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TIE: Time-Informed Exploration for
Robot Motion Planning

Sagar Suhas Joshi1 Seth Hutchinson2 Panagiotis Tsiotras3

Abstract—Anytime sampling-based methods are an attractive
technique for solving kino-dynamic motion planning problems.
These algorithms scale well to higher dimensions and can
efficiently handle state and control constraints. However, an
intelligent exploration strategy is required to accelerate their
convergence and avoid redundant computations. Using ideas from
reachability analysis, this work defines a “Time-Informed Set
(TIS)”, that focuses the search for time-optimal kino-dynamic
planning after an initial solution is found. Such a Time-Informed
Set includes all trajectories that can potentially improve the
current best solution and hence exploration outside this set is
redundant. Benchmarking experiments show that an exploration
strategy based on the TIS can accelerate the convergence of
sampling-based kino-dynamic motion planners.

Index Terms—Motion and Path Planning, Autonomous Agents,
Collision Avoidance.

I. INTRODUCTION

SAMPLING-based motion planners incrementally build a
connectivity graph by generating random samples in the

search-space. Popular algorithms such as RRT [1] can solve
challenging problems in higher-dimensional spaces, but can
only ensure probabilistic completeness. The RRT* algorithm
[2] combines the exploration procedure in RRT with a “local
rewiring” module to guarantee asymptotic optimality. Algo-
rithms such as RRT# [3], FMT* [4] and BIT* [5] use
heuristics along with dynamic programming ideas to achieve
faster convergence than RRT*.

The “geometric” versions of the above sampling-based
algorithms ignore kino-dynamic constraints of the robot and
connect any two points in a Euclidean search space with a
straight line. However, a general kino-dynamic problem re-
quires the solution of a two-point boundary value problem (TP-
BVP), also called the “local steering” problem, for optimally
connecting any two states. Karaman and Frazzoli extended the
RRT* algorithm for kino-dynamic planning by incorporating
such steering functions in [6]. Perez et al [7] linearized
the system dynamics and solved the infinite-horizon linear
quadratic regulator (LQR) problem to obtain a locally optimal
steering procedure. The kino-dynamic RRT* algorithm [8]
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ẋ

start

goal

Obstacle

Figure 1: Time-optimal planning for a 2D system using
the SST algorithm with uniform exploration (top) and the
proposed strategy (bottom). The tree vertices generated are
represented in green. Using the proposed strategy leads to a
focused search.

penalizes the control effort and the trajectory duration while
connecting any two states. The authors of [8] solve a fixed final
state, free final time, optimal control problem for linear time
invariant (LTI) systems to derive a steering function. A kino-
dynamic version of FMT* is presented in [9]. Note that these
algorithms rely on the availability of a local steering module
to ensure asymptotic optimality. However, developing such
computationally efficient TPBVP solvers may not be possible
for many cases. The GR-FMT algorithm [10] proposes a
local steering method based on polynomial basis functions
and segmentation for controllable linear systems. The recently
introduced Stable Sparse RRT (SST) and SST* [11] algorithms
guarantee asymptotic optimality, while having access only to
a forward propagation model of the system’s dynamics. This
eliminates the need for TPBVP solvers. The SST procedure
promotes the propagation of states with good path costs and
performs a selective pruning operation to keep the number of
stored nodes small.

While significant progress has been made in the area of
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sampling-based kino-dynamic planners, developing intelligent
exploration strategies to complement them still remains a
challenging problem. Uniform random sampling results in
a rapid exploration of the search-space and is effective for
finding a first solution. However, after an initial solution is
found, exploration can be focused on a subset of the search-
space that can potentially further improve the current solution.
For the case of geometric, length-optimal planning, Gammell
et al [12] introduced the “L2-Informed Set” that contains all
the points that can potentially improve the current solution.
This set is a prolate hyper-spheroid with focii at the start
and the goal states and its transverse diameter is equal to the
current best solution cost. The direct Informed Sampling (IS)
technique proposed in [12] provides a scalable approach to
focus search, and shows dramatic convergence improvements
in higher dimensions compared to the other state-of-the-art
heuristic methods.

