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Abstract— Asymptotically optimal sampling-based planners
require an intelligent exploration strategy to accelerate conver-
gence. After an initial solution is found, a necessary condition
for improvement is to generate new samples in the so-called
“Informed Set”. However, Informed Sampling can be ineffective
in focusing search if the chosen heuristic fails to provide a
good estimate of the solution cost. This work proposes an
algorithm to sample the “Relevant Region” instead, which is a
subset of the Informed Set. The Relevant Region utilizes cost-
to-come information from the planner’s tree structure, reduces
dependence on the heuristic, and further focuses the search.
Benchmarking tests in uniform and general cost-space settings
demonstrate the efficacy of Relevant Region sampling.

I. INTRODUCTION

In recent years, sampling-based motion planning (SBMP)
algorithms have gained popularity due to their ability to
handle high dimensional search spaces. Deterministic search
methods such as A* do not scale well owing to the com-
putational cost associated with the a priori discretization
of the search space. Incremental SBMP algorithms such as
RRT [1], on the other hand, avoid this computational over-
head by generating random samples to build a connectivity
tree online. However, the RRT algorithm only guarantees
probabilistic completeness. Complementing the exploration
module of RRTs with an exploitation module results in
asymptotic optimality for these randomized methods i.e.,
planner converges to the optimal solution almost-surely as
the number of samples tend to infinity. While the exploration
module generates new samples and extends the connectivity
tree, the exploitation module processes this tree to improve
the current solution. The popular RRT* algorithm [2] locally
rewires the tree for exploitation, while RRT# [3] utilizes
dynamic programming to implement a “global rewiring”
procedure. RRT# ensures optimal connection for each vertex
in the current graph at the end of every iteration. Other
algorithms such BIT* [4] and FMT* [5] also utilize heuristics
and dynamic programming to conduct an efficient search and
ensure faster convergence compared to RRT*. The DRRT
algorithm [6] uses gradient descent to optimize the location
of samples in the tree structure.

Conventionally, SBMP algorithms have employed a uni-
form random exploration strategy. This results in an implicit
Voronoi bias, leading to a rapid exploration of the search
space. However, in order to achieve a more focused search,
several improvements to the uniform sampling strategy have
been suggested. These include local biasing [7], use of
a heuristic-based quality measure [8], application of an
information-theoretic framework [9], [10] and translating
ideas from A* to the continuous domain [11]. OBRRT [12]
uses obstacle information to guide the tree growth. MARRT

Fig. 1: Planning in a multiple obstacle environment with
Relevant Region sampling (top) and Informed Sampling
(bottom). Note that the Relevant Region focuses on two
pertinent homotopy classes whereas the Informed Sampling
generates uniform samples inside the ellipsoidal region.

[13] retracts samples onto the medial axis of the free space
to obtain high clearance paths.

After an initial (sub-optimal) solution is found, exploration
can be focused on a subset of the search-space that can
potentially further improve the current solution. Doing so can
lead to a dramatically faster convergence [14]. The Relevant
Region, introduced in [15], leverages the current solution cost
and the planner’s tree structure information to focus search.
A selective vertex inclusion procedure [15] and a machine
learning approach [16] has been proposed to generate new
samples in the Relevant Region. However, these approaches
fall into the category of rejection sampling methods, which
do not scale well for high dimensional problems. The current
work rigorously defines the Relevant Region set, analyzes
its theoretical properties and presents a generative method
to sample it. This work also extends the Relevant Region
framework for planning on general cost-maps.

Gammell et al. [14] use an admissible heuristic and the
current solution cost to define the Informed Set. This set
includes all points that can potentially improve the current
solution. Exploration outside the Informed Set is thus redun-
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dant. For minimum-length planning problems in Euclidean
spaces, the authors of [14] proposed an efficient method
to generate samples in the L2-Informed Set. The Lebesgue
measure of the L2-Informed set decreases as the solution
improves, leading to a focused search. However, Informed
Sampling effectively resorts to uniform random sampling if
the Lebesgue measure of the Informed Set is comparable
to that of the entire search space. This can happen if the
heuristic estimate of the solution cost fails to provide a good
enough approximation of the true solution cost. The proposed
approach addresses these issues by utilizing cost-to-come
information from the planner’s tree structure and reducing
dependence on heuristics.

