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ABSTRACT
We propose AutoName, an unsupervised framework that extracts

a name for a set of query entities from a large-scale text corpus.

Entity-set naming is useful in many tasks related to natural lan-

guage processing and information retrieval such as session-based

and conversational information seeking. Previous studies mainly ex-

tract set names from knowledge bases which provide highly reliable

entity relations, but suffer from limited coverage of entities and set

names that represent broad semantic classes. To address these prob-

lems, AutoName generates hypernym-anchored candidate phrases

via probing a pre-trained language model and the entities’ context

in documents. Phrases are then clustered to identify ones that de-

scribe common concepts among query entities. Finally, AutoName

ranks refined phrases based on the co-occurrences of their words

with query entities and the conceptual integrity of their respective

clusters. We built a new benchmark dataset for this task, consist-

ing of 130 entity sets with name labels. Experimental results show

that AutoName generates coherent and meaningful set names and

significantly outperforms all baselines.
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1 INTRODUCTION
Entity set naming refers to the task of inferring a name, i.e., a short,

multi-word phrase, for a set of semantically-coherent entities. We

propose AutoName, an unsupervised framework that extracts a

name for a set of query entities from a large-scale text corpus.

Entities play an important role in understanding queries and

documents to provide users with precise and relevant information.
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This is particularly important in session-based [5] and conversa-

tional information seeking [27]. Consider an ongoing information-

seeking session between a user and search system, where a set

of entities have been used in previous queries and responses. Be-

ing able to name that set of entities allows the search system to

generate clarifying questions or to lead the session based on the

underlying concept of entities. In addition, entity set naming ben-

efits other tasks in natural language processing and information

retrieval such as automatic captioning of tables [12, 42], topic model

labeling [16, 20, 23, 34], or entity set expansion [31, 32, 40].

Previous studies [18, 33] mostly focus on identifying set names

from knowledge bases such as Probase [37] and Freebase [3]. The

natural incompleteness of knowledge bases makes it impossible

to name all sets of entities. In addition, entity sets to be named

in practical settings are usually small, which makes names from

knowledge bases not ideal as they more often describe broad se-

mantic classes of entities which do not provide the most specific

relation between query entities. To address these problems, we

explore generating entity-set names from massive text corpora.

The abundance of text corpora provides high coverage of entities,

but it comes with a large number of occurrences for many entities.

Selecting which contexts of query entities are useful for the set

naming task, and which contexts among those are about common

properties of all query entities are challenging. This is even more

challenging for queries with multi-sense entities.

An ideal set name should describe the most specific concept com-

mon to all query entities. We hypothesize that a set name consists

of two parts: (1) a hypernym of the entities describing their broad

semantic class and (2) one or more modifiers that narrow down

the semantic class to the smallest that include the query entities.

Accordingly, we first generate general hypernyms via probing a

pre-trained neural language model [9] using Hearst patterns [13]

and query entities. These hypernyms then become anchors to ex-

tract specified candidate names from entities’ contexts in large text

corpora. The obtained candidates are then clustered to filter out

noise and to find out ones that express the same concept across all

query entities. Finally, the refined candidate names will be scored

based on the integrity score of their respective clusters and their

mutual co-occurrence with all query entities. In addition to extract-

ing a name for an entity set, AutoName also justifies the set name

with its most similar contextual sentences that have query entities.

This allows users to readily judge the accuracy of provided names.

As AutoName is the first model for naming small sets of query

entities using a corpus, to the best of our knowledge, we build an

evaluation dataset of 130 entity sets with their set names. Entity

sets are automatically obtained and sampled to build user queries

of lengths 3 to 5. Sampled queries with the name of their respective

sets are then judged by human annotators to make sure that the

reference name for the larger set of entities is still appropriate
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for the queries in terms of specificity and accuracy. The evaluation

dataset contains 1,767 queries of entities with their reference names.

We conduct extensive experiments, comparingAutoName against

both the state-of-the-art knowledge-base approach [33] and the

powerful text generation model T5 [28] that needs training data to

be fine-tuned for entity-set naming. The results demonstrate that

AutoName outperforms the baselines by 45% in ROUGE [19]. Since

automatic evaluation models may not always correlate with human

judgments, we asked people to judge the quality of extracted set

names by AutoName and baselines. AutoName achieves both the

highest average accuracy and Kappa agreements among annotators.

Finally, evaluation results show that AutoName, as a successful and

completely unsupervised model, can be used to generate a large

amount of training data for training of language generation models,

such as T5, to generate set names. This is because we demonstrated

that 1,125 labeled samples are not sufficient to fully fine-tune T5.

