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Abstract— Asymptotically optimal sampling-based planners
require an intelligent exploration strategy to accelerate conver-
gence. After an initial solution is found, a necessary condition
for improvement is to generate new samples in the so-called
“Informed Set”. However, Informed Sampling can be ineffective
in focusing search if the chosen heuristic fails to provide a
good estimate of the solution cost. This work proposes an
algorithm to sample the ‘“Relevant Region” instead, which is a
subset of the Informed Set. The Relevant Region utilizes cost-
to-come information from the planner’s tree structure, reduces
dependence on the heuristic, and further focuses the search.
Benchmarking tests in uniform and general cost-space settings
demonstrate the efficacy of Relevant Region sampling.

I. INTRODUCTION

In recent years, sampling-based motion planning (SBMP)
algorithms have gained popularity due to their ability to
handle high dimensional search spaces. Deterministic search
methods such as A* do not scale well owing to the com-
putational cost associated with the a priori discretization
of the search space. Incremental SBMP algorithms such as
RRT [1], on the other hand, avoid this computational over-
head by generating random samples to build a connectivity
tree online. However, the RRT algorithm only guarantees
probabilistic completeness. Complementing the exploration
module of RRTs with an exploitation module results in
asymptotic optimality for these randomized methods i.e.,
planner converges to the optimal solution almost-surely as
the number of samples tend to infinity. While the exploration
module generates new samples and extends the connectivity
tree, the exploitation module processes this tree to improve
the current solution. The popular RRT* algorithm [2] locally
rewires the tree for exploitation, while RRT# [3] utilizes
dynamic programming to implement a “global rewiring”
procedure. RRT# ensures optimal connection for each vertex
in the current graph at the end of every iteration. Other
algorithms such BIT* [4] and FMT* [5] also utilize heuristics
and dynamic programming to conduct an efficient search and
ensure faster convergence compared to RRT*. The DRRT
algorithm [6] uses gradient descent to optimize the location
of samples in the tree structure.

Conventionally, SBMP algorithms have employed a uni-
form random exploration strategy. This results in an implicit
Voronoi bias, leading to a rapid exploration of the search
space. However, in order to achieve a more focused search,
several improvements to the uniform sampling strategy have
been suggested. These include local biasing [7], use of
a heuristic-based quality measure [8], application of an
information-theoretic framework [9], [10] and translating
ideas from A* to the continuous domain [11]. OBRRT [12]
uses obstacle information to guide the tree growth. MARRT
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Fig. 1: Planning in a multiple obstacle environment with
Relevant Region sampling (top) and Informed Sampling
(bottom). Note that the Relevant Region focuses on two
pertinent homotopy classes whereas the Informed Sampling
generates uniform samples inside the ellipsoidal region.

[13] retracts samples onto the medial axis of the free space
to obtain high clearance paths.

After an initial (sub-optimal) solution is found, exploration
can be focused on a subset of the search-space that can
potentially further improve the current solution. Doing so can
lead to a dramatically faster convergence [14]. The Relevant
Region, introduced in [15], leverages the current solution cost
and the planner’s tree structure information to focus search.
A selective vertex inclusion procedure [15] and a machine
learning approach [16] has been proposed to generate new
samples in the Relevant Region. However, these approaches
fall into the category of rejection sampling methods, which
do not scale well for high dimensional problems. The current
work rigorously defines the Relevant Region set, analyzes
its theoretical properties and presents a generative method
to sample it. This work also extends the Relevant Region
framework for planning on general cost-maps.

Gammell et al. [14] use an admissible heuristic and the
current solution cost to define the Informed Set. This set
includes all points that can potentially improve the current
solution. Exploration outside the Informed Set is thus redun-
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dant. For minimum-Ilength planning problems in Euclidean
spaces, the authors of [14] proposed an efficient method
to generate samples in the Lo-Informed Set. The Lebesgue
measure of the Lo-Informed set decreases as the solution
improves, leading to a focused search. However, Informed
Sampling effectively resorts to uniform random sampling if
the Lebesgue measure of the Informed Set is comparable
to that of the entire search space. This can happen if the
heuristic estimate of the solution cost fails to provide a good
enough approximation of the true solution cost. The proposed
approach addresses these issues by utilizing cost-to-come
information from the planner’s tree structure and reducing
dependence on heuristics.

