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Cette absence de bornes peut empécher de trouver des solutions. Nous donnons des
conditions pour que ces résultats puissent étre étendus & R™. Le second objectif est
de considerer la version systémes (BSDE) d’équations differentielles stochastiques
rétrogrades du systéeme d’EDP. Ceci est notamment ’objectif d’un travail beaucoup
plus récent of Xing, Zitkovi¢ (2018). IIs cherchent a résoudre des systémes BSDE &
croissance quadratique, ce qui est un probleme ouvert, bien connu dans la literature
BSDE. Dans le cas markovien, ce probléme est équivalent au probléme analytique.
Ce qui explique que le probleme analytique doit &tre résolu dans R™ et non dans
un domaine borné. Xing and Zitkovi¢ developpent une approche probabiliste, en
utilisant de nombreux resultats analytiques. Notre objectif est de donner deux
approches, 'une completement analytique et ’autre completement probabiliste, sans
aucun mélange, comme c’est le cas dans la formulation des deux probléemes.

© 2021 Published by Elsevier Masson SAS.

1. Introduction

In this paper, we consider parabolic systems of quasilinear PDE of the following type

Ou,,
2 + Au, = H,(z,u, Du), x € R", t € [0,T],
ot (1.1)
u, (x,T) = h,(x),
L0, T: WA R™), 2% ¢ 40,718 R™)).d> "+ 1 1.2
Uy € (” loc( ))7 8t€ (75100( ))7>2+’ ()

where T' > 0 is a given constant and A is the second order differential operator (defined on smooth test
functions ¢(+))

At)p(z) = — Z % (aij(x,t)%) ,x eR™ te0,T). (1.3)

Lj

ij=1

We write it in divergence form, for convenience. For the probabilistic interpretation, we shall consider the
diffusion operator A(t) defined (on smooth test functions ¢(-)) by

2

o - o .
At)p(@) = =Y gile )35 = D ay(et) 5o x € R™ 1€ [0,7) (L4)
i K e

ij=1
This operator corresponds to the stochastic differential equation

dX(s) = g(X(s),s)ds + o(X(s),s)dw(s), s > t,

(1.5)
X(t) ==,
where w(s) is an n dimensional standard Wiener process, built on a probability space (2, .4, P). We denote
by F; the o-algebra generated by w(7) — w(t), t < 7 < s. The process X (s) will be denoted in the sequel
X**(s). Furthermore the matrix a(z,t) = a;;(z,t) is given by

a(z,t) = %a(x,t)cr*(x,t). (1.6)

Oaji(z,t
The diffusion operator (1.4) and the divergence form operator coincide when g;(z,t) = > M. For

J 8a:j
simplicity of notation, we will avoid in the sequel to indicate the dependence in ¢t. Also to simplify the



A. Bensoussan et al. / J. Math. Pures Appl. 149 (2021) 135-185 137

probabilistic interpretation we shall assume that the two operators (1.4) and (1.5) coincide. This supposes
the differentiability in z of a;;, which will not be necessary in the analytic treatment (however necessary
to obtain full regularity). The index v varies from 1 to N. The functions H,(z,t,y,p) are defined on
R™ x [0,T] x RY x RV and will called Hamiltonians in the sequel. We represent p as an N x n matrix

b1
with line vectors in R™. We will omit the time variable in the Hamiltonians in the sequel. In (1.1),
PN
Uy Duy
u = : and Du = : . These Hamiltonians are motivated by differential games, among other
un Duy

applications. We refer to [3] for details on this application. If we define the stochastic processes

uy (X" (s), s) Duy (X*(s), s)
vei(s) = ; | 77(s) = z , (17)
un (X (s), s) Duy(X*(s), s)

which take value in RY, L£(R";R¥) respectively, then an easy application of Ito’s formula shows that the
relation

T T
Yo(s) = hy (XH(T)) + / Hy (X (7), Y™ (7), 27 (7)) dr — / 27 () .o (X () dw(r), t<s<T, (18)

holds. The system (1.8) is a system of Markovian BSDE; “Markovian” means that H,(z,y,p) and h,(x)
are deterministic functions of the arguments. The solutions Y*!(s), Z*!(s) are F;-measurable.

Our objective is to study the systems (1.1) and (1.8) independently, in the sense that (1.1) will rely on
purely analytic techniques and (1.8) on probabilistic techniques.
2. Assumptions and results
2.1. Assumptions

We shall assume that there exists o > 0 such that

al¢)? <a(x)€- € < M|E]?, for all € € R™. (2.1)

To get maximum smoothness we will assume that

aij(-,-) are C*(R™ x [0,T]) and globally Lipschitz continuous with respect to the variable » € R™,

(2.2)
8 FANER . . . . . .
Z % are globally Lipschitz continuous in & with respect to the variable x € R";
- Zj
J
hy () € CH(R™); (2.3)
for each t € [0,T), H,(x,t,y,p) is continuous in (z,y,p) € R™ x RY x RN™, (2.4)

To get upper bounds, we assume that there exist constants 7, and functions A,,v € {0,1,---, N} such that
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H,(x,t,y,p) < A(z,t) —|—7,,\pl,|2,’yl, >0,ve{l,---,N}, (2.5)
N N 2
ZHl/(xatvyap) Z —)\0(1‘,1‘5) — 7 Zyy » Y0 > Oa (26)
v=1 v=1
where
)\OaAlv"' 7)\]\7 20 (27)

We draw the attention to a risk of confusion on the index v, which primarily refers to the index of Hamil-
tonians (and of equations in the system). Therefore v € {1,---, N} for the Hamiltonians. We have added
an index 0, which relates to inequality (2.6). Therefore, when we write v,, A,, v runs from 0 to N.

An important assumption will be a growth assumption on the functions Ag, A1, -+, Ay in combination
with the functions hy,-- -, hy. We also define ho(z) = — Zi\’ hy(x). The most intuitive way to express the
assumption is through using probabilistic formulas. Define

T
% (x,t) = E exp(%) hi (Xoe (T)) + / Ao (Xae(7),7)dr || (2.8)
t
forv=0,1,--- , N. We assume
Zy(z,t) < o0,z € R* t € [0,T],v € {0,1,--- ,N}. (2.9)

This is indeed an assumption, because the right-hand side of (2.8) can well be +00. An analytic formulation
of the assumption is to use the fact that each function z,(-,-) is solution of the linear PDE

0z,

ot

Z,(z,T) = exp (%hj(x)) .

+ AZV = Zul)\l/(x7 t)y
@ (2.10)

In spite of the linearity this equation may not have a solution satisfying (2.9). So the analytic formulation
of the assumption is that there exists a solution of (2.10), which is finite, in the sense of (2.9).

