Science of Computer Programming 194 (2020) 102440

-
cience of Computer

Contents lists available at ScienceDirect

Science of Computer Programming :

www.elsevier.com/locate/scico i

Check for
updates

Programming language foundations in Agda )

Wen Kokke ?, Jeremy G. Siek”, Philip Wadler ®*

2 University of Edinburgh, 10 Crichton Street, EH8 9AB, Edinburgh, United Kingdom of Great Britain and Northern Ireland
b Indiana University, 700 N Woodlawn Ave, Bloomington, IN 47408, USA

ARTICLE INFO ABSTRACT
Article history: One of the leading textbooks for formal methods is Software Foundations (SF), written by
Received 22 July 2019 Benjamin Pierce in collaboration with others, and based on Coq. After five years using

Received in revised form 4 March 2020
Accepted 6 March 2020
Available online 24 March 2020

SF in the classroom, we came to the conclusion that Coq is not the best vehicle for this
purpose, as too much of the course needs to focus on learning tactics for proof derivation,
to the cost of learning programming language theory. Accordingly, we have written a new
textbook, Programming Language Foundations in Agda (PLFA). PLFA covers much of the same

Keywords:

Agda ground as SF, although it is not a slavish imitation.

Coq What did we learn from writing PLFA? First, that it is possible. One might expect that
Lambda calculus without proof tactics that the proofs become too long, but in fact proofs in PLFA are
Dependent types about the same length as those in SE. Proofs in Coq require an interactive environment

to be understood, while proofs in Agda can be read on the page. Second, that constructive
proofs of preservation and progress give immediate rise to a prototype evaluator. This fact
is obvious in retrospect but it is not exploited in SF (which instead provides a separate
normalise tactic) nor can we find it in the literature. Third, that using extrinsically-typed
terms is far less perspicuous than using intrinsically-typed terms. SF uses the former
presentation, while PLFA presents both; the former uses about 1.6 as many lines of Agda
code as the latter, roughly the golden ratio.

The textbook is written as a literate Agda script, and can be found here:

http://plfa.inf.ed.ac.uk

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The most profound connection between logic and computation is a pun. The doctrine of Propositions as Types asserts
that a certain kind of formal structure may be read in two ways: either as a proposition in logic or as a type in computing.
Further, a related structure may be read as either the proof of the proposition or as a programme of the corresponding type.
Further still, simplification of proofs corresponds to evaluation of programs.

Accordingly, the title of this paper, and the corresponding textbook, Programming Language Foundations in Agda (hence,
PLFA) also has two readings. It may be parsed as “(Programming Language) Foundations in Agda” or “Programming (Lan-
guage Foundations) in Agda”—specifications in the proof assistant Agda both describe programming languages and are
themselves programmes.
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Since 2013, one of us (Philip) has taught a course on Types and Semantics for Programming Languages to fourth-year
undergraduates and masters students at the University of Edinburgh. An earlier version of that course was based on Types
and Programming Languages by Pierce [33], but this version was taught from its successor, Software Foundations (hence, SF)
by Pierce et al. [35], which is based on the proof assistance Coq [21]. We are convinced by the claim of Pierce [34], made
in his ICFP Keynote Lambda, The Ultimate TA, that basing a course around a proof assistant aids learning.

However, after five years of experience, Philip came to the conclusion that Coq is not the best vehicle. Too much of the
course needs to focus on learning tactics for proof derivation, to the cost of learning the fundamentals of programming
language theory. Every concept has to be learned twice: e.g., both the product data type, and the corresponding tactics for
introduction and elimination of conjunctions. The rules Coq applies to generate induction hypotheses can sometimes seem
mysterious. While the notation construct permits pleasingly flexible syntax, it can be confusing that the same concept
must always be given two names, e.g., both subst N x Mand N [x := M]. Names of tactics are sometimes short and
sometimes long; naming conventions in the standard library can be wildly inconsistent. Propositions as types as a foundation
of proof is present but hidden.

We found ourselves keen to recast the course in Agda [9]. In Agda, there is no longer any need to learn about tactics:
there is just dependently-typed programming, plain and simple. Introduction is always by a constructor, elimination is
always by pattern matching. Induction is no longer a mysterious separate concept, but corresponds to the familiar notion of

recursion. Mixfix syntax is flexible while using just one name for each concept, e.g., substitution is [ :=_]. The standard
library is not perfect, but there is a fair attempt at consistency. Propositions as types as a foundation of proof is on proud
display.

Alas, there is no textbook for programming language theory in Agda. Verified Functional Programming in Agda by [42] covers
related ground, but focuses more on programming with dependent types than on the theory of programming languages.

The original goal was to simply adapt Software Foundations, maintaining the same text but transposing the code from Coq
to Agda. But it quickly became clear that after five years in the classroom Philip had his own ideas about how to present
the material. They say you should never write a book unless you cannot not write the book, and Philip soon found that this
was a book he could not not write.

Philip considered himself fortunate that his student, Wen, was keen to help. She guided Philip as a newbie to Agda and
provided an infrastructure for the book that we found easy to use and produces pages that are a pleasure to view. The bulk
of the first draft of the book was written January-June 2018, while Philip was on sabbatical in Rio de Janeiro. After the first
draft was published, Jeremy wrote eight additional chapters, covering aspects of operational and denotational semantics.

This paper is the journal version of Wadler [43]. It adds two new authors, summaries of Jeremy’'s new chapters, and
sections on experience with teaching and software used to publish the book. The original text often used first person,
which here is replaced by reference to Philip.