The Expansive space trees (EST) algorithm [17] proceeds
by selecting a vertex (with probability inversely proportional
to number of vertices in its neighborhood) and generates
a new sample in its vicinity. Guided ESTs [18] add the
A* cost and an exploration term to the vertex weights.
The SBA* algorithm [19] incorporates a graph density and
a constriction measure into the vertex weight. While the
algorithm proposed in this work falls into the category of
EST-like methods, a crucial difference is that it only expands
vertices and generates new samples in the Relevant Region.
Thus, in contrast to EST and its variants, the proposed
algorithm avoids needless exploration.

The SBMP algorithms and the exploration strategies men-
tioned above are traditionally geared towards finding the
(Iength) optimal path in uniform cost spaces. However,
many applications require planning algorithms to find the
optimal path with respect to a provided cost function. These
include the problem of navigation on a rough terrain for
a mobile robot (see Fig.2), safety critical path planning
with clearance cost-map (example in Fig.3), human aware
motion planning [20], and planning on energy landscapes
[21]. The Transition-based RRT (T-RRT) algorithm [22]
takes a user-defined cost function as an additional input
and adds a transition test based on the Metropolis criterion
to accept or reject potential new states. The transition test
favors exploration of low-cost regions of space and leads
to better quality paths. An enhanced, bi-directional version
of T-RRT is presented in [23]. Berenson et al [24] combine
gradient information within the T-RRT framework to address
the issue of navigating cost-space chasms. Finally, Devaurs
et al [25] combine the filtering properties of the transition
test with the local rewiring procedure of RRT* to obtain
the asymptotically optimal T-RRT* algorithm. While the
transition test promotes exploration of low-cost regions,
unlike the Informed and Relevant Region sets, it does not
focus exploration on to a subset of the search-space based
on the current solution. Secondly, the probabilistic rejection
strategy of the transition test might not scale well to higher
dimensional spaces, as the probability of generating a “good”
sample that can pass the transition test may decrease rapidly.
The proposed algorithm addresses these issues by employing
a generative sampling approach. It utilizes heuristics, the
current solution cost and the cost function information to
effectively focus the search in general cost-space settings.

In the following sections, the path planning problem
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Fig. 2: Planning on a terrain cost-map with the proposed
sampling strategy. Here, white regions represent rough (high
cost) areas and the blacks signify smooth sections.

on general cost-maps is formally defined, followed by a
comparison between the Informed and the Relevant Region
sets. A technique to generate samples in the Relevant Region
is then proposed, followed by benchmarking results.

II. PROBLEM DEFINITION
A. Path Planning Problem

Consider the search space X, which is assumed to be a
subset of R%, where d is a positive integer such that d > 2.
Let X,ps denote the obstacle space and Xee = cl(X\ Xops)
denote the free space. Here, cl(A) represents closure of the
set A C RZ Let M(A) denote the Lebesgue measure of
the set A C RY. Let X, € Xpree denote the initial state and
Xgoal C Xree represent the goal region. Let C': X — Rxg
denote a continuous state cost function that imposes a “cost-
map” over the search space. The path-cost from x; € X
to X € X along a path 7 : [0,1] — & with 7(0) = X3,
m(1) = x4 is given by

drtxe) = [ Clte)) |19

Equation (1) represents the integral of cost (IC) along a
path as a measure of the path quality. Please see [22] for a
discussion on different cost criteria. If the path is a straight
line, i.e., m(s) = X1 + (X2 —X1)s, s € [0, 1], then the IC cost
is given by

