
Automated Dynamic Detection of Self-Hiding
Behavior

Luke Baird
Embry-Riddle Aeronautical University

Department of Computer, Electrical

and Software Engineering

Email: bairdl1@my.erau.edu

Zhiyong Shan
Wichita State University

Department of Electrical Engineering

and Computer Science

Email: zhiyong.shan@wichita.edu

Vinod Namboodiri
Wichita State University

Department of Electrical Engineering

and Computer Science

Email: vinod.namboodiri@wichita.edu

Abstract—Certain Android applications, such as but not lim-
ited to malware, conceal their presence from the user, exhibiting
a self-hiding behavior. Consequently, these apps put the user’s
security and privacy at risk by performing tasks without the
user’s awareness. Static analysis has been used to analyze apps for
self-hiding behavior, but this approach is prone to false positives
and suffers from code obfuscation. This research proposes a set
of three tools utilizing a dynamic analysis method of detecting
self-hiding behavior of an app in the home, installed, and running
application lists on an Android emulator. Our approach proves
both highly accurate and efficient, providing tools usable by the
Android marketplace for enhanced security screening.

I. INTRODUCTION

Malware is ubiquitous in the Android marketplace. For

instance, in 2019, Avast released an article presenting a set

of malware applications on the Google Play store that had

over 30 million installs combined [1]. The proliferation of

Android malware continues each day. As a part of malicious

behavior, malware attempts to conceal itself from the user,

exhibiting a self-hiding behavior as defined in [2]. With respect

to Android applications, this can be manifest as apps hiding

themselves from certain Android application lists, such as the

home screen app list, the installed app list, and the running

app list. Malicious apps hiding in the home list can therefore

be installed, but cannot be launched by the user. An app hiding

in the installed app list cannot be uninstalled by a normal user,

as the installed application list is where most users uninstall

an app. Finally, if an app is hiding from the running app list,

the app can run without the user ever knowing.

It would be beneficial if apps exhibiting this behavior could

be caught prior to their uploading to the Android marketplace

in a timely manner. Although not all self-hiding behavior is

malicious, as discussed in section five of [2], automatically

detecting self-hiding behaviors allows for further vetting to

insure those behaviors are not malicious. Previous research

has produced static analysis methods of detecting self-hiding

behaviors. However, these static analysis methods suffer from

code obfuscation, preventing reverse-engineering of the source

code [2], [3].

We propose a set of three tools—AutoSHBHome, AutoSH-

BInstalled, and AutoSHBRunning—that perform dynamic

analysis to detect self-hiding behavior in the home, installed,

and running application lists respectively on an Android de-

vice. These tools could be used to analyze apps when they are

uploaded to the Android marketplace prior to those apps being

made available to the general public, thereby detecting self-

hiding behaviors before a hiding app reaches a user’s phone.

Each of our tools complete on average in less than two minutes

per app analyzed with an F-measure of greater than 97%.

A video demonstration of AutoSHBHome, AutoSHBIn-

stalled, and AutoSHBRunning can be found at the following

links, respectively:

• https://youtu.be/AYC839XoMlY

• https://youtu.be/jdkPtFrhnMc

• https://youtu.be/QrwX51Tla7Q

The two main contributions of the research presented in this

paper are:

• The first dynamic analysis tool set to detect self-hiding

behaviors

• An analysis on a set of 77 benign and malicious appli-

cations, revealing their self-hiding behaviors

II. BACKGROUND

Our tools seek to detect self-hiding behavior within the

lifecycle of an app on an Android phone. This lifecycle covers

the existence of an app on a user’s Android phone from its

installation to its uninstallation. When the user first installs an

app, the app should appear in the user’s home screen as an

icon until the user decides that they want to launch it. After the

app is launched, it should appear to the user that it is running.

Eventually, when the user wishes to uninstall the app, the user

navigates to the install application list and deletes the app from

the phone.