This paper is a personal reflection, summarising what was learned in the course of writing the textbook. Some of it reit-
erates advice that is well-known to some members of the dependently-typed programming community, but which deserves
to be better known. The paper is organised as follows.

Section 2 outlines the topics covered in PLFA, and notes what is omitted.

Section 3 compares Agda and Coq as vehicles for pedagogy. Before writing the book, it was not obvious that it was even
possible; conceivably, without tactics some of the proofs might balloon in size. In fact, it turns out that for the results in
PLFA and SF, the proofs are of roughly comparable size, and (in our opinion) the proofs in PLFA are more readable and have
a pleasing visual structure.

Section 4 observes that constructive proofs of progress and preservation combine trivially to produce a constructive
evaluator for terms. This idea is obvious once you have seen it, yet we cannot find it described in the literature.

Section 5 claims that extrinsically-typed terms should be avoided in favour of intrisicly-typed terms. PLFA develops
lambda calculus with both, permitting a comparison. It turns out the former is less powerful—it supports substitution only
for closed terms—but significantly longer—about 1.6 times as many lines of code, roughly the golden ratio.

Section 6 describes experience teaching from the textbook. The point of proof is perfection, and it turns out that an
online final examination with access to a proof assistant can lead to flawless student performance.

Section 7 outlines our experience publishing the book as open source in GitHub. We were surprised at how effective this
was at eliciting community participation. A large number of people have submitted pull requests to improve the book.

We argue that Agda has advantages over Coq for pedagogic purposes. Our focus is purely on the case of a proof assistant
as an aid to learning formal semantics using examples of modest size. We admit up front that there are many tasks for which
Coq is better suited than Agda. A proof assistant that supports tactics, such as Coq or Isabelle, is essential for formalising
serious mathematics, such as the Four-Colour Theorem [17], the Odd-Order Theorem [18], or Kepler's Conjecture [19], or for
establishing correctness of software at scale, as with the CompCert compiler [27,22] or the SEL4 operating system [25,30].

2. Scope

PLFA is aimed at students in the last year of an undergraduate honours programme or the first year of a master or
doctorate degree. It aims to teach the fundamentals of semantics of programming languages, with simply-typed and untyped
lambda calculi as the central examples. The textbook is written as a literate script in Agda. As with SF, the hope is that using
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a proof assistant will make the development more concrete and accessible to students, and give them rapid feedback to find
and correct misapprehensions.

The book is broken into three parts. The first part, Logical Foundations, develops the needed formalisms. The second
part, Programming Language Foundations, introduces basic methods of operational semantics. The third part, Denotational
Semantics, introduces a simple model of the lambda calculus and its properties. (SF is divided into books, the first two of
which have the same names as the first two parts of PLFA, and cover similar material.) Part I and Part Il up to Untyped
were written by Philip, Part I from Substitution and Part Il were written by Jeremy.

Each chapter has both a one-word name and a title, the one-word name being both its module name and its file name.

2.1. Part I, logical foundations

Naturals: natural numbers Introduces the inductive definition of natural numbers in terms of zero and successor, and re-
cursive definitions of addition, multiplication, and monus. Emphasis is put on how a tiny description can specify an infinite
domain.

Induction: proof by induction Introduces induction to prove properties such as associativity and commutativity of addition.
Also introduces dependent functions to express universal quantification. Emphasis is put on the correspondence between
induction and recursion.

Relations: inductive definitions of relations Introduces inductive definitions of less than or equal on natural numbers, and odd
and even natural numbers. Proves properties such as reflexivity, transitivity, and anti-symmetry, and that the sum of two
odd numbers is even. Emphasis is put on proof by induction over evidence that a relation holds.

Equality: equality and equational reasoning Gives Martin Lof's and Leibniz’s definitions of equality, and proves them equiva-
lent, and defines the notation for equational reasoning used throughout the book.

Isomorphism: isomorphism and embedding Introduces isomorphism, which plays an important role in the subsequent devel-
opment. Also introduces dependent records, lambda terms, and extensionality.

Connectives: conjunction, disjunction, and implication Introduces product, sum, unit, empty, and function types, and their
interpretations as connectives of logic under Propositions as Types. Emphasis is put on the analogy between these types
and product, sum, unit, zero, and exponential on naturals; e.g., product of numbers is commutative and product of types is
commutative up to isomorphism.

Negation: negation, with intuitionistic and classical logic Introduces logical negation as a function into the empty type, and
explains the difference between classical and intuitionistic logic.

Quantifiers: universals and existentials Recaps universal quantifiers and their correspondence to dependent functions, and
introduces existential quantifiers and their correspondence to dependent products.

Decidable: Booleans and decision procedures Introduces booleans and decidable types, and why the latter is to be preferred
to the former.

Lists: lists and higher-order functions Gives two different definitions of reverse and proves them equivalent. Introduces map
and fold and their properties, including that fold left and right are equivalent in a monoid. Introduces predicates that hold
for all or any member of a list, with membership as a specialisation of the latter.

2.2. Part II, programming language foundations

Lambda: introduction to lambda calculus Introduces lambda calculus, using a representation with named variables and ex-
trinsically typed. The language used is PCF [36], with variables, lambda abstraction, application, zero, successor, case over
naturals, and fixpoint. Reduction is call-by-value and restricted to closed terms.

Properties: progress and preservation Proves key properties of simply-typed lambda calculus, including progress and preser-
vation. Progress and preservation are combined to yield an evaluator.

