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ABSTRACT. We answer in the affirmative two conjectures made by Klein and Williams.
First, in a range of dimensions, the equivariant Reidemeister trace defines a complete
obstruction to removing n-periodic points from a self-map f . Second, this obstruction
defines a class in topological restriction homology.

We prove these results using duality and trace for bicategories. This allows for imme-
diate generalizations, including a corresponding theorem for the fiberwise Reidemeister
trace.
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1. INTRODUCTION

For a finite simplicial complex X and a continuous map f : X → X , the Lefschetz
number L( f ) ∈Z is a weighted sum of the fixed points of f . This invariant admits many
generalizations. In this paper, we focus on generalizations that count the fixed points of
f n, or the n-periodic points of f .

Since it is a weighted sum, the Lefschetz number detects the presence of fixed points
for any endomorphism in the homotopy class of f . However it does not give a sharp lower
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bound on the number of fixed points. For that we need to refine the Lefschetz number to
the Reidemeister trace R( f ). This invariant takes values in the 0th homology group
of the twisted free loop space of f ,

Λ f X := { γ ∈ X I | f (γ(1))= γ(0) }.

If X is a compact manifold of dimension at least 3, the Reidemeister trace is a complete
obstruction to the removal of fixed points [Jia80, Gh66, Wec42].

In this paper we compare several refinements of the Lefschetz number and Reide-
meister trace for periodic points, the weakest of which are the Lefschetz number and
Reidemeister trace for f n. To build the others, we use Fuller’s observation that the fixed
points of the map

X ×·· ·× X
Ψn( f )

// X ×·· ·× X

(x1, x2, . . . , xn) � // ( f (xn), f (x1), . . . , f (xn−1))

are precisely the periodic points of f of period n [Ful53, Kom88, Dol83]. If f is homotopic
to a map that has no n-periodic points, then Ψn( f ) is homotopic to a map with no fixed
points.

The map Ψn( f ) is equivariant with respect to the action of Cn = Z/nZ that rotates
coordinates. We can refine the observation above to say if f is homotopic to a map that
has no n-periodic points, then Ψn( f ) is Cn-equivariantly homotopic to a map with no
fixed points. Therefore the equivariant Reidemeister trace of Ψn( f ), which we also call
the nth Fuller trace, is an obstruction to removing the n-periodic points from f . The
Fuller trace is a map of equivariant spectra

RCn (Ψn( f )) : S→Σ∞
+ ΛΨn( f )X n

or equivalently a map of spectra

R(Ψn( f ))Cn : S→
(
Σ∞
+ ΛΨn( f )X n

)Cn
.

The following comparison theorem is the main result of the paper.
Theorem 1.1 (Theorems A and B). Let X be a finitely dominated space. Then the follow-
ing diagram commutes up to homotopy for each k | n.

S

R(Ψn( f ))Cn

ss

R(Ψk( f ))Ck

ww

R(Ψk( f ))

��

R( f k)

&&

(Σ∞+ ΛΨn( f )X n)Cn R // (Σ∞+ ΛΨk( f )X k)Ck F // Σ∞+ ΛΨk( f )X k ' // Σ∞+ Λ f k
X

Here “finitely dominated” means that X is a retract up to homotopy of a finite CW com-
plex. This is essentially the most general case in which R( f ) is defined. The maps R and
F are the natural analogs of the “restriction” and “Frobenius” maps from the theory of
topological Hochschild homology, defined as in [Mad95, §2.5]. The homotopy equivalence
equivalence at the bottom-right is given by the maps

{ γ1, . . . ,γk ∈ X I | f (γi(1))= γi+1(0) }−→ { γ ∈ X I | f k(γ(1))= γ(0) }

(γ1, . . . ,γk) 7−→ f k−1(γ2) · f k−2(γ3) · . . . · f (γk) ·γ1

(γ, c f (γ(1)), c f 2(γ(1)), . . . , c f k−1(γ(1)))←−[ γ

(1.2)

where c denotes the constant path at x.
Theorem 1.1 gives the following answer to a conjecture of Klein and Williams [KW10].
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Corollary 1.3. The Reidemeister traces {R( f k)} can be recovered from the Fuller trace
R(Ψn( f ))Cn . The vanishing of R(Ψn( f ))Cn implies the vanishing of R( f k) for all k|n.
When combined with the main result of [Jez01], this implies
Corollary 1.4. If X is a compact manifold of dimension at least 3, the Fuller trace
R(Ψn( f ))Cn vanishes in the homotopy category of spectra if and only if f is homotopic to
a map with no n-periodic points.
In other words, for high-dimensional manifolds the Fuller trace is a complete obstruction
to the removal of n-periodic points.

Though our motivation for Theorem 1.1 comes mainly from dynamics, it also has im-
portant implications for algebraic K-theory. These implications can be succinctly ex-
pressed by the slogan “topological restriction homology (TR) is the most natural home
for periodic-point invariants".

More precisely, recall that the topological restriction homology TR(A) of a ring
spectrum A is the homotopy limit of THH(A)Cn along restriction maps

R : THH(A)Cn →THH(A)Ck

for k | n, see [BHM93, Mad95] for details. If A =Σ∞+ ΩX for a connected CW complex X ,
THH(A) ' Σ∞+ ΛX , the suspension spectrum of the free loop space of X . The topological
restriction homology of this ring, denoted TR(X ), is the homotopy limit of the fixed point
spectra (Σ∞+ ΛX )Cn along the restriction maps

R : (Σ∞
+ ΛX )Cn → (Σ∞

+ ΛX )Ck .

Concretely, the restriction map takes each Cn-equivariant map SV → SV ∧ (ΛX )+ to its
Cn/k-fixed points:

SV Cn/k // SV Cn/k ∧ (ΛX )Cn/k+ oo
∼= // SV Cn/k ∧ (ΛX )+

If X is equipped with an endomorphism f , we define the twisted topological restric-
tion homology of X as

TR(X , f ) := holim
n,R

(Σ∞
+ ΛΨn( f )X n)Cn

where the restriction maps R are the maps of Theorem 1.1. Concretely, they take each
Cn-equivariant map SV → SV ∧ (ΛΨn( f )X n)+ to its Cn/k-fixed points:

SV Cn/k // SV Cn/k ∧ (ΛΨn( f )X n)Cn/k+ oo
∼= // SV Cn/k ∧ (ΛΨk( f )X k)+

The justification for the name is that TR(X ; f ) agrees with a more general definition of
TR(A; M) for any ring spectrum A and bimodule M, defined in a similar way to Linden-
strauss and McCarthy’s W-theory [LM12] for ordinary rings. Details of this construction
will appear in [CLM+].

By the tom Dieck splitting theorem, each of the spectra in the homotopy limit system
for TR(X ; f ) splits as a finite product of homotopy orbit spectra

(1.5) (Σ∞
+ ΛΨn( f )X n)Cn ' ∏

k|n
(Σ∞

+ ΛΨk( f )X k)hCk ,

and the restriction map R simply projects onto a subset of the factors. It follows that the
homotopy limit TR(X ; f ) is an infinite product of homotopy orbit spectra

(1.6) TR(X ; f )' ∏
n≥1

(Σ∞
+ ΛΨn( f )X n)hCn .

Therefore, to define a class in π0 TR(X ; f ), it is enough to give a class in π0 of the spec-
trum (1.5) for each n ≥ 1, agreeing along the restriction maps.
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Theorem 1.1 says that the Fuller traces R(Ψn( f ))Cn give such a collection of classes.
In particular, the commutativity of the left-hand triangle implies they agree along the
restriction maps. Therefore they define a class in π0 TR(X ; f ) that we might call the
“infinite Fuller trace” R(Ψ∞( f ))C∞ . Concretely, this is the element of the product (1.6)
whose nth term is recovered from R(Ψn( f ))Cn using the tom Dieck splitting (1.5). By
Corollary 1.4, the infinite Fuller trace is a complete obstruction to removing n-periodic
points for any value of n. This is the precise interpretation of the slogan, “periodic point
invariants most naturally live in TR.”

This slogan has been articulated before. Klein, McCarthy, Williams, and others have
remarked that one should be able to construct a trace map from endomorphism K-
theory K(EndA(M)) to TR(A; M) for any ring spectrum, as in [LM12]. Furthermore,
there should be a class [ f ] ∈ K(EndA(M)) whose image in π0 TR(X , f ) recovers the Rei-
demeister traces R( f n) of all the composites. Earlier results in this spirit can be found
in [Gra77, GN94, Iwa99, Lüc99], but this particular result will be developed in [CLM+].
Granting this, this defines a periodic point invariant in π0 TR(X , f ) without reference
to the Fuller construction. From this point of view, the additional insight provided by
Theorem 1.1 is that this class can be explicitly described as the trace of the Fuller map.

Fiberwise invariants. Following [DP80, GN94, Nic05, Pon10, Pon16], we interpret
the Lefschetz number and Reidemeister trace as stable homotopy classes of maps rather
than numbers. One of the primary advantages of this approach is that it allows for easy
generalizations to the fiberwise and equivariant settings. Using this perspective, the
following result has the same proof as its classical analog.
Theorem 1.7. The variants of Theorem 1.1 and Corollary 1.3 for a family of fiberwise
endomorphisms f : E → E over B also hold, provided E → B is a fibration with finitely
dominated fiber.

On the other hand, the fiberwise version of Corollary 1.4 is the following conjecture. It
will require a very different set of techniques, and we plan to take it up in future work.
Conjecture 1.8. The fiberwise Fuller trace RB(Ψn( f ))Cn is the complete obstruction to
the removal of n-periodic points from a family of endomorphisms f : E → E over B, when
B is a finite-dimensional cell complex and E → B is a smooth closed manifold bundle
whose fiber M has dimension at least 3+dimB.

Note that the special case of n = 1 is proven in [KW07, Cor 10.5].
For higher values of n, we could have instead formulated the conjecture using the

collection of Reidemeister traces {RB( f k) : k | n}, but we expect that version of the conjec-
ture to be false. In other words, we expect that the Reidemeister traces of the iterates do
not form a complete obstruction to removing n-periodic points from bundles, in contrast
to the case of a single endomorphism [Jez01]. The reason for our expectation is that the
product over k | n of the maps in the bottom row of Theorem 1.1 is injective on π0, but
fails to be injective above π0. As a result, once we start measuring the higher homotopy
groups by looking at families of endomorphisms, we might find a Fuller trace that lies in
the kernel, so that the corresponding Reidemeister traces are all zero. A counterexample
of the following form would help settle this question.
Conjecture 1.9. There is a family of endomorphisms f : E → E over some base B for
which RB( f ) and RB( f 2) are zero, but the fiberwise Fuller trace RB(Ψ2( f ))C2 is nonzero.

Organization. We first give a short proof of Theorem 1.1 in the special case where X is
a compact ENR. We then proceed with the general case. The proof splits into two pieces,
and these proofs are the first two parts of this paper. In Part 1 we prove that the right
triangle commutes using the string diagram calculus developed in [MP18]. In Part 2 we
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prove the left two triangles commute, by extending certain functors on the category of
equivariant spectra to shadow functors on the bicategory of equivariant parameterized
spectra. In Part 3 we prove Theorem 1.7.

Acknowledgments. The authors are pleased to acknowledge contributions to this project
that emerged from enjoyable conversations with Manuel Araujo, Jonathan Campbell,
Ross Geoghegan, Niles Johnson, Inbar Klang, John Lind, Randy McCarthy, and Mike
Shulman. They are indebted to John Klein and Bruce Williams for asking the questions
that motivated this work. The first author thanks the Max Planck Institute in Bonn for
their hospitality while the majority of this paper was written. The second author was
partially supported by a Simons Collaboration Grant and NSF grant DMS-1810779.

2. THE CASE OF A SINGLE SMOOTH MANIFOLD OR COMPACT ENR

There are two approaches to proving Theorem 1.1. The first is a more classical and
geometrically motivated path starting from an explicit descriptions of the Reidemeister
trace. This builds on ideas both explicit and implicit in [CJ98, Dol74, Dol76], and a
complete description of this version of the Reidemiester trace can be found in [Mal19].
Alternatively, there is a more formal and category theoretic approach that follows the
understanding of fixed point invariants as traces in symmetric monoidal categories or
bicategories. [DP80, Pon10].

These approaches both require significant effort to implement but the work in each
case is very different. We have chosen to follow the second approach since we find it does
not require the same level of outsourcing to papers such as [MS06, Mal19]. Despite this
preference, we find the geometric approach provides very useful intuition. To benefit
from these insights we first sketch the alternative proof of Theorem 1.1 for a single
manifold or compact ENR.

Let X be a compact topological space, with a topological embedding i : X → V into an
open subset V ⊆ RN and a retract p : V → X , making X into a compact ENR. Choose
ε > 0 so that the closed ε-tube about X is completely contained in V . The Reidemeister
trace R( f ) is the map of spectra obtained by formal de-suspension of the following map
of spaces.

SN −→ SN
ε ∧ (Λ f X )+

v 7−→
{

(v− f (p(v)))∧γ f (p(v)),v if v ∈V and ‖v− f (p(v))‖ ≤ ε

∗ otherwise

Here SN
ε is a sphere of radius ε, obtained by quotienting the complement of an open ball

of radius ε in RN :
SN

ε =RN /(RN −Bε)∼= Bε/∂Bε.
The path γ f (p(v)),v) is defined by the formula

γ f (p(v)),v(t)= p[(1− t) f (p(v))+ tv].

