2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW)

Automated Dynamic Detection of Self-Hiding
Behavior

Luke Baird
Embry-Riddle Aeronautical University
Department of Computer, Electrical
and Software Engineering
Email: bairdll @my.erau.edu

Abstract—Certain Android applications, such as but not lim-
ited to malware, conceal their presence from the user, exhibiting
a self-hiding behavior. Consequently, these apps put the user’s
security and privacy at risk by performing tasks without the
user’s awareness. Static analysis has been used to analyze apps for
self-hiding behavior, but this approach is prone to false positives
and suffers from code obfuscation. This research proposes a set
of three tools utilizing a dynamic analysis method of detecting
self-hiding behavior of an app in the home, installed, and running
application lists on an Android emulator. Our approach proves
both highly accurate and efficient, providing tools usable by the
Android marketplace for enhanced security screening.

I. INTRODUCTION

Malware is ubiquitous in the Android marketplace. For
instance, in 2019, Avast released an article presenting a set
of malware applications on the Google Play store that had
over 30 million installs combined [1]. The proliferation of
Android malware continues each day. As a part of malicious
behavior, malware attempts to conceal itself from the user,
exhibiting a self-hiding behavior as defined in [2]. With respect
to Android applications, this can be manifest as apps hiding
themselves from certain Android application lists, such as the
home screen app list, the installed app list, and the running
app list. Malicious apps hiding in the home list can therefore
be installed, but cannot be launched by the user. An app hiding
in the installed app list cannot be uninstalled by a normal user,
as the installed application list is where most users uninstall
an app. Finally, if an app is hiding from the running app list,
the app can run without the user ever knowing.

It would be beneficial if apps exhibiting this behavior could
be caught prior to their uploading to the Android marketplace
in a timely manner. Although not all self-hiding behavior is
malicious, as discussed in section five of [2], automatically
detecting self-hiding behaviors allows for further vetting to
insure those behaviors are not malicious. Previous research
has produced static analysis methods of detecting self-hiding
behaviors. However, these static analysis methods suffer from
code obfuscation, preventing reverse-engineering of the source
code [2], [3].

We propose a set of three tools—AutoSHBHome, AutoSH-
Blnstalled, and AutoSHBRunning—that perform dynamic
analysis to detect self-hiding behavior in the home, installed,

Zhiyong Shan
Wichita State University
Department of Electrical Engineering
and Computer Science
Email: zhiyong.shan@wichita.edu

87

Vinod Namboodiri
Wichita State University
Department of Electrical Engineering
and Computer Science
Email: vinod.namboodiri@wichita.edu

and running application lists respectively on an Android de-
vice. These tools could be used to analyze apps when they are
uploaded to the Android marketplace prior to those apps being
made available to the general public, thereby detecting self-
hiding behaviors before a hiding app reaches a user’s phone.
Each of our tools complete on average in less than two minutes
per app analyzed with an F-measure of greater than 97%.

A video demonstration of AutoSHBHome, AutoSHBIn-
stalled, and AutoSHBRunning can be found at the following
links, respectively:

o https://youtu.be/AYC839XoMIY
o https://youtu.be/jdkPtFrhnMc
o https://youtu.be/QrwX51Tla7Q

The two main contributions of the research presented in this
paper are:

o The first dynamic analysis tool set to detect self-hiding
behaviors

o An analysis on a set of 77 benign and malicious appli-
cations, revealing their self-hiding behaviors

II. BACKGROUND

Our tools seek to detect self-hiding behavior within the
lifecycle of an app on an Android phone. This lifecycle covers
the existence of an app on a user’s Android phone from its
installation to its uninstallation. When the user first installs an
app, the app should appear in the user’s home screen as an
icon until the user decides that they want to launch it. After the
app is launched, it should appear to the user that it is running.
Eventually, when the user wishes to uninstall the app, the user
navigates to the install application list and deletes the app from
the phone.