However, as discussed in [13], [14] deriving a parameterized
representation or direct sampling of such Informed Sets for
systems with differential constraints is a challenging problem.
In this work, we propose an analogue to the Informed Set for
the case of time-optimal kino-dynamic planning using ideas
from reachability analysis [15], [16].

Given a feasible (but perhaps sub-optimal) solution tra-
jectory with time cost T > 0, we define a Time-Informed
Set (TIS) as the set that contains all the trajectories with
time cost less than or equal to T . The planner can thus
avoid redundant exploration outside the TIS. The proposed
exploration algorithm can be applied to a variety of systems,
even if a tractable TPBVP solver may not be available.

II. RELATED WORK

Prior work on intelligent exploration, such as [17], [12],
[18], [19] utilized heuristics and ideas from deep learning
to improve the performance of sampling-based planners. The
Informed SST (iSST) algorithm [20] also leverages heuristics
to guide search for kino-dynamic planning. DIRT [21] uses
dominance informed regions along with heuristics to balance
exploration and exploitation. However, iSST and DIRT may
be ineffective in focusing the search for the cases where a
good heuristic function is unavailable.

Concepts from reachability analysis have also been used for
guiding exploration in sampling-based kino-dynamic planning.
Shkolnik et al [22] used reachable sets in their RG-RRT
algorithm to shape the Voronoi bias so as to find a feasible
solution quickly. A discretized representation of the reachable
space is proposed in [23] to be used for sampling and nearest
neighbor search. Chiang et al [24] trained an obstacle-aware
time-to-reach (TTR) reachability estimator network to guide
the RRT search process. However, the above techniques do not
focus search on a subset of the search space based on current
solution cost, which can lead to redundant exploration.

The algorithms proposed in [13] and [14] are most relevant
to the current work, as they address the problem of Informed
Sampling for kino-dynamic motion planning. Kunz et al [13]
proposed a hierarchical rejection sampling (HRS) method to
generate informed samples for higher-dimensional systems.

HRS essentially is a “bottom up” procedure that generates
samples along the individual dimensions and combines them.
An accept/reject decision is taken for each partial sample until
a complete sample in the informed set is generated. Yi et
al [14] proposed a Hit-and-Run Markov Chain Monte-Carlo
(HNR-MCMC) algorithm to improve the sampling efficiency
compared to HRS. Given a previous sample in the Informed
Set, the HNR-MCMC first samples a random direction and
then uses rejection sampling to find the largest step-size so that
the new sample lies inside the Informed Set. However, both
HRS and HNR-MCMC assume availability of a local steering
function, that gives the optimal cost (or a good under-estimate)
connecting any two states. For minimum time problems, the
above two methods can only be applied to specific systems,
such as the double integrator. In this work, we address this
issue by using ideas from reachability analysis to define the
TIS. The proposed algorithm can thus be applied to a wide
variety of systems.

In the following sections, the time-optimal kino-dynamic
motion planning problem is first defined, followed by the
definition of the TIS and some theoretical results. The pro-
posed exploration algorithm is then delineated along with
some results from a series of numerical experiments.

III. PROBLEM DEFINITION

Let X ⊂ Rn, n ≥ 2 and U ⊂ Rm, m ≥ 1 be
compact sets representing the state and admissible control
spaces respectively. Let Xobs ⊂ X denote the obstacle space
and Xfree = cl(X \ Xobs) denote the free space. Here, cl(S)
represents the closure of the set S ⊂ Rn. Let λ(S) denote
the Lebesgue measure of the set S ⊂ Rn. Let xs ∈ Xfree

denote the initial state and let Xg ⊂ Xfree represent the goal
set. The time-optimal motion planning problem can be defined
as follows:

T ∗ = min
u

T (1a)

subject to: ẋ(t) = f(x(t), u(t)), (1b)
x(0) = xs, x(T ) ∈ Xg, (1c)

x(t) ∈ Xfree, u(t) ∈ U for all t ∈ [0, T ]. (1d)

Sampling-based algorithms solve the above problem by in-
crementally building a tree T = (V,E) that encodes the
connectivity between a finite set of vertices V ⊂ Xfree with
edges E ⊆ V × V . The trajectory and the cost representing
an edge are calculated either by using a steering function or
by forward propagation of the system model using random
controls.