The condition on ε guarantees that p is defined on the line segment from f (p(v)) to v, so
that this path is well-defined. See [Mal19, §7.7] for a discussion of how this description of
the Reidemeister trace arises from the more categorical descriptions later in this paper.

Note that the homotopy class of this map does not depend on the choice of ε.
The Cn-space X×n becomes a Cn-equivariant ENR using the product embedding i×n

into the Cn-representation RnN = IndCnRN , and the product projection p×n. The Fuller
trace RCn (Ψn( f )) is given by the equivariant version of the above map, de-suspended by
the Cn-representation RnN [Mal19, §9.5]. It is a map

SnN −→ SN
ε ∧ . . .∧SN

ε ∧ (ΛΨn( f )X n)+
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and tor tuples (v1, . . . ,vn) where vi ∈V and ‖vi+1 − f (p(vi))‖ ≤ ε for every i, it is given by

(v1, . . . ,vn) 7−→ (v1 − f (p(vn)))∧ (v2 − f (p(v1)))∧ (v3 − f (p(v2)))∧ . . .
∧(

γ f (p(vn)),v1 ,γ f (p(v1)),v2 ,γ f (p(v2)),v3 , . . .
)

Everywhere else it is zero.
To prove that the left-hand triangle of Theorem 1.1 commutes, it is enough to observe

that taking Cn/k-fixed points of this map replaces the n by k. The middle triangle of
Theorem 1.1 commutes since forgetting the Cn action, we have the formula for the non-
equivariant Reidemeister trace of Ψn( f ). The right-hand triangle, on the other hand,
does not follow from such a simple observation. We have to show that if we take the
above formula, then apply the equivalence ΛΨk( f )X k ∼→ Λ f k

X (1.2), the map we get is
homotopic to the formula for R( f n).

Applying the equivalence in (1.2) to the path in ΛΨk( f )X k, gives the path

f n−1(γ f (p(v1)),v2) · . . . · f (γ f (p(vn−1)),vn ) ·γ f (p(vn)),v1 .

We now change this path by a homotopy. As observed above, replacing ε by δ < ε does
not change the Reidemeister trace in the homotopy category. Since f is a continuous
function on a compact space it is uniformly continuous, and therefore there is a δ > 0
so that when every vi is within δ of X , the diameter of the paths γ f (p(vi)),vi+1 and their
images under f , f 2, . . ., and f n−1 are less than ε

2n . (We measure all of these diameters as
subsets of Rn.) Then the sum of n of these diameters is less than ε

2 . This is small enough
to guarantee that if we compose n such paths together, the straight-line homotopy in Rn

between their composite and γ f (p(vn)),v1 lies entirely in V , and can therefore be projected
to X . This gives a continuous homotopy of paths in X rel endpoints

f n−1(γ f (p(v1)),v2) · f n−2(γ f (p(v2)),v3) · . . . · f (γ f (p(vn−1)),vn ) ·γ f (p(vn)),v1 ∼ γ f n(p(v1)),v1 .

Therefore our original formula is homotopic to:

SnN −→ SN
ε ∧ . . .∧SN

ε ∧ (ΛΨn( f )X n)+
(v1, . . . ,vn) 7−→ v1 − f (p(vn))∧v2 − f (p(v1))∧v3 − f (p(v2))∧ . . .∧γ f n(p(v1)),v1 .

The path now matches the path we would get for R( f n), but the sphere coordinates
are different, so we apply a homotopy to those next. In the (i +1)st coordinate of the
output, we apply a homotopy of the form

vi+1 − f (p(vi)) ∼ vi+1 − f 2(p(vi−1)) ∼ . . . ∼ vi+1 − f i(p(v1))

by dragging the second term along the path f (γ f (p(vi−1)),vi ), then the path f (γ f 2(p(vi−2)),vi−1
),

and so on. Note that before we start this homotopy, our map is supported on the region
where the distance from each vi to X is less than or equal to δ, and throughout the homo-
topy, the boundary of this region is sent to the basepoint. In other words, if d(vi+1, X )≥ δ

then throughout the homotopy the size of the sphere coordinate is always ≥ δ, because
every path we use is a path contained in X . This guarantees that we get a well-defined
homotopy of maps on all of SnN . Performing this for each 1 ≤ i ≤ n gives a homotopic
map with the formula

SnN −→ SN
δ ∧ . . .∧SN

δ ∧ (ΛΨn( f )X n)+
(v1, . . . ,vn) 7−→ v1 − f n(p(v1))∧v2 − f (p(v1))∧v3 − f 2(p(v1))∧ . . .∧γ f n(p(v1)),v1 .

This is almost the formula for R( f n) using the embedding (i, f ◦ i, f 2◦ i, . . . , f n−1◦ i) : X →
RnN , except that f n is only being applied to the first coordinate. So for the final step,
we examine the above formula and observe that it still makes sense if we relax the
assumptions and allow vi to be any point in Rn when i ≥ 2. With this change we can
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then remove the f k(p(v1)) term from the second through nth coordinates by a homotopy,
arriving at

SnN −→ SN
δ ∧ . . .∧SN

δ ∧ (ΛΨn( f )X n)+
(v1, . . . ,vn) 7−→ v1 − f n(p(v1))∧v2 ∧v3 ∧ . . .∧γ f n(p(v1)),v1

This agrees with the formula for R( f n) using the embedding (i,0,0, . . . ,0) : X → RnN .
Equivalently, it is the (n−1)N-fold suspension of the formula for R( f n) using i : X →RN .
This concludes the proof that the third triangle commutes in the homotopy category.

Part 1. Unwinding the Fuller trace

In this part we give a very general proof that the last triangle of Theorem 1.1 com-
mutes:
Theorem A. For any finitely dominated space X, the following diagram commutes up to
homotopy.

S

R(Ψk( f ))

��

R( f k)

&&

Σ∞+ ΛΨk( f )X k ' // Σ∞+ Λ f k
X

The argument is formal and based on the observation from [Pon10] that R( f ) is a
bicategorical trace. To motivate this argument, we first describe the analogous argument
for symmetric monoidal categories in Section 3. We then recall how to define fixed point
invariants using bicategories in Sections 4 and 5, and finally prove the bicategorical
version of the argument in Sections 6 and 7. In this part, we black-box all of the needed
properties of parametrized spectra.

Remark on string diagrams. Even in simple cases, conventional notation choices obfus-
cate some of the central ideas in this paper. In an attempt to make these ideas more
visible, we use the string diagrams calculus of [JSV96]. As shown in [JSV96], string
diagram calculations are a rigorous alternative to traditional diagram chasing in sym-
metric monoidal categories and string diagrams manipulations can be translated into
more conventional diagrams. (The corresponding result for bicategories with shadows
can be found in [PS13].) Together [JSV96, PS13] put all string diagram manipulations in
this paper on rigorous footing. The one exception is Figure 6.5 which should be regarded
as motivation.

The building blocks for the symmetric monoidal string diagram calculus are the first
four figures in Figure 3.1. They are “Poincaré dual” to the usual graphical representation
of symmetric monoidal categories.

Finally, there are no string diagram calculations after Theorem 6.1 since this would
require the development of a new calculus and that is beyond the scope of this paper.

3. TRACES AND MULTITRACES IN SYMMETRIC MONOIDAL CATEGORIES

In this section we consider the special case of Theorem A in a symmetric monoidal
category C with monoidal product ⊗ and unit object U . Recall that:

• An object M of C is dualizable if there is an object M? of C and morphisms

η : U → M⊗M? and ε : M?⊗M →U

so that the composites in Figure 3.1f are identity maps. These are the triangle
identities.
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M

(A) An object
M.

M N

(B) The tensor
M⊗N.

f
M

N

(C) A morphism
f : M → N.

M N

(D) The symmetry
M⊗N → N ⊗M.

f1 f2 fn

M1 M2 Mn

Mn M1 Mn−1

MnM1 Mn−1

· · ·

(E) The Fuller map
Ψ( f1, . . . , fn).

M U

η

ε

MU

M?U

η

ε

M? U

(F) Triangle diagrams for a dual pair

PU

f

η

ε

Q U

(G) The trace

FIGURE 3.1. String diagrams for a symmetric monoidal category.
We view the strings as oriented from top to bottom.

• If M is dualizable, the trace of a morphism f : P ⊗M → M ⊗Q is the composite
in Figure 3.1g. If P and Q are units, f : M → M.

We then define the Fuller construction of an n-tuple of maps f i : Mi → Mi−1 to be the
composite

(3.2) Ψ( f1, . . . , fn) : M1 ⊗·· ·⊗Mn
f1⊗···⊗ fn−−−−−−→ Mn ⊗M1 ⊗·· ·⊗Mn−1

γ−→ M1 ⊗·· ·⊗Mn

This is illustrated by the string diagram in Figure 3.1e. When all the Mi and f i are
equal, this is the nth Fuller map Ψn( f ) described in the introduction.

Theorem 3.3 (Symmetric monoidal version of Theorem A). For an n-tuple of dualizable
objects {Mi}n

i=1 in a symmetric monoidal category (C ,⊗,U) and maps f i : Mi → Mi−1

tr(Ψ( f1, . . . , fn))= tr( f1 ◦ f2 ◦ · · · ◦ fn)

as maps U →U in C .

Proof. The trace of the Fuller construction

Ψ( f1, . . . , fn) :
⊗

Mi →
⊗

Mi

of maps f i : Mi → Mi−1 is depicted in figure Figure 3.4a. Symmetry isomorphisms trans-
form this trace to Figure 3.4b. Canceling as in Figure 3.1f transforms this to Figure 3.4c.
This completes the proof of this theorem using string diagrams.
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Alternatively, a diagram chase shows that if X ⊗Y and Z are dualizable and g : X ⊗
Y → X ⊗Z and f : Z →Y , the trace of

X ⊗Y ⊗Z
g⊗ f−−−→ X ⊗Z⊗Y

id⊗γ−−−→ X ⊗Y ⊗Z

is the trace of
X ⊗Y

g−→ X ⊗Z
id⊗ f−−−→ X ⊗Y .

Since the map in (3.2) is the composite

M1 ⊗·· ·⊗Mn−2 ⊗Mn−1 ⊗Mn
f1⊗···⊗ fn−1⊗ fn−−−−−−−−−−→ Mn ⊗M1 ⊗·· ·Mn−2 ⊗Mn−1

γ1,n−2⊗id−−−−−−→ M1 ⊗·· ·Mn−2 ⊗Mn ⊗Mn−1

id⊗n−2⊗γ−−−−−−→ M1 ⊗·· ·Mn−2 ⊗Mn−1 ⊗Mn

the trace of Ψ( f1, . . . , fn) is the trace of Ψ(( fn ◦ f1), . . . , fn−1). Then the result follows by
induction and the cyclic invariance of the trace. �

Example 3.5. If X is a finite or finitely dominated complex and f : X → X , the Lef-
schetz number L( f ) is the trace of

Σ∞
+ f : Σ∞

+ X →Σ∞
+ X

in the stable homotopy category. This trace is a self-map of the sphere spectrum S =
Σ∞+ ∗. The above theorem implies that L(Ψk( f )) = L( f k), which is the Lefschetz version
of Theorem A, see also [Ful67, 4.4].

Our proof of Theorem A will essentially be a generalization of the above proof. In the
more general setting of a shadowed bicategory, we will re-arrange the Fuller trace into a
map as in Figure 3.4b that we call the multitrace, and then re-arrange the multitrace
into the trace of the composite. The latter step does not require us to re-order objects,
so we can do it in any shadowed bicategory. The former does require us to re-order
the objects, so we need to ask for more structure beyond that of a bicategory. We will
show that this step can be performed anytime we have a “shadowed n-Fuller structure,”
defined in §6. In [MP18] we show that parametrized spectra have such a structure.
Example 3.6. The multitrace defined by Figure 3.4b coincides with the multitrace from
[Sch04, §4], cf. [Mad95, (2.6.4),(2.6.5)]. To recall it explicitly, let A0, . . . , Ak be n× n
matrices with coefficients in a field, and V an n dimensional vector space with basis
{e i}. The coevaluation map of V is given by linearly extending 1 7→ ∑

e i ⊗ e∗i , and the
evaluation map is given by linearly extending (φ,v) 7→φ(v).

The image of (1, . . .1) under the multitrace of (A0, . . . , Ak) is then∑
0≤i1,...,ik≤n

a0
ik i0

⊗a1
i0 i1

⊗ . . .⊗ak
ik−1 ik

where am
j,l is the ( j, l) entry of Am.

4. BICATEGORIES AND SHADOWS

A bicategory B consists of the following data:
• A collection of objects or 0-cells R,S,T, . . . .
• For each pair of objects, a category B(R,S).
• For each object, a unit UR ∈B(R,R).
• For each triple of objects, a composition functor

¯ : B(R,S)×B(S,T)→B(R,T).



10 CARY MALKIEWICH AND KATE PONTO

U

U

U

ηM1

ηM2

ηM3M1
M1

?

M2
M2

?

M3 M3
?

f1

f2 f3
M3

M1
?

M1
M2

?

M2 M3
?

M3

M1
?

M1
M2

?
M2 M3

?

M3

M1
? M1

M2
? M2

M3
?

εM1

εM2

εM3

U

U

U

(A) The trace of the Fuller map

U
U

U

ηM1

ηM2

ηM3

M1

M1
?

M2 M2
?

M3

M3
?

f1

f2

f3

M3

M1

M2

M3 M1
? M1

M2
?

M2
M3

?

εM1

εM2
εM3

U

U
U

(B) The multitrace

U

ηM3

M3

M3
?

f1

f2

f3

M2

M3

M1

M3
?