DeBruijn: intrinsically-typed de Bruijn representation Introduces de Bruijn indices and the intrinsically-typed representation.
Emphasis is put on the structural similarity between a term and its corresponding type derivation; in particular, de Bruijn
indices correspond to the judgment that a variable is well-typed under a given environment.
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More: more constructs of simply-typed lambda calculus Introduces product, sum, unit, and empty types; and explains lists and
let bindings. Typing and reduction rules are given informally; a few are then give formally, and the rest are left as exercises
for the reader. The intrinsically-typed representation is used.

Bisimulation: relating reduction systems Shows how to translate the language with “let” terms to the language without,
representing a let as an application of an abstraction, and shows how to relate the source and target languages with a
bisimulation.

Inference: bidirectional type inference Introduces bidirectional type inference, and applies it to convert from a representation
with named variables and extrinsically typed to a representation with de Bruijn indices and intrinsically typed. Bidirectional
type inference is shown to be both sound and complete.

Untyped: untyped calculus with full normalisation As a variation on earlier themes, discusses an untyped (but intrinsically
scoped) lambda calculus. Reduction is call-by-name over open terms, with full normalisation (including reduction under
lambda terms). Emphasis is put on the correspondence between the structure of a term and evidence that it is in normal
form.

Substitution: in the untyped lambda calculus Delves deeper into the properties of simultaneous substitution, establishing the
equations of the o algebra of Abadi et al. [1]. These equations enable a straightforward proof of the Substitution Lemma [5],
which is needed in the next chapter.

Confluence: of the untyped lambda calculus Presents a proof of the Church-Rosser theorem based on the classic idea of parallel
reduction due to Tait and Martin-L6f. The proof in Agda is streamlined by the use of ideas from Schdfer et al. [40] and
Pfenning [32].

Big-step: evaluation for call-by-name Introduces the notion of big-step evaluation, written y =M |} V, to develop a deter-
ministic call-by-name reduction strategy. The main result of this chapter is a proof that big-step evaluation implies the
existence of a reduction sequence that terminates with a lambda abstraction.

2.3. Part III, denotational semantics

Denotational: semantics of the untyped lambda calculus The early denotational semantics of the lambda calculus based on
graph models [41,14,37] and filter models [6] were particularly simple and elegant: a function is modelled as a lookup table.
This chapter presents such a semantics using a big-step notation that is approachable to readers familiar with operational
semantics, writing y =M | d for the evaluation of a term M to denotation d in environment y.

Compositional: the denotational semantics is compositional The hallmark of denotational semantics is that they are compo-
sitional: the meaning of each language form is a function of the meanings of its parts. We define two functions, named
curry and apply that serve this purpose for lambda abstraction and application. The results in this chapter include con-
gruences for curry and apply and the compositionality property for the denotational semantics. The chapter concludes
with a functional definition of the denotational semantics and a proof that it is equivalent to the big-step version.

Soundness: of reduction with respect to denotational semantics Reduction implies denotational equality. We prove each direc-
tion of the equality, first showing the reduction preserves denotations (subject reduction), and then showing that reduction
reflects denotations (subject expansion). The first proof is similar to the type preservation proofs in Part II. The second goes
in reverse, showing that if M — N and y =N | d, then y - M | d.

Adequacy: of denotational semantics with respect to reduction If a term is denotationally equal to a lambda expression, then
it reduces to a lambda expression. The main lemma shows that if a term’s denotation is functional, i.e., y =M | (d — d'),
then M terminates according to the call-by-name big-step semantics, i.e., ¥’ =M |l V. A logical relation V is used to relate
denotations and values (i.e. closures). The implication from the big-step semantics to reduction is proved in the Big-step
chapter of Part II.

Contextual equivalence: is implied by denotational equality The main criteria for behaviour-preserving code transformation
(such as compiler optimization or programmer refactoring) is contextual equivalence. Two terms are contextually equivalent
when they can both be placed into an arbitrary context (a program with a hole) and the resulting programs behave the same
(e.g., they both terminate or they both diverge). This chapter ties together the previous results (Compositionality, Soundness,
and Adequacy) to show that denotational equality implies contextual equivalence. Thus, it is safe to use denotational equality
to justify code transformations.
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2.4. Discussion

PLFA and SF differ in several particulars. PLFA begins with a computationally complete language, PCF, while SF begins
with a minimal language, simply-typed lambda calculus with booleans. We chose PCF because it lets us use the same
examples, based on addition and multiplication, for the early chapters of both Part I and Part II. PLFA does not include type
annotations in terms, and uses bidirectional type inference, while SF has terms with unique types and uses type checking.
SF also covers a simple imperative language with Hoare logic, and for lambda calculus covers subtyping, record types,
mutable references, and normalisation—none of which are treated by PLFA. PLFA covers an intrinsically-typed de Bruijn
representation, bidirectional type inference, bisimulation, and an untyped call-by-name language with full normalisation—
none of which are treated by SF. The new part on Denotational Semantics also covers material not treated by SF.

SF has a third volume, written by Andrew Appel, on Verified Functional Algorithms. We are not sufficiently familiar with
that volume to have a view on whether it would be easy or hard to cover that material in Agda. And SF recently added a
fourth volume on random testing of Coq specifications using QuickChick. There is currently no tool equivalent to QuickChick
for Agda.

There is more material that would be desirable to include in PLFA which was not due to limits of time, including mutable
references, System F, logical relations for parametricity, and pure type systems. We would especially like to include pure
type systems as they provide the readers with a formal model close to the dependent types used in the book. Our attempts
so far to formalise pure type systems have proved challenging, to say the least.

3. Proofs in Agda and Coq

The introduction listed several reasons for preferring Agda over Coq. But Coq tactics enable more compact proofs. Would
it be possible for PLFA to cover the same material as SF, or would the proofs balloon to unmanageable size?