We next make the following special structure assumptions for the Hamiltonians: there exist positive
constants K, and K L’ such that

H,(z,t,y,p) = Qu(z,t,y.p) - pu + H)(z,t,y,p), (2.11)

Qu (. t,y,p)| < Ky lpl, and [H)(x,t,y,p)| < Y Kplpul* + ko (2, 1),

p=1
with
k, € L0, T; L%, (R), d > g +1, K >0. (2.12)
2.2. Discussion about the special structure assumptions
The special structure assumptions imply an ordering of the equations. But this is of course a matter of

convenience. We can always reorder the equations if necessary. There is a less stringent assumption than
(2.11) which turns out to be equivalent. We assume
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|Hy (z,t.y,p)] < Kn|pl* + kn(2,1), (2.13)
‘HV(x?t7yap)| S KV|pHpU| + ZK,Z|pH‘2 + kV(Ivt)7 V= 17’ o 7N -1 (214)
p=1

In particular, when N = 1, (2.14) is discarded and the Hamiltonian has general quadratic growth. This is
consistent with classical results on parabolic scalar equations. For systems, it is known that the result does
not carry over, counter examples are available. To check that the assumptions (2.13), (2.14) imply (2.11)
we introduce the quantities (we delete the argument ¢)

Hu(x7yap)
Ko lpllpol + 32—y Kilpul® + (2, 8)°

O—u(xay,p): l/:]-a"’Nfl'

We then set

QV(I7y7p) K 0',,(37 Y, p)|p| v= 17N_ 17 and QN(x7y,p) = QNfl(xayapL

Iul

and

Hl(/)(xvyap) = HV(xvyap) - QV(‘T7yap) “Pv, V= 17 7N'

It is then easy to check that all the properties (2.11) are satisfied with K,, K¥, p <v,forv=1,--- \N —1,
and Ky = Kn_1, K = Lu<N—-1, KN = Ky + Kn_1.

2.3. Statements of results

We state the following results of this work

Theorem 1. We make the assumptions (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.9), (2.11), (2.12).

Then there exists a solution u,,v =1,--- N of (1.1) such that
Ouy
u, € L° (o,T W2d (]R”)) a“t e LY (0,T; LY, (RY)). (2.15)

We next state the stochastic counterpart of Theorem 1

Theorem 2. Under the assumptions of Theorem 1, there exists a Markovian solution of the system of BSDE
(1.8) in the sense

Y7 (s) = w, (X™(5), ), 25" (s) = vu(X"(s), 5), (2.16)

in which u, (x,t) is locally Hélderian and v, (x,t) = Du,(x,t) in the sense of distributions. Moreover

T

IEJ/ (X (s Z\Z” ds| < C(), (2.17)

t

for any function ¥ which is C*' and has a compact support. The constant C(V) depends only on the
function ¥ and of the constants of the problem.

Remark 3. Of course, Theorem 2 is a consequence of Theorem 1, by simple application of Ito’s formula, but
the objective is not to use Theorem 1 and to give a probabilistic proof. B
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3. Preliminaries
3.1. Functions y — X, (y)

We begin by constructing a sequence X, (y),y € RY, following [2]. We first set

B(x):=e*—z—1,2 €R. (3.1)
We pick positive constants 1, - -+ ,yny and define recursively
{XN(y) = exp[B(yvyn) + B(=nvyn)], 52)
Xu(y) = exp[B(vyw) + B(=1wyw) + Xoa(y), v=N—1,---, 1.
The following properties hold
M =0, if p > v,
0y,
(3.3)
aXV(y) _ X X / (o f <
oy, e v(¥) - Xu (W) (B (Vb)) + B (=), i p <
“w
We can summarize this formula as follows. Let
P,(y):=X1(y) - Xu(y), v=1,---N, Py(y) =1, (3.4)
A, (y) =P (y) (B () = B (=wy));
then we can write
0X, _
W) )P W)Lz v = Lo N, (3.5)
0y,

3.2. Lyapunov function

Following the terminology of [8], we call L(y) = Xi(y) — X1(0) a Lyapunov function. We note that
Xn(0)=1,XN_1(0) = e, Xn_2(0) = exp(e), ..., X1(0) = exp(exp(- - - €)) in which we take N — 1 successive
exponentiations. We first obtain from (3.5)

OL(y)
oy,

= A,(y)- (3.6)

0’L(y) _ 0Au(y)

oP,
tt t . Usi L= P,(y)A, wav pl ily get
We want to compute D9n0us 90, Using 9, . (Y)Au () ijl 7 (y), we easily ge
82L(y) = —1 2 1" 11
Dyl Au(y)Au(y) E 1Pj ) + 7 Lu@) (B (vuyp) + B (=) Lu=v- (3.7)
j:

To explain the concept of Lyapunov function, we consider a matrix p € £(R™; R¥) with components Dui-
The vectors p, of components p,; are line vectors in R™. We consider next the line vectors ¢, = ¢g,,; in R"
defined by ¢, = 0*p,, and we also set
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N
(@) ¥) =D Au@)qu,1=1,---,N,
n=l
which are vectors in R™. We then have:
Lemma 4. The following relation holds
N
tr(D>L(y)poop*) = > _ P W) Im(a) () + Zv B" (Vuyu) + B (=vuyu)laul®. (38)
1=1

Proof. We have

tr(D?L(y)poo*p") = Z o ay Z <mem> > Puidik
ng J

and using (3.7)

HAV

= ZAM(y>AV(y) Z P unkqvk + Z'Yu B" (Vuy) + B" (= vuyu))laul?,
=1

pv

and from the definition of 1;(q)(y) we conclude easily (3.8). O

Noting that
Lo 2
Slaul” = Y Duittispu; > alpul?,
iJ

we can state the inequality

%tr(DQL( )poa*p*) > Z Y)m(a) () +a2m () (B () + B" (=) lpul®. (3.9)

=1

l\')\H

The Lyapunov property is expressed as follows

Proposition 5. We assume the special structure of the Hamiltonians, see (2.11), (2.12). We then state

—tr (D*L(y)poo*p*) ZA (x,y,p)

> o} Inf + 3 IR {( — K7 (exp(9) + exp(—4.))
(3.10)

a”! - > -
— || 4 || lZ(Ku+K;t—1)2+ Z (Klt+KH—1)2 H Xa(y)

pn=1 p=v+1 o=v+1

N
> wKﬁ|exp(’myu)—exp(—wyu) } > 1A W)k (2, 1),

p=v+1
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in which Ky =0, Ky4+1 =0, Z%H =0 by custom. The constants v, > 1.