The evaluation dataset and implementation of AutoName are avail-

able at https://github.com/zhiqihuang/autoname.

2 RELATED WORK
We review related research topics and their differences with entity

set naming.

Table captioning is supported by web tables that provide abun-

dant training data. Leveraging table headers and page structures,

Hancock et al. [12] train a sequence-to-sequence model to generate

titles. When the table contains only a single column of entities, the

table captioning task degenerates to entity set naming task. We thus

prepare our benchmark dataset by choosing an appropriate subset

of the web tables in Wikipedia. Our problem is more challenging

because of the unstructured text data with unsupervised setting.

Topic modeling [2] is to discover latent topics in a collection of

documents. Treeratpituk and Callan [34] assign labels to topic via

hierarchical clustering. Neural model with different structures and

loss functions are also designed for this task [11, 15]. In general,

topic labeling is focusing on document-level inputs to generate

keywords to represent the latent topic. On the other hand, our task

focuses on entity-level inputs and extract specific set name from

large textual corpus.

Extracting keyphrases that are salient to a document’s mean-

ing is an essential step to semantic document understanding [38].

The input for a keyphrase extraction task is usually documents and

the goal is to extract or generate phrases which cover the topic of

the input documents. Recent approaches based on neural networks

have shown promising results [6, 24, 39, 44]. Rather than finding a

description of a document’s content, the set naming task is to find

descriptive concept for a group of semantically coherent entities.

The entity set expansion problem identifies entities that be-

long to the same semantic class given a few seed entities [7, 8, 31,

32, 35, 36, 40, 41]. In set expansion, the user would like to see more

semantically similar entities; in set naming, the user has a group of

entities and seeks to understand why they can be grouped together.

Conceptual labeling, proposed by Sun et al. [33], a task we be-

lieve is the most similar to entity set naming. The method extracts

labels from a knowledge graph to summarize a concept towards a

bag of words. We use it as a strong baseline to evaluate the perfor-

mance of our framework.

3 THE AUTONAME FRAMEWORK
Given a set of semantically similar entities as query𝑄 = {𝑒1, 𝑒2, . . . 𝑒𝑞}
where |𝑄 | is small, the goal of set naming is to identify a name for𝑄

from a text corpus. AutoName addresses the problem by extracting

and ranking phrases from the contexts of the query entities.

3.1 Candidate Name Generation
A set name typically contains two components: a hypernym for the

broad semantic class and one or more modifiers that narrow the

semantic class of the hypernym. Therefore, candidate set names

for an entity set are generated as a two step process: hypernym

generation and then phrase enrichment.

Hypernym generation identifies general hypernyms for the

given query entities. We probe a pre-trained LM with query entities

to obtain the hypernym component of the set name. The probing

queries are constructed based on six Hearst patterns [14] filling the

hyponym slots by query entities and leave the hypernym slot as a

masked token to predict. For example, the query {Toronto, Ottawa,
Waterloo} and pattern “NP such as NP, NP and NP”, the probing

query is “[Mask] such as Toronto, Ottawa and Waterloo”. The LM
predicts a probability distribution over vocabulary for the masked

token. To achieve high recall, we collect the top 5 predicted tokens

from each Hearst pattern as hypernym candidates. The ranking

step (Section 3.3) controls the accuracy of candidates as set names.

Given query entities and a set of likely hypernyms, we retrieve

all sentences in the corpus that have at least one occurrence of a

query entity and a hypernym, providing contexts of query entities.

Restricting the query contexts to sentences that contain a hypernym

greatly reduces the search space of candidate phrases.

Phrase enrichment. Each hypernym is used to extract a set

of candidate noun phrases from the contexts of query entities in

the text corpus. First, tokens around the hypernym in obtained

contexts are labeled with part-of-speech (POS) tags. We then extract

text spans that match the phrase grammar pattern defined on a

coarse tag set of adjectives (A), nouns (N), prepositions (P), and

determiners (T) as (A|N) ∗ N(PT ∗ (A|N) ∗ N)∗. We apply a finite-

state transducer algorithm [30] on the POS sequence to efficiently

extract overlapping and nested spans which can cover different

levels of semantic classes for each hypernym. Considering both

generality and specificity, we extract phrases of length 2 to 8. For

each obtained phrase, we keep its corresponding sentence. Thus, the

output is a set of phrase-sentence pairs, denoted PS = {(𝑝, 𝑠)𝑖 }𝑖>0.