IV. TIME-INFORMED SET

Consider the set of points that can be reached at time t,
starting from xs at time t0 < t, using admissible controls,

Xf [t0, t] = {z ∈ X | ∃ u : [t0, t]→ U , x : [t0, t]→ X ,
s.t x(t0) = xs, x(t) = z, ẋ(t) = f(x(t), u(t))}.

(2)

Let F [t0, t] be an over-approximation of Xf [t0, t], i.e.,
Xf [t0, t] ⊆ F [t0, t]. Similarly, the set of points starting at time
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Figure 2: Evolution of the forward reachable set F [0, t] and the backward reachable tube Rb[t, T ] for the 2D Toy system at
time t = 2, 5, 8. Note that Ω(T ) comprises of the intersections F [0, t] ∩Rb[t, T ].

t that can reach Xg at time tf > t using admissible controls
can be defined as,

Xb[t, tf ] = {z ∈ X | ∃ u : [t, tf ]→ U , x : [t, tf ]→ X ,
s.t x(t) = z, x(tf ) ∈ Xg, ẋ(t) = f(x(t), u(t))}.

(3)

Let B[t, tf ] be an over-approximation of Xb[t, tf ], i.e.,
Xb[t, tf ] ⊆ B[t, tf ]. Note that state constraints ensuring
collision-free trajectories are not imposed while defining the
above sets. The (over-approximated) backward reachability
tube over the interval [t, tf ] includes the set of all points
starting at time t, that can reach Xg at any time τ ∈ [t, tf ]

Rb[t, tf ] =
⋃

t≤τ≤tf

B[t, τ ]. (4)

Assume that a feasible (perhaps sub-optimal) solution to
problem (1) with time cost T > 0 is available. Consider the
following definition of the Time-Informed Set (TIS)

Ω(T ) =
⋃

0≤t≤T

F [0, t] ∩Rb[t, T ]. (5)

Intuitively, Ω(T ) contains all the points x ∈ X that can be
reached from xs at a time t, where 0 ≤ t ≤ T , i.e., x ∈
F [0, t] and then can reach the goal at time τ , t ≤ τ ≤ T , i.e.,
x ∈ Rb[t, T ]. Please see Fig. 2 and the attached video1 for a
visualization of Ω(T ).

The following theoretical arguments formally prove that
given a sub-optimal solution with time cost T , the set Ω(T )
contains all the trajectories with time cost T or less.

Lemma 1. Given a feasible solution with cost T > 0, F [0, t]∩
B[t, T ] 6= ∅ for all t ∈ [0, T ].

Proof. Consider the solution trajectory with time cost T , ζ :
[0, T ] → X , where ζ(0) = xs and ζ(T ) = xg. For any point
x on this trajectory, there exists t ∈ [0, T ] such that x = ζ(t).
Thus, x ∈ F [0, t] and x ∈ B[t, T ]. It follows that, x ∈ F [0, t]∩
B[t, T ]. Therefore, F [0, t] ∩ B[t, T ] 6= ∅.

Lemma 2. Rb[t, T1] ⊂ Rb[t, T2] for any T2 > T1 > t > 0.

1https://www.youtube.com/watch?v=dnMHb7uFEGw

Proof. Note from the definition (4),

Rb[t, T2] =
⋃

t≤τ≤T2

B[t, τ ]

=

( ⋃
t≤τ≤T1

B[t, τ ]

)⋃( ⋃
T1≤τ≤T2

B[t, τ ]

)
.