The Expansive space trees (EST) algorithm [17] proceeds
by selecting a vertex (with probability inversely proportional
to number of vertices in its neighborhood) and generates
a new sample in its vicinity. Guided ESTs [18] add the
A* cost and an exploration term to the vertex weights.
The SBA* algorithm [19] incorporates a graph density and
a constriction measure into the vertex weight. While the
algorithm proposed in this work falls into the category of
EST-like methods, a crucial difference is that it only expands
vertices and generates new samples in the Relevant Region.
Thus, in contrast to EST and its variants, the proposed
algorithm avoids needless exploration.

The SBMP algorithms and the exploration strategies men-
tioned above are traditionally geared towards finding the
(length) optimal path in uniform cost spaces. However,
many applications require planning algorithms to find the
optimal path with respect to a provided cost function. These
include the problem of navigation on a rough terrain for
a mobile robot (see Fig.2), safety critical path planning
with clearance cost-map (example in Fig.3), human aware
motion planning [20], and planning on energy landscapes
[21]. The Transition-based RRT (T-RRT) algorithm [22]
takes a user-defined cost function as an additional input
and adds a transition test based on the Metropolis criterion
to accept or reject potential new states. The transition test
favors exploration of low-cost regions of space and leads
to better quality paths. An enhanced, bi-directional version
of T-RRT is presented in [23]. Berenson et al [24] combine
gradient information within the T-RRT framework to address
the issue of navigating cost-space chasms. Finally, Devaurs
et al [25] combine the filtering properties of the transition
test with the local rewiring procedure of RRT* to obtain
the asymptotically optimal T-RRT* algorithm. While the
transition test promotes exploration of low-cost regions,
unlike the Informed and Relevant Region sets, it does not
focus exploration on to a subset of the search-space based
on the current solution. Secondly, the probabilistic rejection
strategy of the transition test might not scale well to higher
dimensional spaces, as the probability of generating a “good”
sample that can pass the transition test may decrease rapidly.
The proposed algorithm addresses these issues by employing
a generative sampling approach. It utilizes heuristics, the
current solution cost and the cost function information to
effectively focus the search in general cost-space settings.

In the following sections, the path planning problem

Fig. 2: Planning on a terrain cost-map with the proposed
sampling strategy. Here, white regions represent rough (high
cost) areas and the blacks signify smooth sections.

on general cost-maps is formally defined, followed by a
comparison between the Informed and the Relevant Region
sets. A technique to generate samples in the Relevant Region
is then proposed, followed by benchmarking results.

II. PROBLEM DEFINITION
A. Path Planning Problem

Consider the search space X , which is assumed to be a
subset of Rd, where d is a positive integer such that d ≥ 2.
Let Xobs denote the obstacle space and Xfree = cl(X \Xobs)
denote the free space. Here, cl(A) represents closure of the
set A ⊂ Rd. Let M(A) denote the Lebesgue measure of
the set A ⊂ Rd. Let xs ∈ Xfree denote the initial state and
Xgoal ⊂ Xfree represent the goal region. Let C : X → R≥0

denote a continuous state cost function that imposes a “cost-
map” over the search space. The path-cost from x1 ∈ X
to x2 ∈ X along a path π : [0, 1] → X with π(0) = x1,
π(1) = x2 is given by

dπ(x1, x2) =

∫ 1

0

C(π(s)) ‖dπ(s)

ds
‖2 ds. (1)

Equation (1) represents the integral of cost (IC) along a
path as a measure of the path quality. Please see [22] for a
discussion on different cost criteria. If the path is a straight
line, i.e., π(s) = x1 + (x2−x1)s, s ∈ [0, 1], then the IC cost
is given by

d`(x1, x2) = ‖x2 − x1‖2
∫ 1

0

C(x1 + (x2 − x1)s) ds. (2)

Note that if C(x) = 1 for all x ∈ X , then the IC cost in
(2) reduces to the familiar Euclidean distance ‖x2 − x1‖2.
Let Π denote the set of paths from xs to Xgoal. Thus, given
(X ,Xobs, xs,Xgoal, C), the optimal path planning problem is
one of finding the minimum-cost, feasible path π∗ ∈ Π.

arg min
π∈Π

dπ(xs, xg)

subject to: π(0) = xs, π(1) = xg ∈ Xgoal,

π(s) ∈ Xfree, s ∈ [0, 1].