As an experiment, Philip first rewrote SF's development of simply-typed lambda calculus (SF, Chapters Stlc and StlcProp)
in Agda. He was a newbie to Agda, and translating the entire development, sticking as closely as possible to the development
in SF, took about two days. We were pleased to discover that the proofs remained about the same size.

There was also a pleasing surprise regarding the structure of the proofs. While most proofs in both SF and PLFA are
carried out by induction over the evidence that a term is well typed, in SF the central proof, that substitution preserves
types, is carried out by induction on terms for a technical reason (the context is extended by a variable binding, and hence
not sufficiently “generic” to work well with Coq’s induction tactic). In Agda, we had no trouble formulating the same proof
over evidence that the term is well typed, and didn’t even notice SF's description of the issue until we were done.

The rest of the book was relatively easy to complete. The closest to an issue with proof size arose when proving that
reduction is deterministic. There are 18 cases, one case per line. Ten of the cases deal with the situation where there are
potentially two different reductions; each case is trivially shown to be impossible. Five of the ten cases are redundant,
as they just involve switching the order of the arguments. We had to copy the cases unsuitably permuted. It would be
preferable to reinvoke the proof on switched arguments, but this would not pass Agda’s termination checker since swapping
the arguments doesn’t yield a recursive call on structurally smaller arguments. The proof of determinism in SF (Chapter
Norm) is for a different language of comparable size, and has a comparable size.

SF covers an imperative language with Hoare logic, culminating in code that takes an imperative programme suitably
decorated with preconditions and postconditions and generates the necessary verification conditions. The conditions are
then verified by a custom tactic, where any questions of arithmetic are resolved by the “omega” tactic invoking a decision
procedure. The entire exercise would be easy to repeat in Agda, save for the last step, as Agda does not offer support
for proof automation out of the box. It is certainly possible to implement proof automation in Agda—see, e.g., the auto
tactic by Kokke and Swierstra [26], and the collection of tactics in UIf Norell's agda-prelude.! The standard library
comes equipped with solvers for equations on monoids and rings,> and a much improved solver for equalities on rings
was recently contributed by Kidney [23]. We suspect that, while Agda’s automation would be up to verifying the generated
conditions, some effort would be require to implement the required custom tactic, and a section would need to be added to
the book to cover proof automation. For the time being, we have decided to omit Hoare logic in order to focus on lambda
calculus.

To give a flavour of how the texts compare, we show the proof of progress for simply-typed lambda calculus from both
texts. Figs. 1 and 2 are taken from PLFA, Chapter Properties, while Figs. 3 and 4 are taken from SF, Chapter StlcProp. Both
texts are intended to be read online, and the figures show screengrabs of the text as displayed in a browser.

PLFA puts the formal statements first, followed by informal explanation. PLFA introduces an auxiliary relation Progress
to capture progress; an exercise (not shown) asks the reader to show it isomorphic to the usual formulation with a disjunc-
tion and an existential. Layout is used to present the auxiliary relation in inference rule form. In Agda, any line beginning
with two dashes is treated as a comment, making it easy to use a line of dashes to separate hypotheses from conclusion
in inference rules. The proof of proposition progress (the different case making it a distinct name) is layed out care-
fully. The neat indented structure emphasises the case analysis, and all right-hand sides line-up in the same column. Our

T https://github.com/UlfNorell/agda-prelude.
2 https://agda.github.io/agda-stdlib/Algebra.Solver.Ring.html.
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Progress

We would like to show that every term is either a value or takes a reduction step. However, this is not
true in general. The term

‘zero - ‘suc 'zero

is neither a value nor can take a reduction step. Andif s ¢ '~ = ‘'~ then the term

s - ‘zero

cannot reduce because we do not know which function is bound to the free variable s . The first of
those terms is ill-typed, and the second has a free variable. Every term that is well-typed and closed
has the desired property.

Progress: If o + M ¢ A then either M is avalue or thereisan ~ suchthat v — n .

To formulate this property, we first introduce a relation that captures what it means for aterm u to
make progess.

data Progress (M : Term) : Set where

step : V {N}
- M — N

- Progress M

done :
Value M

- Progress M

Aterm M makes progress if either it can take a step, meaning there exists aterm ~ such that v —
~ , or if it is done, meaning that u is a value.

Fig. 1. PLFA, Progress (1/2).

hope as authors is that students read the formal proof first, and use it as a tabular guide to the informal explanation that
follows.

SF puts the informal explanation first, followed by the formal proof. The text hides the formal proof script under an icon;
the figure shows what appears when the icon is expanded. As teachers, we were aware that students might skip the formal
proof on a first reading, and we have to hope the students return to it and step through it with an interactive tool in order
to make it intelligible. We expect the students skipped over many such proofs. This particular proof forms the basis for a
question on several exams, so we expect most students will look at this one if not all the others.

(For those wanting more detail: In PLFA, variables and abstractions and applications in the object language are written
‘x and 2 x = N and L - M. The corresponding typing rules are referred to by ‘() and Fx FN and +L - M, where FL, FM,
N are the proofs that terms I, M, N are well typed, and ‘() denotes that there cannot be evidence that a free variable is
well typed in the empty context. It was decided to overload infix dot for readability, but not other symbols. In Agda, as in
Lisp, almost any sequence of characters is a name, with spaces essential for separation.)

(In SF, variables and abstractions and applications in the object language are written tvar x and tabs x t and
tapp t1 ta. The corresponding typing rules are referred to as T Var and T_Abs and T_App.)