3.2 Density-based Phrase Clustering
Candidate phrase-sentence pairs were generated from contexts of

query entities. However, the phrases can refer to different concepts

related to query entities where some concepts are not common prop-

erties of all query entities. To identify similar concepts of entities,

we cluster the candidate phrases using Hierarchical Density-based

Spatial Clustering of Applications with Noise (HDBSCAN) [4, 21],

chosen primarily because HDBSCAN does not require the number

of clusters as a parameter. This is useful as clusters should represent

different concepts of query entities, where the number of concepts

differs between queries. To represent noun phrases for clustering,

we use Sentence-BERT (SBERT) [29]. Mapping candidate phrases to

a vector space, we measure phrase similarity using cosine distance.



We cluster the candidate phrases in PS using HDBSCAN to find

clusters that represent common concepts across all query entities.

For this purpose, we say a cluster is valid only if its constituent

phrases cover all query entities. We use the parameter 𝑘 of HDB-

SCAN that defines how conservative clustering should be [22] to

get valid clusters. Starting from 𝑘 = 1, the algorithm generates the

largest number of clusters with minimum cluster size. Then, we

check the validity of each obtained cluster. If there is no valid clus-

ter, HDBSCAN is re-run with an increased value of 𝑘 which leads

to clusters of larger sizes. We stop the algorithm if either of two

conditions is satisfied: (1) there exists at least one valid cluster or

(2) 𝑘 exceeds a pre-defined large value. When the second condition

is satisfied, we assume there is no common concept in the corpus

for the given query entities and do not continue. After clustering,

only phrases in valid clusters are kept for further evaluation.

3.3 Set Name Ranking
We rank refined candidate phrases for set names. Ranking models

mostly rely on exact or semantic term matching, but in this task,

query entities do not occur in candidate names. Thus, we design a

scoring function considering two factors: cluster and phrase scores.
Cluster score. To measure how well candidates within a cluster

represent the same concept, we compute a score for each cluster

based on the semantic similarity of sentences from its constituent

(𝑝, 𝑠) pairs. As we only consider valid clusters, these sentences as

a group contain all query entities, and are encoded using SBERT.

We denote by 𝑠𝑐
𝑖
a sentence in cluster 𝑐 that contains query entity

𝑒𝑖 . For each pair of query entities 𝑒𝑖 and 𝑒 𝑗 , we then compute the

cosine similarity matrix Δ𝑖 𝑗 between all sentence pairs (𝑠𝑐
𝑖
, 𝑠𝑐
𝑗
) in

the cluster. The score of cluster 𝑐 is then defined as

score(𝑐) = 1(
𝑞
2

) ∑
1≤𝑖< 𝑗≤𝑞

max

(
Δ𝑖 𝑗

)
.

This score reflects the semantic coherence of the candidate phrases

in a cluster as the name of the entity set.

Phrase score. To rank the candidate phrases within the cluster,

we score each phrase as well. For each term 𝜔 in a candidate phrase

𝑝 , we compute an importance weight based on its co-occurrences

with query entities. We only count the co-occurrence of 𝜔 and a

query entity in a sentence if their shortest dependency path (SDP)

is smaller than a pre-defined value. The importance of 𝜔 for query

entity 𝑒𝑖 is calculated by the Mutual Information (MI) as

MI(𝜔, 𝑒𝑖 ) =
∑

𝑋𝑖=0,1

∑
𝑋𝜔=0,1

𝑃 (𝑋𝑖 , 𝑋𝜔 ) log
𝑃 (𝑋𝑖 , 𝑋𝜔 )
𝑃 (𝑋𝑖 )𝑃 (𝑋𝜔 )

,

where 𝑋𝑖 and 𝑋𝜔 are binary variables representing whether 𝑒𝑖 or

𝜔 is present in a sentence. The importance of 𝜔 across all query

entities are computed as the average of MI, I𝜔 = 1

𝑞

∑𝑞

𝑖=1
MI(𝜔, 𝑒𝑖 ).

A phrase 𝑝 is then scored based on its constituent terms as

score(𝑝) =
∑
𝜔 ∈𝑝 I𝜔

(1 + log
2
𝐿∗) (1)

where 𝐿∗ is the number of non-stop tokens in 𝑝 to penalize long

phrases but provide stopword tolerance.

Score combination. The final ranking score of phrase 𝑝 is the

sum of its phrase score(𝑝) and its respective cluster score(𝑐).