(3)

Consider the graph G = (V,E) with a finite set of vertices
V ⊂ Xfree and edges E ⊆ V × V . A spanning tree
T = (Vs, Es) is embedded in G such that Vs = V and
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Es = {(u, v) ∈ E | v = parent(u)}. Here the function
parent : V → V represents the mapping from a vertex to its
unique parent vertex. By definition, parent(xs) = xs. SBMP
algorithms numerically integrate (2) to calculate the edge-
cost d`(v, u) for any edge (u, v) ∈ E. This work considers
cost functions with C(x) ≥ 1 for all x ∈ X , so that the
edge-cost between any two vertices is at least the Euclidean
distance between these two points. Given the spanning tree T
in G, the function gT : V → R≥0 provides the cost-to-come
value for any v ∈ V , i.e., it is the sum of the edge-costs
along the path from v to xs in T . A consistent heuristic
function on X (such as the Euclidean distance or L2-norm)
is defined as: h : X × X → R≥0. The function h always
gives an under-estimate of the path-cost between any two
points in the search space, and obeys the triangle inequality.
The SBMP algorithms solve the planning problem (3) by
drawing random samples from X and by incorporating the
collision-free ones in G. An efficient sampling strategy must
generate samples so as to find an initial solution or improve
the current one. The exploration problem in SBMP is one of
finding such a sampling strategy to yield faster convergence.

B. The Informed Set

Let ci be the cost of the best solution found by the
planning algorithm after i iterations. The Informed Set [14]
is defined as

Xinf = {x ∈ X | h(xs, x) + h(x, xg) < ci}. (4)

Note that Xinf uses a heuristic approximation of both the
cost-to-come h(xs, x) and the cost-to-go h(x, xg) to get
an (under)estimate of the solution cost constrained to pass
through any x ∈ X . Generating new samples in Xinf is thus
a necessary condition for improving the current solution. An
algorithm for direct sampling of the L2-Informed Set is given
in [14].

C. Relevant Region

Consider the set of relevant vertices defined as

Vrel = {v ∈ V | gT (v) + h(v, xg) < ci}. (5)

Let ε > 0 ball around a relevant vertex v ∈ Vrel be defined
as

Bε(v) = {x ∈ X | ‖x− v‖2 < ε, v ∈ Vrel}. (6)

Consider the estimate of the solution cost constrained to pass
through x ∈ Bε(v)

f̂v(x) = d`(v,x) + gT (v) + h(x, xg). (7)

The Relevant Set around v ∈ Vrel is defined as

Bεrel(v) = {x ∈ Bε(v) | f̂v(x) < ci}. (8)

Using (5), (8), the Relevant Region is defined as the union
of the relevant sets around all relevant vertices

X εrel =
⋃

v∈Vrel

Bεrel(v). (9)

Note that, in contrast to Xinf which uses the heuristic esti-
mate h(xs, x) of the cost-to-come, X εrel uses d`(v,x) + gT (v)

Fig. 3: Planning on a “potential-field” like cost-map. The
objective is to reach the goal state while avoiding the two
danger (white) regions.

from (7). This approximation considers the cost-function
information (see (2)), the structure of T , and hence the
topology of Xfree. While the L2-norm is still a consistent
heuristic for cost-maps with C(x) ≥ 1 for all x ∈ X , it
does not take into account C or Xobs. It may provide a poor
estimate of the solution cost, leading to M(Xinf) ≈M(X ).
Informed Sampling effectively resorts to uniform random
sampling in this case. The set X εrel alleviates this dependence
on a heuristic. The value of ε, which controls the size of the
Relevant Set, is taken to be slightly greater than the step-
size parameter η (in our benchmarking simulations, we used
ε = 1.5η). The step-size parameter η in SBMP controls the
maximum edge length in G [14]. Note that a very small
value of ε would hinder exploration, while a large value of
ε may provide a poor estimate of the cost-to-come in (7), as
the edge (x, v) may not be feasible. The following theorem
proves that for any ε > 0, Bεrel(v) is not a singleton.