εM3

U

(C) The trace of f 3.

FIGURE 3.4. Untwisting the Fuller trace

• Associator and unit isomorphisms

a : M¯ (N ¯P) ∼−→ (M¯N)¯P

l : UR ¯M ∼−→ M

r : M¯US
∼−→ M
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satisfying the same coherence axioms as for a monoidal category.
The objects of B(R,S) are called 1-cells and the morphisms are 2-cells. We think of these
as “monoidal categories with many objects” and the operation ¯ as a tensor product. The
coherence theorem for bicategories [Pow89] allows us to tensor a string of several 1-cells
in a well-defined way up to canonical isomorphism, hence we often omit parentheses
from expressions such as M¯N ¯P.

A shadow functor on a bicategory B is a 1-category T, a functor
〈〈−〉〉

: B(R,R) → T
for each 0-cell R, and natural isomorphisms

θ : 〈〈M¯N〉〉 ∼−→〈〈N ¯M〉〉
satisfying following two coherence conditions.〈〈

(M¯N)¯P
〉〉 θ //

〈〈a〉〉
��

〈〈
P ¯ (M¯N)

〉〉 〈〈a〉〉
//
〈〈
(P ¯M)¯N

〉〉
〈〈
M¯ (N ¯P)

〉〉 θ //
〈〈
(N ¯P)¯M

〉〉 〈〈a〉〉
//
〈〈
N ¯ (P ¯M)

〉〉θ

OO

〈〈
M¯UR

〉〉 θ //

〈〈r〉〉
%%

〈〈
UR ¯M

〉〉
〈〈 l〉〉

��

θ //
〈〈
M¯UR

〉〉
〈〈r〉〉

yy〈〈
M

〉〉
This makes B into a bicategory with shadow.

The point of a shadowed bicategory is that the 1-cells can be tensored along a circle.
Given 1-cells Mi ∈B(Ri−1,Ri), indices taken mod n, define their circular product by

〈〈M1, . . . , Mn〉〉:=〈〈(. . . ((M1 ¯M2)¯M3) . . .¯Mn)〉〉.
The following allows us to work with such products without worrying about parenthe-
sization.
Theorem 4.1 (Coherence for shadowed bicategories [MP18, Theorem 9.12]). If a functor
is naturally isomorphic to the circular product by a composition of isomorphisms a, l,r,θ,
then there is only one such isomorphism.
Example 4.2 (Examples of bicategories and shadows).

(1) If C is a monoidal category, it is also a bicategory with one object. If C is a
symmetric monoidal category, this is a shadowed bicategory in which T=C , the
shadow functor is id: C →C , and θ is the symmetry isomorphism in C .

(2) There is a bicategory of bimodules and homomorphisms where the 0-cells are
rings R, the 1-cells are bimodules R MS and the 2-cells are bimodule homomor-
phisms R MS → R NS. The composition functor ¯ is the tensor product and the
unit UR is R as a bimodule over itself. There is a shadow functor that assigns
R MR to the quotient M/〈rm−mr〉. This can be generalized by taking the 1-cells
to be chain complexes and the 2-cells to be maps in the derived category.

(3) There is a point-set bicategory of parameterized spaces U/S. The 0-cells are
spaces A and U/S(A,B) is the category of spaces X → A ×B. The composition
of X → A×B and Y → B×C is the fiber product X ×B Y and the unit UB is the
diagonal B → B×B. The shadow sends X → B×B to the pullback along the
diagonal B → B×B, which gives an unbased space.

(4) There is a homotopy bicategory of spaces ho(U/S). It is obtained by inverting the
weak homotopy equivalences in each of the categories U/S(A,B), and replacing ¯
and 〈〈〉〉by their right-derived functors. In particular, the shadow of the 1-cell in

U/S(X , X ) given by X
( f ,id)−−−→ X × X is the twisted free loop space Λ f X .

(5) There is a bicategory Ex of parameterized spectra [MS06, Ch. 17]. Its 0-cells
are spaces A, and the category Ex(A,B) is the homotopy category of spectra
parametrized by the product space A×B. Each parametrized space X → A×B
in ho(U/S(A,B)) has a suspension spectrum Σ∞

+(A×B)X in Ex(A,B). The shadow
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functor from Ex to spectra agrees with the one in ho(U/S) along the suspension
spectrum functor.

(6) The last three examples admit generalizations GU/GS,hoGU/GS,GEx by allowing
the action of a finite group G. When forming the homotopy category hoGU/GS,
we invert those maps of G-spaces that are equivalences on the H-fixed points for
every H ≤G.

A pseudofunctor is a homomorphism of bicategories F : C → D . It consists of the
following data.

• A function obC → obD of 0-cells, denoted by F.
• A functor C (R,S)→D (F(R),F(S)) for each pair of 0-cells in C , denoted by F.
• Natural isomorphisms

m : F(M)¯F(N) ∼−→ F(M¯N)

i : UF(R)
∼−→ F(UR)

satisfying the same coherence axioms as for a strong monoidal functor.
A strong shadow functor is a homomorphism of shadowed bicategories F : (C ,TC ) →
(D ,TD ). It consists of a pseudofunctor and the following additional data.

• A functor of shadow categories Ftr : TC →TD .
• Natural isomorphisms s : 〈〈F(M)〉〉 ∼−→ Ftr〈〈M〉〉such that

〈〈F(M)¯F(N)〉〉 θ //

〈〈m〉〉
��

〈〈F(N)¯F(M)〉〉
〈〈m〉〉

��

〈〈F(M¯N)〉〉
s

��

〈〈F(N ¯M)〉〉
s

��

Ftr〈〈M¯N〉〉
Ftr(θ)

// Ftr〈〈N ¯M〉〉.

commutes whenever it makes sense.
If F,G : C →D are strong shadow functors that are the same function of 0-cells, an iso-
morphism of strong shadow functors from F to G consists of natural isomorphisms
F ∼= G and Ftr ∼= Gtr that commute with m, i, and s. We will often implicitly work with
these functors up to isomorphism.

5. DUALITY AND TRACE FOR BICATEGORIES

A 1-cell M : R −7−→ S in a bicategory is right dualizable, or dualizable over S, if there
is a 1-cell M? : S −7−→ R, and coevaluation and evaluation 2-cells

η : UR → M¯M? and ε : M?¯M →US

satisfying the triangle identities. We say that (M, M?) is a dual pair, that M? is left
dualizable or dualizable over S.
Example 5.1 (Dualizable objects).

(1) An object M is dualizable in the symmetric monoidal category C if and only if it
is right (or left) dualizable in the bicategory associated to C .

(2) If A and R are rings, a bimodule A MR is right dualizable precisely when it is
finitely generated and projective as a right R-module, in which case the dual
is HomR(M,R). Of course, M left dualizable when it is finitely generated and
projective as a left A-module.
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R

(A) Object R

R S

M

(B) 1-cell R M−→ S

R S T

M N

(C) Composite M¯N

R S

f
M

N

(D) 2-cell

R S T

M N

(E) F(M¯N)

R S T

M N

(F) F(M)¯F(N)

M

(G) 〈〈M〉〉

FIGURE 5.4. String diagrams for bicategories

Example 5.2. The graph A
idA , f−−−→ A ×B of a map f : A → B of unbased spaces defines

1-cells in ho(U/S)(A,B) and ho(U/S)(B, A). Taking suspension spectra gives two different
1-cells in Ex, which we call the base-change 1-cells associated to f :[

A
f−→ B

]
:=Σ∞

+(A×B) A,
[

B
f←− A

]
:=Σ∞

+(B×A) A.

• The 1-cell
[

A
f−→ B

]
is always right dualizable [MS06, 17.3.1].

• If p : E → B is a perfect fibration, i.e. a fibration whose fibers are finitely domi-
nated, then

[
B

p←− E
]

is right dualizable [PS14, 4.7]. When there is a G-action,
the same is true if the fiber is equivariantly finitely dominated, meaning it is a
retract in the homotopy category of G-spaces of a finite G-CW complex [PS14,
4.3][MS06, 18.2.1].

Base change objects define a pseudofunctor S → ho(U/S). In particular, there are co-
herent isomorphisms

m[] :
[

C
g←− B

]
¯

[
B

f←− A
] ∼−→

[
C

g◦ f←−− A
]

, i[] : UA
∼−→

[
A id←− A

]
.(5.3)

for each pair of composable maps A
f→ B

g→ C and each 0-cell A. The same discussion
applies with G-equivariant spaces as well.

Let B be a bicategory with a shadow functor to T, and M a right dualizable 1-cell of
B. The trace of a 2-cell f : Q¯M → M¯P is the morphism in T is the composite:

〈〈Q〉〉 η
// 〈〈Q, M, M?〉〉 f

// 〈〈M,P, M?〉〉 ε // 〈〈P〉〉.
When B comes from a symmetric monoidal category, this is the trace as defined in Sec-
tion 3.

As in the symmetric monoidal case, it is helpful to visualize these traces using the
string diagram calculus for bicategories from [PS13]. (The rigor of this approach is es-
tablished in the appendix of that paper. As in the symmertic monoidal case any string
diagram can be translated into a conventional commutative diagram.) We represent 0-
cells by 2-dimensional regions, 1-cells by strings, and 2-cells by vertices; see Figure 5.4.
Pasting pictures together corresponds to horizontal (tensoring) and vertical composition
of the resulting expressions in the bicategory. To extend this visual language to bicate-
gories with shadow, we represent the shadow by closing a planar string diagram into a
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ηM

Q

f

εM

P

(A) Cylinder

Q

Q M M∗

PMM∗

P

ηM

f

εM

(B) Slices

FIGURE 5.5. The bicategorical trace

cylindrical string diagram. See Figure 5.4g. See Figure 5.5 for the string diagram for
the bicategorical trace, cf. the earlier string diagram in Figure 3.1g.

Example 5.6. Suppose that X is a finite or finitely dominated complex and f : X → X .

• The Reidemeister trace R( f ) is the trace of the canonical isomorphism[
∗ p←− X

] ∼−→
[
∗ p←− X

]
¯

[
X

f←− X
]

.

This trace is a map in the homotopy category

R( f ) : S'Σ∞
+
〈〈[∗←−∗]〉〉→Σ∞

+
〈〈[

X
f←− X

]〉〉
'Σ∞

+ Λ f X

(cf [CP19, Appendix A]), which can be regarded as an element of H0(Λ f X ).
• The nth Fuller trace RCn (Ψn( f )) is the trace of the canonical isomorphism[

∗ p←− X n
] ∼−→

[
∗ p←− X n

]
¯

[
X n Ψn( f )←−−−− X n

]
.

It is a map in the Cn-equivariant homotopy category

RCn (Ψn( f )) : S'Σ∞
+
〈〈[∗←−∗]〉〉→Σ∞

+
〈〈[

X n Ψn( f )←−−−− X n
]〉〉
'Σ∞

+ ΛΨn( f )X n.

These are not the standard definitions of Lefschetz number or the Reidemeister trace.
The definition here for the Lefschetz number is shown to agree with more classical de-
scriptions in [DP80]. This description of the Reidemeister trace is compared to more
classical versions in [Pon16] and to the description in [KW07] in [Pon10, 6.3.2]. The fact
that different constructions of Ex give the same base-change isomorphisms is handled
carefully in [Mal19], so we refrain from commenting on it here.

We end this section by recalling a fundamental functoriality result for the trace.

Theorem 5.7. [PS13, 8.3] Let F : B → C be a strong shadow functor and suppose M ∈
B(R,S) is right dualizable.

(1) Then F(M) is right dualizable with dual F(M?).
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(2) For any f : Q¯M → M¯P, the following square commutes:

〈〈F(Q)〉〉
tr(m−1

M,P◦F( f )◦mQ,M )
//

s
��

〈〈F(P)〉〉
s

��

Ftr〈〈Q〉〉 Ftr(tr( f ))
// Ftr〈〈P〉〉.

6. THE MULTITRACE FOR BICATEGORIES AND FULLER BICATEGORIES

Now that we have defined the Reidemeister trace for f n and for Ψn( f ), we may begin
the formal work of relating them together.

Suppose in a shadowed bicategory B we select right dualizable 1-cells Mi ∈B(A i,Bi),
1-cells Q i ∈B(A i−1, A i), Pi ∈B(Bi−1,Bi) (subscripts taken mod n), and 2-cells

φi : Q i ¯Mi → Mi−1 ¯Pi.

Then we define the “composite” φ1 ◦ . . .◦φn to be the composite of the 2-cells

Q1 ¯ . . .¯Qn ¯Mn
idn−1¯φn−−−−−−→Q1 ¯ . . .¯Qn−1 ¯Mn−1 ¯Pn

idn−2¯φn−1¯id−−−−−−−−−−→
Q1 ¯ . . .¯Qn−2 ¯Mn−2 ¯Pn−1 ¯Pn → . . .→ Mn ¯P1 ¯ . . .¯Pn.

If the modules Q i and Pi are all units, this is canonically isomorphic to the composite of
the maps φi.

On the other hand, we define the multitrace of the maps φi, denoted tr(φ1, . . . ,φn),
as the composite in T:

〈〈Q1, . . . ,Qn〉〉
〈〈 id,η1,id,...,id,ηn〉〉

// 〈〈Q1, M1, M?
1 ,Q2, M2, M?

2 , . . . , Mn, M?
n〉〉

〈〈φ1,id,...,id,φn,id〉〉
��

〈〈P1, . . . ,Pn〉〉 〈〈Mn,P1, M?
1 , M1,P2, M?

