#### Manuscript Draft

Manuscript Number: SBB16843R2

Title: Organic amendments change soil organic C structure and microbial community but not total organic matter on sub-decadal scales

Article Type: Research Paper

Keywords: Corn stover retention; Rye cover crop; FT-ICR-MS; Phospholipid

fatty acid; 16S rRNA gene; Bacterial community

Corresponding Author: Dr. James Michael Tiedje,

Corresponding Author's Institution: Michigan State University

First Author: Jiangbing Xu

Order of Authors: Jiangbing Xu; Sarah S Roley; Malak M Tfaily; Rosalie K

Chu; James Michael Tiedje

Manuscript Region of Origin: USA

## \*Highlights (for review)

# Highlights

- Soil carbon was characterized by ion cyclotron resonance mass spectrometry
- Corn stover and rye cover crop changed composition of extractable soil organic C.
- Corn stover retention enhanced lignin-like compounds
- Cover crop enriched more condensed hydrocarbons
- Soil bacterial community composition corresponded to certain SOM compositions

## Title page

# 1. Manuscript title:

Organic amendments change soil organic C structure and microbial community but not total organic matter on sub-decadal scales

#### 2. Author names and affiliations:

Jiangbing Xu<sup>a, b</sup>, Sarah S. Roley <sup>c,1</sup>, Malak M. Tfaily <sup>d,2</sup>, Rosalie K. Chu <sup>d</sup>, James M. Tiedje <sup>b</sup>

<sup>a</sup> Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China

<sup>b</sup> Center for Microbial Ecology, Michigan State University, MI 48824, United States

<sup>c</sup> Great Lakes Bioenergy Research Center and W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060, USA

<sup>d</sup> Environmental Molecular Sciences Laboratory, Earth and Biological
 Sciences Division, Pacific Northwest National Laboratory, Richland, WA
 99354, USA

# 3. Corresponding author:

Dr. James M Tiedje

E-mail: tiedjej@msu.edu

<sup>&</sup>lt;sup>1</sup> Present address: School of the Environment, Washington State University, Richland, WA 99354, USA

<sup>&</sup>lt;sup>2</sup> Present address: Department of Environmental Science, University of Arizona, Tucson, AZ 85721, USA

# **Abstract**

| 2  | Organic C has many benefits for soil, but it is depleted by tillage and crop harvest,           |
|----|-------------------------------------------------------------------------------------------------|
| 3  | and especially so for biofuel crops. Accordingly, strategies such as partially retaining        |
| 4  | stover or planting a cover crop can help ameliorate the negative effect of C removal.           |
| 5  | We used a long-term field experiment to study the impacts of stover retention and               |
| 6  | planting a cover crop on soil organic matter (SOM), its extractable components, and the         |
| 7  | soil microbial community. SOM chemical composition characterization was                         |
| 8  | determined by electrospray ionization (ESI) coupled with Fourier transform ion                  |
| 9  | cyclotron resonance mass spectrometry (FT-ICR-MS) in sequential water, methanol                 |
| 10 | (MeOH), and chloroform (CHCl <sub>3</sub> ) extracts. The characteristics of the soil bacterial |
| 11 | community were measured by phospholipid fatty acid (PLFA), real-time quantitative               |
| 12 | PCR, and 16S rRNA gene sequence. The variations in total SOM content, total                     |
| 13 | microbial biomass, and bacterial population were slight among treatments, but SOM               |
| 14 | chemical compounds, arbuscular mycorrhizal fungi (AMF) biomass, and bacterial                   |
| 15 | structure changed significantly, and especially so in the coupled application of stover         |
| 16 | retention and cover crop. Specifically, stover retention enriched more lignin-like              |
| 17 | compounds in soil, whereas cover crop enriched more condensed hydrocarbons, and                 |
| 18 | had more compounds with an aromaticity index (AI) >0.5. The bacterial community                 |
| 19 | was not altered by the cover crop, but the corn stover retention increased the relative         |
| 20 | abundances of Myxococcales (Deltaproteobacteria) and decreased that of                          |
| 21 | Actinobacteria. Redundancy analysis (RDA) further revealed that the bacterial                   |

community in the stover treatments had a significant positive association with CHCl3-extracted chemical classes, i.e. unsaturated hydrocarbons and lipids, with the coupled application (stover and cover crop), and lignin and proteins with the corn stover only treatment. Taken together, our study shows how different C addition practices influence the molecular composition of SOM and the structure of soil microbial communities.

Keywords: Corn stover retention; Rye cover crop; FT-ICR-MS; Phospholipid fatty acid; 16S rRNA gene; Bacterial community

#### 1. Introduction

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Corn (Zea mays L.) residue has served as a feedstock for cellulosic ethanol production in the United States because of its high cellulose content and easy availability (Blanco-Canqui and Lal, 2009; Stewart et al., 2018), but this results in removal of corn stover and hence reduced carbon (C) sequestration in soil. Studies have suggested that the threshold levels of residue removal must be assessed for principal soil types based on the needs to maintain or enhance soil productivity. Besides, agronomic strategies such as cover crops, diverse crop rotations, and manure application, are employed to compensate the C loss by stover removal. Planting a cover crop between periods of regular crop production increases soil organic matter (SOM) by adding biomass C and improving soil aggregation to protect SOM (Ruis and Blanco-Canqui, 2017; Stetson et al., 2012). In north central USA, winter rye (Secale cereale) is suggested as a preferred cover crop species because it is cold tolerant, vigorous, and cost-effective (Martinez-Feria et al., 2016). In addition, winter rye meshes well with a corn crop in the winter niche (Wilke and Snapp, 2008). C inputs from rye could replace some of the C removed in stover, although its capacity to directly increase SOM varies with agricultural management and soil type (Austin et al., 2017; Villamil et al., 2006; Cates and Jackson, 2019). Given the advantages of the rye cover crop with corn and its potential substitution for stover, we sought to evaluate these treatments at a more detailed biochemical and microbiological level.

SOM responds to organic amendments by shifting its quality and quantity, but defining its molecular composition and functional properties is still a challenge, in part because of the vast array of compounds. SOM exists on a humification continuum; operationally defined extractions have been extensively used to fractionate SOM into different classes to reduce heterogeneity (Ohno et al., 2010). Diverse technologies have been applied to elucidate the structure and function of the derived fractions after extraction, from chemical compositions of SOM (i.e. humin, humic acid, and fulvic acid) (Stevenson, 1994), to the fluorescence spectroscopy based on the multiple peaks and their specific location (Sanchez et al., 2013). However, the molecular information of the components of SOM fractions are still lacking in most studies (Kim et al., 2003). In the past decade, electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) has become a useful method because it offers unparalleled mass resolving power (>1 M) and mass measurement accuracy (<1 ppm). The organic compounds can be assigned to thousands of molecular formulas of known natural organic matter (Tfaily et al., 2015). In this way, it is possible to identify the chemical compositions of extremely complicated samples (Choi et al., 2017; Guigue et al., 2016; Wu et al., 2018). FT-ICR-MS has to date been proven feasible in distinguishing organic compounds in both terrestrial and aquatic environments, such as paddy soil and sediments as well as groundwater (Ajaero et al., 2017; Herzsprung et al., 2016; Li et al., 2018; Tfaily et al., 2015; Zhang et al., 2016).

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

The process of SOM decomposition should share some relationship to the microbial community that catalyzes its formation, e.g. the microbial taxa that respond differently to the different incorporated organic materials (Zheng et al., 2018). Generally, easily degradable C compounds have a higher proportion of common microbial taxa responsible for its mineralization (Yan et al., 2018). In this regard, we hypothesized that different agronomic strategies, such as corn stover retention and cover crop, because of their very different C constituents at the time of C return to soil, would result in differences in soil bacterial community structure as well as in the enrichment of chemical classes of extractable SOM. To test this, we sampled a field experiment with treatments of corn stover retention, rye cover crop, both, and neither at the W.K. Kellogg Biological Station (Michigan, USA). The objectives were to unravel: 1) the extent to which the corn stover and cover crop influence SOM and the identities of its extractable components; 2) the responsiveness of bacterial and fungal communities to the four treatments and 3) whether there are SOM compounds indicative of different agronomic practices. This knowledge will improve our understanding of the factors regulating the soil microbial community in a biofuel or similarly managed agricultural ecosystem.

#### 2. Material & Methods

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

- 89 2.1. Field sites and sample overview
- The experiment site is located at the Great Lakes Bioenergy Research Center (GLBRC) Biofuels Cropping System Experiment (BCSE) at Kellogg Biological

Station in southwest Michigan, USA. The BCSE experimental design utilizes a randomized complete block design with 5 replicate blocks (30 × 40 m). The site had the same or very similar cropping history prior to establishing the current plot design in 2008. The soil is predominantly a Kalamazoo loam (Fine-Loamy, Mixed, Semiactive, Mesic Type Hapludalf), with 47-56% sand (Austin et al., 2017). There are a total of ten biofuel cropping systems as described previously (Zhang et al., 2017) (referred to https://lter.kbs.msu.edu/maps/images/20170316-glbrc-kbs-bcse-map.pdf), of which two corn systems were selected for current study: continuous corn (Zea mays) (G1) and continuous corn + rye cover crop (Secale cereal) (G2). For each replicate in G1 system, the corn stover in main plot was removed after harvest (control), and in the subplot the corn stover was left in the field (denoted as CS). For each replicate in the rye cover crop G2 system, the corn stover was removed in the main plot (denoted as CC), and all of the stover was left in the subplot (denoted as CSCC). The cover crop was harvested just prior to corn planting in the spring and its aboveground biomass removed as part of the treatment's biofuel yield. The subplots were established for the 2012 season so had experienced 5 years treatment different from the main plots which had experienced 9 years of their treatments.