Both Coq and Agda support interactive proof. Interaction in Coq is supported by Proof General, based on Emacs, or by
CoqIDE, which provides an interactive development environment of a sort familiar to most students. Interaction in Agda is
supported by an Emacs mode.

In Coq, interaction consists of stepping through a proof script, at each point examining the current goal and the variables
in scope, and executing a new command in the script. Tactics are a whole sublanguage, which must be learned in addition
to the language for expressing specifications. There are many tactics one can invoke in the script at each point; one menu
in CoqIDE lists about one hundred tactics one might invoke, some in alphabetic submenus. A Coq script presents the
specification proved and the tactics executed. Interaction is recorded in a script, which the students may step through at
their leisure. SF contains some prose descriptions of stepping through scripts, but mainly contains scripts that students are
encouraged to step through on their own.

In Agda, interaction consists of writing code with holes, at each point examining the current goal and the variables in
scope, and typing code or executing an Emacs command. The number of commands available is much smaller than with
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If a term is well-typed in the empty context then it satisfies progress.

progress : V {M A}
-2 FM:A
- Progress M

progress (F ())

progress (FA FN) = done V-A
progress (FL - FM) with progress kL
| step L—L’ = step (&--1 L—L’)
| done VL with progress FM
| step M—M’ = step (&--2 VL M—M’)
| done VM with canonical L VL
| &= = step (B-A VM)
progress tzero = done V-zero

progress (Fsuc FM) with progress FM

| step M—M’ = step (&-suc M—M’)
| done VM = done (V-suc VM)
progress (lcase FL FM FN) with progress kL
| step L—L’ = step (&-case L—L’)
| done VL with canonical L VL
| C-zero = step B-zero
| C-suc CL = step (B-suc (value CL))
progress (Fp M) = step B-p

We induct on the evidence that M is well-typed. Let’s unpack the first three cases.
* The term cannot be a variable, since no variable is well typed in the empty context.
¢ |f the term is a lambda abstraction then it is a value.

¢ |f the term is an application . - M, recursively apply progress to the derivation that © is well-
typed.

o |f the term steps, we have evidence that . — 1’ , whichby z-.1 means that our original
termstepsto 1’ - M

o If the term is done, we have evidence that 1 is a value. Recursively apply progress to the
derivation that v is well-typed.

= |f the term steps, we have evidence that m — m’ , which by z-.2 means that our
original term stepsto . - M’ . Step z-.2 applies only if we have evidence that & isa
value, but progress on that subterm has already supplied the required evidence.

= If the term is done, we have evidence that u is a value. We apply the canonical forms
lemma to the evidence that © is well typed and a value, which since we are in an
application leads to the conclusion that . must be a lambda abstraction. We also have
evidence that v is a value, so our original term steps by -z .

The remaining cases are similar. If by induction we have a step case we apply a ¢ rule, and if we
have a done case then either we have a value or apply a g rule. For fixpoint, no induction is required
as the g rule applies immediately.

Fig. 2. PLFA, Progress (2/2).

Coq, the most important ones being to show the type of the hole and the types of the variables in scope; to typecheck the
code; to do a case analysis on a given variable; or to search for a way to fill in the hole with constructors or variables in
scope. An Agda proof consists of typed code. The interaction is not recorded. Students may recreate it by commenting out
bits of code and introducing a hole in their place. PLFA contains some prose descriptions of interactively building code, but
mainly contains code that students can read. They may introduce holes to interact with the code, but we expect that will
be rare.

SF encourages students to interact with all the scripts in the text. Trying to understand a Coq proof script without
running it interactively is a bit like understanding a chess game by reading through the moves without benefit of a board,
keeping it all in your head. In contrast, PLFA provides code that students can read. Understanding the code often requires
working out the types, but (unlike executing a Coq proof script) this is often easy to do in your head; when it is not easy,
students still have the option of interaction.
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The progress theorem tells us that closed, well-typed terms are not stuck: either a well-typed term is a value, or it can
take a reduction step. The proof is a relatively straightforward extension of the progress proof we saw in the Types
chapter. We'll give the proof in English first, then the formal version.

Theorem progress : V t T,
empty |- t €T »
value t v I t', t ==>t'.
Proof: By induction on the derivation of |-t e T.
¢ The last rule of the derivation cannot be T_Var, since a variable is never well typed in an empty context.
e TheT_True, T False, and T_Abs cases are trivial, since in each of these cases we can see by inspecting the
rule that t is a value.
 If the last rule of the derivation is T_App, then t has the form t; t, for some t; and t,, where |- t; € T, > T
and |- t, € T, for some type T,. By the induction hypothesis, either t, is a value or it can take a reduction
step.
o If ty is avalue, then consider t,, which by the other induction hypothesis must also either be a value or
take a step.
= Suppose t, is a value. Since t, is a value with an arrow type, it must be a lambda abstraction;

hence t; t, can take a step by ST_AppAbs.
= Otherwise, t, can take a step, and hence so can t; t, by ST_App2.
o If t; can take a step, then so can t; t, by ST_App1.

¢ Ifthe last rule of the derivation is T_If,thent=if t; thent, else t3, where t; has type Bool. By the IH,

t, either is a value or takes a step.

o Ift; is avalue, then since it has type Bool it must be either true or false. If itis true, then t steps to

t,; otherwise it steps to t3.

o Otherwise, t, takes a step, and therefore so does t (by ST_I£).

Fig. 3. SF, Progress (1/2).