Proof. We have

—tr(D2 y)poo*p*) Z (z,y,p)
8yu
1 N
> 5 2 B Im@ @) +a Y i Puw) (B () + B (~7)) 2l
=1 7
—ZA )(Qu(@,y,p) - pu + Hy(,y,p))-
We first write
> AuW)Qu(x,y,p) - ZA W)Qu(x.y.p) - 4
“w
)" ZQu(x,y,p) -9 (Y) = M1 () (),
o
setting ny+1(q)(y) = 0. Similarly, setting Qo(z,y,p) = 0, hence Ky = 0, we obtain
ZA Y)Qu(@,y,p)p 1277# (Qu(®,y,p) = Qu-r (2,9, p))-
Hence
> AW)Qu(,y.p)  pu < N(0) MDY (K + Kymt) Inu(a) ()]
n n
1
< 52 H)1m(q) ZH )P (K + K1) Pa(y) Il
14
Note that 1 < Py(y) < --- < Pn(y). So
v N 1%
Z(K + Ky-1) |p|2 < ZP \py (Z(Ku + Ku—l)z + Z (K + K;L—l)2 H Xo(y)
I pn=1 p=v+1 o=v+1

Next,

ZAM (,,p)
< S i) (Z KE[p, +kﬂ<x7t>)

v=1

ZIpVIZIA IK“+Z\A )k (z, 1)

w

N
ZP )|pw|? [%Kﬁlﬁ’(%yy)—B’(—%yu)l+ > WK (vuyn) = B (=) [ Xo()

p=r+1 o=v+1

+Z\A Mk (2, 1).

(3.11)
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1
We note that || (o)~ ’2 = §Ha_1||, in which || - || is a matrix norm. Combining the previous relations, we
obtain the inequality (3.10). B O

The important observation is that the quantity in parentheses on the right hand side of inequality (3.10)
depends only on y, the constants 7, and the constants of the assumptions, «, K, and K. If y is bounded,
then we can adjust the constants v,, depending on the bound of ¥, so that the quantity is positive. If y is
not a priori bounded, this is not possible. This aspect is a major difficulty of the case R™, versus bounded
domain, for the system of PDE (1.1).

Remark 6. Xing and Zitkovié [8] have considered a closely related, but different, Lyapunov function. Our
choice allows for a full parallel between the analytic and the probabilistic methods. Our proof of Proposition 5
is strongly inspired by their method.

4. Upper bounds
4.1. General comments

We will proceed with a priori estimates. For both systems (1.1) and (1.8) we will assume that a solution
exists with sufficient regularity properties. Then we prove a priori estimates. To prove existence, we construct
an approximation, which will satisfy the same estimates. This will allow to pass to the limit and prove the
existence. We begin by upper bounds, which replace the L> bounds used in [2]. We will do it for both (1.1)
and (1.8), using the assumptions (2.5), (2.6), (2.7).

4.2. Upper bounds for the solution of (1.1)

Define ug = — 21]/\[:1 u,. Then

8UQ
5 + Aug = — XV:HU(.LU,DU),

uo(z,T) = ho(x) = = Y _ by ().

From the assumption (2.6) we can write

0
—% + Aug < )\Q(.T,) + ’)/0|DU0|2. (41)

We then define

zo(x,t) = exp (%uo(x,t)) ,

and we check easily that

0z ou,
_a_to + Azg = 22 (_a_to + Aug — % Dug - aDuo) . (4.2)
But
6u0

0
T + Aug — %Duo ~aDug < —% + Aug — 0| Dug|?,
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and from (4.1), it is less than Ag(z). Therefore from (4.2), we get

0z
_a—to + Az < Zo)\o(@%,

zo(z,T) = exp (%ho(l’)) .

We recall the definition of Zo(z,t), see (2.10) with v = 0. From the assumption (2.9) Zo(x,t) is finite, at
each (z,t) € R™ x [0,T]. By comparison zo(z,t) < Zy(z,t). From the definition of Zy(x,t), we have

uo(z,1) < = log 2 (. 1).

7o
Therefore
a e
> u(@,t) > —— log Z(x, ). (4.3)
v=1 o
In the same way, we obtain
a _
uy (z,t) < — log Z,(x,t). (4.4)
Tv

Combining (4.3) and (4.4) we obtain the estimate:

Proposition 7. Assuming (2.5), (2.6), (2.7) a solution of (1.1) satisfies

|uy (2, 2)] < @(,1), 2 € R™,t € [0,T], (4.5)
with
o Yo
D (z,t) = - log Zo(z,t) + Z — log z,(x,t),z € R",t € [0,T]. (4.6)
0 —_1 v

4.3. Upper bounds for the solution of (1.8)
The probabilistic equivalent of Proposition 7 is:
Proposition 8. Assuming (2.5), (2.6), (2.7), a solution of (1.8) satisfies
Y (s)] < @(X™(s), 5). (4.7)
Proof. Define
1, (s) = exp (%th(S)) :

Then we have

o) = () | (SHLOEU Y9, 2700 + 5 25 (6) X ) 251 ) s

+Z7(s) - U(X”t(s))dw(s)} .
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From the assumption (2.5), we obtain
A (s) = gt ()2 0, (07 (8))ds + () 22 Z51(s) - (X7 (s)cuo(s),

hence

S

d e () [ 2% (e (%) [a ) dr | 2206) o @)dus)

t

from which it follows

T
exp (2¥7(9)) < [exp (%) [ mECx@) + [ A0 () dr

Similarly, defining
Yi'(s) = = )Y (s),
we can prove that
exp (LY5(5)) < 20(X7(5), ),
and the conclusion (4.7) follows at once. O
5. Basic inequalities
5.1. Analytic part

We associate to the solution u, of (1.1) a constant ¢, to be defined later. We will write @, (x,t) =
uy(z,t) — ¢y, and @ is the vector of components ,. We define

X, (2,) = X, (alz, 1), (5.1)

and similarly P, (z,t) and A, (z,t). We have

N
DX, (z,t) = Z Au(x,t)Py__ll(m,t)Duu(x,t),
n=v
0X,(2,1) L Qu(a,t)
T = ;A#($7t)PU71($,t)T.

We also define
L(z,t) = L(u(z,t)) = Xy (a(x,t)) — X1(0).

We want to obtain an inequality, which bears similarities with (3.10).
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Proposition 9. We assume the special structure of the Hamiltonians, see (2.11), (2.12). Let U(x,t) > 0,
sufficiently smooth, with a compact support. Then, we have

// —ditdt+//2alquj gjd:cdt+a//\11|Du|2dxdt
J

0 R» 0 R» 0 R»

+Z//‘1’\Duyl P, { ( Kﬁ) (exp(7, @) + exp(— )

v o) Re

la | | < al &
Ty [Z(K#+Ku1)2+ > (Eu+Kui1)?® ] X(,] (5.2)

pu=1 p=r+1 o=v+1

N w
Z TukY eXP(’YMau)_eXP(_'Yuau” H Xa}dxdt

pn=v+1 o=v+1

Z//‘P\A z,t)|ky (2, t)dzdt,

Y 0 Rn

IN

with constants v, > 1.