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

Soil samples were taken February 20, 2017, during a winter soil thaw. Soil temperature was below 4°C limiting current microbial growth. Five randomly distributed cores (2-cm diameter) of 10 cm depth were composited to form a replicate in each plot/subplots, and there were five replicates collected for each treatment. Soil

samples were then put into a container of dry-ice immediately and transported to the laboratory within 3 h after collection. In the laboratory, samples were divided into two portions: one portion was air-dried for determination of total SOM content. The other was frozen at -80°C for later SOM chemical composition characterization, phospholipid fatty acid (PLFA) determination, and DNA extraction.

On November 22, 2017, a month after the harvest/retention of corn stover and the planting of rye, we collected a second set of soil samples from the same subplots/plots following the identical procedure for a repeated determination of total SOM content.

This timing was chosen to represent the un-frozen stage of soil and to minimize the influence of the fresh C input.

# 2.2. Soil total organic matter

The air-dried soil samples were sent to Michigan State University Soil and Plant Nutrient Laboratory to determine the SOM content using the  $K_2CrO_4$  external heating method (http://extension.missouri.edu/explorepdf/specialb/sb1001.pdf).

# 2.3. Solvent extraction for SOM

A portion of the frozen soil samples were sent to Environmental Molecular

Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (Richland, WA,

USA) for molecular determination of SOM components.

Previously, different sequential extraction protocols have been compared to reveal SOM fractions by Tfaily et al (2017). Afterwards, an optimized sequential protocol, i.e. water, methanol (MeOH), and chloroform (CHCl<sub>3</sub>), is adopted by Graham

et al. (2017) for the river sediments. In this study, the identical sequential extraction protocol was employed for agricultural soil samples. According to Tfaily et al (2015; 2017), each solvent is selective toward specific types of compounds. Water is the natural in situ extractant with a selection bias for carbohydrates with high O/C ratios, amino sugars, and other labile polar compounds. The water-extracted organic matter represents the most labile fraction of SOM and approximates the dissolved organic matter found in soil solution (Ohno et al., 2010). CHCl<sub>3</sub> is selective for nonpolar lipids associated with mineral interactions and cellular membranes (i.e., physically bound OC). MeOH has a polarity in between that of water and CHCl<sub>3</sub>, and it thus extracts both water-soluble and bound-OC pools. The compositional overlap exists between water-soluble and MeOH extracted OC pools (Tfaily et al. 2015; Graham et al., 2017). The samples were prepared by adding 1 mL of solvent to 1 to 100 mg bulk soil and shaking in 2 mL capped glass vials for 2 h on an Eppendorf Thermomixer. Samples were removed from the shaker and left to stand before spinning down and pulling off the supernatant to stop the extraction. The soil residue was dried with nitrogen gas to remove any residual solvent, and then solvent MeOH and solvent CHCl<sub>3</sub> were added sequentially.

#### 2.4. FT-ICR-MS Data Acquisition and Data Analysis

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

Molecular compositions of SOM in the soil extracts were determined by a 12

Tesla FT-ICR-MS (Bruker Daltonics Inc., Billerica, MA, USA), a DOE-BER national user facility located at EMSL.

The detailed process has been described by Tfaily, et al. (2015) and Graham et al. (2017). Briefly, samples were introduced to the electrospray ionization source equipped with a fused silica tube through a syringe pump with the optimal parameters established in earlier dissolved organic matter (DOM) characterization experiments (Tfaily et al., 2015). All sample peak lists for the entire dataset were aligned to each other prior to formula assignment to facilitate consistent peak assignments and eliminate possible mass shifts that would impact formula assignment. Putative chemical formulas were assigned using the Compound Identification Algorithm (CIA) described by Kujawinski et al. (2006). Chemical formulas were assigned based on the following criteria: S/N > 7, and mass measurement error <1 ppm, taking into consideration the presence of C, H, O, N, S and P and excluding other elements (Tfaily et al., 2017).

FT-ICR-MS m/z intensities were converted into presence/absence data prior to analysis because differences in m/z intensity are influenced by ionization efficiency as well as relative abundance (Graham et al. 2017). This approach avoids biases incurred by different ionization efficiencies for different types of compounds and potential interferences between compounds or from complexation with metals (Boye et al., 2017). Then, from the formula assignment, the number of peaks of each class, i.e. the relative abundance, was calculated and used for the downstream analysis. Note that the relative abundance was used here as that is the convention used by chemists for this type of data but in the biological sense it can be viewed as a richness, i.e., the number of compounds.

To interpret the large data set, van Krevelen diagram is often plotted on the basis of the molar H/C ratios (y axis) and molar O/C ratios of the assigned compounds (Kim et al., 2003). It provide a means to compare the average properties of SOM and enable identification of the major biochemical classes. Compounds with similar structural characteristics fall within the same region within a van Krevelen plot (Zhang et al., 2016). For this study, the chemical compounds were grouped into the eight main families: lipids  $(0 \le O/C \le 0.3, 1.5 \le H/C \le 2.5)$ , proteins  $(0.3 \le O/C \le 0.55, 1.5 \le H/C$  $\leq$  2.3), amino sugars (0.55 < O/C  $\leq$  0.7, 1.5  $\leq$  H/C  $\leq$  2.2), carbohydrates (0.7 < O/C  $\leq$ 1.5,  $1.5 \le H/C \le 2.5$ ), unsaturated hydrocarbons ( $0 \le O/C \le 0.125$ ,  $0.8 \le H/C \le 1.5$ ), lignin  $(0.125 < O/C \le 0.65, 0.8 \le H/C < 1.5)$ , tannins  $(0.65 < O/C \le 1.1, 0.8 \le H/C < 1.5)$ 1.5), and condensed hydrocarbons ( $0 \le O/C \le 0.95$ ,  $0.2 \le H/C \le 0.8$ ). In this study, pairwise comparison was carried out between two contrasting treatments in order to show the effect on SOM compositions of corn stover (i.e. control vs CS, and CC vs CSCC) and cover crop (control vs CC, and CS vs CSCC). For each paired group, one treatment was referred to the "counterpart" of the other. We defined the "unique" SOM compounds based on the following criterion: the chemical formulas that appeared in all the five replicates of a treatment but none of the other. Then, the "unique" SOM compounds were visualized on van Krevelen diagrams. In this way, we could highlight the types of compounds that enriched or disappeared between the paired treatments.

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

196 Aromaticity index (AI) is an indication of the refractory behavior of molecules against biodegradation (Guigue et al., 2016). It considers the possibility that 197 198 heteroatoms (in particular O) can form double bonds not contributing to the aromaticity 199 (Koch and Dittmar, 2006). Less aromatic compounds reflect potentially higher biodegradability of SOM (Choi et al., 2017). In this study, AI was employed to interpret 200 201 the presence of aromatic structures in a molecule after pooling all the chemical formulas of SOM from three solvents together. We calculated the AI from the number 202 203 of atoms according to Eqn. (1):

204 
$$AI = (1+C-O-S-0.5H)/(C-O-S-N-P)$$
 (1)

205 Where C, O, S, H, N, and P represented the number of C, O, S, H, N, P atoms of each compound, respectively (Koch and Dittmar, 2006). The compounds with values of AI>0.5 are expected to be aromatic species (Choi et al., 2017).

2.5. Phospholipid fatty acid (PLFA) analysis

208

209

210

211

212

213

214

215

216

A portion of freeze-dried soil samples were analyzed for PLFAs by Microbial ID, Inc.; (MIDI, Newark, DE, USA). Methods for extraction were adapted from company's standard procedure.

Individual fatty acid methyl esters (FAMEs) were identified and quantified using the MIDI Sherlock Microbial Identification System (MIDI, Newark, Delaware, USA). The result for each individual fatty acid was expressed as a percentage of the total amount of fatty acids (mol%) found in a given sample. The combined masses of FAMEs reported as typical of fungi (18:2ω6c), general bacteria (15:0; i15:0; a15:0;

- 217 i16:0; 16:0ω9; i17:0; a17:0; cy17:0; 18:1ω7; cy19:0), Gram-negative bacteria (14:0;
- 218  $16:1\omega6c;17:1\omega8c; 18:1\omega7c; cy17:0; cy19:0; 20:1\omega9c; 21:1\omega8c; 21:1\omega3c; 22:1\omega3c)$ ,
- 219 Gram-positive bacteria (15:1\omega9c; 15:1\omega6c; 15:1\omega9c; i15:0; a15:0; 16:0; 17:1\omega9c;
- 220 a17:0; 18:0; 17:1ω9c), Actinobacteria (10Me16:0; 17:1ω7c; 10Me17:0; 18:1ω7c;
- 221 10Me18:0), arbuscular mycorrhyzal fungi (AMF; 16:1ω5c) were used as signatures for
- these microbial groups. Fungal and bacterial markers were used to calculate fungal to
- bacterial biomass ratio (F:B).
- 224 2.6. DNA extraction, PCR amplification, and sequencing
- Soil microbial DNA was extracted from the frozen soil samples using PowerMax
- Soil DNA Isolation Kit (MO BIO, CA, USA) following the manufacturer's protocol
- and quantified using the Qubit dsDNA HS Assay Kit (Life Technologies, OR, USA)
- with a Qubit fluorometer (Invitrogen, OR, USA). The extracted DNA was used for
- 229 quantitative analysis and for 16S rRNA gene amplicon sequencing.
- 230 2.7. 16S rRNA gene amplicon sequencing and data analysis
- The V4 region of the 16S rRNA genes was sequenced with a one-step PCR library
- preparation strategy. Briefly, the PCR was carried out with the target-only primer pair
- 233 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 806R
- 234 (5'-GGACTACHVGGGTWTCTAAT-3') (Caporaso et al., 2011). In the second-round
- PCR, phasing primers with Illumina functionalities, spacers, as well as barcodes on the
- 236 reverse primers were introduced. Sample libraries were generated from purified PCR
- products and pooled for sequencing as reported previously (Zhang et al., 2017).