We see then that the android app lifecycle includes the
following events for a proper app:

« Installation of the app

o Inclusion of the app in the home app list, after installation
o Inclusion of the app in the running app list, after launch
o Inclusion of the app in the installed app list

o Deletion of the app from the device

Consequently, if the app is hiding from the home, running,
or installed app lists, this directly interferes with this lifecycle,

978-1-7281-4121-3/19/$31.00 ©2019 IEEE
DOI 10.1109/MASSW.2019.00024

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on May 27,2020 at 19:55:17 UTC from IEEE Xplore. Restrictions apply.

f—
Rest APL

UiAutomator2

ADB

Interaction

—_—

Android Debug Bridge

Fig. 1. Interface between a script, Appium REST API, Android Debug Bridge
(ADB), and a target emulator or device.

preventing a normal user experience with the app. Further-
more, because the app is hiding, the user may be unaware of
the app’s presence, threatening the user’s privacy and security.
Our tools address this by uncovering self-hiding behaviors in
the home, running, and installed app lists.

III. TooL DESIGN

The centerpiece of this set of three tools is the Appium
Framework. Appium is designed as a REST API server,
capable of receiving JSON requests from a script and returning
HTTP status codes. For each tool, Appium is used as an
interface between a Python script and an emulator interface.
Appium directly interacts with the Android Debug Bridge
(ADB), which relays Appium’s commands to the emulator.
This is shown in figure 1.

Appium requires the use of a driver in order to send
commands to ADB. UiAutomator2 is one such driver built into
modern versions of Android. UiAutomator2 provides a set of
automated testing tools suitable for interacting with a device.
UiSelector is a tool built into UiAutomator2 for fetching
certain elements from the emulator’s foreground activity.

In order to connect to the device, Appium creates a session
with a set of desired capabilities which describe, among
many specifications, which application to load. The three tools
developed by this research navigate either through the home
screen, the Settings app, or through both. For an application

88

already installed on a device, our script sends the app’s
package and the app’s launchable—or starting—activity to the
desired capabilities in Appium. Appium and its uses are further
discussed in [4], [5].

Our initial script accepts command line argument flags
signifying which of AutoSHBHome, AutoSHBInstalled, and
AutoSHBRunning need to be run along with a directory con-
taining APK files to analyze. The script promptly uses ADB
commands “adb shell pm list packages” and “adb uninstall
<package>" to loop through each package on the device and
attempts to uninstall it. If the command fails to uninstall a
package, it is assumed that the package is mandated by the
system. This is done to minimize the number of apps that the
tools have to search through in different lists. At this point,
the script runs each tool that is flagged on individual apps in
succession.

A. AutoSHBHome

The process for detecting self-hiding behaviors in the home
app list is illustrated in figure 2. AutoSHBHome begins by
creating a new Appium session for the home screen appli-
cation. On a Pixel 2 emulator, the package for the home
application is com.google.android.apps.nexuslauncher, and the
launchable activity is .NexusLauncherActivity. Upon creating
a new session, AutoSHBHome uses Appium to navigate from
the main home screen to the list of all apps in the home screen.
Appium is then used to count all of the displayed apps on the
screen before closing the session to avoid memory leaks. At
this point, the target APK file for this iteration of AutoSHB-
Home is installed with a simple adb install <apk>command.
If this command fails, the self-hiding behavior of the app is
reported as unknown. Finally, Appium is again used to create a
new session with the home application to count the number of
applications in the home app list. If the number of applications
is different (increased by one), then the application is not
hiding in the home application list. Otherwise, it is.

Each application icon in the home screen is of the class
android.widget.TextView. The label associated with the appli-
cation is the content description: “content-desc”. In order to
count the number of applications, the content description of
each TextView is added to a saved list in Python. An attempt is
made to simulate an interaction with the device where the user
drags their finger from the last icon displayed in the lower right
to the first icon displayed in the upper left—a scrolling action.
If the last application in the list after scrolling is different
from the last application in the list prior to scrolling, then all
content descriptions not already in the saved list are added to
it. This continues until the other condition is true, when the
last application displayed both before and after scrolling are
the same. At this point, the procedure terminates, returning
the length of the saved list.

In order to tap the correct element to reach the home
application list, Appium’s inspector tool is used to manually
navigate through the home screen and reach each element.
This reveals the accessibility id of the up arrow leading to the
list of all applications in the home screen, along with the class

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on May 27,2020 at 19:55:17 UTC from IEEE Xplore. Restrictions apply.

Start Script for
target app

Get old list of apps

Is installation
successful?

Install target APK
file

Unknown if app is
hiding.