2 , . . . ,Pn, M?
n〉〉

〈〈 id,ε1,id,...,id,εn〉〉
oo

Theorem 6.1 (Step 1 of Theorem A). The multitrace equals the trace of the composite,

tr(φ1, . . . ,φn)= tr(φ1 ◦ . . .◦φn),

as maps 〈〈Q1, . . . ,Qn〉〉→〈〈P1, . . . ,Pn〉〉.
Proof. Using the string diagram calculus of [PS13], Figure 6.4 provides a full proof.

Alternatively, if X is dualizable, the composite

(6.2) A¯C¯Y
id¯η¯id2

−−−−−−→ A¯X ¯X?¯C¯Y
f¯id¯g−−−−−→Y ¯B¯X?¯X ¯D id2¯ε¯id−−−−−−→Y ¯B¯D

for 2-cells f : A¯ X →Y ¯B and g : C¯Y → X ¯D is

A¯C¯Y
id¯g−−−→ A¯ X ¯D

id¯η¯id2

−−−−−−→ A¯ X ¯ X?¯ X ¯D id2¯ε¯id−−−−−−→ A¯ X ¯D
f¯id−−−→Y ¯B¯D

Canceling the center evaluation and coevaluation, (6.2) is the composite

(6.3) A¯C¯Y
id¯g−−−→ A¯ X ¯D

f¯id−−−→Y ¯B¯D

If Y is also dualizable the multitrace of f and g is the trace of (6.2) and so the multitrace
of f and g is the trace of (6.3). Then the theorem follows by induction. �

Now we turn to the rest of the proof of Theorem A. As discussed in Section 3, we need
to break free of the bicategory structure on B and use some additional structure that can
reorder tensored objects. Here we give an axiomatic description of this extra structure
and use it to prove Theorem A. The existence of examples of this structure (other than
symmetric monoidal categories) is established in [MP18].
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(C) Applying triangle identi-
ties

FIGURE 6.4. The multitrace is isomorphic to the trace of the composition.

To motivate the following definitions, it is useful to think of the trace of Ψn( f ) as
n nested circles, with an extra twist owing to the fact that Ψn( f ) rotates the factors
around. See Figure 6.5. If we re-interpret this picture as a single circle winding around
n times, we get precisely the multitrace pictured in Figure 6.4a. So we just need to
formally understand the process of “unwinding the coil” in Figure 6.5, in other words
lifting it to the n-fold cover of the circle.

A shadowed n-Fuller structure on a bicategory with shadow B consists of the
following.

(1) A strong functor (pseudofunctor) of bicategories

� : B× . . .×B︸ ︷︷ ︸
n

→B.

Here B× . . .×B is the bicategory whose 0-cells are tuples of 0-cells B and

(B× . . .×B)((A1, . . . , An), (B1, . . . ,Bn)) :=B(A1,B1)× . . .×B(An,Bn).

The product, shadow, associator, and so on are all defined componentwise.
More explicitly, this is a function that assigns a 0-cell �A i to every tuple of

0-cells A i, functors � :
∏

B(A i,Bi)→B(�A i,�Bi), and natural isomorphisms

m� : (�Mi)¯ (�Ni)∼=�(Mi ¯Ni)
i� : U�A i

∼=�UA i

satisfying the same coherence axioms as for a monoidal functor including (6.14),
(6.12), (6.13).

(2) A pseudonatural transformation

ϑ : �◦γ→�

where γ is the strong functor B×. . .×B →B×. . .×B that permutes the leftmost
B to the right.

More explicitly, for each n tuple of objects (A1, . . . , An) in B there is an object
TA i ∈B(A2 × . . .× An × A1, A1 × . . .× An) and natural isomorphisms

ϑ : TA i ¯ (�Mi)
∼=→ (�Mi+1)¯TBi

for all Mi ∈B(A i,Bi) that are compatible with m� and i�.1

1In fact, the compatibility with i� is entirely optional, because our arguments below do not use it.
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FIGURE 6.5. The trace of Ψ3( f )

(3) A natural isomorphism

τ : 〈〈TA i−1 ,�Q i〉〉
∼=→〈〈Q1, . . . ,Qn〉〉

so that

(6.6) 〈〈TA i−1 ,�Mi,�Ni〉〉 ∼ //

ϑ∼
��

〈〈TA i−1 ,�(Mi ¯Ni)〉〉 τ
∼ // 〈〈M1, N1, M2, . . . , Mn, Nn〉〉

∼ θ

��

〈〈�Mi+1,TBi ,�Ni〉〉
θ��

〈〈TBi ,�Ni,�Mi+1〉〉 ∼ // 〈〈TBi ,�(Ni ¯Mi+1)〉〉 τ
∼ // 〈〈N1, M2, . . . , Mn, Nn, M1〉〉

commutes for all Mi ∈B(A i−1,Bi) and Ni ∈B(Bi, A i).
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Example 6.7. If C is a symmetric monoidal category, it has a canonical n-Fuller struc-
ture in which � is the n-fold tensor product, TA i is the unit, and the rest of the iso-
morphisms are the canonical ones that come from the coherence theorem for symmetric
monoidal categories.

Example 6.8. The bicategory Ex has a shadowed n-Fuller structure. This can be de-
duced from our foundational work in Theorem 9.9 below, and the formal work from
[MP18] summarized in Theorem 8.4 below.

The following statement is an immediate consequence of Theorem 5.7.

Lemma 6.9. If Mi ∈B(A i,Bi) are right dualizable with duals Ni ∈B(Bi, A i) and

� : B× . . .×B →B

is a strong functor of bicategories then �Mi ∈B(
∏

A i,
∏

Bi) is dualizable with dual �Ni.

For dualizable Mi ∈ B(A i,Bi) and Q i ∈ B(A i−1, A i) and Pi ∈ B(Bi−1,Bi) (subscripts
are taken mod n) the abstract Fuller map of

φi : Q i ¯Mi → Mi−1 ¯Pi,

denoted Ψ(φ1, . . . ,φn) ∈B(
∏

A i,
∏

Bi), is the composite

TA i−1 ¯�Q i ¯�Mi
id¯m���

TA i−1 ¯�Mi−1 ¯�Pi
ϑ¯id
∼ //

id¯m���

�Mi ¯TBi−1 ¯�Pi

TA i−1 ¯�(Q i ¯Mi)
id¯�φi

// TA i−1 ¯�(Mi−1 ¯Pi)

Essentially, it is �φi, but written in a form that allows us to use the dualizability of �Mi
to take its trace.

Theorem 6.10 (Step 2 of Theorem A). If B is a bicategory with a shadowed Fuller
structure, then for each tuple of maps φi as above the following diagram commutes.

〈〈TA i ¯�Q i〉〉
tr(Ψ(φ1,...,φn))

//

τ∼
��

〈〈TBi ¯�Pi〉〉
τ∼

��

〈〈Q1, . . . ,Qn〉〉
tr(φ1,...,φn)

// 〈〈P1, . . . ,Pn〉〉

Proof. This is a modification of the compatibility between trace and shadow functors
(Theorem 5.7). The required commutative diagram is Figure 6.15. This is a very large
diagram and so we have labeled the small regions so we can more easily indicate why
they commute.

The right column of commutative diagrams in Figure 6.15 are mostly examples of the
naturality of τ:

(6.11) 〈〈TCi ¯�X i〉〉 τ //

〈〈 id¯� f i〉〉
��

〈〈X1 ¯·· ·¯ Xn〉〉
〈〈 f1¯···¯ fn〉〉

��

〈〈TCi ¯�Yi〉〉 τ // 〈〈Y1 ¯·· ·¯Yn〉〉

This diagram commutes for 2-cells f i : X i →Yi. The remaining region in the right column
is the assumed compatibility between θ and ϑ.

Many of the left column regions are the result of applying the functor 〈〈TCi ⊗−〉〉 to
coherence axioms for �. These include:
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• naturality of m�

(6.12) (�X i)¯ (�Yi)
m� //

(� f i)¯(�g i)
��

�(X i ¯Yi)

�( f i¯g i)
��

(�Wi)¯ (�Zi)
m� // �(Wi ¯Zi)

• associativity of m�

(6.13) (�X i)¯ (�Yi)¯ (�Zi)
m�¯id

//

id¯m�
��

(�(X i ¯Yi))¯ (�Zi)

m�

��

(�X i)¯ (�(Yi ¯Zi))
m� // �(X i ¯Yi ¯Zi)

• compatibility of i� and m�

(6.14) (�X i)¯U�Ci
//

id¯i�
��

�X i

(�X i)¯ (�UCi )
m� // �(X i ¯UCi )

OO

In (6.14) the unlabeled arrows are unit isomorphisms.
The dotted and dashed arrows are defined to be the composites of the remaining ar-

rows bounding the relevant region. For the two remaining regions:
(1) This square commutes by applying 〈〈−〉〉to a square that commutes by the functo-

riality of ¯.
(2) This square commutes by the naturality of the shadow isomorphism.

�

Together Theorems 6.1 and 6.10 prove a very abstract and general form of the “un-
winding” argument, that the trace of a Fuller construction is isomorphic to the trace
of the composite. To recover Theorem A from this, we have to further develop the case
where the maps φi are canonical isomorphisms of base-change objects associated to maps
f i in some 1-category S.

7. BASE CHANGE

If B is a shadowed bicategory with an n-Fuller structure and S is a cartesian mon-
oidal 1-category, a system of base-change objects for B indexed by S is the follow-
ing data and conditions.

(1) A pseudofunctor [] : S→B.
In particular, natural isomorphisms

m[] :
[

Bn
fn←− Bn−1

]
¯ . . .¯

[
B2

f2←− B1

]
¯

[
B1

f1←− B0

]∼= [
Bn

fn◦...◦ f1←−−−−− B0

]
compatible with composition. (The unit isomorphism i[] is not necessary.)

(2) A vertical natural isomorphism π filling the square of pseudofunctors

S×n
∏

//

[]
��

S

[]
��

B×n � // B

where
∏

denotes a fixed model for the n-fold product in S.



20 CARY MALKIEWICH AND KATE PONTO

〈〈TA i ,�Q i〉〉 〈〈Q1, . . . ,Qn〉〉〈〈TA i ,�Q i,U�A i〉〉

〈〈TA i ,�Q i,�UA i〉〉 〈〈TA i ,�(Q i ¯UA i )〉〉 〈〈Q1,UA1 , . . . ,Qn,UAn〉〉

〈〈TA i ,�Q i,�Mi,�Ni〉〉

〈〈TA i ,�Q i,�(Mi ¯Ni)〉〉

〈〈TA i ,�(Q i ¯Mi ¯Ni)〉〉

〈〈Q1, M1, N1, . . . ,Qn, Mn, Nn〉〉

〈〈TA i ,�(Q i ¯Mi),�Ni〉〉

〈〈TA i ,�Mi−1,�Pi,�Ni〉〉

〈〈TA i ,�(Mi−1 ¯Pi),�Ni〉〉

〈〈TA i ,�(Mi−1 ¯Pi ¯Ni)〉〉

〈〈Mn,P1, N1, M1, . . . ,Pn, Nn〉〉〈〈TA i ,�Mi−1,�(Pi ¯Ni)〉〉

〈〈�Mi,TBi ,�Pi,�Ni〉〉 〈〈�Mi,TBi ,�(Pi ¯Ni)〉〉

〈〈TBi ,�(Pi ¯Ni),�Mi〉〉

〈〈TBi ,�(Pi ¯Ni ¯Mi)〉〉

〈〈P1, N1, M1, . . . ,Pn, Nn, Mn〉〉

〈〈TBi ,�Pi,�Ni,�Mi〉〉

〈〈TBi ,�Pi,�(Ni ¯Mi)〉〉

〈〈TBi ,�Pi,U�Bi〉〉

〈〈TBi ,�Pi,�UBi〉〉 〈〈TBi ,�(Pi ¯UBi )〉〉 〈〈P1,UB1 , . . . ,Pn,UBn〉〉

〈〈TBi ,�Pi〉〉 〈〈P1, . . . ,Pn〉〉

(6.6)

〈〈TA i ¯ (6.14)〉〉 (6.11)

〈〈TBi ¯ (6.14)〉〉 (6.11)

(6.11)

(6.11)

(6.11)〈〈TA i ¯ (6.12)〉〉

〈〈TA i ¯ (6.12)〉〉

〈〈TBi ¯ (6.12)〉〉

〈〈TA i ¯ (6.13)〉〉

〈〈TA i ¯ (6.13)〉〉

〈〈TBi ¯ (6.13)〉〉

(1)

(2)

FIGURE 6.15. Proof of Theorem 6.10

This implies �A i =∏
A i for a tuple of 0-cells A i, and for each n-tuple of maps

A i
f i→ Bi there is an isomorphism of 1-cells

π : �
[

Bi
f i←− A i

] ∼=→
[∏

Bi

∏
f i←−−∏

A i

]
so that for any n-tuple of composable maps A i

f i→ Bi
g i→ Ci, the following pentagon

of isomorphisms commutes.