To control variation resulting from an unequal number of sequences across samples, sequence resampling was performed for each sample after OTU generation at a rarefication sequence level based on the sample with the fewest number of sequences. Sequences from each sample were randomly drawn from the original pool until the rarefication sequence level is achieved. Once a sequence is drawn, it is excluded from further rounds of selection to prevent repetition.

After sequencing was completed, 16S rRNA gene data were processed using the

Quantitative Insights Into Microbial Ecology (QIIME) pipeline using default parameters unless otherwise noted (Caporaso et al., 2010). Reads below a quality score of 25 and 200 bp in length were trimmed, and then assigned to soil samples based on unique 5-bp barcodes. Operational Taxonomic Units (OTUs) were selected using the UPARSE pipeline with a sequence similarity cut-off of 97% (USEARCH software V8) (Edgar, 2017); chimeric sequences were also removed. Taxonomy was assigned to OTUs against a subset of the Silva 119 database (<a href="http://www.arb-silva.de/download/archive/qiime/">http://www.arb-silva.de/download/archive/qiime/</a>) using PyNAST. The 16S rRNA gene sequencing data have been deposited at DNA Data Bank of Japan (DDBJ) under accession number DRA010263.

#### 2.8. Statistical analysis

One-way analysis of variance (ANOVA) followed by Tukey's HSD test was used to determine the effects of corn stover and cover crop on SOM content, 16S rRNA gene copy number, PLFAs, and the relative abundances of bacterial community

compositions among different treatments. Significant differences were accepted at P 
 0.05.

For the changes in soil bacterial community and SOM structure, the Bray-Curtis distances were computed based on the OTU tables and the total amount of SOM biochemical classes, and were then visualized with non-metric multidimensional scaling (NMDS) plots using the "metaMDS" function (vegan package) in R (Version 3.6.0). Permutational multivariate analysis of variance (PERMANOVA) was conducted to detect pairwise differences in group distances by using "adonis" function (vegan package, 999 permutations). The relative importance of the SOM compounds dissimilarities contributing to the variation in the soil bacterial taxonomic compositions (OTU level) was further identified by redundancy analysis (RDA) and a subsequent Monte Carlo test (999 permutations), which was performed using "rda" and "permutest" function of vegan package (Bray-Curtis distances). The goodness-of-fit (R²) and associated statistical significance (P-value) of each SOM compound were verified using "envfit" function in vegan.

#### **3. Results**

#### *3.1. SOM content*

The total SOM content varied from 1.6% to 3.4%, with the average values listed in Table 1. The highest value was found in CSCC and the lowest in the control, although the P-value for comparisons among treatments just exceeded usual statistical thresholds

for significance (ANOVA, P=0.051). Similar trends were observed for the November samples in the same year of 2017.

3.2. Differences in number of components extracted by the three solvents

The richness of compounds (peak number) varied with the extracting solvents and organic amendments as well. Generally, CHCl<sub>3</sub> extracted more SOM compounds than MeOH and water (Fig 1). In the water extracts, the control had the most peaks (1,110), followed by CS (915) and CC (897). The lowest number of peaks was observed in CSCC (637), significantly different from the control as well as CS and CC (P=0.001). It was further found that the relative abundances of chemical classes decreased in the order: condensed hydrocarbons>lignin>lipids>proteins (Fig S1). In the MeOH extracts, no significant differences were observed among treatments (P=0.215, Fig 1), and the most abundant class was lipid, followed by protein and lignin (Fig S1). For the CHCl<sub>3</sub> extracts, only CSCC (2,250) had significantly fewer peaks in comparison with the control (2,920, P=0.01). Similar to the distribution in the MeOH extracts, lipid was the most abundant (Fig S1).

# 3.3. Aromaticity compounds

The percentages of aromatic compounds (AI>0.5) varied substantially in different extracts, with the average highest in water, followed by MeOH and CHCl<sub>3</sub> (Fig 2), in line with each solvent's extractive traits. Different agronomic practices produced differences in the proportions of AI>0.5 compounds. CS significantly decreased the proportion of AI>0.5 compounds compared to the control (P<0.05) in water and MeOH.

When cover crop present, there was no significant difference due to stover retention, CC vs CSCC. By contrast, the cover crop's presence with water extracts showed an increasing proportion of AI>0.5 when compare to the control, as well as with stover, CSCC vs CS (P<0.05).

## 3.4. Unique SOM compounds

Van Krevelen plots, together with Venn diagrams, were employed to show the SOM compound characteristics (Fig 3 and Fig S3). Among all treatments, the common compounds only accounted for 19.8%, 18.4%, and 0.1% in the water, MeOH, and CHCl<sub>3</sub> extracts, respectively (Fig S2). The unique compounds varied with the solvents and the organic amendments. Specifically, in the water extracts, the unique compounds in the control accounted for 17.4% of total compounds, larger than other treatments, and those in CSCC accounted for the least (0.4%). In the MeOH extracts, large proportions of unique compounds were observed in CS and CSCC (28.7% and 29.4%, respectively), while those in the control and CC accounted for only 3.8% and 0.6%, respectively. In the CHCl<sub>3</sub> extracts, the proportions of unique compounds ranged from 3.9% (control) to 25.6% (CS).

Pairwise comparison between the contrasting treatments showed that the unique SOM compounds varied depending on treatments and extracting solvents, as illustrated by van Krevelen diagrams and the derived stacked plots (Fig 3 and Fig S4). Specifically, in the water extracts (Fig 3-a), the augmented treatment (CS or CC) generated fewer compounds in comparison with the control, which contained a broad range of

compounds, including protein-, lignin-, and carbohydrates-like compounds. CS appeared to have some unique lignin-like compounds, while CC led to the enrichment of condensed hydrocarbons.

In the MeOH extracts, it was notable that no unique compound appeared in CS or CC as compared to control that harbored various unique ones (Fig 3-b1 and 3-b3). By contrast, CSCC produced more kinds of unique compounds, including lipids, proteins, and carbohydrates, in comparison with either CS or CC (Fig 3-b2 and 3-b4), suggesting that CSCC had an enhancing effect.

In the CHCl<sub>3</sub> extracts, the most abundant unique compounds were lipid- and protein-like, in agreement with the solvent trait (Fig 3-c). However, the pattern of unique compounds produced by corn stover diverged from that by cover crop. For example, CS harbored more unique compounds than the control (Fig 3-c1), a similar trend observed between CSCC and CC (Fig 3-c2). By contrast, CC possessed less unique compounds than the control (Fig 3-c3), as well as CSCC compared to CS (Fig 3-c4).

NMDS analysis based on the chemical classes of SOM from three solvents showed that only CSCC separated from other treatments (Fig 4, PERMANOVA, P=0.045), reflecting the strongest effect of coupled application of stover retention and cover crop.

3.5. Microbial and functional group lipid biomass

lipid biomass were generally similar among treatments, including total biomass, eukaryote, fungi, and bacteria (Table 2). Lipid marker for arbuscular mycorrizhal fungi (AMF) was significantly higher in CSCC (4.53%) and CC (4.57%) than in control (4.12%). Considering that the soil was dominated by bacteria rather than fungi (F/B ratio was 0.065-0.072), we focused on the bacterial community in the follow-up analysis. 3.6. Bacterial population in soil Real-time qPCR results showed that the bacterial population in soil ranged from  $2.1\times10^9$  to  $8.95\times10^9$  gene copy number per gram (Table 2), although no significant differences were found among all treatments according to the one-way ANOVA (Tukey's test, P=0.526). 3.7. Soil bacterial community composition Taxonomic analysis of 16S rRNA gene amplicons showed that Proteobacteria was the most abundant phylum (23.2-34.1%), followed by Acidobacteria (10.56-25.8%), Actinobacteria (3.55-11.3%), Verrucomicrobia (4.97-12.39%), Bacteroidetes (3.67-13.29%), Planctomycetes (2.15-7.09%), Gemmatimonadetes (1.15-2.88%), and Firmicutes (0.43-3.26%). Several phyla were shifted by the amendments in term of their relative abundances (Fig 5). For example, a significantly lower proportions of

PLFA analysis results showed that most of the microbial and functional group

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

Acidobacteria (P=0.001), Nitrospirae (P=0.014), and Armatimonadetes (P=0.008)

were found in CSCC, compared to the control. Further, CS had a significantly lower abundance of Actinobacteria than the control (P=0.045).

At the finer levels, some lineages had distinct responses to different field management (Table 3). In particular, CSCC decreased significantly the occurrences of Acidobacteria GP6 (P=0.041), Clostridia (P=0.001), and Nitrospira (P=0.009), but significantly increased those of Sphingobacteria (P=0.043) and Thermomicrobia (P=0.009) in comparison with the control. By contrast, CS increased significantly the proportion of Myxococcales (P=0.021), but significantly decreased that of Clostridia (P=0.041) as compared to the control.

Non-metric multidimensional scaling (NMDS) ordination at the OTU level (Bray-Curtis dissimilarity matrices) demonstrated the discrepancy of the bacterial communities among treatments (Fig S4). Especially, distinct separations were found between control vs CS ( $R^2$ =0.22, P=0.03), control vs CSCC ( $R^2$ =0.32, P=0.03), and CS vs CSCC ( $R^2$ =0.32, P=0.042).

3.8. Relationship between soil bacterial community and SOM compounds

The RDA biplot (Fig 6) showed that the SOM compounds in all the extracts explained 38.5% of variability in the bacterial community composition. The canonical coefficients, the goodness-of-fit ( $r^2$ ) and associated statistical significance (P-value) of each SOM compound is in Table S1. Along the axis 1, some CHCl<sub>3</sub>-extracted unsaturated hydrocarbons ( $r^2$ =0.63, P=0.001) and lipids ( $r^2$ =0.37, P=0.020), were significantly correlated with CSCC, while some CHCl<sub>3</sub>-extracted lignin ( $r^2$ =0.41,

P=0.014) and proteins ( $r^2$ =0.38, P=0.019) had significantly positive relationship with CS.