Theorem 1. For every v ∈ Vrel, there exists δ > 0, such
that, for all x ∈ Bδ(v), it follows that f̂v(x) < ci.

Proof. Note from (7) that for each given v ∈ Vrel the
function f̂v is continuous in x since both d`(·, v), h(·, xg)
are continuous. Also, f̂v(v) = gT (v) + h(v, xg) < ci since
v ∈ Vrel. Since f̂v is continuous at v, it follows that for
any ζ > 0 there exists δ > 0 such that x ∈ Bδ(v) implies
that |f̂v(x) − f̂v(v)| < ζ. Choosing ζ = ci − f̂v(v) > 0
one then obtains that for all x ∈ Bδ(v) we have that
|f̂v(x)− f̂v(v)| < ci − f̂v(v) and hence f̂v(x) < ci.

Corollary 2. Let v ∈ Vrel. For every ε > 0 there exists δ > 0
such Bδ(v) ⊂ Bεrel(v) .

Theorem 3. For any ε > 0, the Relevant Region X εrel is a
subset of the Informed Set Xinf .

Proof. Let x ∈ X εrel. Then there exists v ∈ Vrel, so that
x ∈ Bεrel(v), and hence d`(x,v) + gT (v) + h(x, xg) < ci.
Since the heuristic function is consistent, h(x,v) < d`(x,v)
and h(v, xs) < gT (v). Using the triangle inequality, it
follows that, h(xs, x) < h(x,v) + h(v, xs). Combining the
above inequalities yields h(xs, x) + h(x, xg) < d`(x,v) +
gT (v) + h(x, xg) < ci. Hence, x ∈ Xinf . It follows that
X εrel ⊂ Xinf .

Theorem 3 implies that generating samples in X εrel does
not lead to redundant exploration outside Xinf . However,
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note that sampling in X εrel is not a necessary condition for
improving the current solution, i.e., there may be points
x ∈ Xinf such that x /∈ X εrel which may improve the
current solution. Relevant Region sampling is thus utilized in
conjunction with Informed/Uniform Sampling. As shown in
the numerical examples later on, this interplay of exploration
by Informed Sampling, combined with focusing properties of
Relvant Region, leads to accelerated convergence.

III. SAMPLING IN THE RELEVANT REGION

Since X εrel depends on T , a direct sampling strategy is not
possible. Hence, the proposed sampling strategy proceeds by
first selecting a relevant vertex vp ∈ Vrel, sampling a random
direction ê, ‖ê‖2 = 1 and finding the maximum magnitude
of travel γrel > 0 along ê, so that for all γ ∈ (0, γrel) the
new sample x = vp + γê ∈ Bεrel(vp). Please see Fig. 4. Note
that Theorem 1 guarantees the existence of γrel. Concretely,
the following optimization problem needs to be solved:

sup
γ∈(0,ε)

γ,

subject to: f̂vp(vp + γê) < ci.
(10)

A. Case 1: Uniform Cost-Map

Consider the problem (10) with C(x) = 1 for all x ∈ X .
Using the L2-norm heuristic in (7), the inequality in (10)
yields,

f̂vp(vp + γê) = γ + gT (vp) + ‖vp + γê− xg‖2 < ci. (11)

Rearrange the terms in (11) to obtain

‖vp + γê− xg‖2 < ci − gT (vp)− γ. (12)

To ensure that the RHS in (12) is positive, choose

γ < ci − gT (vp). (13)

Let xpg = vp − xg and ggp = ci − gT (vp). Also note that
xTpgxpg = h2(vp, xg) and xT

pgê = h(vp, xg) cos θ, where θ is
the angle between the vectors xpg and ê. Squaring both sides
in (12) yields,

h2(vp, xg) + 2γxTpgê + γ2 < g2
gp − 2γggp + γ2

and hence γ <
g2

gp − h2(vp, xg)

2(xT
pgê + ggp)

.