4 EXPERIMENTS
4.1 Dataset and Experimental Setup
Weprepare the benchmark dataset for entity-set naming based
on the Wikipedia Lists of lists of lists page [10]. Following past

works [1, 17], we restrict content extraction to wikitable class and
fetch set entities from the subject column of tables and use the

page title as their set names. The obtained collection consists of 130

semantic sets among various domains. From each set, we sample 15

queries, 5 each of length 3, 4, and 5. Sampled queries with the name

of their respective sets are then judged by three human annotators

to make sure that the reference name for the larger set of entities is

still appropriate for the queries in terms of specificity and accuracy.

Only queries where all annotators agree about the suitability of the

set names are kept. The resulting dataset contains 1,767 queries.

We experiment on two text corpora: the news reports published

by Associated Press in 1989 (AP89) and the English Wikipedia data

dump from June 2019 (Wiki). For AP89, we use the full dataset with

242,819 documents. For Wiki, we exclude all list-type pages and

focus on article pages with structured templates removed. Finally,

we have a large text corpus with 981,923 documents.

Experimental setup. For LM probing, we use pre-trained BERT-

base-uncased. We set 𝑘𝑚𝑎𝑥 to be twice the query length as the

stopping criteria for clustering. To find co-occurrences, we consider

terms whose distance in the dependency tree is not greater than 3.

Evaluation Metrics.We use BLEU [26] and ROUGE [19] met-

rics for text generation evaluation. To accommodate paraphras-

ing, we use ROUGE with word embeddings (ROUGE-WE) [25] and

BERTScore [43] to compare semantic similarity between reference

and generated set names. We also report human evaluations of

generated set names.

We compare AutoName against three baselinemodels. CLBoW
labels a bag of words using IsA and IsPropertyOf relationships

in Probase [33]. Their algorithm finds label with the minimum

description length that cover the query. The LMProbing baseline

is inspired by hypernym detection using LM probing [45]. The

generated hypernym is fed to an auto-regressive LM to predict the

next three tokens. The last baseline is T5Gen which fine-tunes

the generative model T5 [28] for entity-set naming. All sentences

including query entities are first scored using Eq.(1). The top 3

sentences are then selected as the T5 input. The generation target is

the corresponding set name. Using 75 sets with their 1,125 queries

as training data and 55 sets as test data, T5 is fine-tuned for 5 epochs.

We also study two ablations of AutoName. First, AutoName-T
excludes the conceptual clustering and ranks candidate phrases

only using the phrase score. The second ablation AutoName-C
consider all possible phrases in the query-related documents as

candidate names, instead of probing a LM to generate candidates.

4.2 Experimental Results
Overall performance. Table 1 reports the comparison results.

AutoName and its ablated variants perform significantly better than

baseline methods in terms of BLEU-1, BLEU-2, ROUGE-1, ROUGE-L

and ROUGE-WE-1. AutoName improves performance over baseline

models by a larger percentage in the Wiki than in the AP89. This

behavior is expected because a larger text corpus provides more

contextual information for the model to infer semantic classes.



Table 1: Comparison results on AP89 andWiki dataset. BL-𝑘 and RG-𝑘 and refer to BLEU-𝑘 and ROUGE-𝑘 respectively. RGWE-
𝑘 stands for ROUGE-𝑘 with word embeddings. This table is based on queries of length 3. (▲) indicates statistical significance
comparing to baseline methods and bold in AutoName indicates statistical significance comparing to its ablations (𝑝 = 0.05).

Model AP89 Wiki

BL-1 BL-2 RG-1 RG-2 RG-L RGWE-1 RGWE-2 BERTScore BL-1 BL-2 RG-1 RG-2 RG-L RGWE-1 RGWE-2 BERTScore

LMProbing 0.2102 0.1465 0.3107 0.0372 0.2951 0.7406 0.6385 0.2043 0.2018 0.1542 0.3000 0.0636 0.2966 0.7621 0.6777 0.2127

CLBoW 0.1833 0.1452 0.2980 0.0335 0.2805 0.7396 0.6357 0.3451 0.1761 0.1436 0.2859 0.0532 0.2846 0.7420 0.6602 0.3958

AutoName 0.2818▲ 0.21620.21620.21620.2162
▲

0.3735▲ 0.0696▲ 0.3606▲ 0.7687▲ 0.6314 0.2689 0.47540.47540.47540.4754
▲

0.36930.36930.36930.3693
▲

0.55280.55280.55280.5528
▲

0.24180.24180.24180.2418
▲

0.52490.52490.52490.5249
▲

0.8285▲ 0.7327▲ 0.44740.44740.44740.4474
▲

AutoName-T 0.2740▲ 0.2068▲ 0.3655▲ 0.0633▲ 0.3538▲ 0.7776▲ 0.6324 0.2664 0.4382▲ 0.3311▲ 0.5313▲ 0.2229▲ 0.4976▲ 0.8339▲ 0.7409▲ 0.4129▲