While students are keen to interact to create code, we have found they are reluctant to interact to understand code
created by others. For this reason, we suspect this may make Agda a more suitable vehicle for teaching. Nate Foster suggests
this hypothesis is ripe to be tested empirically, perhaps using techniques similar to those of Danas et al. [13].

Neat layout of definitions such as that in Fig. 2 in Emacs requires a monospaced font supporting all the necessary
characters. Securing one has proved tricky. As of this writing, we use FreeMono, but it lacks a few characters (8 and [J)
which are loaded from fonts with a different width. Long arrows are necessarily more than a single character wide. Instead
of the unicode long arrow, we compose reduction —> from an em dash — and an ordinary arrow —. Similarly for reflexive
and transitive closure —».

4. Progress + Preservation = Evaluation

A standard approach to type soundness used by many texts, including SF and PLFA, is to prove progress and preservation,
as first suggested by Wright and Felleisen [44].

Theorem 1 (Progress). Given term M and type A such that # - M : A then either M is a value or M —> N for some term N.
Theorem 2 (Preservation). Given terms M and N and type A such that - M : Aand M — N, then J + N : A.

A consequence is that when a term reduces to a value it retains the same type. Further, well-typed terms don’t get
stuck: that is, unable to reduce further but not yet reduced to a value. The formulation neatly accommodates the case of
non-terminating reductions that never reach a value.

One useful by-product of the formal specification of a programming language may be a prototype implementation of
that language. For instance, given a language specified by a reduction relation, such as lambda calculus, the prototype might
accept a term and apply reductions to reduce it to a value. Typically, one might go to some extra work to create such a
prototype. For instance, SF introduces a normalize tactic for this purpose. Some formal methods frameworks, such as
Redex [15] and K [39], advertise as one of their advantages that they can generate a prototype from descriptions of the
reduction rules.
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Proof with eauto.
intros t T Ht.
remember (@empty ty) as Gamma.
induction Ht; subst Gamma...
- (* T Var *)
(* contradictory: variables cannot be typed in an
empty context *)
inversion H.

= (* T_App *)
(* £t = t; ta. Proceed by cases on whether t; is a
value or steps... *)

right. destruct IHHtl...
+ (* t; is a value *)
destruct IHHt2...
* (* t; is also a value *)
assert (3 xg tg, t; = tabs xg T11 tg).
eapply canonical_forms_fun; eauto.
destruct H; as [Xp [to Heq]]. subst.

3 ([Xp:=ta]ltg)...

* (* t; steps *)
inversion Hy as [ty' Hstp]. 3 (tapp t; t2')...

+ (* t; steps *)
inversion H as [t;' Hstp]. 3 (tapp t;' t3)...

- (‘k TﬁIf *)
right. destruct IHHtl...
+ (* t; is a value *)

destruct (canonical_ forms_bool t;); subst; eauto.

+ (* t; also steps *)
inversion H as [t;' Hstp]. 3 (tif t;' t3 t3)...
Qed.

Fig. 4. SF, Progress (2/2).

Philip had been exposed to the work of the K team, as both consulted for IOHK, a cryptocurrency firm. This put us
keenly in mind of the need for animation; Philip sometime referred to this as “K-envy” or “Redex-envy”.

Philip was therefore surprised to realise that any constructive proof of progress and preservation automatically gives rise
to such a prototype. The input is a term together with evidence the term is well-typed. (In the intrinsically-typed case, these
are the same thing.) Progress determines whether we are done, or should take another step; preservation provides evidence
that the new term is well-typed, so we may iterate. In a language with guaranteed termination such as Agda, we cannot
iterate forever, but there are a number of well-known techniques to address that issue; see, e.g., Bove and Capretta [8],
Capretta [10], or McBride [29]. We use the simplest, similar to McBride’s petrol-driven (or step-indexed) semantics: provide
a maximum number of steps to execute; if that number proves insufficient, the evaluator returns the term it reached, and
one can resume execution by providing a new number.

Such an evaluator from PLFA is shown in Fig. 5, where (inspired by cryptocurrencies) the number of steps to execute
is referred to as gas. All of the example reduction sequences in PLFA were computed by the evaluator and then edited to
improve readability; in addition, the text includes examples of running the evaluator with its unedited output.

It is immediately obvious that progress and preservation make it trivial to construct a prototype evaluator, and yet we
cannot find such an observation in the literature nor mentioned in an introductory text. It does not appear in SF, which
introduces a specialised normalise tactic instead. A plea to the Agda mailing list failed to turn up any prior mentions.
The closest related observation we have seen in the published literature is that evaluators can be extracted from proofs of
normalisation [7,12].

Some researchers are clearly familiar with the connection between progress and preservation and animation. In private
correspondence, Bob Harper referred to it as the pas de deux, a dance between progress, which takes well-typing to a step,
and preservation, which takes a step back to well-typing—but neither the technique nor the appealing terminology appears
in Harper [20]. The appeal to the Agda mailing list bore late fruit: Oleg Kiselyov directed us to unpublished remarks on his
web page where he uses the name eval for a proof of progress and notes “the very proof of type soundness can be used
to evaluate sample expressions” [24]. Nonetheless, as of this writing, we still have not located a mention in the published
literature.
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By analogy, we will use the name gas for the parameter which puts a bound on the number of
reduction steps. Gas is specified by a natural number.

data Gas : Set where
gas : N - Gas

When our evaluator returns a term « , it will either give evidence that ~ is a value or indicate that
it ran out of gas.

data Finished (N : Term) : Set where

done :
Value N

- Finished N

out-of-gas :

Finished N

Given aterm 1 of type a , the evaluator will, for some w , return a reduction sequence from . to
n and an indication of whether reduction finished.

data Steps (L : Term) : Set where

steps : V {N}
- L—N
-+ Finished N

The evaluator takes gas and evidence that a term is well-typed, and returns the corresponding
steps.

eval : V {L A}
- Gas
- 2F+L3sA

-+ Steps L

eval {L} (gas zero) L steps (L m) out-of-gas
eval {L} (gas (suc m)) FL with progress +L
. | done VL = steps (L 1) (done VL)
. | step L—M with eval (gas m) (preserve L L—M)

| steps M—N fin = steps (L —¢ L—M > M—N) fin

I

Fig. 5. PLFA, Evaluation.