Proof. We test (1.1) with U(z,t)A,(x,t). We have first

Z//au”“ (z,8) Ay (z, t)dzdt = // )ddt (5.3)

0 Rn» 0 R~

We note that

/ZAuV\IlA dm—Z/ UZGU” ax”

“I R

oV oL du, DA,
E/ e +Z/“”‘I’Z da, D
“I R “I R

and from the definition of A,, see (3.4)

Ou, 0A, 2/ ot - np =y O Ouy o
Zy: axj oz, = ZV:PV'VV(ﬁ (’Yu%/) +5 ( 'YVUV))axj Oz +XV:PU'YV(/8 ('Yuuu)

5‘uy 0F,
_ B’ ryyu,, Z 8%

with F,, = log X,,. In the last term, we interchange ny:l o1 = 25:1 Zi\’:l“ we write

N ou, < IF, 1
- ~ vo_ M = / ~
E: Py, (B (viw) — B'( %uy))axj E 5% P, E Xﬂ%(ﬁ (Y )

»e
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But, from (5.2),

Zf)/u ’Yuuu - 5/(77@,&”))

v=p

(9CEJ

Therefore

(:) du, oF, OF,
ZP”% (Vi) — B~y i) o Zaxz Z Y Ox; Oz,

Collecting results, we get

Z//Au,, (VA,)dzdt = //Za”g;lj gj dt
i O

Y 0 R 0 R
r ou, 0
2 1 ~ 7 ~ Uy 0U,
+y / / WY P i) + 8 () Yy
v 5 Rn v 1,7
r oF, 8F
+Z//\I/P Za”8 “ . ddt
Y 0 Rn
We next consider
N-1 T N-1 T
> / / Q. - Du, VA, dzdt = / / UP,, (6 (Vi) — B' (= i,)) Duy, - Q,dadt,
v=17 gn v=19 gn
and we notice that
DF, =DX,1 + 'VV(ﬂI('YVau) - B/(*'Yvau))DUw
P,(DF, —DX,41)=P,DF, — P,;1DF, ;4.
Setting Qg = 0, we get
N-1 T N-1 T
/ / Q. - Du, VA, dxdt = Z / / UP,Q,.DF,dzdt — / / UPNQn_1 - DFydadt,
v=17 Rn 15 re 0 R

where we have denoted Qy. =@, — Q,_1. Since

T T
//QN'DUN\I/ANda?dt://\I/PNQN~DFNdl’dt,

0 Rn 0 Rn
we conclude that

T

N
ZO//QV Du, VA, dzdt = Z//\I/P Q..DF, dxdt.

v=19 R 10 r»

147
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Finally

/Hoa: u, Du)V A, dxdt

hE

/ (Z K| Duy,|* + ky (x, t)) dxdt

N
<Y [ [wDnlp K exptun) + exp(-1,)
v=1 0 R»
N
+ Z YK exp(yuty,) — exp(—v,t,)| H X ]dazdt
p=v+1 o=v+1

Collecting results and making easy majorations, we obtain easily the inequality (5.2). O

We recall that ¥ has compact support. We define

py = §2?¢($7t)1W(w,t)>o~ (5.6)
From (4.5), we have
luy (z,t)| < pw,Vt,x € dom U(-, ¢). (5.7)
We take the constants ¢, such that
o] < pu. (5.8)

The idea is now to fix the constants -, so that

1 v N n
0<an2— 29k~ IS 0, w2 e Y (K [ Koot
n=1 p=v+1 o=v+1
N 14
Z W#K[,‘}exp('y“ﬂu(%t)) — exp(—wuﬂu(x,t))’ H X, (z,t), Vt,z € dom U(-, ).
p=v+1 o=vr+1
We define
clpw) = sup  max|[A,(y)l, (5.9)
max, |y,|<2py Y
which implies
sup max | AL (2, )| Ly (z,6)>0 < c(pw). (5.10)

x,t

We can state the
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Proposition 10. We assume the Hamiltonians satisfy the special structure assumptions, (2.11), (2.12). Let
U(x,t) > 0 and sufficiently smooth, with compact support, and the constants ¢, satisfy (5.8). Then we have

// —dmdt—i—//zamg\pgfd dt+a//\I/|Du| dxdt < e(py) Z//‘I’k (x,t)dxdt.
j

0 R» 0 Rn ¥J 0 R~
(5.11)

5.2. Probabilistic part

We now give the equivalent of Proposition 9, for the problem (1.8):

Proposition 11. We assume the special structure of the Hamiltonians, see (2.11), (2.12). Let W(x,t), suffi-
ctently smooth, with a compact support. Then, we have

/Z\Ijz th |Zzt( )‘st

Zqﬂ (X7(s), )| Z5 () PRAY™H(s) = )4 (572 = WKL) (exp( (V7 (s) = c2)
2

1

v N o
+exp(—n (Y (s) — ) — D Eu+ K1)+ Y (K +Ku)? ] Xo(Y*(s) - C)]

n=1 p=v+1 o=v+1

N Iz
LS KB exp(u(YE(s) — ) — exp(—u (V2 s) — )] [] X0<wa<s>—c>}ds
p=v+1 o=v+1
’ o2
<B [ (-5 A6 (X6 L) s + 2ol E / S A7) — O DEOE ), )

+E (W(X*Y(T), T) LY (T —|—]E/Z\I/2 (X®(s), )| A, (YT(s) — ¢)|k, (X*(s), s)ds.
(5.12)

Proof. We consider the process W2(X%(s),s)L(Y?!(s) — ¢) and use Ito’s formula to obtain

d(P*(X"(s), ) L(Y™'(s) — ¢))

2
(88% — A(s)¥ ) (X7(s), 8)L(Y ™ (5) — ¢) + W(X"(s), 5)

x (%np?];(wf(s) — ) Z7 ()0 (X7 (5))(Z7(s))*

= Y AU S) ~ L9,V 27()
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+4Y ALY (s) — ) Z5H(5).a(X 7 (s)) WD (X (s), s)] ds

+ (L(Y”(s) — ¢)DU?(X(s),s) + U (X" (s ZA (Yoi(s C)th(s)> o (X (s))dw(s).

We then use (3.10) to estimate the term

T2(X*(s), s) (%trDZL(Y”t(s) — ) Z" (s)oo™* (X (s)) (2" (s))*
= 3 AU S) ~ L9,V 27
> 0 3T UAX(s), 5)| 221 (5)

+Z“I’2 (X7 (s), 5)| 25 ()PP, (Y™ (5) — €)
% { <%73 B %’Krl//) (exp(7, (Y7 (s) — ¢,)) + exp(—7, (Y (s) — ¢,)))

a1 [ . P
4 [Z(KH+KM—1)2+ Z (K“+KM_1)2 H X, (Y (s)c)]

pu=1 p=v+1 o=v+1

N Iz
= D L exp(u (Vi (s) = ) — exp(=u (Vi (s) =) ] XU(Y“(S)—C)}
p=v+1 o=v+1

- Z‘Pz (X7 (s), )| Ap (Y™ (5) = o)k (X™'(5), 5)-
Next, we use

43 A (Y™(s) = ) Z5 (s).a(X " (5)) W DU (X" (s), s)

_ _ 2 rt Tt 2 . 8||Cl||2 2 - B ot ) (513)
> = 5 WK )Z O = ST DD AL 6) - PR 6) )