#### 4. Discussion

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

In this study, the amendments of stover retention and cover crop, singly and in combination, did not lead to significant changes in total SOM content after 5-9 years but positive trends were apparent, especially versus the control. This sluggish response is in accordance with some previous studies. Examples include a 13-year addition of a winter cereal rye cover crop at three locations in Maryland, USA (Steele et al., 2012), and the study of retaining residue in the short term (<10 years) (Blanco-Canqui and Lal, 2009). However, there are also some findings showing gains in SOM contents after the organic amendments (Urra et al., 2018; Warren Raffa et al., 2015; Wegner et al., 2018). We assumed such divergences might derive from the edaphic properties, climates, amending strategy, and management history. 4.1. Organic amendments decreased the richness of SOM compounds and changed the occurrence of unique compounds Increasing organic matter inputs generally increases soil organic matter content (West and Six 2007). If organic matter inputs increase microbial activity, we expect that the increased microbial biomass and necromass will contribute to soil organic matter formation (Six et al. 2006), with some of it contributing to the stable mineral fraction (Cotrufo et al. 2015). In this sense, we hypothesized that an increase in SOM would be accompanied by more unique SOM compounds. Surprisingly, contrary

results were found especially in water and MeOH extracts (Fig 2 and Fig 3). This outcome is presumably the result of microbial activity and community selection over the decade of treatments. We offer two explanations, perhaps related. First, the fresh organic treatments would provide a priming effect, thereby stimulating the degradation of current and some of the old C compounds leaving less to be extracted (Blagodatskaya and Kuzyakov, 2008; Pegoraro et al., 2019). Second, the 5-9-year selection of copiotrophs on the new C produced metabolites common in soil (i.e. less unique SOM compounds). By contrast, the old, recalcitrant organic compounds in non-amended soil served as the main C and energy sources for microorganisms (especially oligotrophs), resulting in diverse metabolites or more persistent residues (i.e. more unique SOM compounds). This is supported by a previous study that confirms the depletion of recalcitrant SOM fractions in stover-removed soil based on quantitative <sup>13</sup>C NMR (Stetson et al., 2012), a sign of the role of recalcitrant SOM compounds for microorganisms. Also, the increased proportion of AI>0.5 compounds in the control of this study (Fig 2) is consistent with such a process, because the degradation of aromatic ring cleavage would lead to an increase of aromatic C and/or condensed aromatic structures (Derrien et al., 2017). 4.2. Stover retention and cover crop influenced SOM compounds differently For a given site with similar soil type, the initial quality of organic materials is intimately related to their decomposition process. Generally, corn stover has a higher

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

C/N ratio (e.g. 79.5 reported by Yang et al. (2017)) than rye cover crop (e.g. 22.2 by

Barel et al. (2018)). Such differences will lead to the variance in aromaticity and the unique SOM compounds, as revealed by pairwise comparison in this study (Fig 2). Stover, representing the dead plant residue, led to fewer aromatic compounds (Fig. 2). This phenomenon implied that the less humified pools of soil C are not being replenished in the stover retention treatment (Stetson et al., 2012). Similar trends are observed in other studies (Chen et al., 2017; Song et al., 2017). In addition, according to the van Krevelen plots, the unique compounds generated by stover retention were primarily lignin-like (in water and CHCl<sub>3</sub> extracts) and lipid-like (in CHCl<sub>3</sub> extracts) (Fig 3). Lignin-like compounds are likely derived from allochthonous terrestrial plant sources, and represent the bulk of the semi-labile and refractory SOM pool (Lusk et al., 2016). By contrast, lipid-like compounds are aliphatic and microbially derived, and typically represent the bulk of the labile pool (Hendrickson et al., 2007). Two different pathways/stages of SOM formation are proposed by Cotrufo et al. (2015) after litter incorporation. At the early stage, the non-structural compounds are lost from the litter, and the acid un-hydrolysable fraction (generally defined as 'lignin') increases in absolute amounts (though different from the types of SOM in this study), owing to the incorporation of microbial residues in this fraction. At the late stage, physical transfer of the residue to the mineral soil takes effect, resulting in no preferential loss of any chemical compounds and no incorporation of microbially produced residue C. In this respect, we suggest that early stage SOM formation is occurring in this study

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

~3 months after stover retention. At this stage, microbial decomposition produces necromass which includes refractory structures like lipids and mineral bound lipids.

444

445

459

460

461

462

463

464

On the contrary, cover crop tended to influence SOM compounds in a different 446 447 way, i.e., the increased proportion of AI>0.5 compounds and the emergence of unique 448 condensed hydrocarbons (Fig 2 and Fig 3). We presume that this is owing to the 449 involvement of plant activity, i.e. the rhizosphere effect. In rhizosphere samples, compounds with aromatic structures and less aliphatic are more abundant than in 450 451 non-rhizosphere samples, resulting in a more recalcitrant C pool (Wen et al., 2018). A 452 previous study also shows the increased proportion of AI>0.5 compounds by rye cover 453 crop based on diffuse reflectance Fourier transform infrared (DRIFT) spectra (Ding et 454 al. 2006), which was in good agreement with current study, particularly in the water 455 extracts (Fig 2). Further illustration of unique SOM compounds (Fig 3) unraveled that 456 cover crop garnered more condensed hydrocarbons (water extracts) and lipids (CHCl<sub>3</sub> 457 extracts), which, we assume, were also intimately associated with the plant, especially 458 root exudates.

4.3. Microorganisms' response to stover retention and cover crop

Neither stover retention nor cover crops changed the total microbial biomass, bacterial biomass or 16S rRNA gene copy number as revealed by PLFA and qPCR. However, some functional microbial groups were altered. For example, the lipid biomarker of AMF had significantly higher biomass in the cover crop treatments (CC and CSCC), rather than CS, compared with that in the control (Table 2). This was

consistent with the increasing trend of SOM content above (Table 1). Presumably, such differences resulted from the traits of organic materials. Rye cover crop favors the proliferation of AMF (García-González et al., 2018), which subsequently contributed to the increase in soil C storage due to their extensive mycelium and necromass in the presence of rye roots (Zhu and Michael Miller, 2003). Besides, the yearly input of root biomass from rye cover crop is nearly 44.8 g C m<sup>-2</sup> (Austin et al. 2017), which should be sufficient to sustain a large AMF community. Further exploration on bacterial community showed the greatest impact of CSCC on the bacterial compositions, compared to either CS or CC individually (Fig 5 and Table 3). We ascribe this enhanced effect of CSCC to the fact that CSCC harbored both living and dead organic materials. In CSCC, some lineages that might prefer degrading those materials were enriched, such as Burkholderiales (Betaproteobacteria) and Sphingobactertia (Bacteroidetes), while some K-strategists (oligotrophs) were constrained, such as Acidobacteria Gp6. Some Burkholderiales have the ability to

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

Sphingobactertia (Bacteroidetes), while some K-strategists (oligotrophs) were constrained, such as Acidobacteria Gp6. Some Burkholderiales have the ability to decompose high molecular weight organic compounds (Gu et al., 2017), and Sphingobacteriia can utilize lignocellulosic material for growth (Yan et al., 2012), while Acidobacteria, in all likelihood, degrade ancient or recalcitrant SOM in nutrient-poor conditions (Wang et al., 2018). Since the bacterial structure of CSCC in this study separated from other treatments by CHCl<sub>3</sub> extracted lipids as revealed by RDA biplot (Fig 6), and lipids could come from microbes and not just plants, it might

be inferred that combining both treatments increases lipid abundance due to both plant and microbe inputs.

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

Despite the negligible shifts in the whole bacteria community (Fig S4), CS increased the relative abundances of some lineages, such as Myxococcales (Deltaproteobacteria), but decreased that of Actinobacteria, Myxobacteria, ubiquitous in soil environments, are predators and can access nutrients from a broad spectrum of microorganisms (Thiery and Kaimer, 2020). Actinobacteria are a key bacterial group in the utilization of readily available C. The opposite trends of those groups might imply an inverse relationship between them. It is noteworthy that the bacterial communities in stover-contained treatments (CS and CSCC) were significantly correlated to CHCl<sub>3</sub>-extracted components, i.e. proteins and lignin in the CHCl<sub>3</sub> extracts with CS, and lipids and unsaturated hydrocarbon in the CHCl<sub>3</sub> extracts with CSCC (Fig 6). This feature suggested that in stover-contained treatments the bacteria preferred the mineral-associated SOM fractions, and further supported the necessity of using sequential extraction protocols, rather than water solvent only, to exhaustively depict the non-polymer SOM compounds. By contrast, no significant change in the bacterial community was observed for the single cover crop treatment, suggesting a different microbial selection in the corn stover soil.