We see then that the android app lifecycle includes the

following events for a proper app:

• Installation of the app

• Inclusion of the app in the home app list, after installation

• Inclusion of the app in the running app list, after launch

• Inclusion of the app in the installed app list

• Deletion of the app from the device

Consequently, if the app is hiding from the home, running,

or installed app lists, this directly interferes with this lifecycle,

87

2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW)

978-1-7281-4121-3/19/$31.00 ©2019 IEEE
DOI 10.1109/MASSW.2019.00024

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on May 27,2020 at 19:55:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Interface between a script, Appium REST API, Android Debug Bridge
(ADB), and a target emulator or device.

preventing a normal user experience with the app. Further-

more, because the app is hiding, the user may be unaware of

the app’s presence, threatening the user’s privacy and security.

Our tools address this by uncovering self-hiding behaviors in

the home, running, and installed app lists.

III. TOOL DESIGN

The centerpiece of this set of three tools is the Appium

Framework. Appium is designed as a REST API server,

capable of receiving JSON requests from a script and returning

HTTP status codes. For each tool, Appium is used as an

interface between a Python script and an emulator interface.

Appium directly interacts with the Android Debug Bridge

(ADB), which relays Appium’s commands to the emulator.

This is shown in figure 1.

Appium requires the use of a driver in order to send

commands to ADB. UiAutomator2 is one such driver built into

modern versions of Android. UiAutomator2 provides a set of

automated testing tools suitable for interacting with a device.

UiSelector is a tool built into UiAutomator2 for fetching

certain elements from the emulator’s foreground activity.

In order to connect to the device, Appium creates a session

with a set of desired capabilities which describe, among

many specifications, which application to load. The three tools

developed by this research navigate either through the home

screen, the Settings app, or through both. For an application

already installed on a device, our script sends the app’s

package and the app’s launchable—or starting—activity to the

desired capabilities in Appium. Appium and its uses are further

discussed in [4], [5].

Our initial script accepts command line argument flags

signifying which of AutoSHBHome, AutoSHBInstalled, and

AutoSHBRunning need to be run along with a directory con-

taining APK files to analyze. The script promptly uses ADB

commands “adb shell pm list packages” and “adb uninstall

<package>” to loop through each package on the device and

attempts to uninstall it. If the command fails to uninstall a

package, it is assumed that the package is mandated by the

system. This is done to minimize the number of apps that the

tools have to search through in different lists. At this point,

the script runs each tool that is flagged on individual apps in

succession.

A. AutoSHBHome

The process for detecting self-hiding behaviors in the home

app list is illustrated in figure 2. AutoSHBHome begins by

creating a new Appium session for the home screen appli-

cation. On a Pixel 2 emulator, the package for the home

application is com.google.android.apps.nexuslauncher, and the

launchable activity is .NexusLauncherActivity. Upon creating

a new session, AutoSHBHome uses Appium to navigate from

the main home screen to the list of all apps in the home screen.

Appium is then used to count all of the displayed apps on the

screen before closing the session to avoid memory leaks. At

this point, the target APK file for this iteration of AutoSHB-

Home is installed with a simple adb install <apk>command.

If this command fails, the self-hiding behavior of the app is

reported as unknown. Finally, Appium is again used to create a

new session with the home application to count the number of

applications in the home app list. If the number of applications

is different (increased by one), then the application is not

hiding in the home application list. Otherwise, it is.

Each application icon in the home screen is of the class

android.widget.TextView. The label associated with the appli-

cation is the content description: “content-desc”. In order to

count the number of applications, the content description of

each TextView is added to a saved list in Python. An attempt is

made to simulate an interaction with the device where the user

drags their finger from the last icon displayed in the lower right

to the first icon displayed in the upper left—a scrolling action.

If the last application in the list after scrolling is different

from the last application in the list prior to scrolling, then all

content descriptions not already in the saved list are added to

it. This continues until the other condition is true, when the

last application displayed both before and after scrolling are

the same. At this point, the procedure terminates, returning

the length of the saved list.

In order to tap the correct element to reach the home

application list, Appium’s inspector tool is used to manually

navigate through the home screen and reach each element.