Collecting results, integrating between ¢ and 7', then taking the mathematical expectation, we obtain the
inequality (5.12). O

We next give the equivalent of Proposition 10. We recall (4.7). Hence if X*!(s) € dom ¥(-,s), then
s)| < py. We then choose the constants -, like in the prootf of Proposition 9, to obtain:
Yzt < py. We th h h like in th f of P ition 9 btai

Proposition 12. We assume the Hamiltonians satisfy the special structure assumptions, (2.11), (2.12). Let
U(x,t), sufficiently smooth, with a compact support. Then, we have
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_E/Z\PQ Xact |Z3:t( )‘st
IE/ (_8& + A(s)¥ ) (X" (s),8)L(Y™""(s) — c)ds + §||a||2]E/ZAl2,(Yxt(s) —¢)|DW(X"(s),5)|*ds

T
+E (W*(X*YT), T)LY™(T) — ¢)) + c(pw)E / T2 (X (s Zk X (s

(5.14)
with ¢(py) defined by (5.9). The constants ¢, must satisfy |c,| < pg.

Remark 13. Note that we use ¥? and not ¥ in (5.14), unlike in (5.11). This is in order to obtaining the
estimate (5.13). This trick is simpler than the concept of testable function introduced by Xing and Zitkovi¢

[8].

Corollary 14. We have the estimate

T
/Zqﬂ (X™(s), 8)|Z%(s)|?ds < C(T) 1+IE/ (X(s Zk Xt(s : (5.15)
t

where the constant C(¥) depends only on U and the constants of the problem.

Proof. This is an easy consequence of Proposition 12. O
6. Markov properties of the solution of (1.8)
6.1. Discussion on Markov properties

In the method of a priori estimates, we assume that the solution of (1.8) is given by deterministic
functions of the process X%

5

namely

Y (s) = u, (X" (5),5), Z%(s) = v, (X" (s),s). (6.1)

v

In fact, if we have a solution, we can set
U'V(x’t) = Yumt(t)v ’U,,(l‘,t) = szft(t)v (62)

which are deterministic functions. Since X*!(s) is a Markov process, we have for t < s < 7, X*(7) =
XX"'():5(7). Therefore v *(7) and me(s)"”( ) is also a solution of (1.8) on s < 7 < T. In case of
uniqueness, this implies Y, (’)"( ) = Y(r) and Z; (o) *(r) = Z¥ (1), on s < 7 < T. In particular
Y,,Xu(s)’s(s) =Y (s) and z 1), *(s) = Z**(s), which implies immediately the property (6.1). We recall
that in the philosophy of the method of a priori estimates, we assume sufficient smoothness, hence we may
assume u, (x,t) continuous.

We shall also need properties of the probability distribution of X®¢(s), which we denote by G(&,s) for
s > t, defined by

E (th /Ga:t ga (67 )df,



152 A. Bensoussan et al. / J. Math. Pures Appl. 149 (2021) 135-185

for any continuous and bounded test function (€, s). We will call it a Green function, for coherence with
the analytic framework. It is solution of the problem

6G$t 3 6th _
" s +%:a—§j <“” o€, > =0

(6.3)
th(fat) = 6(§ - ‘T)
We shall use the classical estimates on the Green function, see Aronson [1]
_ 2 B _ 2
ki(s— t)_% exp (—51 %) < Gur(€,8) < ka(s—t) 2z exp (—52 |£s _i' > , (6.4)

where the constants depend only on the bound M on ||a(z,t)||, see (2.1) and the ellipticity constant c.
This implies the following estimate, for the functions k, entering in the assumptions (2.11), (2.12).

T
E / o (X7 (5), )L xor (o <ntds < Car, 6.5)
t

in which the constant C; depends only on M, the assumption (2.12) on k, and the constants in (6.4). To
prove this result, we notice that

T

T
E [ ky(X"'(s), )1 xet(s)|<mds = ku (&, $)Gut (€, s)dEds,
j T

t B

where B)y is the ball of center 0 and radius M. Using (6.4) we get it is bounded above by
kol La (B x 0,10 | Gatl| Lr e x 0,77) < Oy

as easily seen from the second inequality (6.4) and d > g + 1. From this estimate and (5.15) we obtain

E/Z WX (s), 5)| 22 (s)[2ds < C(W), (6.6)

in which the constant C'(¥) depends only on the function ¥ and the constants of the problem.
6.2. Relation between v, and u,
Our objective is to prove the following result
Proposition 15. We assume the Hamiltonians satisfy the special structure assumptions, (2.11), (2.12). A
solution (0.1) of the system (1.8) with u,(x,t) continuous satisfies v, (x,t) = Du,(x,t) in the sense of

distributions on R™.

Proof. We follow the proof of Xing and Zitkovi¢ [8]. We cousider a function ¥(x,t) with a compact support
and sufficiently smooth. We have |Y,2!(s)|¥?(X?!(s),s) < pg||¥||?>. We introduce

G, (x,t) = Y2 (1) 02 (2, 1), (6.7)
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and Y '(s)¥?(X*(s),s) = 4,(X*(s),s). The function x,(z,ts),t < s defined by x,(z,t;s) =
Ed, (X% (s), s) satisfies the PDE.

Xy
— 2 4 A(t)x, =0,
T (t)x (6.8)

We then define, for € fixed and [ > 1, and t < T —,
€

1
[

t+i t+
il (2,t) = 1 / EY ()02 (X" (s), ) ds = | / ol £: 5)ds, (6.9)
t

t

from which we obtain, thanks to the PDE (6.8).

~1
8{;‘; + AW =1 [af,(x,t) _— (x,t; t+ %)} . (6.10)

1 1 1 1
Recalling that x,, (I, Lt + 7) =EYr <t + 7) U2 <X’“’t (t + Z) b+ 7) , and using Ito’s formula to com-

pute this expression, we obtain, from (6.10),

t+1
ﬁl
,aat” + A(t)al =1 / E |:\I/2(X‘Tt($),S)HD(XIt(S),YM(S), Z"(s))
2 6.11
1ot (<0 + A ) (79, o1

— 477 (s) - a(X " (s)) U DY (X" (s), s)} ds.