Soil C stocks change slowly, usually on decadal time scales (Deng et al. 2016), but soil C characteristics can change more rapidly. For example, the proportion of C in the active versus passive pools can change after just a few years of altered

management (Sprunger and Robertson 2018). Here, we show that soil organic C composition and bacterial communities are also altered by changing inputs. Will this lead to increased total soil organic C? Perhaps. At our field site, the organic amendments lead to higher soil organic C on average (although not statistically significant), suggesting a trend toward higher C accumulation with cover crops and stover retention. In addition, the cover crop treatment increased the presence of aromatic compounds, and the stover increased the presence of lignin, which are both recalcitrant compounds. This trend may not be universal, however. The coarse texture and medium C concentration at our site are more likely to accumulate C than fine-textured soils or those with high clay and soil organic matter content (West and Six 2007; Johnston et al. 2009; Sprunger and Robertson 2018; Szymanski et al. 2019). Similarly, it is not yet clear how shifts in microbial community composition will influence soil C accumulation. We observed the microbial community shift in parallel with soil C chemistry, possibly in a way that optimizes C consumption (see previous paragraphs in this section). As a result, these microbial community changes could lead to 1) increases in C mineralization that offset the additional C inputs, or 2) increased microbial biomass and necromass, which increases total soil organic C (Six et al. 2006; Cotrufo et al. 2015). In this study we demonstrate the changes in SOM biochemical and microbial structure that occur from different types of SOM amendments. Although our results

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

hint at mechanisms, we cannot vet link specific SOM structures to the soil bacterial

community due to technical limitations. Nonetheless, this paper is an important first step in understanding mechanisms of SOM formation. Further research could examine the long-term fate of specific C compounds, perhaps via isotopically-labeled additions of these compounds, coupled with microbial community assessments. FT-ICR-MS is a useful tool for examining the degradation of organic C and for understanding the underlying mechanisms of soil C formation and retention.

#### 5. Conclusions

This study provides insights regarding the effects of corn stover retention and cover crop on SOM compounds and the soil microbial community. Although there were negligible variations in total SOM content, total microbial biomass, and bacterial population due to these C amendment practices, significant changes were found for some SOM chemical compounds, AMF biomass and some bacterial linages, with corn stover and cover crop showing different impacts on those parameters. Soil biosystems respond slowly to C management practices, with resultant soil changes occurring as a function of type of organic C addition, the microbiome, and the organic compounds added and their residual signatures.

# Acknowledgements

Support for this research was provided by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (Awards DE-SC0018409 and DE-FC02-07ER64494), by the National Science Foundation Long-term

Ecological Research Program (DEB 1637653) at the Kellogg Biological Station, by

Michigan State University AgBioResearch, and by China Scholarship Council. A

portion of the research was performed at the EMSL User Facility. We thanked all

people who provide help but were not listed as authors at EMSL.

552

#### References

- Ajaero, C., McMartin, D.W., Peru, K.M., Bailey, J., Haakensen, M., Friesen, V., Martz, R., Hughes,
- S.A., Brown, C., Chen, H., McKenna, A.M., Corilo, Y.E., Headley, J.V., 2017. Fourier transform
- 557 ion cyclotron resonance mass spectrometry characterization of athabasca oil sand
- process-affected waters incubated in the presence of wetland plants. Energy & Fuels 31,
- 559 1731-1740.
- Austin, E.E., Wickings, K., McDaniel, M.D., Robertson, G.P., Grandy, A.S., 2017. Cover crop root
- contributions to soil carbon in a no-till corn bioenergy cropping system. GCB Bioenergy 9,
- 562 1252-1263.
- Barel, J.M., Kuyper, T.W., Paul, J., Boer, W., Cornelissen, J.H.C., De Deyn, G.B., Cheng, L., 2018.
- Winter cover crop legacy effects on litter decomposition act through litter quality and microbial
- community changes. Journal of Applied Ecology 56, 132-143.
- Blagodatskaya, E., Kuzyakov, Y., 2008. Mechanisms of real and apparent priming effects and their
- dependence on soil microbial biomass and community structure: critical review. Biology and
- 568 Fertility of Soils 45, 115-131.
- 569 Blanco-Canqui, H., Lal, R., 2009. Crop residue removal impacts on soil productivity and
- environmental quality. Critical Reviews in Plant Sciences 28, 139-163.
- Boye, K., Noël, V., Tfaily, M.M., Bone, S.E., Williams, K.H., Bargar, John R., Fendorf, S., 2017.
- Thermodynamically controlled preservation of organic carbon in floodplains. Nature
- 573 Geoscience 10, 415-419.
- 574 Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N.,

575 Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., 576 Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 577 578 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 579 7, 335-336. 580 Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, 581 N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences 582 per sample. Proceedings of the National Academy of Sciences 108, 4516. 583 Cates, A.M., Jackson, R.D., 2019. Cover Crop Effects on Net Ecosystem Carbon Balance in Grain and 584 Silage Maize. Agronomy Journal 111, 30-38. 585 Chen, X., Mao, A., Zhang, Y., Zhang, L., Chang, J., Gao, H., Thompson, M.L., 2017. Carbon and 586 nitrogen forms in soil organic matter influenced by incorporated wheat and corn residues. Soil 587 Science and Plant Nutrition 63, 377-387. 588 Choi, J.H., Kim, Y.-G., Lee, Y.K., Pack, S.P., Jung, J.Y., Jang, K.-S., 2017. Chemical characterization 589 of dissolved organic matter in moist acidic tussock tundra soil using ultra-high resolution 15T 590 FT-ICR mass spectrometry. Biotechnology and Bioprocess Engineering 22, 637-646. 591 Cotrufo, M.F., Soong, J.L., Horton, A.J., Campbell, E.E., Haddix, Michelle L., Wall, D.H., Parton, 592 W.J., 2015. Formation of soil organic matter via biochemical and physical pathways of litter 593 mass loss. Nature Geoscience 8, 776-779. 594 Deng, L., Zhu, G., Tang, Z., Shangguan, Z., 2016. Global patterns of the effects of land-use changes on

soil carbon stocks. Global Ecology and Conservation 5, 127-138.

- 596 Derrien, M., Lee, Y.K., Park, J.E., Li, P., Chen, M., Lee, S.H., Lee, S.H., Lee, J.B., Hur, J., 2017.
- 597 Spectroscopic and molecular characterization of humic substances (HS) from soils and
- sediments in a watershed: comparative study of HS chemical fractions and the origins.
- Environmental Science and Pollution Research 24, 16933-16945.
- Ding, G.W., Liu, X.B., Herbert, S., Novak, J., Amarasiriwardena, D., Xing, B.S., 2006. Effect of cover
- crop management on soil organic matter. Geoderma 130, 229-239.
- 602 Edgar, R.C., 2017. SEARCH 16S: A new algorithm for identifying 16S ribosomal RNA genes in
- 603 contigs and chromosomes. bioRxiv.
- García-González, I., Hontoria, C., Gabriel, J.L., Alonso-Ayuso, M., Quemada, M., 2018. Cover crops to
- mitigate soil degradation and enhance soil functionality in irrigated land. Geoderma 322, 81-88.
- Graham, E.B., Tfaily, M.M., Crump, A.R., Goldman, A.E., Bramer, L.M., Arntzen, E., Romero, E.,
- Resch, C.T., Kennedy, D.W., Stegen, J.C., 2017. Carbon Inputs From Riparian Vegetation Limit
- Oxidation of Physically Bound Organic Carbon Via Biochemical and Thermodynamic Processes.
- Journal of Geophysical Research: Biogeosciences 122, 3188-3205.
- 610 Gu, Y.F., Wang, Y.Y., Lu, S.E., Xiang, Q.J., Yu, X.M., Zhao, K., Zou, L.K., Chen, Q., Tu, S.H., Zhang,
- X.P., 2017. Long-term fertilization structures bacterial and archaeal communities along soil
- depth gradient in a paddy soil. Frontiers in Microbiology 8.
- 613 Guigue, J., Harir, M., Mathieu, O., Lucio, M., Ranjard, L., Leveque, J., Schmitt-Kopplin, P., 2016.
- Ultrahigh-resolution FT-ICR mass spectrometry for molecular characterisation of pressurised
- hot water-extractable organic matter in soils. Biogeochemistry 128, 307-326.
- Hendrickson, J., Trahan, N., Gordon, E., Ouvang, Y., 2007. Estimating relevance of organic carbon.

617 nitrogen, and phosphorus loads to a blackwater river estuary. Journal of the American Water 618 Resources Association 43, 264-279. 619 Herzsprung, P., Hertkorn, N., von Tuempling, W., Harir, M., Friese, K., Schmitt-Kopplin, P., 2016. 620 Molecular formula assignment for dissolved organic matter (DOM) using high-field 621 FT-ICR-MS: chemical perspective and validation of sulphur-rich organic components (CHOS) 622 in pit lake samples. Analytical and Bioanalytical Chemistry 408, 2461-2469. 623 Johnston, A.E., Poulton, P.R., Coleman, K., 2009. Chapter 1 Soil organic matter: its importance in 624 sustainable agriculture and carbon dioxide fluxes, In: Sparks, D.L. (Ed.), Advances in 625 Agronomy. Academic Press, pp. 1-57. 626 Kim, S., Kramer, R.W., Hatcher, P.G., 2003. Graphical method for analysis of ultrahigh-resolution 627 broadband mass spectra of natural organic matter, the van Krevelen diagram. Analytical 628 Chemistry 75, 5336-5344. 629 Koch, B.P., Dittmar, T., 2006. From mass to structure: an aromaticity index for high-resolution mass 630 data of natural organic matter. Rapid Communications in Mass Spectrometry 20, 926-932. 631 Kujawinski, E.B., Behn, M.D., 2006. Automated Analysis of Electrospray Ionization Fourier Transform 632 Ion Cyclotron Resonance Mass Spectra of Natural Organic Matter. Analytical Chemistry 78, 633 4363-4373. 634 Li, X., Sun, G., Chen, S., Fang, Z., Yuan, H., Shi, Q., Zhu, Y., 2018. Molecular chemodiversity of 635 dissolved organic matter in paddy soils. Environmental Science & Technology 52, 963-971. 636 Lusk, M.G., Toor, G.S., 2016. Dissolved organic nitrogen in urban streams: biodegradability and 637 molecular composition studies. Water Reserch 96, 225-235.