This reveals the accessibility id of the up arrow leading to the

list of all applications in the home screen, along with the class

88

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on May 27,2020 at 19:55:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Flowchart illustrating AutoSHBHome and AutoSHBInstalled’s algo-
rithm.

and layout of the individual icons. The inspector tool is used

to discern the right target element types and hierarchies for

the other two tests as well.

B. AutoSHBInstalled

AutoSHBInstalled works similarly to AutoSHBHome, using

the same algorithm shown in figure 2. It too begins by starting

a new Appium session, this time for the settings application.

On the Pixel 2 emulator, the package for the settings ap-

plication is com.android.settings and the launchable activity

is .Settings. After navigating to the installed application list

within the settings app, the number of apps are counted and

the session is closed. The target APK file is installed on the

device with adb install <apk>and the process is repeated.

Navigation to reach the installed application list involves

repeated use of the UiAutomator2 Google-provided testing

platform. UiAutomator2 has a method that allows for Appium

to search for an element by its text. Appium requires the

Python script to pass in a Java code snippet using the Java

UiSelector class that contains a selector element. Upon reach-

ing the installed application list, AutoSHBInstalled scrolls and

counts elements using a similar methodology to that of the

home application list test. All clickable elements currently vis-

ible on the screen are pulled. If the element is of the class an-

droid.widget.RelativeLayout or android.widget.LinearLayout,

then the first of two shown TextViews within that parent

element is added to the list of found applications if and only

if there are two TextViews. In the installed application list,

these elements happen to be LinearLayout, although for the

sake of code re-usage with the running application list test,

both types of layouts are valid for pulling elements in a list.

A swipe action is then completed, scrolling by the number of

pixels equal to six times the height of an individual element

in a list. This is repeated until the last element shown on the

screen after a swipe action is equal to the same element prior

to a swipe action.

Testing the positive case of this procedure—where an appli-

cation hides itself from the installed application list—proved

difficult as very few applications, even malware applications,

hide themselves in the installed application list. Neither the

benign nor malicious apps in the dataset used in the devel-

opment of this tool contained such an application. However,

testing the positive result can be done without installing any

APKs, as a hidden app should add zero apps to the installed

list. Running the test twice, therefore, should return that there

is self-hiding behavior.

C. AutoSHBRunning

Unlike the prior tools, the running application list self-

hiding behavior detection tool AutoSHBRunning uses two

different Appium sessions to execute different tasks. The

algorithm is shown in figure 3. AutoSHBRunning must first

install the target APK file, open the application, and only then

navigate to the running application list within the settings app

and attempt to find the application. If the application is found,

then the app is not hiding, otherwise, it is reported as hiding.

If the app either failed to install or failed to launch, then

the self-hiding behavior of the app is undetermined. The first

Appium session navigates through the home application list

to tap the icon of the target app, while the second Appium

session navigates through the settings app to the running app

list.

In order to find the correct app in the home app list, the

“aapt” command, provided by the Android build tools, is used

to parse the application label from the target APK file. This

label is the same text that appears in the content description

of the home application list icons and is the same text that

appears with the target application in the running app list.

Like AutoSHBHome, Appium is used to navigate first to

the list of all applications. Then, the same sequence is used

to scroll through the list until a label is found equal to the

label of the target application. This session is closed prior to

starting the second session for the settings app.

Upon opening the settings app session, the sequence de-

signed to scroll through the list of options in the installed

application list is used until the system settings are found,

under which the developer options reside on our emulator.

Finding this is done with the UiAutomator2 driver as before

with AutoSHBInstalled, searching for specific text. If the

89

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on May 27,2020 at 19:55:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Flowchart illustrating the algorithm for AutoSHBRunning.

developer options cannot be found within the system settings,

the script navigates to the build number, again using UiAu-

tomator2. After tapping the build number seven times, the

script navigates up one level and attempts to find the developer

options again. Within the developer options is the running

services list. If the label is found in the running services list

while scrolling and searching, the application is reported as not

hiding. Otherwise, to display non-foreground processes, the

text “show cached processes” is tapped, and AutoSHBRunning

searches and scrolls through the new list. If the label is found,

the target app is reported as not hiding, otherwise, it is reported

as hiding in the running app list.