We can write |H, (X% (s), Y (s), Z%(s))| < K|Z*%(s)]* + k,(X*(s),s), for a fixed constant K. Also
41727 (s) - a(X(s)) WD (X"(s),s)| < 2||a|[(P2(X"(s),s)|Z%(s)]? + |DY(X*(s),s)|?). Therefore, from

(6.11), we obtain

il L
‘( aat" + A(t)ﬁi) (x,t)‘ <l / [Co(V) + EW?(X™(s),s)| 2% (s)|* + ET? (X" (s), s)k, (X" (s), 5)] ds.
t (6.12)

Then, from Markov properties
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41
ef T+

T—
+m:/ /ﬂw?xﬂ()@ﬂzﬂ@n?+mxxﬂwyg]w ir

T
= C) 4 B [ WX(5).5) [|Z7 ) + b, (X (),5)] d,
and from (6.5) and (6.6) it follows

/ o1,

The next thing is to notice that 4, (x,t) is continuous and vanishes outside a compact, so it is uniformly
continuous. Moreover,

il | (X71(s), s)ds < C(T), VI > 2. (6.13)

b (6.14)
1 [ [t~ it 0)Gale, s)icds
t Rn,
41
S Sulp ‘ul/(£7 )_ul/ .’E t ‘—’_l / / ul/ 57 ( ))1|$7§|>(L)%Gxt(f7s)dfds
¢—al<(3) 3 ls—t|<} -
We use, see (6.4),
t+4
l//ﬂ\w—f\Z( 4 Gat(&, s)dsds
t Rn
t+1 | 2
1 2 5 x
< L
< kol / /ﬂleﬂz(%)z (s—1)% exP( ¢ )dgds
t Rn
1
_ 2
= kz//]llnlz“li exp (—02|n|?) dndr.
0 R~

Recalling that 4, is bounded and collecting estimates we obtain
ol (z,t) — @, (2,t)| = 0, as | — 400, uniformly in R™ x [0,T — €]. (6.15)

1
The next thing is to apply Ito’s formula to 3 S (A (X (s), 8) — 0, (X (s), 8))%. We get
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T—e

E / Z [Dal, (X" (s),s) — ZEH (s)U* (X (s), 5) — V.7 (s) DU? (X (s), )]
a(X"(s) [DaL(X™(s), s) — ZZH(s)U? (X" (s), s) — Y,"H(s) DU (X" (s), s)] ds
= _EZ Xrt ) T_e)_QU(XIt(T_€)7T_€))2_ %Z(ﬁi(l‘,t)—ﬂy(l‘,t))Q

v

+E / S (XP(5), 8) — 0 (X7(5), )

al
" ( (‘ s <s>ﬁi) (X7 (5),8) = U2(X"(s), ) H, (X7 (5), Y (5), 27 ()

, ow?
+ Y (s) (a— — A(s)¥ ) (X7(s),8) 4+ 227 (s).a( X" (s)) DU? (X" (s), s)> ds.
s
Thanks to the uniform convergence (6.15) and to the bounds (6.13) and (6.6) we check that the right hand
side goes to 0 as | — +o0o. Therefore we have obtained, recalling the Markov properties (6.1)
/ Z |DaL, (X (s), 5) —v, (X% (s), s)W2(X%(s), s) —uy, (X7 (s), s) DU (X (s), s)[2ds — 0, as | — +00.
(6.16)
This means also

T—e
/ /th(f,s)Z\Dafj(f,s) (6, S)UR(E, 5) — up (€, 5)DUR(E, )[2deds — 0, as | — +oo.  (6.17)
t Rn v

We apply this property with ¢t = 0 and = = 0. From the left inequality (6.4) we see that Goo(€, s) > m > 0,
if e <s<T and |¢] < M. Therefore

/ /Z|Du (€,8) — v, (&, 8)U2(E, 5) — uy (&, 8)DU2(E, 8)|*déds — 0, as | — +oc. (6.18)

€ B]u

On the other hand, from the uniform convergence (6.15) we have also Dl (¢,s) — D, (&, s) in the sense
of distributions on R"™. Since

D, (€,s) = Duy (&, 5)V?(€, s) + (&, s) DU (&, 5)

comparing with (6.18), since M is arbitrarily large, we obtain v, (£, s)W2(€,s) = Du, (€, s)¥3(€, s), which
implies the desired result. O

7. Local Holder regularity
7.1. Preliminaries

Let o € R™ and ¢y € (0,7). We denote zy = (xo,ty). We consider Gy, ,—o(z,t) which we denote by
Go(z,t), with tg — 8 > 0. We have from (6.4)
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|z — 20/

<G (2,8) < ka(t—to+0)7% e gtz ml” (7.1)
< Gagto—0\T, 2 0 exp 2t—t0+0 . .

We establish several useful inequalities. By first noting that s~2 exp (—é> attains its maximum for s > 0
s

A~

2
at § = —5, we immediately obtain the estimate
n

Go(x,t) < clx —xo|™", c=ks (252) . (7.2)

n

We can improve this estimate, noticing that s~ 2 exp (——) is increasing, if s < §. We see easily that
S

t—to+0 < |z — x| = Go(a,t) < 6(e)|x — 20| 7", (7.3)
with §(e) = koe ™ exp (—‘2—2) — 0, as € — 0. Finally, we have
Elr —xo]? <t —to+0 <m?|z —x0|> = Golz,t) > do(e)|x — x| ™" (7.4)
with do(€) = kym ™ exp (—2%) — 0, as e — 0.
7.2. Basic inequality

We introduce a smooth enough function 7 : R™ — R, such that 0 < 7(x ) 1,7(x) =1if |z| < 1,7(x) =0,
if || > 2. We introduce also a smooth function 5(t), such that 0 < () <1, 8(t) = 1,if 0 <t <1, 8(¢t) =0,

if ¢ > 4. We then define
r—x t—t
TR,z (2) :T< R O)v BR,to(t) :B( R20>’

MR,z (xa t) - 77R(5U7 t) = TR,z (x)ﬂR,to (t)

Let Br(xo) = Br = {z||x — 20| < R} and Qr(20) = Br(xo) N {t|to <t < (to + R?) A T}. We consider an
open bounded domain of R” called O and zo € O.

The number R < R; (the interesting case is R very small), with R} > T, and we introduce O =
UyoeoB2r, (7). We define

2 .
neGo(z,t), if t > tg,
V(o t)={ " (=1) ’ (7.5)
0, if t < to.
The domain of ¥(x,t) C O,Vt € [0,T]. Then py < p with
p=sup®(z,t)Ls(x). (7.6)
xt

We then obtain from the inequality (5.11)

// —dxdt—i—//Zawa\P aLd dt+a//\II|Du| dzdt < c(p Z//\Ilk (z,t)dzdt.  (7.7)

0 Rn 0 Rn 0 Rn Y 0 Rn

Our basic inequality is
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Proposition 16. We make the assumptions of Theorem 1. We take constants c,r such that |c,g| < p. We

then state

) Ju(z, ) = cal?

o} u(z,t) — cp
5 / / |Dul?Go(x, t)dzdt < C(p, Ry) TGg(x,t)dmdt

to Br(zo) Q2r(20)—Qr(20)
, (7.8)
+ C(p) Azt rare / Ih(z) — crl*Go(z, T)dz
Bar(xo)

CPIkl|La(@an(o) B2 T

where cr is the vector of components c,r. C(p) is a generic constant depending only of p, and increases
with p. The number p depends on Ry and the constant C(p, R1) is increasing in both variables.

