dβγ
L(4)δ

δα + δβγdδαR(4)

)

∂2
x

(

V αβ
L V γδ

R

)

(1)

(A.51)

Note that the last term vanishes due to eq. (A.49). Let us focus on the other two

terms. From eq. (A.44), one obtains

∫

x

(

dβγ
L(3)δ

δα + δβγdδαR(3)

)

∂2
x

(

V αβ
L V γδ

R

)

(2)

=

∫

x

2Tr
[

(dL(3) + dR(3))∂
2X(2)

]

(A.52)

and

∫

x

(

dβγ
L(3)(−Aδα

(1)) + (Aβγ

(1))d
δα
R(3)

)

∂2
x

(

V αβ
L V γδ

R

)

(1)

=

∫

x

Tr
[

(dL(3) + dR(3))(∂
2X(1)A(1) −A(1)∂

2X(1))
]

(A.53)

Recall the expressions

A(1)(x) = ta
δ

δρ̃a(x)
, X(1)(x) = i

∫

y

φ(x− y)taρ̃a(y),

X(2) = i

∫

y

φ(x− y)ta
(

−
1

2

δ

δρ̃e
T e
baρ

b

)

.

(A.54)

Using this one obtains

∂2X(1)A(1) −A(1)∂
2X(1) = i(tbte − tetb)ρ̃b(x)

δ

δρ̃e(x)
= iT a

ebt
aρ̃b(x)

δ

δρ̃e(x)

= −2∂2X(2) .

(A.55)

As a consequence the contributions in eq. (A.52) and eq. (A.53) cancel each other.

We have proved that [Qa
L, HRFT ](5) = 0.

• [Qa
L, HRFT ](6).
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The possible contributions at order g6 are

[Qa
L, HRFT ](6)

=

∫

x

(

dβγ
L(5)δ

δα + δβγdδαR(5)

)

∂2
x

(

V αβ
L V γδ

R

)

(1)

+

∫

x

(

dβγ
L(4)V̄

δα
R(1) + V̄ βγ

L(1)d
δα
R(4)

)

∂2
x

(

V αβ
L V γδ

R

)

(1)

+

∫

x

(

dβγ
L(4)δ

δα + δβγdδαR(4)

)

∂2
x

(

V αβ
L V γδ

R

)

(2)

+

∫

x

(

dβγ
L(3)V̄

δα
R(2) + V̄ βγ

L(2)d
δα
R(3)

)

∂2
x

(

V αβ
L V γδ

R

)

(1)

+

∫

x

(

dβγ
L(3)V̄

δα
R(1) + V̄ βγ

L(1)d
δα
R(3)

)

∂2
x

(

V αβ
L V γδ

R

)

(2)

+

∫

x

(

dβγ
L(3)δ

δα + δβγdδαR(3)

)

∂2
x

(

V αβ
L V γδ

R

)

(3)

(A.56)

The first term vanishes due to eq. (A.49). The second and third terms add up to zero

because of eq. (A.55). Now we focus on the fourth, fifth and sixth terms.

For the sixth term, note that

δδα
(

V αβ
L V γδ

R

)

(3)
= (X(2)X(1) −X(1)X(2))

γβ

δβγ
(

V αβ
L V γδ

R

)

(3)
=
(

X(1)X(2) −X(2)X(1)

)αδ
(A.57)

Using these relations, one calculates
∫

x

(

dβγ
L(3)δ

δα + δβγdδαR(3)

)

∂2
x

(

V αβ
L V γδ

R

)

(3)

=

∫

x

Tr
[

(dL(3) − dR(3))∂
2
x(X(2)X(1) −X(1)X(2))

]

=0

(A.58)

Here we have used the relation dL(3) = dR(3).

For the fifth term,

dβγ
L(3)V̄

δα
R(1)∂

2(V αβ
L V γδ

R )(2)=−Tr

[

dL(3)

(

X(2)+
1

2
X2

(1)

)

A(1)

]

−Tr

[

dL(3)A(1)

(

X(2)+
1

2
X2

(1)

)]

+Tr
[

dL(3)X(1)A(1)X(1)

]

(A.59)

and

V̄ βγ

(1) d
δα
R(3)(V

αβ
L V γδ

R )(2)=Tr

[

dR(3)A(1)

(

X(2)+
1

2
X2

(1)

)]

+Tr

[

dR(3)

(

X(2)+
1

2
X2

(1)

)

A(1)

]

−Tr
[

dR(3)X(1)A(1)X(1)

]

(A.60)

– 38 –



J
H
E
P
1
0
(
2
0
2
0
)
1
8
5

The sum of these two terms vanishes due to equality dL(3) = dR(3).

For the fourth term

dβγ
L(3)V̄

δα
R(2)(V

αβ
L V γδ

R )(1)=−Tr

[

dL(3)X(1)(A(2)+
1

2
A2

(1))

]

+Tr

[

dL(3)(A(2)+
1

2
A2

(1))X(1)

]

(A.61)

and

V̄ βγ

L(2)d
δα
R(3)(V

αβ
L V γδ

R )(1)=−Tr

[

dR(3)(A(2)+
1

2
A2

(1))X(1)

]

+Tr

[

dR(3)X(1)(A(2)+
1

2
A2

(1))

]

(A.62)

These two terms also cancel each other due to dL(3) = dR(3). We therefore proved

that [Qa
L, HRFT ](6) = 0.

Thus we see that up to order O(g6) the left rotation generator Qa
L commutes with the

Hamiltonian.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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