Since Rb[t, T1] =
⋃
t≤τ≤T1

B[t, τ ] it follows that Rb[t, T1] ⊂
Rb[t, T2].

Theorem 3. The set Ω(T ) contains all trajectories with time
cost exactly T .

Proof. Consider any solution trajectory ζ : [0, T ] → X with
time cost T > 0, where ζ(0) = xs, ζ(T ) = xg. For any
point x on this trajectory, there exists t ∈ [0, T ] such that
x = ζ(t). Then, x ∈ F [0, t] and x ∈ B[t, T ]. This implies that
x ∈ F [0, t] ∩ B[t, T ] and hence x ∈ F [0, t] ∩ Rb[t, T ]. Thus,
x ∈ Ω(T ). Since t is arbitrary, if follows that ζ(t) ∈ Ω(T ) for
all t ∈ [0, T ].

Theorem 4. Ω(T1) ⊂ Ω(T2) for any T2 > T1 > 0.

Proof. Recall that the set Ω(T2) is defined by

Ω(T2) =
⋃

0≤t≤T2

F [0, t] ∩Rb[t, T2], (6)

which can be re-written as

Ω(T2) =

( ⋃
0≤t≤T1

F [0, t] ∩Rb[t, T2]

)⋃
( ⋃
T1≤t≤T2

F [0, t] ∩Rb[t, T2]

)
.

From Lemma 2, it follows that Rb[t, T1] ⊂ Rb[t, T2]. Hence,
Ω(T1) =

⋃
0≤t≤T1

F [0, t] ∩ Rb[t, T1] ⊂
⋃

0≤t≤T1
F [0, t] ∩

Rb[t, T2]. Thus, Ω(T1) ⊂ Ω(T2).

Corollary 5. Given a solution to (1) with time cost T , the
set Ω(T ) defined in (5) contains all the trajectories with cost
less than or equal to T . Conversely, any trajectory that is not
contained inside Ω(T ) has time cost T

′
> T

Proof. From Theorem 3, it follows that Ω(T ) contains all
trajectories with time cost exactly T . Theorem 4 implies
that Ω(T ) is a superset of all the sets containing trajectories
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Figure 3: A schematic for the moon-lander robot (top) and
quadrotor (bottom) simulation cases with sample solution
paths found by the proposed algorithm after 40 sec of planning
time.

with time cost less than T . Thus, Ω(T ) also contains all the
trajectories with cost less than or equal to T .

After a, perhaps sub-optimal, solution with cost T is found,
any state that lies on an improved solution path necessarily
lies inside the TIS. The search can thus be focused onto the
TIS. This can avoid redundant computations and accelerate
convergence, especially for higher dimensional problems.

V. TIME-INFORMED VS L2-INFORMED SET

This section examines the relationship between the TIS
defined in (5) and the L2-Informed Set from [12] for a special
case of a linear single integrator system. The purpose of this
investigation is to show that the TIS is a generalization of
the L2-Informed Set approach in [12]. Consider the case of
single-integrator dynamics ẋ(t) = u(t), for which

F [t0, t] = {x ∈ X |‖x− xs‖2 ≤ umax(t− t0)}
B[t, tf ] = {x ∈ X |‖x− xg‖2 ≤ umax(tf − t)}.

(7)

Here, ‖.‖2 represents the L2-norm. As the set U is compact,
there exists a umax > 0, so that ‖u(t)‖2 ≤ umax for all t.
Note that, for this special case, the forward and backward
reachable sets defined in (7) are concentric circles. Then, for
a given t < tf , we have B[t, tf ] = Rb[t, tf ] and hence Ω(T ) =⋃

0≤t≤T F [0, t] ∩ B[t, T ]. Thus, for any x ∈ Ω(T ), we have
‖x− xs‖2 ≤ umaxt and ‖x− xg‖2 ≤ umax(T − t). Adding the
two inequalities we get,

Ω(T ) = {x ∈ X | ‖x− xs‖2 + ‖x− xg‖2 ≤ umaxT} (8)

The TIS in (8) in this case has the same prolate hyper-spheroid
form as the L2-Informed Set [12]. Thus, the TIS can be seen
as a generalization of the L2-Informed Set.
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Figure 4: Comparing the forward reachable set F [0, t] for the
2D system at t = 2 using the hyper-sphere and ellipsoidal
approximation.