Proof. We compute

oV OL URGO
// adwd”//zawa o, " = // "o dmdt*//z oy g et

0 R» 0 R» to Rn» 0 R Y

Performing integration by parts in ¢ for the first integral and in x for the 2nd, and using the PDE of Gy,
then reinserting in (7.7), we obtain

77R daij ‘9771%
// | D ngRdxdt—l—// L(z,t)Gy(z,t) dxdt—i—//z Dz, O, L(z,t)Gy(x, t)dxdt

to Rn to Rn to Rn
//Z 0y LR L )Gy, ) dzdt+2//z a; 8E—GQ(:C t)dadt (7.9)
T ox 0T I 92, Ox;
to R to Rn %

Z//k‘ z, )nEGo(x t)dxdt—l—/ L(z, T)n%Go(x, T)dx — /L(x,to)néGg(x,to)dx.

Y to Rn R~

ou,,
Ox;

on% OL
,J ”5\ 3

. T
We can estimate the term —2 fto >
by

+—Go(x,t)dzdt, recalling STL( t)y=>.,A,(u—cp)
j

—2//2 ”Zn—R—Gg(x t)dadt

to R™
< —//|Du| ngRd:cdt—F—HaHQ//ZA u — cg)|Dngr|*Go(z, t)dzdt.
to R» to R»

Combining with (7.9) we obtain
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//\Du\ Gonkdrdt < //(anR
T

4
—l—a|\a|\2//ZAE(u—cR)|DnR|2G9(x,t)dxdt (7.10)

to Rn Y

+ |diva| | Dng| + |traD27712;€‘> z,t)Go(x,t)dzdt

T
p)Z//ku(x,t)n%%Gg(x,t)dxdt+/L(x,T)r]}z%Gg(z,T)daz.
Y o to Rn R~

We next use L(0) =0, —(0) = A4,(0) = 0 to write L(y fo fo BZW 5‘ “(BAY) yuyvdAdB. Therefore

L(z,t) = L(u — cg) < Clp)lu — crf*,
|A, (u— cgr)| < C(p)|u — cgrl,if =€ O.

Also

3773

En + |diva| - [Dng,| + |traD*ng| < C(Rl).

S TR

This is clear for the derivative in ¢ and the second derivative in 2. For the first derivative, we have |Dng| <
C CRy

R < 72 . Finally
T (to+4R*)AT
/ / ky (x, t)n%Go(z, t)drdt < / / ky(z,t)Go(x, t)dzdt
to R™ to Bar(xo)
T a (to+4R?)AT 7
< / / kd(z, t)dxdt / / GY (x,t)dzdt
0 Q2r(z20) to Bar(zo)

_nt2
< CHkHLd(QQR(ZO))RQ a

Collecting results, we obtain the inequality (7.8). O

Probabilistic proof. We give now a probabilistic proof of (7.8), based on the inequality (5.14). We use the
Markov property of Proposition 15, to write (5.14) as

_E/Zqﬂ (X7(s), 5)| Dun (X7(s), ) 2ds
< IE/ G% + A(s )\1:2) (X (s),s)L(Y"*(s) — c)ds + §\|a||21E/ZA,%(Y”(s) —¢)|DU(X"(5),5)|*ds

\112 X;Ct Z k th

_|_
&=
=
—~
>
g
5
=
=
h<
g
5
_|_
=
>
N
&=
Tt~

(7.11)
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We apply this inequality with t =tg — 0, x = ¢ and

x,s), if s> to,
\I!(J:,s)z{nR( ) 0

O, if s < to.

We obtain

T
o 2 zo,to—0 zo,to—0 2
SE [ S (x (), ) D (X)) s
to Y

T
2
< B [ (=G Al ) (005 L ) — cnds

to
T
4 2JallPE [ 37 AR 0s) ~ ) DX ), ) s
to Y
T
+E (nj(X(T), T)LY*"~%(T) — cg)) + ¢(p)E / MR(XT00™(5),8) > ki (X000 (s), 5)ds,
3 v
(7.12)
which implies, with considerations similar to those of Proposition 16,
T
SE [ Lo o(geaninlDuX 0 (s), 9)ds
to
[ [u(X7010(5). 5) — en?
< Clp, Rl)E/]lXID’t‘]*e(S)€Q2R(zo)*QR(zo) R2 : ds
to
T
+ C(p)Eng (X =(T), T) [y "o ~%(T) — cg|? + ¢(p)E / MR(X00(5),8) >k (X000 (s), 5)ds.
to v
(7.13)

Since the probability distribution of X#0-%0=%(s) is Gy(¢, s), we obtain immediately the inequality (7.8).
7.8. Choice of the constants c,r

First we can write, as an immediate consequence of (7.8)

t _ 2
. /|mﬁ%@ﬁm&gamm) @@%ﬁﬁi@@@mm
Qr(20) Q2r(20)—QRr/2(20)
() et sare / h(z) - cal2Go(x. Tydx (1)

Bar(zo0)

n+2

+CONElLe(Qorzon B~

We now explain the choice of the constants ¢, . We follow ideas and results of M. Struwe [9]. We introduce
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1
() = 0, for |z| < 2
7(z), for |z|>1,
and set
(o) = ¢ (T5™ )+ onont) = Grla)3n(0), wnlent) = nn(o 0T ¢ Bulao). (1.15)

In the sequel we write, to simplify notation,

2
Bp=2-"T2 (7.16)
d
We define
us fBZR (o) ¥ ( 7t)<R($)d$ (7 17)
Uy R; ot T fBZR I CR(x)dx

We note that \uf} Ruzot] < p- We also call u%;xot the vector of components ug Rizot- LU 18 easy to check also
that

/CR(x)dw > coR", (7.18)
Rn

where ¢g > 0 is a fixed constant. We begin with the

Lemma 17. Let tg < s <t < T A (to + 4R?), then

|U§%;$Ot u,, wos|2 <C(p / / |Du(z, 7)|2dzdr + CHkH%d(QZR(ZO))R2ﬁO. (7.19)
s Bar(x0)—Br/2(z0)

Proof. We have

[ webade - [ wles)n@

Bar(zo) B2r (o)

¢
Oou,
= / / W(w, T)dxdr

s Bagr(zo)

:/t / A(T)ul,(m,T)CR(x)dde—/t / H,(x,u, Du)(gr(z)dxdr

s Bar(wo) s Bar(wo)
¢ ¢
:/ / Zaij(x)%giljdxdr—/ / H,(x,u, Du)(gr(x)dxdr.
$ Bap(zo) "7 § Bar(o)

Therefore,
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/ o (2, )G () d — / (3, 5)Cr (@) de

2r(Z0) Bar(zo)

t t
/ / |Du,, |dxdT + K/ / |Dul?dzdT + / / ky(z,7)dxdr,

s Bagr(zo)—Br/2(%0) s Bagr(xo)—Br/2(%0) s Bagr(zo)