There are places in the literature where one might expect a remark on the relation between progress and preservation
and animation—but no such remark appears. In the PoplMark Challenge [4], Challenge 2A is to prove progress and preserva-
tion for System F_., while Challenge 3 is to prove animation for the same system. Nowhere do the authors indicate that in
an intuitionistic logic these are essentially the same problem. [31], when discussing extraction of animators for small-step
semantics, mention Redex and K, but no other possibilities. We hope the stress in PLFA on the fact that in an intuitionistic
setting progress and preservation imply animation will mean that the connection becomes more widely known.

5. Intrinsic typing is golden

The second part of PLFA first discusses two different approaches to modelling simply-typed lambda calculus. It first
presents terms with named variables and extrinsic typing relation and then shifts to terms with de Bruijn indices that
are intrinsically typed. The names extrinsic and intrinsic for these two approaches are taken from Reynolds [38]. Before
writing the text, Philip had thought the two approaches complementary, with no clear winner. Now he is convinced that
the intrinsically-typed approach is superior.

Fig. 6 presents the extrinsic approach. It first defines Id, Term, Type, and Context, the abstract syntax of identifiers,
raw terms, types, and contexts. It then defines two judgments, I' > x $ A and I' =M 8 A, which hold when under context I’
the variable x and the term M have type A, respectively.
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' x A
I3 X # A 3 X A
r x AB
£y
rsxsa
r B> A
L Context Term Type Set

r ~NiA =B
o FLMAB
C+LiA =B
CMiA
CFL - -M3$B

Fig. 6. Extrinsic approach in PLFA.

Fig. 7 presents the intrinsic approach. It first defines Type and Context, the abstract syntax of types and contexts, of
which the first is as before and the second is as before with identifiers dropped. In place of the two judgments, the types of
variables and terms are indexed by a context and a type, so that I' > A and I" - A denote variables and terms, respectively,
that under context I have type A. The indexed types closely resemble the previous judgments: we now represent a variable
or a term by the proof that it is well typed. In particular, the proof that a variable is well typed in the extrinsic approach
corresponds to a de Bruijn index in the intrinsic approach.

The extrinsic approach requires more lines of code than the intrinsic approach. The separate definition of raw terms
is not needed in the intrinsic approach; and one judgment in the extrinsic approach needs to check that x # y, while
the corresponding judgment in the intrinsic approach does not. The difference becomes more pronounced when including
the code for substitution, reductions, and proofs of progress and preservation. In particular, where the extrinsic approach
requires one first define substitution and reduction and then prove they preserve types, the intrinsic approach establishes
substitution preserves types at the same time it defines substitution and reduction.

Stripping out examples and any proofs that appear in one but not the other (but could have appeared in both), the full
development in PLFA for the extrinsic approach takes 451 lines (216 lines of definitions and 235 lines for the proofs) and
the development for the intrinsic approach takes 275 lines (with definitions and proofs interleaved). We have 451 [ 235 =
1.64, close to the golden ratio.
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Fig. 7. Intrinsic approach in PLFA.

The intrinsic approach also has more expressive power. The extrinsic approach is restricted to substitution of one variable
by a closed term, while the intrinsic approach supports simultaneous substitution of all variables by open terms, using a
pleasing formulation due to McBride [28], inspired by Goguen and McKinna [16] and Altenkirch and Reus [3] and described
in Allais et al. [2]. In fact, we did manage to write a variant of the extrinsic approach with simultaneous open substitution
along the lines of McBride, but the result was too complex for use in an introductory text, requiring 695 lines of code—more
than the total for the other two approaches combined.

The text develops both approaches because the extrinsic approach is more familiar, and because placing the intrinsic
approach first would lead to a steep learning curve. By presenting the more long-winded but less powerful approach first,
students can see for themselves the advantages of de Bruijn indices and intrinsic types.

There are actually four possible designs, as the choice of named variables vs de Bruijn indices, and the choice of ex-
trinsic vs intrinsic typing may be made independently. But the two designs we chose work well, while the other two are
problematic. Manipulation of de Bruijn indices can be notoriously error-prone without intrinsic types to give assurance of
correctness. For instrinsic typing with named variables, simultaneous substitution by open terms remains difficult.

The benefits of the intrinsic approach are well known to some. The technique was introduced by Altenkirch and Reus [3],
and widely used elsewhere, notably by Chapman [11] and Allais et al. [2]. Philip is grateful to David Darais for bringing it
to his attention.

6. Teaching experience

Philip now has five years of experience teaching from SF and one year teaching from PLFA. To date, he has taught three
courses from PLFA.

e University of Edinburgh, September-December 2018 (with teaching assistance from Wen and Chad Nester); twenty 2-
hour slots, comprising one hour of lecture followed by one hour of lab. Ten students completed the course, fourth-year
undergraduates and masters. The course covered Parts I and II of PLFA, up through chapter Untyped.