1
d((Xl,Xg) = ||X2 — X1||2/ C(Xl —|— (XQ — Xl)S) dS (2)
0

Note that if C(x) = 1 for all x € X, then the IC cost in
(2) reduces to the familiar Euclidean distance ||x2 — X1 2.
Let II denote the set of paths from x4 to Xya1. Thus, given
(X, Xobs, Xs, Xgoal, C), the optimal path planning problem is
one of finding the minimum-cost, feasible path 7* € II.

arg min dr (X, Xg)
subject to: 7(0) = xs, 7(1) = Xz € Xyoal, 3)
77'(5) S Xfreea s € [07 1]

Consider the graph G = (V, E) with a finite set of vertices
V C Xhee and edges ¥ C V x V. A spanning tree
T = (Vi, E,) is embedded in G such that V; = V and
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E; = {(u,v) € E | v = parent(u)}. Here the function
parent : V' — V represents the mapping from a vertex to its
unique parent vertex. By definition, parent(x;s) = x5. SBMP
algorithms numerically integrate (2) to calculate the edge-
cost d¢(v,u) for any edge (u,v) € E. This work considers
cost functions with C(x) > 1 for all x € X, so that the
edge-cost between any two vertices is at least the Euclidean
distance between these two points. Given the spanning tree 7
in G, the function g7 : V' — R>( provides the cost-to-come
value for any v € V, ie., it is the sum of the edge-costs
along the path from v to Xs in 7. A consistent heuristic
function on X (such as the Euclidean distance or Ls-norm)
is defined as: h : X x & — R>¢. The function h always
gives an under-estimate of the path-cost between any two
points in the search space, and obeys the triangle inequality.
The SBMP algorithms solve the planning problem (3) by
drawing random samples from X and by incorporating the
collision-free ones in G. An efficient sampling strategy must
generate samples so as to find an initial solution or improve
the current one. The exploration problem in SBMP is one of
finding such a sampling strategy to yield faster convergence.

B. The Informed Set

Let c¢; be the cost of the best solution found by the
planning algorithm after ¢ iterations. The Informed Set [14]
is defined as

Xint = {Xx € X | h(xs,X) + h(x,Xg) < ¢} 4

Note that Xj,¢ uses a heuristic approximation of both the
cost-to-come h(xg,x) and the cost-to-go h(x,x,) to get
an (under)estimate of the solution cost constrained to pass
through any x € X'. Generating new samples in Xj,¢ is thus
a necessary condition for improving the current solution. An
algorithm for direct sampling of the Ly-Informed Set is given
in [14].

C. Relevant Region
Consider the set of relevant vertices defined as
Viee ={veV |gr(v)+h(v,xg) < ¢} (5)

Let € > 0 ball around a relevant vertex v € V.. be defined
as
B(v)={xe X | ||x—V|2<¢ VEVa} (6)

Consider the estimate of the solution cost constrained to pass
through x € B¢(v)

Fo(x) = de(vx) + g7(v) + h(x, Xg). (7)
The Relevant Set around v € Vi is defined as
Brel( ) - {X € Be( ) I fV(X) < ci}' (8)

Using (5), (8), the Relevant Region is defined as the union
of the relevant sets around all relevant vertices

rcl - U Brcl (9)
vEViel

Note that, in contrast to X, which uses the heuristic esti-
mate h(xg,x) of the cost-to-come, X<, uses do(V,x) + g7 (V)

O B N W A U O N @ ©
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Fig. 3: Planning on a “potential-field” like cost-map. The
objective is to reach the goal state while avoiding the two
danger (white) regions.

from (7). This approximation considers the cost-function
information (see (2)), the structure of 7, and hence the
topology of Afpee. While the Ly-norm is still a consistent
heuristic for cost-maps with C(x) > 1 for all x € X, it
does not take into account C' or X,ps. It may provide a poor
estimate of the solution cost, leading to M (Xint) = M(X).
Informed Sampling effectively resorts to uniform random
sampling in this case. The set X%, alleviates this dependence
on a heuristic. The value of €, which controls the size of the
Relevant Set, is taken to be slightly greater than the step-
size parameter 7 (in our benchmarking simulations, we used
€ = 1.5m). The step-size parameter i in SBMP controls the
maximum edge length in G [14]. Note that a very small
value of ¢ would hinder exploration, while a large value of
€ may provide a poor estimate of the cost-to-come in (7), as
the edge (x,v) may not be feasible. The following theorem
proves that for any € > 0, B¢, (v) is not a singleton.