Yes

Are the new
and old lists
different?

Get new list of apps

Yes

App is not hiding.

App is hiding.

Fig. 2. Flowchart illustrating AutoSHBHome and AutoSHBInstalled’s algo-
rithm.

and layout of the individual icons. The inspector tool is used
to discern the right target element types and hierarchies for
the other two tests as well.

B. AutoSHBInstalled

AutoSHBInstalled works similarly to AutoSHBHome, using
the same algorithm shown in figure 2. It too begins by starting
a new Appium session, this time for the settings application.
On the Pixel 2 emulator, the package for the settings ap-
plication is com.android.settings and the launchable activity
is .Settings. After navigating to the installed application list
within the settings app, the number of apps are counted and
the session is closed. The target APK file is installed on the
device with adb install <apk>and the process is repeated.

Navigation to reach the installed application list involves
repeated use of the UiAutomator2 Google-provided testing
platform. UiAutomator2 has a method that allows for Appium
to search for an element by its text. Appium requires the
Python script to pass in a Java code snippet using the Java
UiSelector class that contains a selector element. Upon reach-
ing the installed application list, AutoSHBInstalled scrolls and
counts elements using a similar methodology to that of the
home application list test. All clickable elements currently vis-

89

ible on the screen are pulled. If the element is of the class an-
droid.widget.RelativeLayout or android.widget.LinearLayout,
then the first of two shown TextViews within that parent
element is added to the list of found applications if and only
if there are two TextViews. In the installed application list,
these elements happen to be LinearLayout, although for the
sake of code re-usage with the running application list test,
both types of layouts are valid for pulling elements in a list.
A swipe action is then completed, scrolling by the number of
pixels equal to six times the height of an individual element
in a list. This is repeated until the last element shown on the
screen after a swipe action is equal to the same element prior
to a swipe action.

Testing the positive case of this procedure—where an appli-
cation hides itself from the installed application list—proved
difficult as very few applications, even malware applications,
hide themselves in the installed application list. Neither the
benign nor malicious apps in the dataset used in the devel-
opment of this tool contained such an application. However,
testing the positive result can be done without installing any
APKs, as a hidden app should add zero apps to the installed
list. Running the test twice, therefore, should return that there
is self-hiding behavior.

C. AutoSHBRunning

Unlike the prior tools, the running application list self-
hiding behavior detection tool AutoSHBRunning uses two
different Appium sessions to execute different tasks. The
algorithm is shown in figure 3. AutoSHBRunning must first
install the target APK file, open the application, and only then
navigate to the running application list within the settings app
and attempt to find the application. If the application is found,
then the app is not hiding, otherwise, it is reported as hiding.
If the app either failed to install or failed to launch, then
the self-hiding behavior of the app is undetermined. The first
Appium session navigates through the home application list
to tap the icon of the target app, while the second Appium
session navigates through the settings app to the running app
list.

In order to find the correct app in the home app list, the
“aapt” command, provided by the Android build tools, is used
to parse the application label from the target APK file. This
label is the same text that appears in the content description
of the home application list icons and is the same text that
appears with the target application in the running app list.

Like AutoSHBHome, Appium is used to navigate first to
the list of all applications. Then, the same sequence is used
to scroll through the list until a label is found equal to the
label of the target application. This session is closed prior to
starting the second session for the settings app.

Upon opening the settings app session, the sequence de-
signed to scroll through the list of options in the installed
application list is used until the system settings are found,
under which the developer options reside on our emulator.
Finding this is done with the UiAutomator2 driver as before
with AutoSHBInstalled, searching for specific text. If the

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on May 27,2020 at 19:55:17 UTC from IEEE Xplore. Restrictions apply.

Start Script for
target app

Install target APK
file

Is installation
successful?

Launch app from
home list

Unknown if app is
hiding.

App launched
successfully?

L 4

Is the app
label found?

Search for app label
in nmning app list

App is hiding.

App is not hiding.

Fig. 3. Flowchart illustrating the algorithm for AutoSHBRunning.

developer options cannot be found within the system settings,
the script navigates to the build number, again using UiAu-
tomator2. After tapping the build number seven times, the
script navigates up one level and attempts to find the developer
options again. Within the developer options is the running
services list. If the label is found in the running services list
while scrolling and searching, the application is reported as not
hiding. Otherwise, to display non-foreground processes, the
text “show cached processes” is tapped, and AutoSHBRunning
searches and scrolls through the new list. If the label is found,
the target app is reported as not hiding, otherwise, it is reported
as hiding in the running app list.