VI. TIME-INFORMED EXPLORATION

Although obtaining the exact reachable sets defined in (2),
(3) may not be computationally tractable, various techniques
have been proposed to obtain tight over-approximations of
these sets. These include application of polytopes and zono-
topes [25], ellipsoidal calculus [16] and formulating reachabil-
ity problem as a Hamilton-Jacobi-Bellman (HJB) PDE [15]. In
this work, we use the ellipsoidal technique which provides a
scalable framework for reachability analysis of robots with
linear-affine dynamics. However, as discussed later on, the
HJB reachability formulation can be used to extend the al-
gorithms proposed in this work for general cost-functions and
non-linear systems.

Consider the special case of linear kino-dynamic systems.
Concretely, the constraint (1b) is ẋ(t) = Ax(t) +Bu(t), with
A ∈ Rn×n, B ∈ Rn×m. Then, Xf [t0, t] and Xb[t, tf ] can be
defined as

Xf [t0, t] = {x ∈ X | ∃ u : [t0, t]→ U , s.t

x = eA(t−t0)xs+

∫ t

t0

eA(t−τ)Bu(τ) dτ},

Xb[t, tf ] = {x ∈ X | ∃ u : [t, tf ]→ U , s.t

x = e−A(tf−t)xg−
∫ tf

t

e−A(τ−t)Bu(τ) dτ}.

(9)

Here, xg ∈ Xgoal. A hyper-sphere over-approximation to the
above sets can be constructed as follows [25],

F [t0, t] = {x ∈ X |‖x− eA(t−t0)xs‖2 ≤ r(t0, t, umax)},
B[t, tf ] = {x ∈ X |‖x− e−A(tf−t)xg‖2 ≤ r(t, tf , umax)},
r(t1, t2,umax) = (e‖A‖2(t2−t1) − 1)‖B‖umax/‖A‖2.

(10)
Here, ‖M‖2 represents the induced two norm (maximum
singular value) for a matrix M . However, the above over-
approximation might be too conservative for the current appli-
cation. See Fig. 4. If the reachable sets are overtly conservative
and λ(Ω(T )) ≈ λ(X ), then TIE may result in little or no
focus of the search. In contrast, the ellipsoidal technique [16]
approximates the reachable sets as ellipsoids,

E(xc, Q) = {x ∈ Rn|〈x− xc, Q−1(x− xc)〉 ≤ 1}. (11)

Here, xc is the center and Q is the positive definite shape
matrix of the ellipsoid. Forward and backward reachable
sets, F [0, t],B[t, T ] can be obtained by solving an ordinary
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Algorithm 1: Sampling Algorithm
1 generateSample (T):
2 t ∼ p[0,T ](t);
3 for i = 1 : ns do
4 if λ(F [0, t]) < λ(B[t, T ]) then
5 xcand ← sampleUniform(F [0, t]);
6 if xcand ∈ B[t, T ] then
7 xrand ← xcand;
8 return xrand;

9 else
10 xcand ← sampleUniform(B[t, T ]);
11 if xcand ∈ F [0, t] then
12 xrand ← xcand;
13 return xrand;

14 xrand ← sampleUniform(X );
15 return xrand;

Algorithm 2: Vertex Inclusion Algorithm
1 includeVertex (v, t, T):
2 if t > T then
3 return false ;

4 foreach τ ∈ {t+ δ, t+ 2δ, . . . T} do
5 if v ∈ B[t, τ ] then
6 return true ;