Theorem 1. For every v € Vi, there exists 6 > 0, such
that, for all x € B°(v), it follows that fy(x) < c;.

Proof. Note from (7) that for each given v € V¢ the
function fy is continuous in x since both d(-,v), h(-,x,)
are continuous. Also, f,(v) = g7(v) + h(v,xz) < ¢; since
v € Viel. Since fv is continuous at v, it follows that for
any ¢ > 0 there exists § > 0 such that x € B° (v) implies
that |f,(x) — f,(v)| < C. Choosing ¢ = ¢; — fy(v) > 0
one then obtains that for all x € B‘i( v) we have that
|fv(x) = fv(v)] < ci — fy(v) and hence fy(x) < c;. O

Corollary 2. Let v € V1. For every € > 0 there exists § > 0
such BY(v) C Biy(v) .

Theorem 3. For any € > 0, the Relevant Region X, is a
subset of the Informed Set Xyg.

Proof. Let x € X,. Then there exists v € Vi, so that
x € B¢, (v), and hence d¢(x,v) + g7(v) + h(x,x;) < ¢;.
Since the heuristic function is consistent, h(x,v) < dg(x,v)
and h(v,x;) < g7(v). Using the triangle inequality, it
follows that, h(xs,x) < h(x,v) + h(v,xs). Combining the
above inequalities yields h(xg,x) + h(x,X;) < de(x,v) +

gr(v) + h(x,xg) < ¢;. Hence, x € Xjys. It follows that

X C Xins. O

rel

Theorem 3 implies that generating samples in X5, does
not lead to redundant exploration outside Xj,s. However,
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note that sampling in XS, is not a necessary condition for
improving the current solutlon i.e., there may be points
X € X such that x ¢ XS, which may improve the
current solution. Relevant Reglon sampling is thus utilized in
conjunction with Informed/Uniform Sampling. As shown in
the numerical examples later on, this interplay of exploration
by Informed Sampling, combined with focusing properties of
Relvant Region, leads to accelerated convergence.

ITII. SAMPLING IN THE RELEVANT REGION

Since X, depends on 7T, a direct sampling strategy is not
possible. Hence, the proposed sampling strategy proceeds by
first selecting a relevant vertex v, € Vi1, sampling a random
direction €, ||é|]]2 = 1 and finding the maximum magnitude
of travel 4,1 > 0 along &, so that for all v € (0, ;1) the
new sample x = v, + e € B, (vp). Please see Fig. 4. Note
that Theorem 1 guarantees the existence of 7. Concretely,
the following optimization problem needs to be solved:

sup v,
v€(0,€)

) (10)
subject to: fy (vp + 7€) < ¢;.
A. Case 1: Uniform Cost-Map

Consider the problem (10) with C(x) = 1 for all x € X.
Using the Lo-norm heuristic in (7), the inequality in (10)
yields,

Foo (Vo +78) = v+ 27(vp) + [[Vp + 78 — Xgl2 < ¢i. (11)

Rearrange the terms in (11) to obtain

[vp + 7€ — Xgll2 < ¢; — g7 (vp) — - (12)
To ensure that the RHS in (12) is positive, choose
v < ci—gr(Vp). (13)

Let Xps = Vp — X and ggp, = ¢; — g7(vp). Also note that
X Xpg = h?(vy,,Xg) and x[ & = h(v;,,x,) cos 0, where 6 is
the angle between the vectors X, and €. Squaring both sides
in (12) yields,

h?(vp, Xg) + 29X],8 + 77 < g2, — 279gp + 77
—h?(v,,x
and hence v < ﬂ.
Z(nge + ggp)