AutoName-C 0.2709▲ 0.2044▲ 0.3613▲ 0.0709▲ 0.3498▲ 0.7742▲ 0.6331 0.2631 0.4194▲ 0.3147▲ 0.5103▲ 0.2122▲ 0.4789▲ 0.8260▲ 0.7380▲ 0.3879

Table 2: Performance of AutoName and T5 models. (▲) indicates statistical significance difference (𝑝 = 0.05).

Model AP89 Wiki

BL-1 BL-2 RG-1 RG-2 RG-L RGWE-1 RGWE-2 BERTScore BL-1 BL-2 RG-1 RG-2 RG-L RGWE-1 RGWE-2 BERTScore

T5Gen 0.1639 0.1348 0.1876 0.0503 0.1876 0.6678 0.5913 0.1764 0.3413 0.2718 0.4280 0.1502 0.4226 0.8039 0.7293 0.3424

AutoName 0.2177▲ 0.1602▲ 0.3003▲ 0.0516 0.2845▲ 0.7239▲ 0.6141▲ 0.1974▲ 0.4083▲ 0.3078▲ 0.4886▲ 0.1971▲ 0.4713▲ 0.8172 0.7301 0.3804▲

Table 3: Human evaluation of generated set names.

Model Fleiss’ kappa Average accuracy

CLBoW 0.3604 23%

AutoName 0.5866 53%
T5Gen 0.4883 48%

LMProbing has nearly the same performance as CLBoW based on

a knowledge base. The pre-trained LM tries to recover the masked

tokenwith the highest probable token based on its training data, and

the Hearst patterns used for probing are lexico-syntactic patterns

capturing the hypernym relation between query entities. Therefore,

this model successfully generates the hypernym part of most set

names, and provides a strong baseline. Comparing with CLBoW,

the AutoName framework shows superior performance, especially

achieving significant improvements over all metrics on the Wiki

dataset. This is because AutoName not only generates hypernyms

for query entities, but also narrows the concept by searching for

a more fine-grained phrase from the text corpus. In AP89, two

variants of our model reach the same performance as the combined

approach. Yet, in Wiki, AutoName outperforms its ablated methods.

Because of more occurrences and context of query entities, both

probing and clustering are necessary to achieve optimal results in

a larger and context-rich corpus.

In Table 2, we compare the results of our model to the supervised

generative model on the same test set. With a limited amount of

data available for fine-tuning, our model performs better than the

T5 model. In Table 3, we compare AutoName and baseline methods

based on human evaluation of 50 randomly sampled queries over

the Wiki corpus. Pairs of target set names and outputs of a set-

naming model are shuffled and anonymized for the annotation task

where annotators judge which set name is more suitable for the

query entities. Judged by 3 annotators, AutoName achieves the best

average accuracy and Kappa agreement between annotators.

Performance analysis. We first study the impact of query

length on the performance of different models. Figure 1a shows the

performance of different models with respect to queries of length

3, 4, and 5 based on the ROUGE-1 metric. AutoName outperforms

(a) Effect of query length (b) Evaluation of top-K candidates

Figure 1: Analysis of query length and top-K candidates.

the baseline models for all query lengths, and shows a larger per-

formance gain with length increment. This is because more input

entities provide richer contextual information for the model to infer

the semantic classes, thus, leading to better performance.

Since AutoName and its ablations generate a ranked list of candi-

date phrases, we also consider the performance of top-𝐾 candidates.

Figure 1b shows the best ROUGE-1 of top-𝐾 candidates where 𝐾

varies from 1 to 10. AutoName shows consistently better perfor-

mance than its ablations.

5 CONCLUSION
To address the entity set naming task, we propose AutoName, a

corpus-based unsupervised framework that considers both the se-

mantic concept of query entities and the structural features of

candidate names to consolidate and rank hypernym-based phrases

as the desirable set names. We collect a benchmark dataset with 130

entity sets and their set names fromWikipedia list pages. Our exper-

iments show that the names generated by AutoName are of higher

quality than all baseline models. In the future, we plan to combine

the ranking model with the neural language generative model and

improve it to extract multiple names learned from contexts.
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