638 Martinez-Feria, R.A., Dietzel, R., Liebman, M., Helmers, M.J., Archontoulis, S.V., 2016. Rye cover 639 crop effects on maize: A system-level analysis. Field Crops Research 196, 145-159. 640 Ohno, T., He, Z., Sleighter, R.L., Honeycutt, C.W., Hatcher, P.G., 2010. Ultrahigh Resolution Mass 641 Spectrometry and Indicator Species Analysis to Identify Marker Components of Soil- and Plant 642 Biomass-Derived Organic Matter Fractions. Environmental Science & Technology 44, 643 8594-8600. 644 Pegoraro, E., Mauritz, M., Bracho, R., Ebert, C., Dijkstra, P., Hungate, B.A., Konstantinidis, K.T., Luo, 645 Y., Schädel, C., Tiedje, J.M., Zhou, J., Schuur, E.A.G., 2019. Glucose addition increases the 646 magnitude and decreases the age of soil respired carbon in a long-term permafrost incubation 647 study. Soil Biology and Biochemistry 129, 201-211. 648 Ruis, S.J., Blanco-Canqui, H., 2017. Cover Crops Could Offset Crop Residue Removal Effects on Soil 649 Carbon and Other Properties: A Review. Agronomy Journal 109, 1785-1805. 650 Sanchez, N.P., Skeriotis, A.T., Miller, C.M., 2013. Assessment of dissolved organic matter fluorescence 651 PARAFAC components before and after coagulation-filtration in a full scale water treatment 652 plant. Water Research 47, 1679-1690. 653 Six, J., Frey, S.D., Thiet, R.K., Batten, K.M., 2006. Bacterial and fungal contributions to carbon 654 sequestration in agroecosystems. Soil Science Society of America Journal 70, 555-569. 655 Song, G.X., Novotny, E.H., Mao, J.D., Hayes, M.H.B., 2017. Characterization of transformations of 656 maize residues into soil organic matter. Science of the Total Environment 579, 1843-1854. 657 Sprunger, C.D., Philip Robertson, G., 2018. Early accumulation of active fraction soil carbon in newly

established cellulosic biofuel systems. Geoderma 318, 42-51.

- Steele, M.K., Coale, F.J., Hill, R.L., 2012. Winter annual cover crop impacts on no-till soil physical
- properties and organic matter. Soil Science Society of America Journal 76, 2164-2173.
- Stetson, S.J., Osborne, S.L., Schumacher, T.E., Eynard, A., Chilom, G., Rice, J., Nichols, K.A., Pikul,
- J.L., Jr., 2012. Corn residue removal impact on topsoil organic carbon in a corn-soybean rotation.
- Soil Science Society of America Journal 76, 1399-1406.
- Stevenson, F.J., 1994. Humus Chemistry: Genesis, Composition, Reactions, 2nd ed. John Wiley &
- Sons, Ltd, New York.
- Stewart, C.E., Roosendaal, D.L., Manter, D.K., Delgado, J.A., Del Grosso, S., 2018. Interactions of
- Stover and Nitrogen Management on Soil Microbial Community and Labile Carbon under
- Irrigated No-Till Corn. Soil Science Society of America Journal 82, 323-331.
- Szymanski, L.M., Sanford, G.R., Heckman, K.A., Jackson, R.D., Marín-Spiotta, E., 2019. Conversion
- to bioenergy crops alters the amount and age of microbially-respired soil carbon. Soil Biology &
- 671 Biochemistry 128, 35-44.
- Tfaily, M.M., Chu, R.K., Tolic, N., Roscioli, K.M., Anderton, C.R., Pasa-Tolic, L., Robinson, E.W.,
- Hess, N.J., 2015. Advanced Solvent Based Methods for Molecular Characterization of Soil
- Organic Matter by High-Resolution Mass Spectrometry. Analytical Chemistry 87, 5206-5215.
- Tfaily, M.M., Chu, R.K., Toyoda, J., Tolić, N., Robinson, E.W., Paša-T, olić, L., Hess, N.J., 2017.
- Sequential extraction protocol for organic matter from soils and sediments using high resolution
- mass spectrometry. Analytica Chimica Acta 972, 54-61.
- Thiery, S., Kaimer, C., 2020. The Predation Strategy of Myxococcus xanthus. Front Microbiol 11, 2.
- Urra, J., Mijangos, I., Lanzén, A., Lloveras, J., Garbisu, C., 2018. Effects of corn stover management

- on soil quality. European Journal of Soil Biology 88, 57-64.
- Villamil, M.B., Bollero, G.A., Darmody, R.G., Simmons, F.W., Bullock, D.G., 2006. No-till
- corn/soybean systems including winter cover crops. Soil Science Society of America Journal 70,
- 683 1936-1944.
- Wang, Q., Jiang, X., Guan, D., Wei, D., Zhao, B., Ma, M., Chen, S., Li, L., Cao, F., Li, J., 2018.
- Long-term fertilization changes bacterial diversity and bacterial communities in the maize
- rhizosphere of Chinese Mollisols. Applied Soil Ecology 125, 88-96.
- Warren Raffa, D., Bogdanski, A., Tittonell, P., 2015. How does crop residue removal affect soil organic
- 688 carbon and yield? A hierarchical analysis of management and environmental factors. Biomass
- 689 and Bioenergy 81, 345-355.
- Wegner, B.R., Osborne, S.L., Lehman, R.M., Kumar, S., 2018. Seven-Year Impact of Cover Crops on
- Soil Health When Corn Residue Is Removed. BioEnergy Research 11, 239-248.
- Wen, J., Li, Z., Luo, N., Huang, M., Yang, R., Zeng, G., 2018. Investigating organic matter properties
- affecting the binding behavior of heavy metals in the rhizosphere of wetlands. Ecotoxicology
- and Environmental Safety 162, 184-191.
- West, T.O., Six, J., 2007. Considering the influence of sequestration duration and carbon saturation on
- 696 estimates of soil carbon capacity. Climatic Change 80, 25-41.
- Wilke, B.J., Snapp, S.S., 2008. Winter cover crops for local ecosystems: linking plant traits and
- 698 ecosystem function. Journal of the Science of Food and Agriculture 88, 551-557.
- Wu, X., Wu, L., Liu, Y., Zhang, P., Li, Q., Zhou, J., Hess, N.J., Hazen, T.C., Yang, W., Chakraborty, R.,
- 700 2018. Microbial interactions with dissolved organic matter drive carbon dynamics and

- community succession. Frontiers in Microbiology 9.
- Yan, J., Wang, L., Hu, Y., Tsang, Y.F., Zhang, Y., Wu, J., Fu, X., Sun, Y., 2018. Plant litter composition
- selects different soil microbial structures and in turn drives different litter decomposition pattern
- and soil carbon sequestration capability. Geoderma 319, 194-203.
- 705 Yan, L., Gao, Y., Wang, Y., Liu, Q., Sun, Z., Fu, B., Wen, X., Cui, Z., Wang, W., 2012. Diversity of a
- mesophilic lignocellulolytic microbial consortium which is useful for enhancement of biogas
- production. Bioresource Technology 111, 49-54.
- 708 Yang, X., Lan, Y., Meng, J., Chen, W., Huang, Y., Cheng, X., He, T., Cao, T., Liu, Z., Jiang, L., Gao,
- J., 2017. Effects of maize stover and its derived biochar on greenhouse gases emissions and
- 710 C-budget of brown earth in Northeast China. Environmental Science and Pollution Research 24,
- 711 8200-8209.
- Zhang, B., Penton, C.R., Xue, C., Quensen, J.F., Roley, S.S., Guo, J., Garoutte, A., Zheng, T., Tiedje,
- J.M., 2017. Soil depth and crop determinants of bacterial communities under ten biofuel
- 714 cropping systems. Soil Biology & Biochemistry 112, 140-152.
- Zhang, L., Wang, S., Xu, Y., Shi, Q., Zhao, H., Jiang, B., Yang, J., 2016. Molecular characterization of
- 716 lake sediment WEON by Fourier transform ion cyclotron resonance mass spectrometry and its
- 717 environmental implications. Water Research 106, 196-203.
- 718 Zheng, H., Chen, Y., Liu, Y., Zhang, J., Yang, W., Yang, L., Li, H., Wang, L., Wu, F., Guo, L., 2018.
- 719 Litter quality drives the differentiation of microbial communities in the litter horizon across an
- 720 alpine treeline ecotone in the eastern Tibetan Plateau. Scientific Reports 8, 10029.
- 721 Zhu, Y.G., Michael Miller, R., 2003. Carbon cycling by arbuscular mycorrhizal fungi in soil-plant

## 723 Tables

**Table 1** Total SOM contents in different amendments. Control, corn stover is removed after corn harvested. CS, corn stover retention. CC, both corn stover and cover crop are removed after corn harvested. CSCC, cover crop is removed but corn stover remains after corn harvested. Different letters within each column denote significant differences at P<0.05.

| Tuontun out | SOM content (%) |                 |  |  |  |
|-------------|-----------------|-----------------|--|--|--|
| Treatment   | February sample | November sample |  |  |  |
| control     | 2.12±0.33 a     | 1.84±0.29 a     |  |  |  |
| CS          | 2.32±0.60 a     | 2.10±0.21 a     |  |  |  |
| CC          | 2.48±0.37 a     | 2.52±0.13 a     |  |  |  |
| CSCC        | 2.64±0.54 a     | 2.60±0.43 a     |  |  |  |

**Table 2** The proportions of lipid groups in different treatments as determined by lipid analysis and 16S rRNA gene copy number determined by qPCR. Control, corn stover is removed after corn harvested. CS, corn stover retention. CC, both corn stover and cover crop are removed after corn harvested. CSCC, cover crop is removed but corn stover remains after corn harvested. Different letters within each column denote significant differences at P<0.05.

|         | TB       | AMF %  | Eukaryote | Fungi% | Actinobacteria % | F/B    | Fungi | Bacteria | gene                      |
|---------|----------|--------|-----------|--------|------------------|--------|-------|----------|---------------------------|
|         | (nmol/g) |        | %         | _      |                  |        | _     |          | copies*10 <sup>9</sup> /g |
| control | 69.57a   | 4.12b  | 1.32a     | 1.06a  | 18.08a           | 0.070a | 6.51a | 93.49a   | 5.92a                     |
| CS      | 64.60a   | 4.22ab | 1.62a     | 0.73a  | 17.24a           | 0.065a | 5.78a | 93.98a   | 3.67a                     |
| CC      | 69.68a   | 4.57a  | 1.36a     | 0.92a  | 17.72a           | 0.072a | 5.76a | 92.89a   | 4.30a                     |
| CSCC    | 64.41a   | 4.53a  | 1.38a     | 0.87a  | 17.58a           | 0.064a | 5.31a | 93.87a   | 4.15a                     |

TB, Total Biomass; AMF, Arbuscular Mycorrhiza Fungi; F/B, Fungi/Bacteria.