7 return false;

differential equation (ODE) for the center and shape matrix.
Please see the Ellipsoidal Toolbox2 documentation for a brief
overview. Note that the boundary conditions for the forward
and backward reachable set ODE are the start and goal
ellipsoids respectively. From the problem definition in (1), the
start ellipsoid is encoded as a hyper-sphere with negligible
radius around the center xs. The goal set Xg is represented also
as a hyper-sphere with a set radius around a center xg ∈ Xg.
The ODE for the shape matrix can be solved and stored
off-line. An analytical solution for the ODE describing the
center’s trajectory can also be constructed. Thus, a “library”
of reachable sets F [0, t],B[t, T ] can be created off-line to be
used in the sampling and vertex inclusion algorithm described
below. This library stores the value of center vector xc and
matrices Q, L of the forward and backward reachable sets.
Here L is obtained using the Cholesky decomposition of Q,
Q = LLT and is used for generating samples inside E(xc, Q)
[12]. Please see Fig. 2 for a visualization of F [0, t] and B[t, T ]
constructed using the ellipsoid technique.

A. Sampling Algorithm

Algorithm 1 describes a procedure to generate a new sample
xrand in Ω(T ). Notice from (5) that Ω(T ) consists of a union
over the intersections of sets. Devising a direct sampling

2http://systemanalysisdpt-cmc-msu.github.io/ellipsoids/doc/main manual.
html

technique to generate uniform random samples in Ω(T ) (as
done for the L2 Informed Set in [12]) is hence a challenging
task. The proposed algorithm proceeds by first sampling a time
t in the interval (0, T ) according to a probability distribution
p[0,T ](t) (line 2). Ideally, to generate uniform random samples
in Ω(T ) with respect to the Lebesgue measure, this distribution
needs to be p[0,T ](t) = λ(F [0, t] ∩Rb[t, T ])/λ(Ω(T )). How-
ever, calculating and sampling from this distribution may not
be tractable for general higher dimensional systems. Hence,
for the sake of simplicity, we choose p[0,T ](t) to be uniform
over the interval [0, T ]. Given t, the sets F [0, t],B[t, T ] can
then be obtained from the library of stored reachable sets
as discussed in the previous section. We leverage the fact
that F [0, t] ∩ B[t, T ] 6= ∅ from Lemma 1 to generate a
xrand ∈ F [0, t]∩B[t, T ]. If the Lebesgue measure of F [0, t] is
less than B[t, T ], a uniform sample is generated in F [0, t] and
checked if it belongs to B[t, T ], otherwise, B[t, T ] is sampled
and checked if it belongs to F [0, t] (lines 4-13). Notice from
Fig. 2 that λ(F [0, t]) increases and λ(B[t, T ]) decreases as
t varies from 0 to T . An efficient algorithm for generating
uniform samples inside a hyper-ellipsoid is discussed in [12].
If no xrand ∈ F [0, t]∩B[t, T ] can be generated in ns attempts,
the algorithm returns a uniform random sample from the
search-space X (line 14-15).

B. Vertex Inclusion Algorithm

The vertex inclusion procedure, described in Algorithm 2,
accepts a candidate vertex if it lies in Ω(T ). Consider a
candidate vertex v with cost-to-come t, i.e., the cost of
trajectory from xs to v is t. Since the cost-to-come is t, we
have v ∈ F [0, t]. Thus, if v ∈ Rb[t, T ], then v ∈ Ω(T ).
The proposed algorithm discretizes the interval [t, T ] with a
step-size δ. A vertex is accepted if it lies in any B[t, τ ], for
τ ∈ {t+ δ, t+ 2δ, . . . T} (line 4-6). The sets B[t, τ ] are again
obtained from the stored library of reachable sets.

In order to maintain the theoretical guarantees of TIE, an
over-estimate of the solution cost T is required. This over-
estimate can be obtained (and updated) after the planner
discovers (and then improves) an initial, sub-optimal solution.
Also, learning-based methods similar to [24] can be used
to obtain an estimate of the solution cost given a planning
environment. In this work, the above algorithms are called
only after an initial solution is discovered.