Define the RHS in the above inequality as

γuni =
(ci − gT (vp))2 − h2(vp, xg)

2
[
h(vp, xg) cos θ + (ci − gT (vp))

] . (14)

Note that γuni > 0 for vp ∈ Vrel, and attains its maximum
value γuni at θ = π, in which case,

γuni =
(
ci − gT (vp) + h(vp, xg)

)
/2,

and also, γuni < ci − gT (vp) for vp ∈ Vrel, satisfying (13).
Thus, the solution to problem (10) for uniform cost-map is

γrel = min(γuni, ε). (15)

Fig. 4: A schematic for Relevant Region sampling.

B. Case 2: General Cost-Maps
Now consider the problem (10) with C(x) > 1 for all x ∈ X .
The following inequality needs to be solved for γ,

γ

∫ 1

0

C(vp + γês)ds + gT (vp) + h(vp + γê, xg) < ci. (16)

Often, C may not have a tractable closed-form expression
and hence the planner has access only to the value of C at any
point in the search space. In order to avoid a computationally
expensive procedure to solve (16), we let

d`(vp, vp + γê) = γ

∫ 1

0

C(vp + γês)ds ≈ γC(vp) (17)

Note that (17) uses a zeroth-order approximation of the inte-
grand to estimate the integral. Higher order approximations
are possible, but these will result in a computationally more
involved process to find γ (see below). It follows from (17)
that

γC(vp) + gT (vp) + ‖vp + γê− xg‖2 < ci, (18)

or, ‖vp + γê− xg‖2 < ci − gT (vp)− γC(vp). (19)

To ensure that the RHS of (19) is positive, choose

γ <
(
ci − gT (vp)

)
/C(vp). (20)

Let again xpg = vp − xg, ggp = ci − gT (vp), xT
pgxpg =

h2(vp, xg) and xTpgê = h(vp, xg) cos θ, where θ is the angle
between the vectors xpg and ê. Squaring both sides in (19)
and simplifying yields,

γ2(C2(vp)−1)−2γ(ggpC(vp)+xT
pgê)+g2

gp−h2(vp, xg) > 0.
(21)

Let γ1, γ2 be the roots of the quadratic equation correspond-
ing to inequality (21), and assume γ2 > γ1.

γ2 =
ggpC(vp) + h(vp, xg) cos θ +

√
∆

(C2(vp)− 1)

γ1 =
ggpC(vp) + h(vp, xg) cos θ −

√
∆

(C2(vp)− 1)

∆ = (ggpC(vp) + h(vp, xg) cos θ)2

− (C2(vp)− 1)(g2
gp − h2(vp, xg)).

(22)

The maximum and minimum values of the radicand ∆ are
obtained at θ = 0 and θ = π, respectively, where

(ggp − h(vp, xg)C(vp))2 ≤ ∆ ≤ (ggp + h(vp, xg)C(vp))2.
(23)

Hence, γ1, γ2 ∈ R≥0 for vp ∈ Vrel. Then (21) yields,

(γ − γ1)(γ − γ2) > 0. equivalently, γ > γ2 or γ < γ1.
(24)
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Algorithm 1: Sampling Algorithm
1 V ← {xs}; E ← φ; G ← (V,E);
2 for i = 1 : N do
3 ci ← minv∈Vgoal

gT (v);
4 urand ∼ U(0, 1);
5 if urand < prel and ci <∞ then
6 vp ← chooseVertex(Vrel);
7 ê← generateDirection();
8 γrel ← RelevantStepLimit(vp, ê);
9 urand ∼ U(0, 1);

10 xrand ← vp + (urand)
1
d γrelê;

11 else
12 xrand ← InformedSampling()

13 xnew ← Extend(xrand);
14 Exploitation(G);

15 return G

Consider the larger root γ2 from (22). The minimum value
of γ2 is attained when θ = π, so that

γ2 ≥
ggpC(vp)− h(vp, xg) + |ggp − h(vp, xg)C(vp)|

(C2(vp)− 1)
.