Define the RHS in the above inequality as
(ci —g7(vp))® —h*(vp, Xg) .
Q[h(vpaxg) cos 6 + (¢; — gT(Vp))]

Note that ~yu,i > 0 for v, € Vi, and attains its maximum
value 7,,; at § = 7, in which case,

Yuni = ( 1 4)

- gT(Vp) + h(Vp, Xg))/27

and also, 7,,; < ¢; — g7 (vp) for v, € Ve, satisfying (13).
Thus, the solution to problem (10) for uniform cost-map is

Wuni = (Ci

Yrel = min(’Yunia 6)- (15)

X~ ;
{dz(&‘/‘,) e . -
v B (vl
o P @ /
Pg_. — - ®

Obstacle

Fig. 4: A schematic for Relevant Region sampling.

B. Case 2: General Cost-Maps

Now consider the problem (10) with C(x) > 1 forall x € X
The following inequality needs to be solved for 7,

1
3 [ Clvn s + g (vy) + hlvy 8, %0) < i (16)
0

Often, C' may not have a tractable closed-form expression
and hence the planner has access only to the value of C' at any
point in the search space. In order to avoid a computationally
expensive procedure to solve (16), we let

1
de(vp, vp + 7€) = ’y/ C(vp +es)ds = vC(vy) (17)
0

Note that (17) uses a zeroth-order approximation of the inte-
grand to estimate the integral. Higher order approximations
are possible, but these will result in a computationally more
involved process to find v (see below). It follows from (17)
that

YC(Vp) + g7 (Vvp) + [|[Vp + 7€ —Xgll2 < ¢, (18)
or, [[vp + 7€ — Xgl2 < ¢; — g7 (vp) —7C(vp).  (19)
To ensure that the RHS of (19) is positive, choose
v < (ei = 87(vp))/C(vp)- (20)
Let again Xpg = Vp — Xg, ggp = €i — 87(Vp), X[, Xpg =

h?(v,,X,) and ngé = h(vp,Xg) cosf, where 6 is the angle
between the vectors X, and €. Squaring both sides in (19)
and simplifying yields,

72 (C?(vp)=1)=27(ggpC (V) +X1,&) 05, —h* (Vp, Xg) > 0.

21
Let 1,2 be the roots of the quadratic equation correspond-
ing to inequality (21), and assume v > ;.

_ 9epC(Vp) + h(vp, Xg) cos b + VA

(C2(vp) = 1)
g = 9gpC (Vp) ‘(" h((‘;p ,)Xg) C)OS 60— VA )
A = (ggpC(vp) +h(vp, Xg) cos §)?

— (C*(vp) = 1)(g3, — h?(vp, Xg))-
The maximum and minimum values of the radicand A are
obtained at § = 0 and 6 = 7, respectively, where

- h(vaxg)C(Vp))2 <A < (ggp + h(vaXg)C(Vp))z-
(23)

(9ep
Hence, 71,72 € R>¢ for v, € Vie1. Then (21) yields,

(v = 71)(y = 72) > 0. equivalently,y > 2 or v < 7.
(24)
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Algorithm 1: Sampling Algorithm
1V {x}h E+ ¢, G+ (V,E);
2fori=1:N do

3 ¢; < minyev,, ., g7(V);

4 Urand ™~ Z/{(O, 1)’

5 if Urang < prel and ¢; < oo then
6 Vp < chooseVertex(Vier);

7 € < generateDirection();

8 Yrel < RelevantStepLimit(v,, €);
9 Urand ™~ Z/[(O, 1)7

1 ~

10 Xrand < Vp + (urand)E’Yrele;
1 else

12 L Xrand < InformedSampling()
13 Xnew < Extend(Xyand);

14 | Exploitation(G);
15 return §

Consider the larger root v, from (22). The minimum value
of =5 is attained when 6 = 7, so that

9epC (Vp) — h(Vp, Xg) + |gep — h(Vp, Xg)C'(vp)|

V2 = .
(C2(vp) = 1)

(25)

Define the RHS in (25) as 7,. Simplifying yields,
h(vp,

i) g < (v %) C(v),

T2 = ggp—h(vp,Xg) h C (26)
Heo=1 0+ Yep > (Vp,Xg)C(vp).