(7.1)
(
�

[
Ci

g i←− Bi

])
¯

(
�

[
Bi

f i←− A i

])

π¯π∼=

��

m�

∼=
// �

([
Ci

g i←− Bi

]
¯

[
Bi

f i←− A i

])
�m[]∼=

��

�
[

Ci
g i◦ f i←−−− A i

]
π∼=

��[∏
Ci

∏
g i←−−−∏

Bi

]
¯

[∏
Bi

∏
f i←−−∏

A i

] m[]

∼=
//

[∏
Ci

∏
(g i◦ f i)←−−−−−−∏

A i

]
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(Again, the corresponding map for the unit of � is not necessary.)
(3) An equality TBi =

[∏
Bi+1

∼=←−∏
Bi

]
so that the following diagram relating ϑ, π

and the pseudofunctor structure commutes.
(7.2)[∏

Bi+1
∼=←−∏

Bi

]
¯

(
�

[
Bi

pi←− E i

])

id¯π ∼=

��

ϑ
∼=

//

(
�

[
Bi+1

pi+1←−−− E i+1

])
¯

[∏
E i+1

∼=←−∏
E i

]
π¯id∼=

��[∏
Bi+1

∏
pi+1←−−−−∏

E i+1

]
¯

[∏
E i+1

∼=←−∏
E i

]
∼= m[]

��[∏
Bi+1

∼=←−∏
Bi

]
¯

[∏
Bi

∏
pi←−−−∏

E i

]
∼=

m[]
//

[∏
Bi+1

shift◦∏ pi←−−−−−−−∏
E i

]
Example 7.3. The bicategory Ex has a system of base-change objects from the category
of unbased spaces. As with the n-Fuller structure, this follows from Theorem 9.9 and
the results from [MP18] summarized in Theorem 8.4.

If B is a shadowed n-Fuller category with base change objects, any commuting square
in S of the form

E
f

//

p
��

E

p
��

B
f

// B
gives an isomorphism of base-change objects[

B
f←− B

]
¯

[
B

p←− E
]
→

[
B

p←− E
]
¯

[
E

f←− E
]

.

If the base-change object
[

B
p←− E

]
is right-dualizable in B, then we can take the trace

of this map. This is the Reidemeister trace associated to the above commuting square.
Note that in Ex, when B =∗, it agrees with the definition of R( f ) we gave in Section 5.

If we instead have an n-tuple of commuting squares

E i
f i

//

pi

��

E i−1

pi−1

��

Bi
f i

// Bi−1

in S then we can define a commuting square∏
E i

Ψ( f1,..., fn)
//

∏
pi

��

∏
E i∏

pi
��∏

Bi
Ψ( f1,..., fn)

//
∏

Bi.

The first squares define maps

φi :
[

Bi−1
f i←− Bi

]
¯

[
Bi

pi←− E i

]
→

[
Bi−1

pi−1←−−− E i−1

]
¯

[
E i−1

f i←− E i

]
for each i, and the second square defines a map

φ :
[∏

Bi
Ψ( f 1,..., f n)←−−−−−−−−∏

Bi

]
¯

[∏
Bi

∏
pi←−−−∏

E i

]
→

[∏
Bi

∏
pi←−−−∏

E i

]
¯

[∏
E i

Ψ( f1,..., fn)←−−−−−−−∏
E i

]
.
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Proposition 7.4 (Step 3 of Theorem A). In a shadowed n-Fuller category B with a
system of base-change objects from S, for any n-tuple of commuting squares in S

E i
f i

//

pi

��

E i−1

pi−1

��

Bi
f i

// Bi−1

there is a commuting diagram

〈〈
TBi ¯�

[
Bi−1

f i←− Bi

]〉〉 〈〈∼=〉〉
//

tr(Ψ(φ1,...,φn))
��

〈〈[∏
Bi

Ψ( f 1,..., f n)←−−−−−−−−∏
Bi

]〉〉
tr(φ)

��〈〈
TE i ¯�

[
E i−1

f i←− E i

]〉〉 〈〈∼=〉〉
//

〈〈[∏
E i

Ψ( f1,..., fn)←−−−−−−−∏
E i

]〉〉

Proof. The first step in this proof is to compare Ψ(φ1, . . . ,φn) and φ. For this we use
the commutative diagram in Figure 7.5. We have already encountered all of the small
regions in the diagram. The regions not labeled by an equation number commute by:

(1) The functoriality of ¯.
(2) Naturality of m[].

The left composite in Figure 7.5 is Ψ(φ1, . . . ,φn) and the right composite is φ.
A straightforward diagram chase shows that for a diagram of the form below on the

left, where β is an isomorphism and M1 and M2 are dualizable, the corresponding dia-
gram of traces on the right commutes.

Q1 ¯M1
α¯β

//

f1
��

Q2 ¯M2

f2
��

M1 ¯P1
β¯γ

// M2 ¯P2

〈〈Q1〉〉
〈〈α〉〉

//

tr( f1)
��

〈〈Q2〉〉
tr( f2)

��

〈〈P1〉〉
〈〈γ〉〉

// 〈〈P2〉〉

Looking only at the outside edges of Figure 7.5 we have a commutative diagram of ex-
actly this form,

[∏
Bi

∼=←−∏
Bi−1

]
¯�

[
Bi−1

f i←− Bi

]
¯�

[
Bi

pi←− E i

]
Ψ(φ1,...,φn)

��

(m[]◦(id¯π))¯π
//

[∏
Bi

Ψ( f1,..., fn)←−−−−−−−∏
Bi

]
¯

[∏
Bi

∏
pi←−−−∏

E i

]
φ

��

�
[

Bi
pi←− E i

]
¯

[∏
E i

∼=←−∏
E i−1

]
¯�

[
E i−1

f i←− E i

] π¯(m[]◦(id¯π))
//

[∏
Bi

∏
pi←−−−∏

E i

]
¯

[∏
E i

Ψ( f1,..., fn)←−−−−−−−∏
E i

]
.

This completes the proof. �
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
[∏

Bi
∼=←−

∏
Bi−1

]
�

[
Bi−1

f i←− Bi

]
�

[
Bi

pi←− E i

]



[∏

Bi
∼=←−∏

Bi−1

]
�

[
Bi−1

f i←− Bi

]
[∏

Bi

∏
pi←−−−∏

E i

]


[∏
Bi

Ψ( f1,..., fn)←−−−−−−−
∏

Bi

]
[∏

Bi

∏
pi←−−−∏

E i

]



[∏

Bi
∼=←−∏

Bi−1

]
[∏

Bi−1

∏
f i←−−∏

Bi

]
[∏

Bi

∏
pi←−−−∏

E i

]



[∏

Bi
∼=←−∏

Bi−1

]
�

([
Bi−1

f i←− Bi

]
¯

[
Bi

pi←− E i

])


[∏

Bi
∼=←−∏

Bi−1

]
�

[
Bi−1

f i◦pi←−−−− E i

]


[∏
Bi

∼=←−∏
Bi−1

]
[∏

Bi−1

∏
( f i◦pi)←−−−−−−

∏
E i

] [∏
Bi

∏
( f i◦pi)◦∼=←−−−−−−−−

∏
E i

]

 [∏
Bi

∼=←−∏
Bi−1

]
�

([
Bi−1

pi−1←−−− E i−1

]
¯

[
E i−1

f i←− E i

])

 [∏
Bi

∼=←−∏
Bi−1

]
�

[
Bi−1

pi−1◦ f i←−−−−− E i

]
 [∏

Bi
∼=←−∏

Bi−1

][∏
Bi−1

∏
(pi−1◦ f i)←−−−−−−−∏

E i

] [∏
Bi

∏
(pi−1◦ f i)◦∼=←−−−−−−−−−∏

E i

]


[∏

Bi
∼=←−∏

Bi−1

]
�

[
Bi−1

pi−1←−−− E i−1

]
�

[
E i−1

f i←− E i

]



[∏

Bi
∼=←−∏

Bi−1

][∏
Bi−1

∏
pi−1←−−−−∏

E i−1

][∏
E i−1

∏
f i←−−∏

E i

]



[∏

Bi
∼=←−∏

Bi−1

][∏
Bi−1

∏
pi−1←−−−−∏

E i−1

]
�

[
E i−1

f i←− E i

]


[∏
Bi

∏
pi◦∼=←−−−−−∏

E i−1

]
�

[
E i−1

f i←− E i

]  [∏
Bi

∏
pi◦∼=←−−−−−∏

E i−1

][∏
E i−1

∏
f i←−−∏

E i

] 


[∏

Bi

∏
pi←−−−∏

E i

][∏
E i

∼=←−∏
E i−1

][∏
E i−1

∏
f i←−−∏

E i

]



�

[
Bi

pi←− E i

][∏
E i

∼=←−∏
E i−1

]
�

[
E i−1

f i←− E i

]



[∏

Bi

∏
pi←−−−∏

E i

][∏
E i

∼=←−∏
E i−1

]
�

[
E i−1

f i←− E i

]


 [∏
Bi

∏
pi←−−−∏

E i

][∏
E i

Ψ( f1,..., fn)←−−−−−−−∏
E i

]

(
id

m�

)
id
π

π



id
id
π



id
π

id



(
m[] ◦ (id¯π)

id

)

m[]

(
id
m[]

)

(
m[]
id

)

(
id
�φi

)

(
id

�m[]

) (
id
π

)

m[]

(
id

�m[]

) (
id
π

)

m[]

(
ϑ

id

)

(
id

m�

)
id
π

π


id
π

id



(
id
m[]

)

(
m[]
id

)

id
id
π



(
m[]
id

)
(
id
π

)

m[]

(
m[]
id

)

(
id
m[]

)
π

id
id



(
m[]
id

)
id

id
π


(

id
m[] ◦ (id¯π)

)

m[]

(1)

(1)

(1)

(1)

(6.13)

(1)

(6.13)

(6.13)

(1)

(1)

(2)

(2)

(7.1)

(7.1)

(7.2)

FIGURE 7.5. Comparing Fuller maps.
Stacked entries inside a single pair of large parentheses are combined
with ¯.
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Combining Theorems 6.1 and 6.10 and Proposition 7.4 in the setting of Proposition 7.4,
in other words the first three steps of Theorem A, we get a commutative diagram〈〈[∏

Bi
Ψ( f 1,..., f n)←−−−−−−−−∏

Bi

]〉〉 tr(φ)
//

〈〈[∏
E i

Ψ( f1,..., fn)←−−−−−−−∏
E i

]〉〉

〈〈
TBi ¯�

[
Bi−1

f i←− Bi

]〉〉〈〈∼=〉〉
OO

tr(Ψ(φ1,...,φn))
//

∼=
��

〈〈
TE i ¯�

[
E i−1

f i←− E i

]〉〉〈〈∼=〉〉
OO

∼=
��〈〈[

Bn
f 1←− B1

]
, . . . ,

[
Bn−1

f n←− Bn

]〉〉 tr(φ1,...,φn)
//

〈〈∼=〉〉
��

〈〈[
En

f1←− E1

]
, . . . ,

[
En−1

fn←− En

]〉〉
〈〈∼=〉〉

��〈〈[
Bn

f 1←− B1

]
¯ . . .¯

[
Bn−1

f n←− Bn

]〉〉 tr(φ1◦...◦φn)
//

〈〈∼=〉〉
��

〈〈[
En

f1←− E1

]
¯ . . .¯

[
En−1

fn←− En

]〉〉
〈〈∼=〉〉

��〈〈[
Bn

f 1◦...◦ f n←−−−−−− Bn

]〉〉
//

〈〈[
En

f1◦...◦ fn←−−−−− En

]〉〉
relating the Reidemeister trace of the Fuller construction to the trace of the composite of
base-change isomorphisms φ1◦. . .◦φn. To fill in the remaining dashed arrow, we observe
that φ1 ◦ . . .◦φn arises by pasting the base-change isomorphisms that bring us from the
lower to the upper route in the following diagram.

En
fn

//

pn

��

En−1
fn−1

//

pn−1

��

· · · f2
// E1

f1
//

p1

��

En

pn

��

Bn
fn

// Bn−1
fn−1

// · · · f2
// B1

f1
// Bn

Using one last time the fact that [] is a pseudofunctor, along the canonical maps this is
identified with the isomorphism provided by [] for the composite square. Therefore the
dashed arrow is the Reidemeister trace for the square

En
f1◦...◦ fn

//

pn

��

En

pn

��

Bn
f1◦...◦ fn

// Bn.

Taking B to be the terminal object, this gives the fourth and final piece of the proof of
the following.

Corollary 7.6. In a shadowed n-Fuller category B with a system of base-change ob-
jects from S, for any n-tuple of composable maps f i : X i → X i−1 in S, the Reidemeister
trace of the Fuller construction Ψ( f1, . . . , fn) is isomorphic to the Reidemeister trace of the
composite f1 ◦ . . .◦ fn.

Since the bicategory Ex has a shadowed n-Fuller structure and a system of base-
change objects, this proves Theorem A. Our motivation for stating the proof at this level
of generality is that the same argument will establish a more general result for the
fiberwise Reidemeister trace and Fuller trace. See Part 3.
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Part 2. Varying the group G

In this section we prove the first two triangles of Theorem 1.1 commute:
Theorem B. The following diagram commutes up to homotopy.

S

R(Ψn( f ))Cn

ss

R(Ψk( f ))Ck

ww

R(Ψk( f ))

��

(Σ∞+ ΛΨn( f )X n)Cn R // (Σ∞+ ΛΨk( f )X k)Ck F // Σ∞+ ΛΨk( f )X k

The essential idea is to show that the geometric fixed point functor ΦH , and the func-
tor ι∗H that forgets group actions, are strong shadow functors, so that they preserve Rei-
demeister traces by Theorem 5.7. In contrast to the previous part where we black-boxed
all needed properties of parameterized spectra, in this part we work directly with these
spectra. In Section 8 we recall some general theory about passing between symmetric
monoidal bifibrations (smbfs) and bicategories, and in Section 9 we apply these ideas to
the smbf of parametrized G-spectra. We finish the proof of Theorem B in Section 10.