VII. NUMERICAL EXPERIMENTS

Benchmarking experiments were performed by pairing dif-
ferent exploration strategies with the SST planner [11]. All
algorithms were implemented in C++ using the OMPL frame-
work [26], and the tests were run using OMPL’s standard-
ized benchmarking tools [27]. Please see https://github.com/
DCSLgatech/tie. The data was recorded over 100 trials for all
the cases on a 64-bit laptop PC with 16 GB RAM and an Intel
i7 Processor, running Ubuntu 16.04 OS. The performance of
the proposed exploration strategy was benchmarked against
uniform sampling (Uni) and uniform sampling combined with
Informed propagation (IP). Informed propagation essentially
rejects expansion vertices with cost-to-come t > T , if there
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Figure 5: Convergence plots for the numerical experiments. Using the proposed TIE leads to a faster convergence in all cases
(red plot). The bottom middle figure illustrates number of candidate vertices generated using uniform and TIE exploration
method. The bottom right figure plots the fallback ratio for different values of nS . Solid lines indicate the value averaged over
100 trials and the error bars represent the standard deviation.

exists a sub-optimal solution with cost T . If t < T , then
forward propagation from the vertex is done for at most
T − t duration. Thus, Informed Propagation (IP) prohibits
exploration outside the set

⋃
0≤τ≤T F [0, τ ]. The proposed

Time-Informed exploration (TIE) algorithm uses the sampling
and vertex inclusion procedures described in Algorithms 1 and
2 with ns = 10 and δ = 0.1. The SST planner parameters,
namely, the selection and pruning radius were set to standard
OMPL values of 0.2 and 0.1 respectively. The L2-norm was
used as the distance function. A description of different case-
studies is given below.
2D System: Consider a 2D kino-dynamic system ẋ =
A2×2x +B2×1u with, x = [x, ẋ]T and

A2×2 =

[
0.0 0.5
−0.1 0.2

]
, B2×1 =

[
0
1

]
. (12)

The set-up of the planning problem is illustrated in Fig. 1,
with xs = [−3 0]T, xg = [3 0]T,Xg = E(xg, 0.25 I2), u ∈
[−0.5 0.5]. Here, I2 represents the 2× 2 identity matrix.
8D System: The 2D system described above is extended
to a 8D system ẋ = A8×8x + B8×4u, with x =
[x1 ẋ1 x2 ẋ2 x3 ẋ3 x4 ẋ4]T, u = [u1 u2 u3 u4]T and

A8×8 = blkdiag[A2×2, A2×2, A2×2, A2×2],

B8×4 = blkdiag[B2×1, B2×1, B2×1, B2×1].
(13)

The single obstacle in 2D case was extended to 8D by adding a
length of 2 units symmetrically in the extra dimensions. Also,
xs = [−2 0 0 0 0 0 0 0]T, xg = [2 0 0 0 0 0 0 0]T,Xg =
E(xg, I8), ui ∈ [−1 1], i ∈ {1, 2, 3, 4}.
Moon-lander Robot: A simplified version of a planar “moon-
lander robot” is illustrated in Fig. 3. The robot has three
thrusters Fl, Fr and Ft acting in the left, right and up direction
respectively. In the absence of upwards thrust, the robot falls

under gravity. The dynamics of the robot is assumed to be as
follows.

d

dt


x
z
ẋ
ż

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



x
z
ẋ
ż

+


0 0 0
0 0 0
−2 1 0
0 0 1


FlFr
Ft

 . (14)

The start, goal and admissible control space were set as
follows: xs = [0 1 0 − 2]T, xg = [0 − 4 0 0]T,Xg =
E(xg, 0.25 I), Fl ∈ [0 1], Fr ∈ [0 1], Ft ∈ [−2 2]. The
objective is to land the robot in time-optimal fashion.
Planar Quadrotor model: A linearized quadrotor model for
longitudinal flight based on [28] can be written as ẋ =
A6×6x + B6×2u, with x = [x z u w q θ]T, u = [ft τy]T

and

A6×6 =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −g
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0

B6×2 =


0 0
0 0
0 0

1/m 0
0 1/Iy
0 0


(15)

The start, goal and admissible control space were set as
follows: xs = [−2.5 0 0 0 0 0]T, xg = [2.5 0 0 0 0 0]T,Xg =
E(xg, I), ft ∈ [−1 1], τy ∈ [−1 1]. The set-up for time-optimal
planning problem is shown in Fig. 3.