Note that 7, > gep/C(Vp). This implies v > ggp/C(Vp),
violating (20). Thus, v > 79 is an infeasible solution of
(18). Next, consider ;. Differentiating with respect to 6,
the extrema are obtained at § = 0, 7. Calculating the second
derivative yields, 77 (0 = 0) > 0 and v/ (6 = ) < 0. The
maximum value of 7; obtained at § = 7 is given by
ooyt 9sp > h(Vp,Xg)C(Vp), 27

Y1 = { w Jep < h(Vp,Xg)C(Vp)-

C(vp)—1
Now, 7; < gep/C(vp). This implies v1 < ggp/C(vp). It
follows that v < ~; satisfies (20). Thus, the solution to
problem (10) with the approximation in (18) is

ggpt+h(vp,Xg)

(28)

For the special case when A = 0 and v1 = 72 = 7.,
inequality (21) simplifies to (7 —.)? > 0. Considering (20)
yields Yyl = min(gep/C(vp), €). Note that if C(v,) = 1,
then inequality (16) reduces to (11) and the analysis for
uniform cost-maps is applicable.

IV. PROPOSED ALGORITHM

The outline of the proposed algorithm in given in Algo-
rithm 1. The procedure initializes a vertex at the start state Xg.
At every iteration, the current best solution cost ¢; is updated
(line 3). If a sub-optimal solution exists (c; is finite), with
probability p,e (line 5), Relevant Region sampling is em-
ployed to generate a new random sample X;,,q. Otherwise,
conventional Informed Sampling is used. Relevant Region
sampling consists of first choosing a relevant vertex vi,, gen-
erating a random direction € and calculating the maximum

Yrel = min(~y, €).

Fig. 5: Planning for 7 DOF Panda Arm in the joint space
from the start state (left) to a given joint goal state (right).
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Fig. 6: Percentage of successful trials (where planner found
a feasible solution) with different sampling strategies.

magnitude of travel along e (line 6-8). If C'(v,) = 1, then
(15) is used for obtaining 7, along €, else (28) is used. The
exponent 1/d (line 10) biases the travel magnitude towards
Yrel and promotes exploration. After X,.,q is generated,
conventional SBMP modules incorporate a new vertex Xpeyw
in G (line 13). These include: a) finding the nearest neighbor
Xpearest 10 Xpand 1N G; b) local steering from Xyearest iN
the direction of X;anq to obtain X,eyw; C) ensuring feasibility
of edge-connections in the neighborhood of Xye. This is
followed by the exploitation module (local/global rewiring,
etc). The chooseVertex module selects a relevant vertex to
be expanded from the set V.. Similar to the procedure in
Guided-ESTs [18] a weight ¢y is allocated for each v € V.

@y = Mpy + Aady + A3 (g7 (V) + h(v,Xg)) /ci.  (29)

Here, p, represents the number of times v has been se-
lected in the past. This penalizes multiple selections and
the exploration of the region around a particular vertex. The
second term, dy is the number of edges connected to v. It
promotes sampling in relatively unexplored regions. The last
term 0 < (g7(v) + h(v,Xg))/c; < 1 is the estimate of the
solution cost through v, normalized by the current best cost.
This prioritizes exploration of regions with low solution cost
estimates. The parameters (A1, A2, A\3) > 0 modulate the
behavior of the selection algorithm. A large value of A3
leads to a greedy focus on low solution cost areas, whereas
increasing Aj, Ao promotes exploration. A binary heap is
used to update and sort V. according to the weight in (29).
A relevant vertex vy, is selected by choosing randomly from
the top n4 elements in the sorted list. This injects randomness
in the selection process and promotes desirable exploration.
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Fig. 7: Convergence plots for different sampling methods in various test environments. Solid lines indicate the average value
and the standard deviation is shaded. Error bar indicate the upper and lower quartiles.