One major limitation of AutoSHBRunning is that applica-

tions are loaded based on their label in the home application

list. If the application under test has already proven itself to be

hiding from the home application list, AutoSHBRunning will

fail. Another issue is present when testing certain malicious

APK files. Loading certain apps will cause the malware to

dump its payload, impacting the performance of or altogether

crashing the emulator. Some malware that requests device

admin permissions will force the user to either reject or accept

a device admin request, but will continually reload the request

until the user taps “accept.”

IV. EVALUATION

The tools were run on a Pixel 2 AVD Android Emulator

running an x86 image of Android Oreo 8.1. Certain applica-

tions failed to install in testing due to use of an x86-imaged

emulator. An x86 emulator runs much faster than an ARMv8

emulator on a Windows platform, which is also compiled

for x86. These applications are removed from the dataset.

The testing host platform ran Microsoft Windows, version

10.0.18362.239. Our dataset included 20 benign representative

APK files and 57 malicious APK files.

The tools are highly UI-dependent. Upgrades to the Android

version of the emulator or the use of a different emulator would

require modifications to be made to the scripts in order to use

them. However, for analyzing an application in a controlled

environment prior to its release to the Android marketplace,

this is an acceptable limitation.

Manual analysis was performed on each of these APK files

by hand, installing and opening each list (home, installed, and

running) to visually check if the target application was hiding.

The results of this manual analysis are used as the standard

by which false positives and false negatives are judged. Our

results are listed in Table I.

As mentioned before, AutoSHBRunning returns an error

for apps that are hiding in the home app list, resulting in a

larger number of errors. An application was not found to be

hiding in either manual or automated analysis of the installed

application list. Based on this data, self-hiding behavior in the

home application list is the most common hiding behavior in

this dataset.

If the emulator is unstable from running malware appli-

cations, or if the Appium server loses connection to ADB,

random errors can occur. This is the reason for the three

errors associated with AutoSHBHome and the single error

with AutoSHBInstalled. This also explains the errors in the

running application list that are not due to home app list

self-hiding behavior. Malware sometimes fails to run on the

emulator completely, hence decreasing the valid sample size

from 77 to 63 for the running application list between ignoring

apps that failed to run and ignoring apps hiding in the home

app list.

A false positive can occur if Google Play protect is enabled

on the emulator while a test is run on a malicious APK.

Google Play protect recognizes certain malicious APKs and

can remove them before detection tools have time to navigate

to their target lists.

The efficiency data is listed in Table II. Out of all of these

three tests, AutoSHBInstalled took the most amount of time

per app and overall. This is due to the fact that the installed

application test has the most navigation steps out of any of

the tests.

AutoSHBRunning took an average time of less than two

minutes per application. If an application is invalid—such as

hiding in the home application list—the tool returns a result

in as little as 5 seconds. However, if an app results in the

emulator hanging, or an unexpected navigation event, the tool

90

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on May 27,2020 at 19:55:17 UTC from IEEE Xplore. Restrictions apply.

Test # analyzed # hiding # not hiding False positives False negatives Precision Recall F-Measure Errors
AutoSHBHome 77 12 62 2 0 97.47% 100% 98.72% 3

AutoSHBInstalled 77 0 76 0 0 100% NA 100% 1
AutoSHBRunning 63 3 40 0 0 100% 100% 100% 20

TABLE I
ACCURACY OF ANALYSIS

Test Total time Average time per app Median time per app Maximum time per app Minimum time per app
AutoSHBHome 8569 seconds 85.9 seconds 84 seconds 139 seconds 30 seconds

AutoSHBInstalled 14712 seconds 149.3 seconds 156 seconds 188 seconds 76 seconds
AutoSHBRunning 10982 seconds 111 seconds 96 seconds 1373 seconds 5 seconds

TABLE II
EFFICIENCY OF ANALYSIS

can take a long time to time out and continue working through

the applications, as seen by the maximum time per app for

AutoSHBRunning.