8. SYMMETRIC MONOIDAL BIFIBRATIONS

Strong shadow functors such as ΦH are difficult to construct on GEx because the
operations ¯ and 〈〈−〉〉are composites of left and right derived functors. It is far easier to
show that the constituent pieces of ¯ are separately preserved by ΦH , and then assemble
those pieces back together. The structure of these constituent pieces is captured formally
by the idea of a symmetric monoidal bifibration (smbf).

In this paper, a bifibration is a functor π : C → S from a category C to a cartesian
monoidal category S with the following properties.

• For every pair of an object X ∈ C and an arrow A
f−→ π(X ) in S, there is carte-

sian arrow f ∗X → X satisfying a universal property given in shorthand in
Figure 8.2a.

• For every pair of an object X ∈ C and an arrow π(X )
f−→ A in S, there is a co-

cartesian arrow X → f!X satisfying a universal property given in shorthand
in Figure 8.2b.

• There is a class of Beck-Chevalley squares in S,

A
f

//

h
��

B
g

��

C
k

// D,

such that in each one the natural transformation of functors C C →C B

(8.1) f!h∗ → f!h∗k∗k!
∼−→ f! f ∗g∗k! → g∗k!

is an isomorphism.
• The class of Beck-Chevalley squares can be chosen to include the following squares.

– For any pair of composable maps A
f→ B

g→ C and A′ f ′
→ B′,

A× A′ 1× f ′
//

f×1
��

A×B′

f×1
��

B× A′ 1× f ′
// B×B′

A

(1, f )
��

(1,g◦ f )
// A×C

(1, f )×1
��

A×B
1×(1,g)

// A×B×C

A

f
��

(1,g◦ f )
// A×C

f×1
��

B
(1,g)

// B×C.
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Y

Φ

��

))

∃!
##

f ∗X //

Φ
��

X

Φ

��

Φ(Y ) // A
f

// Φ(X )

(A) Cartesian arrows

Y

Φ

��

X //

55

Φ

��

f!X

Φ
��

∃!

;;

Φ(X )
f

// B // Φ(Y )

(B) Cocartesian arrows

FIGURE 8.2. Cartesian and Cocartesian arrows

– Any square isomorphic to a Beck-Chevalley square. (This includes commut-
ing squares with two parallel isomorphisms.)

– Any product of a Beck-Chevalley square and an object of S.

A fibration is merely a functor Φ : C → S that has cartesian arrows, while an op-
fibration only has cocartesian arrows. A map of bifibrations is a strictly commuting
square of functors

C
F //

πC

��

D

πD

��

S
F[

// T

such that F preserves cartesian arrows and cocartesian arrows, while F[ preserves prod-
ucts and Beck-Chevalley squares.

A symmetric monoidal bifibration (smbf) is a bifibration π : C → S and a sym-
metric monoidal structure on C with monoidal product denoted � so that

• π is a strict symmetric monoidal functor,
• � is a map of fibrations, i.e. a tensor of two cartesian arrows is cartesian, and
• � is a map of op-fibrations, i.e. a tensor of two cocartesian arrows is cocartesian.

We think of this monoidal product as “external” and we denote the unit by I. A map
of symmetric monoidal bifibrations is a map of bifibrations together with a strong
symmetric monoidal structure on the functor F : C →D , so that F(X )�F(Y )→ F(X�Y )
lies over the canonical map F[(A)×F[(B)∼= F[(A×B).

Intuitively, an smbf has three operations �, f ∗, f! that “commute” along canonical
isomorphisms. For each pair of maps f : A → B, g : A′ → B′, there is a canonical isomor-
phism

f ∗X � g∗Y ∼= ( f × g)∗(X �Y ),

of functors C B ×C B′ →C A×A′
, and a similar canonical isomorphism for pushforwards.

Example 8.3. Let S be the category of unbased spaces. The objects of U are the arrows
X → A in S, and maps are commuting squares. The projection U→ S sends X → A to
A. A Cartesian arrow over A → B is a pullback square of spaces. The pushforward of
X → A along A → B is the composite X → B. It satisfies the Beck-Chevalley condition for
all pullback squares. U is a symmetric monoidal bifibration, with tensor product given
by the Cartesian product, sending X → A and Y → B to X ×Y → A×B.

As we have already mentioned, an smbf contains all the raw ingredients needed to
form a bicategory with a system of base-change objects. We assemble the operations ¯,
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〈〈〉〉, UB, and
[

B
f←− A

]
from these more basic pieces as follows.

−¯B − : C A×B ×C B×C →C A×C 〈〈−〉〉B : C B×B →C ∗

M¯B N = (idA ×πB × idC)!(idA ×∆B × idC)∗(M�N) 〈〈M〉〉B = (πB)!(∆B)∗M

UB : ∗→C B×B
[

B
f←− A

]
: ∗→C B×A

UB = (∆B)!π
∗
BI

[
B

f←− A
]
= ( f , idA)!π

∗
A I

Theorem 8.4. Let C →S be a symmetric monoidal bifibration.

• The operations −¯− and UB above and the maps a, l,r defined in [MP18, Fig-
ures 5.6 and 5.7] define a bicategory C/S. [Shu08, 14.4, 14.11]

• The operation 〈〈−〉〉above and θ defined in [MP18, Figure 5.8] define a shadow on
C/S. [PS12, 5.2]

• There is a pseudofunctor [] : S→C/S that sends each morphism to the base-change
object

[
B

f←− A
]
. [MP18, Theorems 3.4 and 3.6]

• The bicategory C/S has a shadowed n-Fuller structure and a system of base-
change objects given by []. [MP18, Theorem 3.6]

• Each map of symmetric monoidal bifibrations F : (C ,S)→ (D ,T) induces a strong
shadow functor F : C/S →D/T, and an isomorphism F ◦ [] ∼= []◦F[. [MP18, Theo-
rem 14.1]

The last bullet point in particular reduces the problem of building strong shadow
functors ΦH and ι∗H to the problem of building maps of symmetric monoidal bifibrations.

Finally we discuss how to invert weak equivalences in a bifibration. Suppose π : C →
S is a fibration, each fiber category C A has a subcategory of weak equivalences, and
hoC is the category formally obtained by inverting these equivalences. By the universal
property of hoC there is a functor hoC →S, that is in general not a fibration.

We say that π is a right-deformable fibration if for each C A there is

• a full subcategory F A ,
• a functor RA : C A →C A with image in F A, and
• a weak equivalence rA : idC A

∼−→ RA,

such that

• f ∗ : C B →C A preserves weak equivalences on F B, and
• f ∗(F B)⊆F A.

The following two results are proven by an elementary but tedious diagram-chase, that
compares hoC to the Grothendieck construction formed from the right-derived pullback
functors f ∗RB : ho(C B)→ ho(C A). The full proof appears in [Mal19].

Theorem 8.5. If π is a right-deformable fibration then hoC → S is a fibration, and the
canonical maps ho(C A) → (hoC )A are isomorphisms of categories. Dually, if π a left-
deformable op-fibration then hoC →S is an op-fibration.

We call the cartesian arrows in hoC homotopy cartesian when we want to distin-
guish from the cartesian arrows in C .

Proposition 8.6. Suppose C is a right deformable fibration. Then an arrow in hoC is
homotopy cartesian if and only if it is isomorphic to a cartesian arrow in C with fibrant
target. The dual statement applies to cocartesian arrows in a left-deformable op-fibration.
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9. PARAMETRIZED G-SPECTRA AND FIXED POINT FUNCTORS

By the last bullet point of Theorem 8.4, it now remains to construct the smbf of pa-
rametrized G-spectra, and to prove that ι∗H and ΦH give smbf maps.

9.1. On the nose. Fix a finite group G and an unbased left G-space B. Recall from
[MS06] that there is a category GS(B) of orthogonal G-spectra over B, or equiv-
alently JG-spaces over B. The objects are sequences that assign to each integer
n ≥ 0 a retractive G ×O(n) space Xn over B, together with G-equivariant structure
maps ΣB Xn → X1+n, satisfying the condition that the composite map Σ

p
B Xq → X p+q is

O(p)×O(q)-equivariant. We always assume the base space B is compactly generated
weak Hausdorff, while Xn only has to be compactly generated.

For each G-equivariant map of base spaces f : A → B, a map of orthogonal G-spectra
over f consists of commuting diagrams

A
��

f
// B

��

Xn

��

φn
// Yn

��

A
f

// B

in which φn is G×O(n)-equivariant and commutes with the structure maps of X and Y .
This defines a larger category GS of all orthogonal G-spectra over all base spaces, whose
fiber category over B is GS(B). The projection functor to the category GS of unbased G-
spaces is a bifibration, with Beck-Chevalley along strict pullback squares [MS06, 11.4.8].
We therefore have adjoint pullback and pushforward functors

f ∗ : GS(B)→GS(A),

f! : GS(A)→GS(B).

The pullback f ∗ is also a left adjoint, and therefore preserves all colimits.
There is an external smash product functor

∧ : GS(A)×GS(B)→GS(A×B)

defined for retractive G-spaces by the formula

(9.1) (X ×B)∪A×B (A×Y ) //

��

X ×Y

��

A×B // X ∧Y

and then extended to parametrized G-spectra using the Day convolution along JG . This
can be regarded as a functor on the entire category of G-spectra, GS×GS→GS. It pre-
serves cartesian and cocartesian arrows, and extends to a symmetric monoidal structure,
hence it makes the category GS a symmetric monoidal bifibration. The unit of ∧ is the
sphere spectrum, regarded as a parametrized spectrum over the one-point space ∗.

Let FV K denote the free parametrized JG-space on a retractive G-space K over
B. Concretely, this is the JG-space whose value at W is the external smash product
JG(V ,W)∧K , where JG(V ,W) is regarded as a retractive space over ∗. Since pullback
and pushforward commute with ∧, they also commute with free spectra ([MS06, 11.4.7]):

f ∗FV K ∼= FV f ∗K , f!FV K ∼= FV f!K .

We will frequently use the class of “freely f -cofibrant” orthogonal spectra over B. A
map of retractive spaces is a (closed, equivariant) f -cofibration if it is closed and has
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the fiberwise, unbased, equivariant version of the homotopy extension property. A spec-
trum is freely f -cofibrant if it is isomorphic to a cell complex spectrum built from
maps of the form FV K → FV L, where K → L is a (closed, equivariant) f -cofibration of
f -cofibrant spaces over B. By “cell complex” we mean a sequential colimit of pushouts of
arbitrary coproducts of such maps.
Lemma 9.2. Freely f -cofibrant spectra are preserved by the pullback functor f ∗.

Proof. This follows because f ∗ preserves colimits, free spectra, and f -cofibrations of re-
tractive spaces. �

Next we define three functors that change the group G. First, for each subgroup H ≤
G, we can forget the G-action and remember the action of H. This gives the forgetful
functor to H. Second, if H has Weyl group WH = NH/H, the H-fixed point subspaces
X H

n form a WH-equivariant spectrum over the fixed point subspace BH . This defines
the categorical fixed points functor. Finally, we define the geometric fixed points
functor by the following coequalizer of WH-spectra.∨

V ,W
FWH S0∧J H

G (V ,W)∧X (V )H ⇒
∨
V

FV H S0∧X (V )H −→ΦH X

In total, this gives three functors

ι∗H : GS(B)→ HS(B)

(−)H : GS(B)→WHS(BH)

ΦH : GS(B)→WHS(BH).

The restriction map r : X H →ΦH X assigns each level X H
n to the Rn-term on the right-

hand side of the coequalizer system. (A little diagram-chasing shows this gives a well-
defined map of spectra.)

Each of these definitions extends to maps in GS, giving commuting squares of functors

GS

��

ι∗H // HS

��

GS
ι∗H // HS

GS

��

(−)H
// WHS

��

GS
(−)H

// WHS

GS

��

ΦH
// WHS

��

GS
(−)H

// WHS

and r lives over the identity transformation of (−)H : GS→WHS.
Proposition 9.3. Each of these functors is a map of bifibrations, if we restrict to freely f -
cofibrant spectra. We can give each one a lax symmetric monoidal structure, commuting
with the same structure on the other three functors in its square. Furthermore ι∗H is strong
symmetric monoidal, and ΦH is strong on the subcategory of freely f -cofibrant spectra.

Proof. It is elementary to check that the first two functors preserve cartesian and co-
cartesian arrows. The cofibrancy assumption is needed to ensure that each basepoint
section B → Xn is a closed inclusion, because (−)H only preserves pushouts along closed
inclusions. For ΦH this reduces to the same claim for external smash products, and the
fact that f ∗ preserves all colimits [MS06, 11.4.1].

The symmetric monoidal structure on ι∗H is given by the identity map on the underly-
ing spectra, and the coherences are obviously satisfied. For (−)H the symmetric monoidal
structure map X H ∧Y H → (X ∧Y )H is given by noticing that the inclusion to X ∧Y lands
in the H-fixed points, and (S(G))H ∼= S(WH) is the unique isomorphism. The coherences
are also straightforward. For ΦH the map commuting it with smash product is con-
structed by the method of [MM02, 4.7], applied verbatim with smash products replaced
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by external smash products. We also use the same argument to prove this map is an
isomorphism on free spectra, and therefore on freely f -cofibrant spectra by an induction
up the skeleton of the cell complex. To check the coherence of this symmetric monoidal
structure, it suffices to restrict attention to one fiber. Then it follows immediately from
[Mal17b, 1.2]. �

9.2. The homotopy category. A map of orthogonal G-spectra X →Y over B is a level
equivalence if each map X (V ) → Y (V ) is an equivalence on the H-fixed points for all
subgroups H ≤G. There is a level fibrant replacement functor R lv that replaces each
X by a level equivalent spectrum X ∼→ R lvX so that (R lvX (V ))H → BH is a quasifibration
[MS06, 6.5.1 and 12.1.7]. A map X → Y is a stable equivalence if on each fiber over
b ∈ B the map R lvX → R lvY is an isomorphism on the H-equivariant stable homotopy
groups for every H ≤ stabb ≤ G. This definition is independent of the choice of functor
R lv.