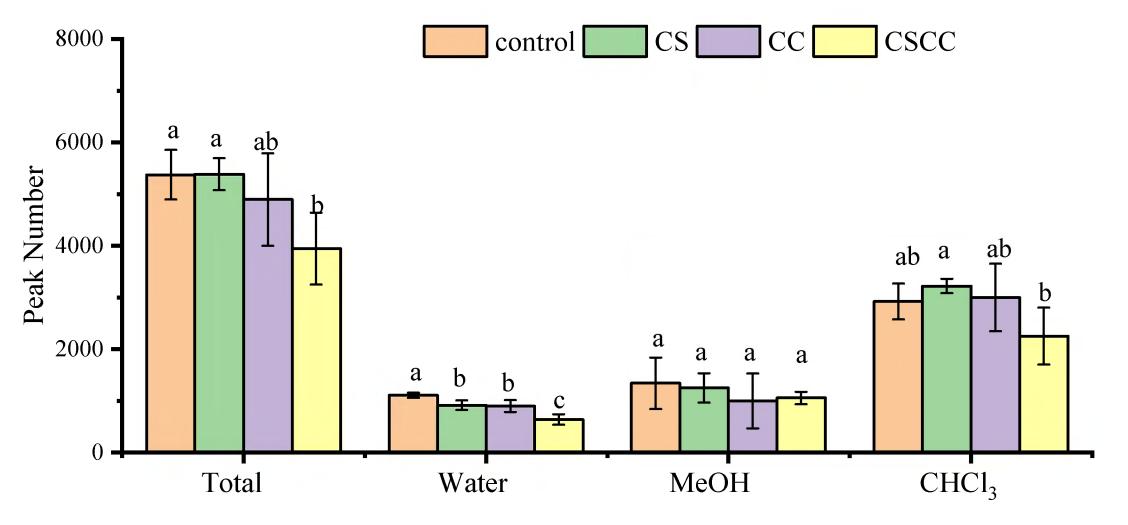
**Table 3** The relative abundances of the different lineages in soil bacterial community. Control, corn stover is removed after corn harvested. CS, corn stover retention. CC, both corn stover and cover crop are removed after corn harvested. CSCC, cover crop is removed but corn stover remains after corn harvested. Different letters within each column denote significant differences at P<0.05.

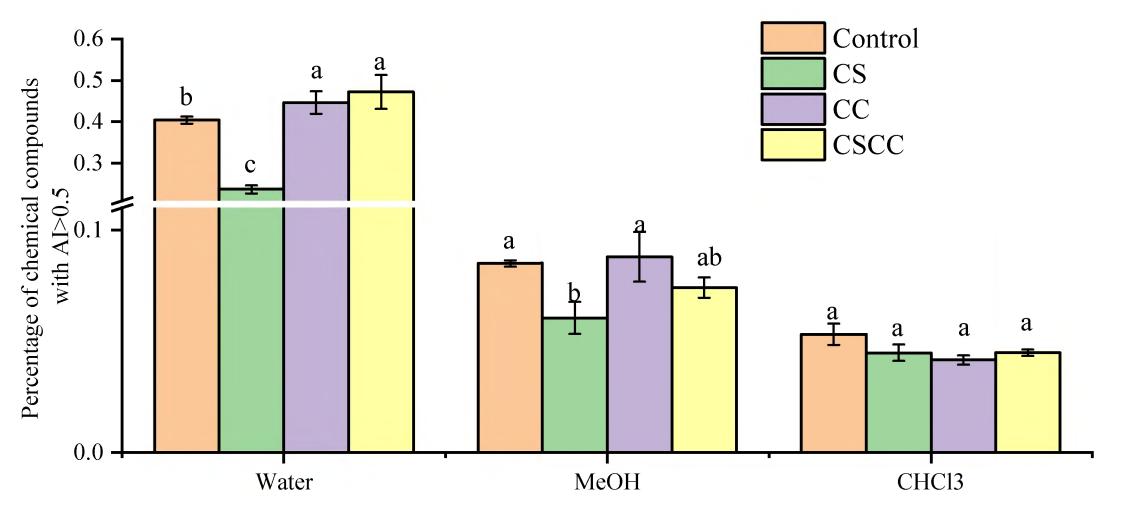
|         | Actinobacte | Acidobacteria | Clostridi | Nitrospirale    | Thermomicrobi | Sphingobacterii | Burkholderiales | Myxococcales( |
|---------|-------------|---------------|-----------|-----------------|---------------|-----------------|-----------------|---------------|
|         | ria(%)      | Gp6(%)        | a(%)      | s(%)            | a(%)          | a(%)            | (%)             | %)            |
| control | 13.15 ab    | 7.95a         | 0.21a     | 0. <b>56a</b> b | 0.02b         | 3.50b           | 2.00b           | 2.83b         |
| CS      | 10.47b      | 7.16a         | 0.06b     | 0.65a           | 0.01b         | 4.03b           | 1.62b           | 4.20a         |
| CC      | 14.82ab     | 8.32 a        | 0.09b     | 0.72a           | 0.05b         | 3.56 b          | 2.19b           | 3.05ab        |
| CSCC    | 16.52a      | 4.19b         | 0.11 в    | 0.32b           | 0.11a         | 7.48 a          | 3.67a           | 2.93ab        |