One major limitation of AutoSHBRunning is that applica-
tions are loaded based on their label in the home application
list. If the application under test has already proven itself to be
hiding from the home application list, AutoSHBRunning will
fail. Another issue is present when testing certain malicious
APK files. Loading certain apps will cause the malware to
dump its payload, impacting the performance of or altogether
crashing the emulator. Some malware that requests device
admin permissions will force the user to either reject or accept
a device admin request, but will continually reload the request
until the user taps “accept.”

90

IV. EVALUATION

The tools were run on a Pixel 2 AVD Android Emulator
running an x86 image of Android Oreo 8.1. Certain applica-
tions failed to install in testing due to use of an x86-imaged
emulator. An x86 emulator runs much faster than an ARMv8
emulator on a Windows platform, which is also compiled
for x86. These applications are removed from the dataset.
The testing host platform ran Microsoft Windows, version
10.0.18362.239. Our dataset included 20 benign representative
APK files and 57 malicious APK files.

The tools are highly UI-dependent. Upgrades to the Android
version of the emulator or the use of a different emulator would
require modifications to be made to the scripts in order to use
them. However, for analyzing an application in a controlled
environment prior to its release to the Android marketplace,
this is an acceptable limitation.

Manual analysis was performed on each of these APK files
by hand, installing and opening each list (home, installed, and
running) to visually check if the target application was hiding.
The results of this manual analysis are used as the standard
by which false positives and false negatives are judged. Our
results are listed in Table L.

As mentioned before, AutoSHBRunning returns an error
for apps that are hiding in the home app list, resulting in a
larger number of errors. An application was not found to be
hiding in either manual or automated analysis of the installed
application list. Based on this data, self-hiding behavior in the
home application list is the most common hiding behavior in
this dataset.

If the emulator is unstable from running malware appli-
cations, or if the Appium server loses connection to ADB,
random errors can occur. This is the reason for the three
errors associated with AutoSHBHome and the single error
with AutoSHBInstalled. This also explains the errors in the
running application list that are not due to home app list
self-hiding behavior. Malware sometimes fails to run on the
emulator completely, hence decreasing the valid sample size
from 77 to 63 for the running application list between ignoring
apps that failed to run and ignoring apps hiding in the home
app list.

A false positive can occur if Google Play protect is enabled
on the emulator while a test is run on a malicious APK.
Google Play protect recognizes certain malicious APKs and
can remove them before detection tools have time to navigate
to their target lists.

The efficiency data is listed in Table II. Out of all of these
three tests, AutoSHBInstalled took the most amount of time
per app and overall. This is due to the fact that the installed
application test has the most navigation steps out of any of
the tests.

AutoSHBRunning took an average time of less than two
minutes per application. If an application is invalid—such as
hiding in the home application list—the tool returns a result
in as little as 5 seconds. However, if an app results in the
emulator hanging, or an unexpected navigation event, the tool

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on May 27,2020 at 19:55:17 UTC from IEEE Xplore. Restrictions apply.

Test # analyzed | # hiding | # not hiding | False positives | False negatives | Precision | Recall | F-Measure | Errors
AutoSHBHome 77 12 62 2 0 97.47% 100% 98.72% 3
AutoSHBInstalled 77 0 76 0 0 100% NA 100% 1
AutoSHBRunning 63 3 40 0 0 100% 100% 100% 20
TABLE T
ACCURACY OF ANALYSIS
Test Total time Average time per app | Median time per app | Maximum time per app | Minimum time per app
AutoSHBHome 8569 seconds 85.9 seconds 84 seconds 139 seconds 30 seconds
AutoSHBInstalled | 14712 seconds 149.3 seconds 156 seconds 188 seconds 76 seconds
AutoSHBRunning | 10982 seconds 111 seconds 96 seconds 1373 seconds 5 seconds
TABLE I

EFFICIENCY OF ANALYSIS

can take a long time to time out and continue working through
the applications, as seen by the maximum time per app for
AutoSHBRunning.