(25)
Define the RHS in (25) as γ2. Simplifying yields,

γ2 =

{
ggp+h(vp,xg)
C(vp)+1 , ggp < h(vp, xg)C(vp),

ggp−h(vp,xg)
C(vp)−1 , ggp > h(vp, xg)C(vp).

(26)

Note that γ2 > ggp/C(vp). This implies γ2 > ggp/C(vp),
violating (20). Thus, γ > γ2 is an infeasible solution of
(18). Next, consider γ1. Differentiating with respect to θ,
the extrema are obtained at θ = 0, π. Calculating the second
derivative yields, γ′′1 (θ = 0) > 0 and γ′′1 (θ = π) < 0. The
maximum value of γ1 obtained at θ = π is given by

γ1 =

{
ggp+h(vp,xg)
C(vp)+1 , ggp > h(vp, xg)C(vp),

ggp−h(vp,xg)
C(vp)−1 , ggp < h(vp, xg)C(vp).

(27)

Now, γ1 < ggp/C(vp). This implies γ1 < ggp/C(vp). It
follows that γ < γ1 satisfies (20). Thus, the solution to
problem (10) with the approximation in (18) is

γrel = min(γ1, ε). (28)

For the special case when ∆ = 0 and γ1 = γ2 = γc,
inequality (21) simplifies to (γ−γc)2 > 0. Considering (20)
yields γrel = min(ggp/C(vp), ε). Note that if C(vp) = 1,
then inequality (16) reduces to (11) and the analysis for
uniform cost-maps is applicable.

IV. PROPOSED ALGORITHM
The outline of the proposed algorithm in given in Algo-

rithm 1. The procedure initializes a vertex at the start state xs.
At every iteration, the current best solution cost ci is updated
(line 3). If a sub-optimal solution exists (ci is finite), with
probability prel (line 5), Relevant Region sampling is em-
ployed to generate a new random sample xrand. Otherwise,
conventional Informed Sampling is used. Relevant Region
sampling consists of first choosing a relevant vertex vp, gen-
erating a random direction ê and calculating the maximum

Fig. 5: Planning for 7 DOF Panda Arm in the joint space
from the start state (left) to a given joint goal state (right).

Fig. 6: Percentage of successful trials (where planner found
a feasible solution) with different sampling strategies.

magnitude of travel along ê (line 6-8). If C(vp) = 1, then
(15) is used for obtaining γrel along ê, else (28) is used. The
exponent 1/d (line 10) biases the travel magnitude towards
γrel and promotes exploration. After xrand is generated,
conventional SBMP modules incorporate a new vertex xnew

in G (line 13). These include: a) finding the nearest neighbor
xnearest to xrand in G; b) local steering from xnearest in
the direction of xrand to obtain xnew; c) ensuring feasibility
of edge-connections in the neighborhood of xnew. This is
followed by the exploitation module (local/global rewiring,
etc). The chooseVertex module selects a relevant vertex to
be expanded from the set Vrel. Similar to the procedure in
Guided-ESTs [18] a weight qv is allocated for each v ∈ Vrel.

qv = λ1pv + λ2dv + λ3

(
gT (v) + h(v, xg)

)
/ci. (29)

Here, pv represents the number of times v has been se-
lected in the past. This penalizes multiple selections and
the exploration of the region around a particular vertex. The
second term, dv is the number of edges connected to v. It
promotes sampling in relatively unexplored regions. The last
term 0 <

(
gT (v) + h(v, xg)

)
/ci < 1 is the estimate of the

solution cost through v, normalized by the current best cost.
This prioritizes exploration of regions with low solution cost
estimates. The parameters (λ1, λ2, λ3) > 0 modulate the
behavior of the selection algorithm. A large value of λ3

leads to a greedy focus on low solution cost areas, whereas
increasing λ1, λ2 promotes exploration. A binary heap is
used to update and sort Vrel according to the weight in (29).
A relevant vertex vp is selected by choosing randomly from
the top nq elements in the sorted list. This injects randomness
in the selection process and promotes desirable exploration.
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Fig. 7: Convergence plots for different sampling methods in various test environments. Solid lines indicate the average value
and the standard deviation is shaded. Error bar indicate the upper and lower quartiles.