The results of the numerical simulations are illustrated
in Fig. 5. It can be seen that Informed Propagation (blue)
performs better than the naı̈ve uniform exploration (magenta).
However, using the proposed TIE strategy, a combination of
Algorithm 1 and 2, outperforms the other methods in all cases.
Note that for a planner such as SST, the sampling procedure
influences the vertex to be selected for forward propagation.
Generating random samples xcand ∈ Ω(T ) biases the selection
of vertices in the TIS for expansion. After a vertex is selected,
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expansion is performed by forward propagating the system
dynamics to generate a new candidate vertex v. The vertex
inclusion algorithm then ensures that the candidate vertex
v ∈ Ω(T ). Thus, the combination of the proposed sampling
and inclusion algorithm avoids redundant exploration focuses
search, and leads to a faster convergence in all cases. In
order to study the computational cost incurred by the TIE
procedure, the quadrotor simulation was run without obstacles.
Compared to uniform sampling, TIE generates a lower number
of feasible, candidate vertices for inclusion in the planner tree,
as illustrated in Fig. 5. Future work will explore leveraging
GPUs and operating on batch of samples and reachable sets
in parallel. Parameter ns controls the maximum number of
attempts made to generate a new sample xcand ∈ Ω(T ) before
a uniform random sample is returned. In order to analyze the
effect of ns, the “fallback ratio” is defined as,

Fallback Ratio =
Number of Fallbacks to Uniform Sampling

Number of Calls to the TIE Sampler

The fallback ratio was found to be negligible for the lower
dimensional 2D system. It is relatively higher for the 6D
quadrotor simulation run in a no-obstacle environment (see
Fig. 5). This ratio can be decreased by increasing ns. How-
ever, a large value of ns corresponds to a larger amount of
computations invested in the sampling procedure, which can
adversely impact the convergence of solution cost. Note that
while the sampling algorithm may return xcand outside the TIS
if ns attempts are exhausted, the vertex inclusion procedure
ensures that a candidate vertex v is incorporated in the planner
tree only if it lies in the TIS.

VIII. CONCLUSION

In this work, we use ideas from reachability analysis to
define a “Time-Informed Set”, to focus exploration after an
initial solution is found. We prove that exploring the TIS is
a necessary condition to improve the current solution. The
proposed method can be applied to a variety of systems
for which an efficient local steering module may not be
available, but (over-)approximations of the reachable sets can
be constructed.

It should be noted that the L2-Informed set is sharp [12],
i.e., it uses a heuristic estimate which gives the exact cost-
to-come and cost-to-go for any point in the absence of
obstacles. The TIS is not so, as it is constructed using over-
approximations of the reachable sets. Hence, finding tight
approximations of the reachable sets is critical for the efficacy
of the proposed approach.

In order to apply TIE for sampling-based planning, the
reachability library needs to constructed offline. Creating,
storing and accessing this library should be computationally
efficient for higher dimensional systems to be of use in prac-
tice. The ellipsoidal reachable sets used in this work satisfy
these criteria. The HJB reachability toolboxes [15] can be
potentially used to create this library for a general non-linear
systems. These frameworks solve the value function PDE by
discretizing the state space. However, the computational cost
of these methods scale exponentially with the dimension. In
order to address this curse of dimensionality and apply TIE

for non-linear systems and general cost functions, application
of machine-learning frameworks for reachability, such as [29],
[30], can be explored. Recent works such as DeepReach [30]
avoid gridding the state space and use deep neural networks
(DNN) to learn a parameterized approximation of the value
function. These DNNs can be stored and used to classify or
generate new samples in the TIS.
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