Theorem 9.4. [MS06, 12.3.10] There is a model structure on GS(B) where the weak
equivalences are stable equivalences.

Proposition 9.5. [MS06, 12.6.7] The pullback functor f ∗ is a Quillen right adjoint, and
a Quillen equivalence if f is a weak equivalence of G-spaces (i.e. AH ∼→ BH is a weak
equivalence for all H ≤ G). In fact, f ∗ preserves all stable equivalences between spectra
whose levels X (V )H are quasifibrations over BH .

This is the stable qf -model structure. The generating cofibrations are the free
spectra on the qf -cells, i.e. those maps G/H×(Sk−1 → Dk) over B that are f -cofibrations.
The generating acyclic cofibrations are the free spectra on maps of the form G/H ×
(Dk−1 → Dk) with a different cofibration condition, and also the ∧-pushout-products of
generating cofibrations over B and the maps kV ,W over ∗ from [MM02, III.4.6]. We will
not spell out the condition on Dk−1 → Dk because it will not matter; it only matters that
we fix the definition once and for all.

In particular, every qf -cofibrant spectrum is also freely f -cofibrant. The next two
lemmas therefore show that ΦH and ∧ preserve stable equivalences between pullbacks
of such spectra. This was already done nonequivariantly for ∧ in [Mal17a], but here we
give a different argument that is easier to make equivariant.

Lemma 9.6. ΦH preserves cofibrations, acyclic cofibrations, and stable equivalences be-
tween freely f -cofibrant spectra.

Proof. The proof that it preserves cofibrations and acyclic cofibrations is identical to the
proof in the non-parametrized case [MM02], so we focus on the last claim.

We freely use the fact that a pushout-product of f -cofibrations of retractive spaces is
again an f -cofibration, and that the external smash product K ∧K ′ of f -cofibrant spaces
preserves weak equivalences. This implies that FV K → FV L is an f -cofibration on each
spectrum level when K → L is an f -cofibration, and also that FV K → FV K ′ is a level
equivalence when K → K ′ is an equivalence of f -cofibrant spaces.

It suffices to show that for a freely f -cofibrant spectrum X , there is some qf -cofibrant
spectrum X ′ and stable equivalence X ′ → X such that ΦH X ′ →ΦH X is an equivalence.
Let X (n) denote the n-skeleton of X , meaning the target of the nth map in the sequential
colimit system that defines X . By induction on n, we build two cofibrant spectra X [n−1/2]
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and X [n], fitting into a diagram

X [n−1] ∼ //

∼
��

X [n−1/2] //

∼
��

X [n]

∼
��

X (n−1) X (n−1) // X (n)

where the ∼ maps are level equivalences and the top row consists of qf -cofibrations
of qf -cofibrant spectra. The colimit over n is a homotopy colimit on each spectrum
level and therefore colimn X [n] → X is a level equivalence of spectra. Then we prove
that ΦH X [n] → ΦH X (n) is an equivalence. Since ΦH preserves free f -cofibrations, and
pushouts and sequential colimits along such, this implies that ΦH colimn X [n] →ΦH X is
an equivalence, as desired.

Now we build these spectra. For each of the maps K → L appearing at stage n of
the colimit system for X , factor B → K into a qf -cell complex B → K ′ ∼−→ K , then factor
K ′ → L into another qf -cell complex K ′ → L′ ∼−→ L. Because K ′ is a cell complex relative
to B and X [n−1]

V → X (n−1)
V is a weak equivalence of G-spaces, the map K ′ → K → X (n−1)

V
can be modified by a homotopy rel B to a map that lifts to X [n−1]

V . This data together
gives a map from the mapping cylinder of K ′ → L′ rel B into X (n−1)

V for which the front
end lifts to a map K ′ → X [n−1]

V . We define a projection map from the mapping cylinder
back to B, by composing this map with the projection X (n−1)

V → B so that we have a map
of retractive spaces over B.

Form X [n−1/2] by attaching the cylinder part of this mapping cylinder to X [n−1], and
X [n] by attaching the entire mapping cylinder. The maps in the diagram above are then
clear. The levels of X [n−1/2] deformation retract onto X [n−1]. Using the fact that external
smash product preserves equivalences of f -cofibrant spaces, X [n] → X (n) is also a level
equivalence.

Now apply ΦH to the construction of X [n]. We get the same equivalences as before,
except possibly the one all the way on the right. Before ΦH , it is a map of pushouts of
the form

X [n−1/2]

∼
��

∐
FVα

K ′
α

oo

∼
��

//
∐

FVα
L′

α

∼
��

X (n−1) ∐
FVα

Kα
oo //

∐
FVα

Lα.

After ΦH , it is a map of pushouts of the form

ΦH X [n−1/2]

∼
��

∐
FV H

α
(K ′

α)Hoo

∼
��

//
∐

FV H
α

(L′
α)H

∼
��

ΦH X (n−1) ∐
FV H

α
KH

α
oo //

∐
FV H

α
LH

α .

The left-hand vertical map is an equivalence by inductive hypothesis. The middle ver-
tical map is an equivalence because (K ′

α)H → KH
α is an equivalence of equivariantly

f -cofibrant WH-spaces, and similarly for the right-hand vertical map. The horizontal
maps on the right-hand side are also f -cofibrations on each spectrum level, because
KH

α → LH
α and (K ′

α)H → (L′
α)H are both WH-equivariant f -cofibrations. Therefore the

map of pushouts ΦH X [n] →ΦH X (n) is a level equivalence of WH-spectra, completing the
induction. �

Lemma 9.7. ∧ preserves stable equivalences between freely f -cofibrant spectra.
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Proof. The proof is essentially the same as the previous lemma. It suffices to take two
freely f -cofibrant spectra X and Y , build the spectra X [n−1/2], X [n] as in that argument,
and to show that

(
colimn X [n])∧Y → X ∧Y is a level equivalence. Then we could do the

same with the roles of X and Y swapped, and conclude that QX ∧QY → X ∧Y is an
equivalence.

We first observe that pushout-products of spectra constructed with ∧ preserve free
f -cofibrations; this follows from the same statement for spaces and the formal fact that
smash products of free spectra are free. We already used in the previous proof that
free f -cofibrations are level f -cofibrations. Using this, we can prove that if K ′ → K is
an equivalence of f -cofibrant spaces then FVα

K ′∧Y → FVα
K ∧Y is an equivalence. We

observe that FVα
K∧− turns the cell complex structure of Y into a new cell complex struc-

ture in which the representations all have Vα added to them, and the spaces all have K
smashed into them. By the pushout-product property, the pushout squares are all along
free f -cofibrations of spectra, which are f -cofibrations on each level. For each space
A occurring in the cell complex structure of Y , the equivalence of f -cofibrant spaces
K ′∧A → K ∧A gives a level equivalence of free spectra. Hence every one of the pushout
squares is changed by a level equivalence when we pass from K ′ to K ; hence

FVα
K ′∧Y ∼−→ FVα

K ∧Y

is an equivalence.
Since free f -cofibrations are level f -cofibrations, colimn(X [n]∧Y ) ∼= (

colimn X [n])∧Y
is a homotopy colimit. It therefore suffices to prove by induction that X [n]∧Y → X (n)∧Y
is an equivalence. For the inductive step we have the diagram

X [n−1] ∧Y ∼ //

∼
��

X [n−1/2] ∧Y //

∼
��

X [n] ∧Y

��

X (n−1) ∧Y X (n−1) ∧Y // X (n) ∧Y

where the marked ∼ on the top is the deformation retract of X [n−1/2] onto X [n−1]. We just
need to see that the vertical on the right is an equivalence. Before smashing with Y , it
is a map of pushouts of the form

X [n−1/2]

∼
��

∐
FVα

K ′
α

oo

∼
��

//
∐

FVα
L′

α

∼
��

X (n−1) ∐
FVα

Kα
oo //

∐
FVα

Lα.

After ∧Y , the horizontal maps of the right-hand square are level cofibrations, by the
pushout-product property for free f -cofibrations. The vertical maps are equivalences by
inductive hypothesis and the intermediate lemma we established earlier in the proof.
Therefore the map of pushouts is an equivalence, and the induction is complete. �

Now we pass to the homotopy category by inverting all the stable equivalences in
GS. By Theorem 8.5 the resulting category hoGS is a fibration and op-fibration whose
base category is the category GS of G-spaces. By Proposition 8.6, an arrow in hoGS is
homotopy cocartesian if and only if it is isomorphic to a cocartesian arrow X → f!X in
which X is cofibrant. An arrow is homotopy cartesian if and only if it is isomorphic to a
cartesian arrow f ∗Y →Y with Y fibrant.
Remark 9.8. This homotopy category is the homotopy category of the “integral model
structure” of [HP15], but taking the weak equivalences in the base category to be the
isomorphisms, rather than the weak homotopy equivalences. In other words, it retains
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information about the base space up to homeomorphism, but the fiber spectra are re-
membered only up to stable equivalence.

Since every cell and acyclic cell in GS(A) pushes forward along f to a cell or acyclic cell
in GS(B), the cofibrant replacements QA built using the small-object argument assem-
ble into a single functor Q : GS→ GS. Using Q, we can left-derive the external smash
product functor

∧ : GS×GS→GS.

This makes hoGS into a symmetric monoidal category. More concretely, the tensor prod-
uct is ∧L = (Q−)∧(Q−), with associator, unitor, and symmetry isomorphism given by
deleting all copies of Q that are not applied to the inputs (for instance one that is applied
to the output of ∧), applying the corresponding isomorphism for ∧, and then re-inserting
the extra copies of Q. Since any two left-derivations of a functor are canonically isomor-
phic, we can be assured that if we had chosen a different model structure we would get
an isomorphic symmetric monoidal category.

Theorem 9.9. This symmetric monoidal structure makes hoGS into a symmetric mon-
oidal bifibration, with Beck-Chevalley for every homotopy pullback square of G-spaces.

Proof. The projection to the base category GS is still strict symmetric monoidal because
the map QX ∼−→ X lies over the identity of GS. The Beck-Chevalley property for pullback
squares with one leg a fibration is [Shu11, 9.9], building on [MS06, Thm 13.7.7]; see also
[Mal19]. For a commuting square of spaces where two of the parallel sides are weak
equivalences, we also get the Beck-Chevalley property because each component of the
Beck-Chevalley map is an isomorphism as functors of homotopy categories. We then
deduce the Beck-Chevalley property for an arbitrary homotopy pullback square using
the usual pasting lemma.

It remains to show that ∧L preserves cocartesian arrows and cartesian arrows. In
principle, this should be citable away to [MS06], but it is difficult to work directly with
their construction of the symmetric monoidal structure on the pullback functors f ∗. We
instead start with the “canonical” one defined just above.2

Take any two homotopy cocartesian arrows in hoGS. Up to isomorphism, they are
cocartesian arrows X → f!X and Y → g!Y in the point-set category GS with X and Y
cofibrant. On these inputs we have an equivalence (Q−)∧(Q−) ' −∧−, so the derived
product ∧L of these arrows in the homotopy category is isomorphic to their actual prod-
uct ∧, which is cocartesian in GS and still has a cofibrant source, hence is homotopy
cocartesian. Therefore ∧L preserves homotopy cocartesian arrows.

Now take any two homotopy cartesian arrows in hoGS. Up to isomorphism, they are
cartesian arrows in the point-set category GS whose targets are both cofibrant and fi-
brant. Let us call them f ∗X → X and g∗Y →Y . Form the following commuting diagram

2This is the same symmetric monoidal structure considered in [Mal19]. It is also clear that it at least agrees
with the structure constructed in [MS06] on suspension spectra, which is all we need for the applications.
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in GS.
Q f ∗X ∧Q g∗Y //

∼ (1)
��

QX ∧QY

∼
��

f ∗X ∧ g∗Y //

∼ (5)
��

X ∧Y
∼(2)

��

f ∗PX ∧ g∗PY //
OO

∼=
��

PX ∧PYOO

∼=
��

( f × g)∗P(X ∧Y ) //

∼ (3)
��

P(X ∧Y )

∼
��

( f × g)∗PR(X ∧Y ) //
OO

∼ (4)

PR(X ∧Y )
OO

∼

( f × g)∗R(X ∧Y ) // R(X ∧Y )

Here P is the functor from [Mal17a]; it pulls back X and then pushes it forward along
the two evaluation maps BI ⇒ B. The maps (1) and (2) are equivalences by Lemma 9.7
and the fact that f ∗ and P preserve freely f -cofibrant spectra. The equivalences (3),
(4) are because f ∗ preserves the stable equivalences between spectra whose levels are
quasifibrant, and this class includes both RX and PX when X is cofibrant. The equiv-
alence (5) uses all of these facts together. Therefore ∧L preserves homotopy cartesian
arrows. �

Proposition 9.10. The functor ι∗H : hoGS(B) → hoHS(B) extends to a map of symmetric
monoidal bifibrations hoGS→ hoHS over the functor ι∗H : GS→ HS.