W. Kokke et al. / Science of Computer Programming 194 (2020) 102440 13

e Pontificia Universidade Catdlica do Rio de Janeiro (PUC-Rio), March-July 2019, hosted by Roberto leuramalischy; ten
3-hour slots, comprising two hours of lecture followed by one hour of lab. Ten students completed the course, mostly
doctoral students. The course covered Parts I and Il of PLFA, up through chapter Untyped, save students read chapter
Lists on their own, and chapter Bisimilarity was skipped.

e University of Padova, June 2018, hosted by Maria Emilia Maietti; two 3-hour slots, comprising two hours of lecture
followed by one hour of lab. Thirty undergraduate students sat the course, which covered chapters Naturals, Induction,
and Relations.

In addition, David Darais at University of Vermont and John Leo at Google Seattle have taught from PLFA.
Exercises in PLFA are classified in three ways.

o Exercises labelled “(recommended)” are the ones students are required to do in the classes taught at Edinburgh and
PUC-Rio.

e Exercises labelled “(stretch)” are there to provide an extra challenge. Few students do all of these, but most attempt at
least a few.

e Exercises without a label are included for those who want extra practice. To Philip’s surprise, students at PUC-Rio
completed quite a few of these.

Students are expected to complete coursework for all of the required questions in the text, optionally doing any stretch or
unlabelled exercises. Coursework also includes a “mock mock” exam, as described below.

The mark for the course is based on coursework and a final-exam, weighted 1/4 for coursework and 3/4 for the final
exam. The weighting for coursework is designed to be high enough to encourage students to do it (they all do), but not so
high as to encourage cheating. Students are encouraged to help each other with coursework.

The final-exam is two hours online. Students have access to the Agda proof assistant to check their work. At Edinburgh,
students use computers with a special exam operating system that disables access to the internet. Students are given access
to the text of PLFA, the Agda standard libraries, and the Agda language reference manual, but no other materials.

Students must answer question 1 on the exam, and one of questions 2 or 3. Question 1 gives predicates over a data
structure, such lists or trees, to be formalised in Agda, and a theorem relating the predicates, to be formalised and proved
in Agda. Question 2 gives the students the intrinsic formulation of lambda calculus from chapter DeBruijn, which they
must extend with a described language feature. Question 3 give the students the bidirectional type inferencer from chapter
Inference, which they must extend with a described language feature.

Because the course is taught using a proof assistant, it is important that students have access to a proof assistant during
the exam. Students are told in advance that they are expected to get perfect on the exam, and that they will have to study
hard to achieve it. Given that the goal of formal methods is to avoid error, we believe a pedagogical purpose is served by
telling the students that they are expected to achieve perfection and making it possible for them to do so. Students are
given two opportunities to practice in the run up to the exam, a “mock” exam given in class under exam conditions (two
hours online), and before that a “mock mock” exam as coursework (in their own time, encouraged to ask questions, tasked
to do all three questions rather than two of three).

For the courses run at Edinburgh and PUC-Rio, the scores vary widely on the mock: minimum <20%, maximum 100%,
mean 77.8, standard deviation 27.6. But all students achieve perfection on the exam. (The one exception was a PUC-Rio
student who did not attend classes or sit the mock.) Similar results were achieved at Edinburgh over the previous five
years, using SF as the course textbook and Coq as the proof assistant. We consider these results a tribute to the students’
ability to study and learn.

7. Software

The book is written using a combination of literate Agda and Markdown. At the time of writing, the book is published
using GitHub Pages and the Jekyll static site generator. The book is open source—the source is currently also hosted on
GitHub, under a Creative Commons CC-BY license. The open-source aspect is important—as the book is written in literate
Agda, it is essential that anyone can download and execute the source.

We maintain a number of tools, which play various roles in rendering the book in all its “glorious clickable HTML". We
render the literate Agda to highlighted HTML using Agda’s HTML backend. In addition to highlighting, this inserts clickable
links, linking each constructor and function to the site of its definition. However, the links Agda inserts are local and don’t
match the structure of the book. We maintain a script, highlight.sh, which fixes these links, rerouting links to the
standard library to the online version, and correcting links to local modules.

(Before the release of Agda 2.6, Agda did not support highlighting embedded literate code in HTML. We maintained
agda2html, a tool which rewrites the output of Agda’s HTML highlighter to highlight embedded code. The tool had much
more functionality, including the fixing of links as outlined above, the stripping of implicit arguments to achieve a Haskell-
like look, and the support for new Markdown constructs for linking to Agda names. However, Agda 2.6 has incorporated
almost all of this functionality, and agda2html is now deprecated.)
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The book is built, tested, and published after each commit, using Travis Cl, a web service for continuous integration. This
means that the book is constantly changing. To accommodate those who want a more stable version, e.g., for teaching, we
maintain a stable version of the book at

http://plfa.inf.ed.ac.uk/stable

The stable version of the book is updated much less frequently, and updates are announced.

We maintain a tool called, simply, acknowledgements, which uses the GitHub API to automatically extract a list of
contributors to the book, and add them to the Acknowledgements page, each time the book is published. We consider
anyone who has sent a successful pull request a contributor, and sort contributors in the acknowledgments by the number
of accepted requests. Arguably, a different metric, such as total number of affected lines, might be more appropriate, though
any solution will have its flaws.

8. Conclusion

One sign of a successful publication is that it will attract a few letters from readers who have noticed typos or other
problems. An unexpected benefit of publishing on GitHub is that to date forty-one readers have sent a total of two hundred
seventy-five pull requests. Most of these fix typos, but a fair number make more substantial improvements.

There is much left to do! We hope others may be inspired to join us to expand and improve the book.
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