V. RELATED WORK

Since the creation of the Android operating system, a
plethora of tools have been developed to detect and analyze
malware. Research in certification of apps to hamper malware
was investigated as early as 2009 [6]. Other papers work
in classifying malware based on its behavior [7]. In [7],
the implementation of different sets of malware is carefully
dissected and classified, though this requires that a target piece
of malware not have obfuscated code. RiskRanker [8] tries
to proactively find malware when it is first uploaded to the
Android marketplace.

[9] discusses covert channels being used to secretly share
a user’s data. These channels are designed to transfer control
information or other metadata, but instead, malware can use
these channels to transmit private data. However, this research
does not explicitly seek out self-hiding behaviors for their own
sake. [2] does exactly this using a static analysis approach.
This research classifies self-hiding behavior into twelve differ-
ent categories and is the first to attempt to detect self-hiding
behavior specifically.

Dynamic analysis techniques have been used with the
Android operating systems in prior research [3], [10], [11].
DREBIN [3] uses static analysis whenever possible prior to
dynamic analysis to minimize usage of a phone’s resources,
but then uses dynamic analysis and machine learning to
build behavioral patterns for a user. TraintDroid [10] monitors
applications in flight to see how applications use their private
data in ways that are not visible to a user. Finally, Stowaway
[11] combines both dynamic and static analysis techniques to
find apps that are overprivileged. Static analysis shows the
APIs that are needed by the decompiled target APK’s code,
while dynamic analysis reveals which APIs map to which
permissions requested by an application’s manifest file.

VI. CONCLUSION

This research has successfully developed a set of
three tools—AutoSHBHome, AutoSHBInstalled, and AutoSH-
BRunning—for automated dynamic detection of self-hiding
behavior in the home, installed, and running app lists on an

91

Android emulator. Based on the high F-measure rates and
the time that it took to run these tools, we conclude that the
tools are both effective and efficient. Future work extending
these tools to a wider variety of emulators could be pursued.
Another area in which these tools could be developed further
is in regard to the running application list self-hiding behavior
detection tool, AutoSHBRunning. Methods of detecting and
restarting a frozen or hanging emulator could be implemented
in the tool better. Potentially, these tools can be used to
analyze an application in a controlled environment prior to
its publishing to the Android marketplace, saving time and
money by avoiding having to deal with malware on a device.

REFERENCES

“Adware plagues google play store,” Apr 2019. [Online]. Available:
https://blog.avast.com/adware-plagues-google-play

Z. Shan, I. Neamtiu, and R. Samuel, “Self-hiding behavior in android
apps: detection and characterization,” in 2018 IEEE/ACM 40th Interna-
tional Conference on Software Engineering (ICSE). 1EEE, 2018, pp.
728-739.

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in Ndss, vol. 14, 2014, pp. 23-26.

G. Shah, P. Shah, and R. Muchhala, “Software testing automation using
appium,” International Journal of Current Engineering and Technology,
vol. 4, no. 5, pp. 3528-3531, 2014.

S. Singh, R. Gadgil, and A. Chudgor, “Automated testing of mobile ap-
plications using scripting technique: A study on appium,” International
Journal of Current Engineering and Technology (IJCET), vol. 4, no. 5,
pp. 3627-3630, 2014.

W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in Proceedings of the 16th ACM conference
on Computer and communications security. ACM, 2009, pp. 235-245.
Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in 2012 IEEE symposium on security and privacy. TEEE,
2012, pp. 95-109.

M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: scal-
able and accurate zero-day android malware detection,” in Proceedings
of the 10th international conference on Mobile systems, applications,
and services. ACM, 2012, pp. 281-294.

J.-F. Lalande and S. Wendzel, “Hiding privacy leaks in android applica-
tions using low-attention raising covert channels,” in 2013 International
Conference on Availability, Reliability and Security. 1EEE, 2013, pp.
701-710.

W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, p. 5,
2014.

Z. Aung and W. Zaw, “Permission-based android malware detection,”
International Journal of Scientific & Technology Research, vol. 2, no. 3,
pp. 228-234, 2013.

=
o

[8

[l

[9

—

[10]

[11]

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on May 27,2020 at 19:55:17 UTC from IEEE Xplore. Restrictions apply.