V. RELATED WORK

Since the creation of the Android operating system, a

plethora of tools have been developed to detect and analyze

malware. Research in certification of apps to hamper malware

was investigated as early as 2009 [6]. Other papers work

in classifying malware based on its behavior [7]. In [7],

the implementation of different sets of malware is carefully

dissected and classified, though this requires that a target piece

of malware not have obfuscated code. RiskRanker [8] tries

to proactively find malware when it is first uploaded to the

Android marketplace.

[9] discusses covert channels being used to secretly share

a user’s data. These channels are designed to transfer control

information or other metadata, but instead, malware can use

these channels to transmit private data. However, this research

does not explicitly seek out self-hiding behaviors for their own

sake. [2] does exactly this using a static analysis approach.

This research classifies self-hiding behavior into twelve differ-

ent categories and is the first to attempt to detect self-hiding

behavior specifically.

Dynamic analysis techniques have been used with the

Android operating systems in prior research [3], [10], [11].

DREBIN [3] uses static analysis whenever possible prior to

dynamic analysis to minimize usage of a phone’s resources,

but then uses dynamic analysis and machine learning to

build behavioral patterns for a user. TraintDroid [10] monitors

applications in flight to see how applications use their private

data in ways that are not visible to a user. Finally, Stowaway

[11] combines both dynamic and static analysis techniques to

find apps that are overprivileged. Static analysis shows the

APIs that are needed by the decompiled target APK’s code,

while dynamic analysis reveals which APIs map to which

permissions requested by an application’s manifest file.

VI. CONCLUSION

This research has successfully developed a set of

three tools—AutoSHBHome, AutoSHBInstalled, and AutoSH-

BRunning—for automated dynamic detection of self-hiding

behavior in the home, installed, and running app lists on an

Android emulator. Based on the high F-measure rates and

the time that it took to run these tools, we conclude that the

tools are both effective and efficient. Future work extending

these tools to a wider variety of emulators could be pursued.

Another area in which these tools could be developed further

is in regard to the running application list self-hiding behavior

detection tool, AutoSHBRunning. Methods of detecting and

restarting a frozen or hanging emulator could be implemented

in the tool better. Potentially, these tools can be used to

analyze an application in a controlled environment prior to

its publishing to the Android marketplace, saving time and

money by avoiding having to deal with malware on a device.

REFERENCES

[1] “Adware plagues google play store,” Apr 2019. [Online]. Available:
https://blog.avast.com/adware-plagues-google-play

[2] Z. Shan, I. Neamtiu, and R. Samuel, “Self-hiding behavior in android
apps: detection and characterization,” in 2018 IEEE/ACM 40th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2018, pp.
728–739.

[3] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in Ndss, vol. 14, 2014, pp. 23–26.

[4] G. Shah, P. Shah, and R. Muchhala, “Software testing automation using
appium,” International Journal of Current Engineering and Technology,
vol. 4, no. 5, pp. 3528–3531, 2014.

[5] S. Singh, R. Gadgil, and A. Chudgor, “Automated testing of mobile ap-
plications using scripting technique: A study on appium,” International
Journal of Current Engineering and Technology (IJCET), vol. 4, no. 5,
pp. 3627–3630, 2014.

[6] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in Proceedings of the 16th ACM conference
on Computer and communications security. ACM, 2009, pp. 235–245.

[7] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in 2012 IEEE symposium on security and privacy. IEEE,
2012, pp. 95–109.

[8] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: scal-
able and accurate zero-day android malware detection,” in Proceedings
of the 10th international conference on Mobile systems, applications,
and services. ACM, 2012, pp. 281–294.

[9] J.-F. Lalande and S. Wendzel, “Hiding privacy leaks in android applica-
tions using low-attention raising covert channels,” in 2013 International
Conference on Availability, Reliability and Security. IEEE, 2013, pp.
701–710.

[10] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, p. 5,
2014.

[11] Z. Aung and W. Zaw, “Permission-based android malware detection,”
International Journal of Scientific & Technology Research, vol. 2, no. 3,
pp. 228–234, 2013.

91

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on May 27,2020 at 19:55:17 UTC from IEEE Xplore. Restrictions apply.