V. NUMERICAL EXPERIMENTS

The performance of the proposed sampling method was
benchmarked against direct Informed Sampling [14] and
the third variant of adaptive rejection sampling (described
in [15]) in uniform cost-space environments (length-optimal
planning). For all experiments, the exploration strategies
were paired with RRT#’s dynamic programming based
global rewiring for exploitation. In general cost-map envi-
ronments, benchmarking was done against Informed Sam-
pling and T-RRT# (combining conventional RRT# with the
transition-test described in [22]) with different initial tem-
peratures Tini;. All the algorithms were implemented in C++
using the popular OMPL framework [26], and the tests were
run using OMPL’s standardized benchmarking tools [27].
Please see, https://github.gatech.edu/DCSL/relevant region.
A 64-bit desktop PC with 64 GB RAM and an Intel Xeon(R)
Processor running Ubuntu 16.04 OS was used. The data was
recorded over 100 trials for all the cases. The proposed
algorithm used the following parameter values:e = 1.57),
(A1, A2, A3) = (10, 5,100), n, = 10. A goal bias of 5% was
used in all sampling methods. A description of the different
environments is provided below.

A. Uniform Cost-Map Cases

Multiple Obstacle World: This environment is illustrated
in Fig. 1. The 2D environment was extended to R* and RS
by imparting a length of 2 units symmetrically to all of the
obstacles. A step-size of n = 0.6 and n = 1.2 was used in
R* and RS respectively.

Panda Arm: A planning problem for Panda Arm (by
Franka Enmika) is illustrated in Fig. 5. The objective was to
find a minimum length path in a 7-dimensional configuration
(joint) space with joint limits (R”). These limits and collision
checking module were implemented using Movelt! [28]. The
step-size was set to n = 0.7 for this example.

B. General Cost-Map Cases

Terrain Map: A 2D terrain map shown in Fig. 2 consists of
rough, high-cost white areas and the easily navigable black
regions. The step-size was set to 7 = 0.3 for this example.

Potential Cost-Map: The environment in Fig. 3 emulates
the problem of finding the shortest path while staying away
from danger areas (white regions). The cost function is
defined as

Cx¢—x13 _Ixg—xi13

Cx)=1+9(e" 5 +e 5 ). (30)
Here, x{, x¢ are the center points of the danger regions. A
step-size of 7 = 0.6 and n = 1.5 was used in R* and R®
version of the environment respectively.

VI. CONCLUSION

This work proposes a novel algorithm to sample the
Relevant Region set, a subset of the Informed Set, for SBMP.
The Relevant Region set considers the topology of Afec,
reduces the dependence on heuristics, and effectively focuses
the search to accelerate convergence. Numerical experiments
validate the utility of Relevant Region sampling in con-
junction with Informed/Uniform Sampling. The proposed
method leads to faster convergence in all cases (see Fig. 7).
This is observed especially in higher dimensional problem
instances. Transition-test based exploration is more effective
than purely Uniform/Informed Sampling for planning on
general cost-maps. However, the tendency to (probabilisti-
cally) reject samples may hinder exploration in some cases.
This can be seen in the terrain cost-map (Fig. 2) which is
similar to the cost-space chasms scenario described in [24].
As conveyed in Fig. 6, the transition-test based exploration
fails to find a feasible solution in roughly 40% of total trials,
whereas the proposed method finds a solution in all trials and
also accelerates the convergence.

This work presents many avenues for future research.
The proposed method inherits an additional computational
overhead to maintain V.. However, this can be alleviated
by leveraging ideas from sparse tree planners [29], [30] to
maintain a sparse set of vertices in V;¢. The cost function’s
gradient information (if available) can be used to bias the
search. Data from past iterations can also be used to infer
the nature of cost-map for intelligent exploration.
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