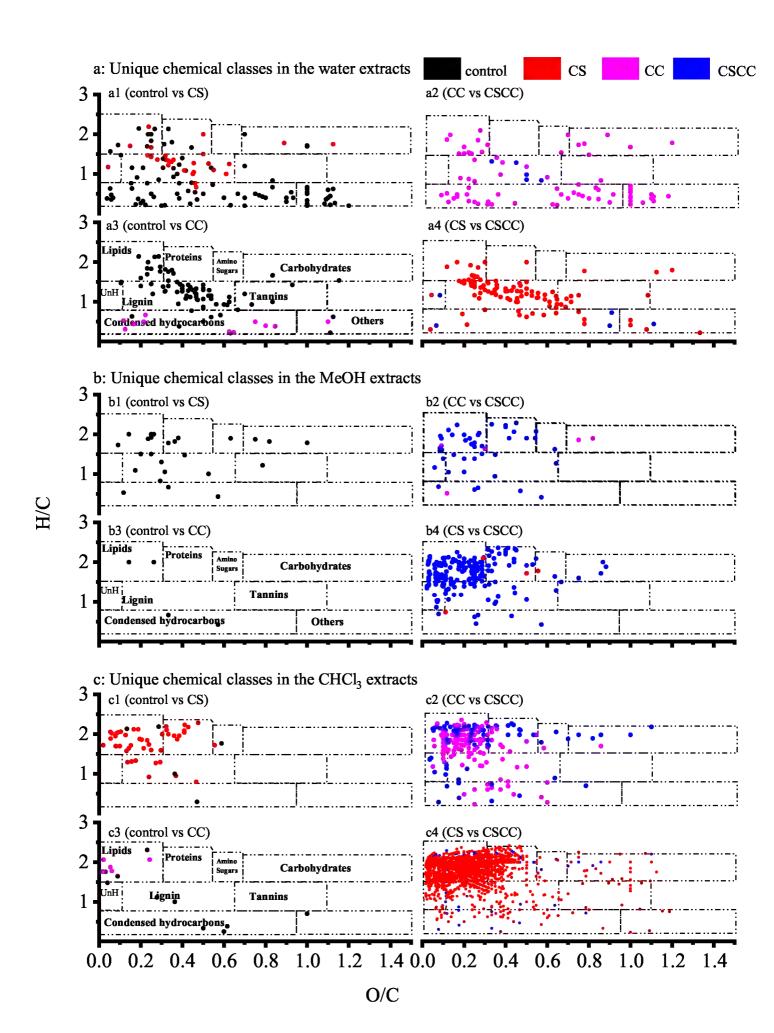
## Figure captions

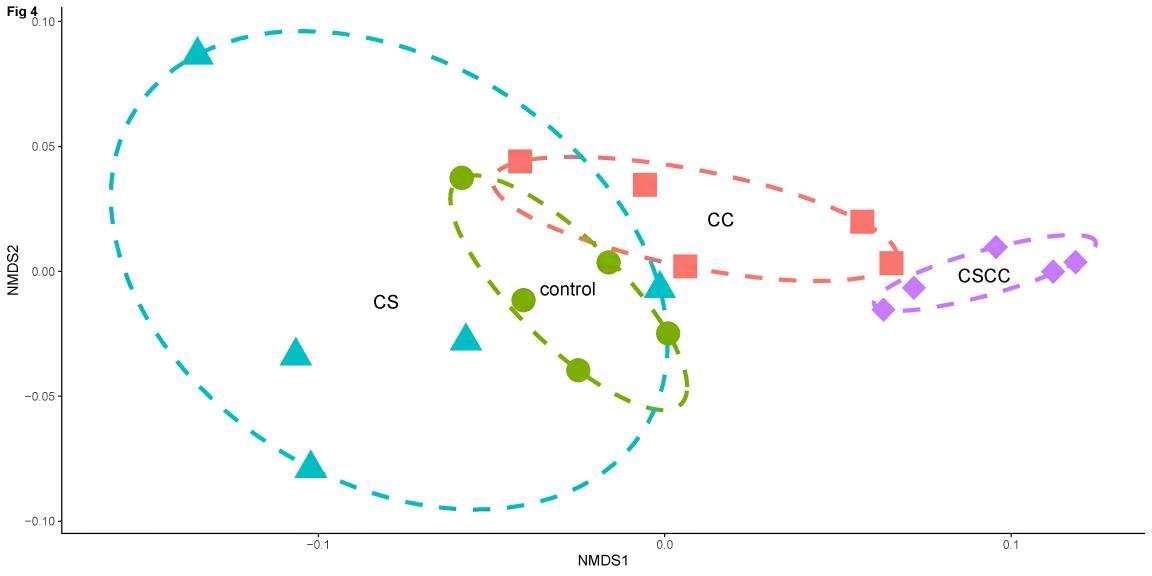
| 745 | Fig 1 Peak numbers in water, MeOH, and CHCl <sub>3</sub> extracts determined by           |
|-----|-------------------------------------------------------------------------------------------|
| 746 | ESI-FT-ICR-MS. Letters denote significant differences within each solvent                 |
| 747 | according to ANOVA with Tukey's post-hoc test. Control, corn stover is                    |
| 748 | removed after corn harvested. CS, corn stover retention. CC, both corn stover             |
| 749 | and cover crop are removed after corn harvested. CSCC, cover crop is removed              |
| 750 | but corn stover remains after corn harvested.                                             |
| 751 | Fig 2 Percentages of SOM biochemical classes with AI >0.5 in water, MeOH, and             |
| 752 | CHCl <sub>3</sub> extracts analyzed by FT-ICR-MS. Letters denote significant differences  |
| 753 | within each solvent according to ANOVA with Tukey's post-hoc test.                        |
| 754 | Fig 3 Pairwise comparisons showing the unique compounds of SOM in two contrasting         |
| 755 | treatments extracted by water (a), MeOH (b), and CHCl <sub>3</sub> (c) using van Krevelen |
| 756 | diagrams. Colors indicate in which treatment that compound is unique to the               |
| 757 | other. Subplots of a1, b1, c1 indicate the pairwise comparison between CS and             |
| 758 | Control. Subplots of a2, b2, c2 indicate the pairwise comparison between CSCC             |
| 759 | and CC. Subplots of a3, b3, c3 indicate the pairwise comparison between CC                |
| 760 | and Control. Subplots of a4, b4, c4 indicate the pairwise comparison between              |
| 761 | CSCC and CS.                                                                              |
| 762 | Fig 4 NMDS plot from the SOM chemical classes detected by FT-ICR-MS                       |
| 763 | Fig 5 The stack column chart of the relative abundances of dominant bacterial phyla       |
| 764 | derived from 16S rRNA gene sequencing                                                     |

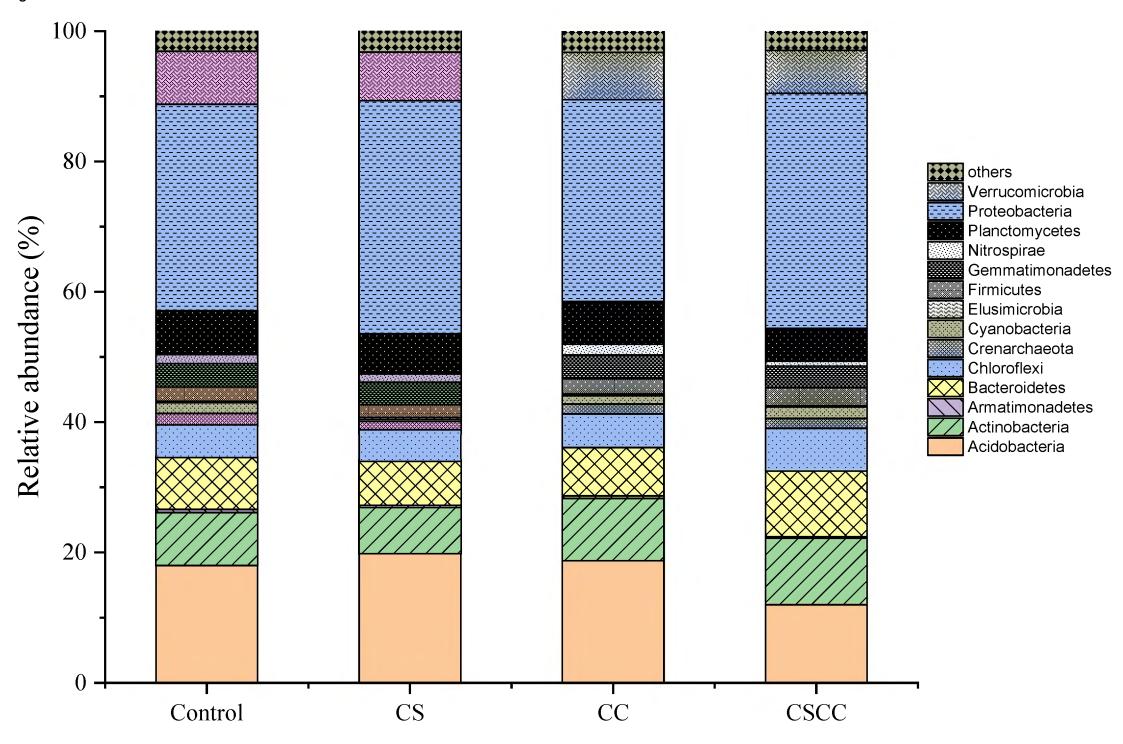
**Fig 6** Multivariate analysis of soil microbial community and SOM compounds using redundancy analysis (RDA). Ordinations are based on Bray-Curtis, which utilizes relative OTU abundance information of soil bacterial community. SOM biochemical classes are fit to the ordinations.

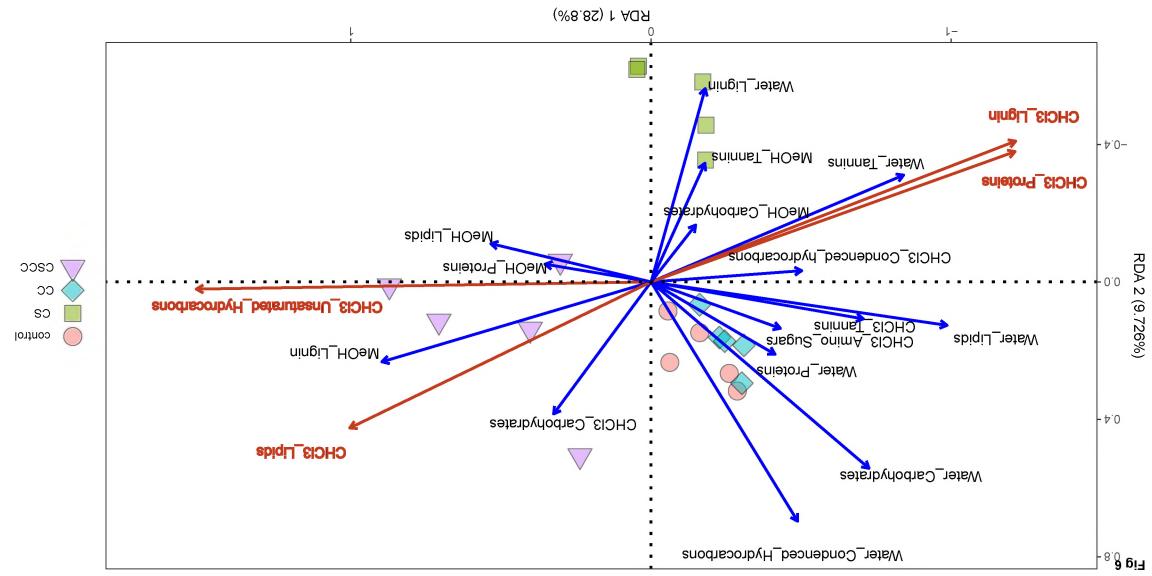

Fig S1 The relative abundances of SOM compounds sequentially extracted by (a) water, (b) MeOH, and (c) CHCl<sub>3</sub> determined by FT-ICR-MS. Control, corn stover is removed after corn harvested. CS, corn stover retention. CC, both corn stover and cover crop are removed after corn harvested. CSCC, cover crop is removed but corn stover remains after corn harvested.


**Fig S2** Venn diagrams comparing the unique and common peaks extracted by different solvents (a) water (b) MeOH (c) CHCl<sub>3</sub>. Control, corn stover is removed after corn harvested. CS, corn stover retention. CC, both corn stover and cover crop are removed after corn harvested. CSCC, cover crop is removed but corn stover remains after corn harvested.


Fig S3 Percentages of unique compounds extracted by (a) water (b) MeOH (c) CHCl<sub>3</sub> in pairwise comparisons derived from Fig 3. Control, corn stover is removed after corn harvested. CS, corn stover retention. CC, both corn stover and cover crop are removed after corn harvested. CSCC, cover crop is removed but corn stover remains after corn harvested.


Fig S4 NMDS plot of soil bacterial community at the OTU level in the different
treatments. Control, corn stover is removed after corn harvested. CS, corn stover
retention. CC, both corn stover and cover crop are removed after corn harvested.


CSCC, cover crop is removed but corn stover remains after corn harvested.














\*Declaration of Interest Statement

| Declaration of interests                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| oxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. |
| $\Box$ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:                                      |
|                                                                                                                                                                                    |