V. NUMERICAL EXPERIMENTS

The performance of the proposed sampling method was
benchmarked against direct Informed Sampling [14] and
the third variant of adaptive rejection sampling (described
in [15]) in uniform cost-space environments (length-optimal
planning). For all experiments, the exploration strategies
were paired with RRT#’s dynamic programming based
global rewiring for exploitation. In general cost-map envi-
ronments, benchmarking was done against Informed Sam-
pling and T-RRT# (combining conventional RRT# with the
transition-test described in [22]) with different initial tem-
peratures Tinit. All the algorithms were implemented in C++
using the popular OMPL framework [26], and the tests were
run using OMPL’s standardized benchmarking tools [27].
Please see, https://github.gatech.edu/DCSL/relevant region.
A 64-bit desktop PC with 64 GB RAM and an Intel Xeon(R)
Processor running Ubuntu 16.04 OS was used. The data was
recorded over 100 trials for all the cases. The proposed
algorithm used the following parameter values:ε = 1.5η,
(λ1, λ2, λ3) = (10, 5, 100), nq = 10. A goal bias of 5% was
used in all sampling methods. A description of the different
environments is provided below.

A. Uniform Cost-Map Cases

Multiple Obstacle World: This environment is illustrated
in Fig. 1. The 2D environment was extended to R4 and R6

by imparting a length of 2 units symmetrically to all of the
obstacles. A step-size of η = 0.6 and η = 1.2 was used in
R4 and R6 respectively.

Panda Arm: A planning problem for Panda Arm (by
Franka Enmika) is illustrated in Fig. 5. The objective was to
find a minimum length path in a 7-dimensional configuration
(joint) space with joint limits (R7). These limits and collision
checking module were implemented using MoveIt! [28]. The
step-size was set to η = 0.7 for this example.

B. General Cost-Map Cases

Terrain Map: A 2D terrain map shown in Fig. 2 consists of
rough, high-cost white areas and the easily navigable black
regions. The step-size was set to η = 0.3 for this example.

Potential Cost-Map: The environment in Fig. 3 emulates
the problem of finding the shortest path while staying away
from danger areas (white regions). The cost function is
defined as

C(x) = 1 + 9
(
e−
‖xd1−x‖22

5 + e−
‖xd2−x‖22

5

)
. (30)

Here, xd1, xd2 are the center points of the danger regions. A
step-size of η = 0.6 and η = 1.5 was used in R4 and R6

version of the environment respectively.
VI. CONCLUSION

This work proposes a novel algorithm to sample the
Relevant Region set, a subset of the Informed Set, for SBMP.
The Relevant Region set considers the topology of Xfree,
reduces the dependence on heuristics, and effectively focuses
the search to accelerate convergence. Numerical experiments
validate the utility of Relevant Region sampling in con-
junction with Informed/Uniform Sampling. The proposed
method leads to faster convergence in all cases (see Fig. 7).
This is observed especially in higher dimensional problem
instances. Transition-test based exploration is more effective
than purely Uniform/Informed Sampling for planning on
general cost-maps. However, the tendency to (probabilisti-
cally) reject samples may hinder exploration in some cases.
This can be seen in the terrain cost-map (Fig. 2) which is
similar to the cost-space chasms scenario described in [24].
As conveyed in Fig. 6, the transition-test based exploration
fails to find a feasible solution in roughly 40% of total trials,
whereas the proposed method finds a solution in all trials and
also accelerates the convergence.

This work presents many avenues for future research.
The proposed method inherits an additional computational
overhead to maintain Vrel. However, this can be alleviated
by leveraging ideas from sparse tree planners [29], [30] to
maintain a sparse set of vertices in Vrel. The cost function’s
gradient information (if available) can be used to bias the
search. Data from past iterations can also be used to infer
the nature of cost-map for intelligent exploration.
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6–10 2013, pp. 4120–4125.

[24] D. Berenson, T. Siméon, and S. S. Srinivasa, “Addressing cost-space
chasms in manipulation planning,” in IEEE International Conference
on Robotics and Automation, Shanghai, China, May 9–13 2011, pp.
4561–4568.
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