Proof. The functor ι∗H clearly makes sense on all of GS and preserves all equivalences,
therefore directly passes to a functor hoGS → hoHS. The point-set functor preserves
cartesian arrows, cocartesian arrows, cofibrant objects, and fibrant objects (because it
is right Quillen). Therefore when viewed as a derived functor, it preserves homotopy
cartesian arrows and homotopy cocartesian arrows. Since ι∗H strictly commutes with ∧,
it commutes with ∧L up to isomorphism by deleting the Qs, applying the commutation,
then re-inserting the Qs. (Notice we have to do this because cofibrant replacement for
H-spectra may not be ι∗H of the cofibrant replacement functor for G-spectra.) Again since
QX ∼−→ X is over the identity in the base, this isomorphism lies over the corresponding
isomorphism of spaces ι∗H(A)× ι∗H(A′) ∼= ι∗H(A × A′) in the base category. This gives ι∗H
the structure of a symmetric monoidal functor of homotopy categories, whose coherences
follow from the same coherences on the point-set level. �

Although ΦH is not a left adjoint, by Lemma 9.6 it preserves cofibrations and acyclic
cofibrations. It therefore also has a left-derived functor LΦH =ΦHQ.
Proposition 9.11. The functor LΦH : hoGS(B) → hoWHS(B) extends to a map of sym-
metric monoidal bifibrations hoGS→ hoWHS over the functor (−)H : GS→WHS.

Proof. As above, the structure of LΦH as a symmetric monoidal functor is obtained by
deleting all extraneous copies of Q, applying the same structure for ΦH , then re-inserting
Q. Again, this gives a symmetric monoidal structure that lies over the canonical one on
(−)H : GS → WHS, and its coherences follow from the same coherences in the point-set
category for ΦH .
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The functor ΦH preserves both cocartesian and cartesian arrows because the same is
true for the smash products, fixed points, and colimits that make up its definition.3 Since
it also preserves cofibrant objects, and LΦH ∼=ΦH on the homotopy category of cofibrant
objects, this implies LΦH preserves homotopy cocartesian arrows.

However ΦH does not preserve fibrant objects, so for homotopy cartesian arrows we
have to work a little harder. Start with a point-set cartesian arrow f ∗X → X in which X
is cofibrant and fibrant.

ΦHQ f ∗X //

∼
��

ΦHQX
∼

��

ΦH f ∗X //

∼
��

ΦH X
∼

��

ΦH f ∗PX //
OO

∼=
��

ΦHPXOO

∼=
��

f ∗PΦH X //

∼
��

PΦH X
∼

��

f ∗PRΦH X //
OO

∼
PRΦH X

OO

∼

f ∗RΦH X // RΦH X

The weak equivalences in the top half follow from Lemma 9.6, because the class of cofi-
brant spectra described in that lemma is preserved by pullback and by P. The isomor-
phisms in the middle follow because P is a composition of a pullback and a pushforward.
The arrow at the bottom is homotopy cartesian, hence so is the arrow at the top. There-
fore LΦH preserves homotopy cartesian arrows. �

10. CHANGE OF GROUPS FOR THE REIDEMEISTER TRACE

Combining Theorem 8.4 and Propositions 9.10 and 9.11 gives the following result.

Theorem 10.1. If H is a subgroup of a finite group G, ι∗H and ΦH are strong shadow
functors on GEx.

Theorems 5.7 and 10.1 imply that if X is any finitely dominated G-CW complex and
f : X → X any G-equivariant self-map, there are isomorphisms in the homotopy category

ι∗HRG( f )∼= RH(ι∗H f )

ΦHRG( f )∼= RWH( f H).

Tracing through the constructions shows that these come about through familiar isomor-
phisms on the source and target, for instance the isomorphism ΦHΣ∞+ Λ f X ∼=Σ∞+ Λ f H

X H .

3This is under the convention that parametrized spectra are built from compactly generated spaces (k-
spaces) that are not necessarily weak Hausdorff. The argument still works if we work entirely in weak
Hausdorff spaces, but it takes longer to argue that f ∗ preserves the colimits that make up ΦH X when X is
freely f -cofibrant.
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Corollary 10.2. If G is a finite group, H is a normal subgroup of G, Y is a G-space and
φ : Y →Y is a G-equivariant map, then

S
RG (φ)G

vv

RWH (φH )G/H

zz

R(φH )

��

(Σ∞+ ΛφY )G R // (Σ∞+ ΛφH
(Y H))G/H F // Σ∞+ ΛφH

(Y H)

commutes up to homotopy.

Proof. We describe the argument for the left triangle. The right triangle is similar and
more straightforward.

Let E and E′ be fibrant replacements of Σ∞+ ΛφY and Σ∞+ ΛφH
Y H , respectively, in or-

thogonal G-spectra. The underived versions of (−)H and ΦH define a diagram of orthog-
onal spectra

S

∼=
��

∼= // ΦHS

∼=
��

SG

(RG (φ))G

��

(
SH)G/H

(
(RG (φ))H

)G/H

��

r
∼=

//
(
ΦHS

)G/H

(ΦH RG (φ))G/H

��

∼= // (S)G/H

(RWH (φH ))G/H

��

EG

R

33

(
EH)G/H r //

(
ΦHE

)G/H ∼ //
(
E′)G/H

The unlabeled ∼=s exist and the top region commutes because S has a unique auto-
morphism. The right-hand region is the agreement of ΦHRG(φ) with RWH(φH) along
ΦHE ' E′ lying under Σ∞+ ΛφY ∼= Σ∞+ ΛφH

Y H in the homotopy category. The bottom re-
gion is the definition of R for equivariant suspension spectra, cf. [DMP+19, §6], [Mad95,
§2.5]. �

Theorem B follows by taking G = Cn, H = Ck, Y = X n and φ=Ψn( f ).

Part 3. The fiberwise generalization

One of the primary strengths of our approach to Theorem A and Theorem B is that it
applies in a range of categories. We will illustrate this by extending the results to the
fiberwise setting.

11. SPECTRA OVER FIBRATIONS OVER B

Fix an unbased space B and let SB be the category whose objects are Hurewicz fibra-
tions A → B and whose maps are maps of spaces over B. This has a forgetful functor to
spaces SB →S that forgets the map to B.

We construct a new symmetric monoidal bifibration hoS(B) by pulling back hoS along
this functor SB → S. It is standard that this gives a bifibration, in which an arrow is
(co)cartesian if and only if its image in hoS is (co)cartesian. The symmetric monoidal
structure is a little more subtle, but follows from the following lemma.
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Lemma 11.1. Suppose F : T → S is a functor of cartesian monoidal categories, and that
S and T are endowed with a class of Beck-Chevalley squares, preserved by F, such that
for any two maps A → A′, B → B′ in T the square

F(A×B)

��

// F(A)×F(B)

��

F(A′×B′) // F(A′)×F(B′)

is Beck-Chevalley in S. Then for any smbf A over S, the pullback category F∗A can be
naturally given the structure of an smbf.

Proof. This is essentially a generalization of the proof of [Shu08, 12.8]: the product ⊗ in
F∗A is defined as a pullback of the product � in A along the canonical map

F(A×B)→ F(A)×F(B).

The proof that this preserves cocartesian arrows reduces to the Beck-Chevalley condi-
tion in the statement of the lemma, and the proof that it preserves cartesian arrows
is easier. We produce the rest of the symmetric monoidal structure for ⊗ by lifting the
same structure from �, using the universal property of cartesian arrows. A more explicit
treatment appears in [Mal19]. �

Example 11.2. The functor SB → S satisfies the statement of the lemma because for
any two maps A → A′ and E → E′ of fibrations over B, the following square is homotopy
pullback.

A×B E

��

// A×E

��

A′×B E′ // A′×E′

• Pulling back hoU along SB → S gives an smbf hoU(B) whose objects are pairs of
maps X → A → B where A → B is a fibration, and morphisms are maps over B.
The product with Y → A′ → B is the fiber product X ×B Y → A×B A′ → B.

• Pulling back hoS along SB →S gives an smbf hoS(B) whose objects are pairs of a
fibrations A → B and a spectrum X over A. Morphisms are a map A → A′ over
B and a map of spectra X → Y over A → A′. The pullback and pushforward are
defined as in hoS, and the smash product is the relative external smash product,
given by pulling back X ∧L Y from A× A′ to the fiber product A×B A′.

• Both of these generalize to G-spaces and G-spectra, giving hoGU(B) and hoGS(B).
We always assume that A → B is a Hurewicz fibration whose path-lifting func-
tion is G-equivariant.

The bicategory Exfib
B of spectra over fibrations over B, is the bicategory associated to

hoS(B), compare [MS06, 19.2.6, 19.3.4]. Performing the same operation for G-equivariant
Hurewicz fibrations A → B and G-equivariant spectra gives another bicategory GExfib

B .
The following is a corollary of Propositions 9.10 and 9.11, Lemma 11.1, and Theorem 8.4.
Corollary 11.3. If H is a subgroup of a finite group G, ι∗H and ΦH are strong shadow
functors on GExfib

B .

The bicategory Exfib
B has an n-Fuller structure and a system of base-change objects by

Theorems 8.4 and 9.9 and Lemma 11.1. In particular there is a pseudofunctor []B : SB →
UB/SB and coherent isomorphisms

m[] :
[

Z
g←−Y

]
B
¯

[
Y

f←− X
]

B

∼−→
[

Z
g◦ f←−− X

]
B

, i[] : UX
∼−→

[
X id←− X

]
B

.(11.4)
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The same applies with G-equivariant spaces as well.
If p : E → B is a perfect fibration, i.e. a (Hurewicz) fibration with finitely dominated

fibers,
[

B
p←− E

]
B

is right dualizable as a 1-cell in Exfib
B . The same is true equivariantly if

B has a trivial action and the fibers of p are equivariantly finitely dominated. Therefore
for each commuting square

E

p
��

f
// E

p
��

B B

we can define fiberwise versions of the traces from Section 5.

• The fiberwise Lefschetz number LB( f ) is the trace of f as a map in the sym-
metric monoidal category of spectra over B, in other words Exfib

B (B,B). It is a
self-map of the fiberwise sphere spectrum SB =Σ∞

+BB in the homotopy category
of spectra over B.

• The pretransfer is the trace of f ×B id: E → E×B E, which is a slight refinement
of LB( f ). This gives a map SB →Σ∞

+BE. When f = id, this is the Becker-Gottlieb
pretransfer [BG76, §5].

• The fiberwise Reidemeister trace RB( f ) is the trace of the canonical isomor-
phism in Exfib

B [
B

p←− E
]

B

∼→
[

B
p←− E

]
B
¯

[
E

f←− E
]

B
.(11.5)

It gives a map in the homotopy category of spectra over B,

RB( f ) : SB 'Σ∞
+B

〈〈[
B =←− B

]
B

〉〉
→Σ∞

+B

〈〈[
E

f←− E
]

B

〉〉
'Σ∞

+BΛ
f
BE

which is R( fb) on each fiber.
The fiberwise Reidemeister trace RB( f ) is a complete obstruction to the re-

moval of fixed points from a family of maps f , provided B is a cell complex of
dimension d, and p is a fiber bundle whose fibers X are compact manifolds of
dimension at least d+3 [KW07].

• The fiberwise nth Fuller trace RB,Cn (ΨB
n ( f )) is the trace of the map[

B
p×B n

←−−− E×Bn
]

B

∼−→
[

B
p×B n

←−−− E×Bn
]

B
¯

[
E×Bn ΨB

n ( f )←−−−− E×Bn
]

B

in CnExfib
B arising from the commuting square

E×Bn ΨB
n ( f )

//

p×B n

��

E×Bn

p×B n

��

B B

It is a map in the homotopy category of Cn-equivariant spectra over B

RB,Cn (ΨB
n ( f )) : SB 'Σ∞

+B

〈〈[
B =←− B

]
B

〉〉
→Σ∞

+B

〈〈[
En ΨB

n ( f )←−−−− En
]

B

〉〉
'Σ∞

+BΛ
ΨB

n ( f )
B E×Bn

which is RCn (Ψn( fb)) on each fiber.

We can now state the promised fiberwise version of Theorem 1.1.
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Theorem 11.6 (Fiberwise version of Theorem 1.1). The following diagram commutes up
to fiberwise homotopy.

SB

RB(ΨB
n ( f ))Cn

ss

RB(ΨB
k ( f ))Ck

xx
RB(ΨB

k ( f ))
��

RB( f k)

$$

(Σ∞
+BΛ

ΨB
n ( f )

B E×Bn)Cn R // (Σ∞
+BΛ

ΨB
k ( f )

B E×Bk)Ck F // Σ∞
+BΛ

ΨB
k ( f )

B E×Bk ' // Σ∞
+BΛ

f k

B E

Note these are all maps of fibrations over B that on each fiber capture the simpler
maps we constructed earlier.

Proof. The right-hand triangle is just Corollary 7.6 applied to the bicategory Exfib
B . The

remaining two triangles are proven by restating the proof of Corollary 10.2 in the cate-
gory of G-spectra over B, and then taking G = Cn, H = Ck, Y = X×Bn and φ=ΨB

n ( f ). �

Our list of fixed point invariants that can be identified using this approach is far from
exhaustive. We leave the adaptation of this theorem to the remaining generalizations of
L( f ) and R( f ) to the interested reader.
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