:UlQ

t n
and [ fBzR(wo) ky(x, T)dzdr < ||E||La(Qypn(z0) R +Po. Hence,

/ o (2, )G () — / o (&, 8)Cr(2)de

2r(Z0) Bar(zo0)
1
t 2 t
< cR:? / / |Du, |*dzdr | + K/ / |Duldzdr + ||| La(Qyn(zon R,
8 Bar(xo)—Bgr/2(xo0) 8 Bagr(zo0)—Br/2(%o0)

from which it follows, recalling (7.18)

‘u%;wot - u%;xos
1
2 t
<cR: / / |Dul*dzdr | +cR™™ / / | Dul*dxdT + c||k||Ld(Q2R(ZO))R5°.
8 Bar(wo)—Br/2(%0) 8 Bar(wo)—Br/2(%0)

Using the fact that |uCR;mOt| < ¢p, we deduce from the preceding inequality

~

2
|uR;zot - u%’,;mos ‘

< C(p)R—"/ / | Du|?*dzdr

8 Bar(z0)—Br/2(%0)
+ |uR ;xot ’u’% a:os R_7 / / |DU|2d.TdT +C||k||Ld(Q2R(z0))RﬁO ’
s Bagr(xo)—Br/2(%0)
and (7.19) follows easily. B O
The preceding proof uses the PDE (1.1). We want to give a probabilistic proof

Probabilistic proof of (7.19). It is sufficient to give a probabilistic proof of the relation

/ (2, 1)Cr (@) da: — / (2, 8)Cr(2)da

Bar(zo0) Bar(zo)

/ / Z aij( guy ?}Cxljd dT—/t / H,(x,u, Du)(g(x)dzdr,

s Bar(wo) s Bar(zo)

(7.20)
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in which of course u, (z,t) = Y*(t) and Du, (z,t) = Z**(t). The idea is to give a probabilistic interpretation
of the left hand side of (7.20). Define xg(z,s) = GQE(I?S) then we can write
o\T,

/ (2, 1)Cr (@) da: — / (2, 8)Cr(2)da

Bar(z0) Bagr (o) (7'21)
= Eu, (X700 (1), t)xr (X070 (1), 1) — By, (X700 (s), s)x (X700 (s), 5).

Using Ito’s formula, we obtain

/ o (2, )G () — / (&, 5)Cr(w)da

BQR(I()) BZR(wO)

_ E/ [—XR(Xa:O’tO_O(T),T)HV(Xmo’tO_e(T)7U(Xw07t0_9(7'),T),DU(XmO’tO_G(T),T))

Fu (), 1) (58 = A (X700 (r). 7

4+ 2Du, (Xzo’t(’*e(T), T).a(Xz"’t“*e(T))DXR(X“"“’“’*Q(T), T)|dT,

which we can reinterpret as

[ w o [ oo

Bar(zo) Bar(zo)

/ / { Crl(@)Hy (@, u(w, 7), Du(z, 7)) (7.22)

t Rn

+ Go(z, T)uy (x,7) (%{—R - (T)XR> (x,7) + 2Gy(x,7)Du,(x,7).a(x)Dxr(x, )| dxdr.

-
We note that Ge aXR = *XR% = —XR i, % (aij%) S0

Bzg(wo) B2R($O)
y 0Gy
= // |:—CR(5U)HV(1',U($ 7), Du(x, 7) Z 97 (aija—xi) Xr(@, T)uy (2, 7)
t Rn

+ Go(x, T)uy,(x,7) Z 8% (aij GGXTR) + 2Gy(x,7)Du,(z, 7).a(x) Dxr(x, 7) | dxdr.
Z] K3 K]

After integration by parts and simplification we obtain immediately (7.20). The rest of the proof of Lemma 17
does not use the PDE (1.1) and thus is unchanged.

From now on, we use only inequality (7.14) and (7.19). So there is no difference between the analytic and
the probabilistic proof. We choose the constants ¢, g as follows. We take § < SR? and consider two cases (€
will be a small constant, as small as we need)
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Case tog— 0+ R*>T: c,p = “ngOT (7.23)
TA(to+4R?) ¢
U g 1 AT
Case to— 0+ R*<T: c,p= fov(to breR?) vRizol (7.24)

TA(to+4R?) dt
toV(to —0+€2 R2)

7.4. Hélder property
From the choice of the constants ¢, g we are going to derive from (7.14) the property

Proposition 18. We make the assumptions of Theorem 1. We take 8 < SR?, and we choose the constants
cyr according to (7.23) or (7.24). Then we have

[e%

5 / |Dul?Go(x, t)dzdt < C(p) / (K (e)Go(x,t) + 6(e)R™™)| Dul*dxdt
Qr(zo0) Q2r(20)—Qr/2(20) (7'25>

+ CIE £e(@an(20))s IPA Bag (o) p» R1) R,

where K(€) — +00,0(e) = 0, as € = 0, and C(p) is a constant depending only of p and increases with p.
The constant C(||k||La(Qun(20)): PPl Bor(zo)s P> B1) is monotonically increasing with the arguments.

Proof. We first consider the case tg — 8 + €2R? > T. We have

CyR = I — fB?R(fbo) hy (2)Cr(x)dx
vR,xo fBzR(fo) CR(iE)dx

Considering (7.14), we first estimate the term

L7ty +aRr? / |h(z) — cR|2G9(x,T)dx = / |h(z) — cR|2G9(x7T)dx

Bar(o) Bar(o)

since we may assume € < 2. But for « € Byg(20), we have |h(z) —cg| < ||Dh|| By, (20 R, since h(z) is C1(R™)
and [p . Go(x,T)dz < C. Therefore,

I'=C(p)Llr<torar? / |h(z) = crl*Go(z, T)dx < C(p)||Dhl|B, (0 B,

Bar(o)

calling by C(p) all generic constants, depending only on p. We then consider

[u(a,t) = crl?

J=C(p) 2

Q2r(20)—QRr/2(20)

Gy(z,t)dxdt.

R
For 3 < |z — x| < 2R, we have T' — tg + 0 < €2R? < 4€?|x — 20|?, hence from (7.3), Go(z,t) < 5(2¢)|x —
xo|™"™ < §(2€)2"R™", therefore
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(to+4R*)AT )
t _
J < Clp) WGW, t)dwdt
to BzR(wo)—BR/z(xo)
(to+4R*)AT | ( ) |2
. u(z,t) — cp
<C(p)d(e)R / / wadt.
to Bar(z0)—Br/2(x0)
But
(to+4R*)AT (to+4R?)AT
¢ 2
|u(z,t) — cr|? [u(,t) = up 44
to Bar(z0)—Br/2(z0) to Bar(z0)—Bry2(zo0)
(to+4R*)AT
+ 20Rﬂ72 / |U§%,zot - ug{,moTPdt'
to
Since tg <t < T <tg— 0+ 2R? <ty + 4R?, we can apply (7.19) to claim
[0S ot — Uz orl” < C(P)R™ / / |Du(z, 7) Pdadr + c|k][F gy z0n B
t Bar(z0)—Br/2(%0)
(to+4R*)AT
R / ) — w2t < Clp / / |Du, D2dzdt + cllkl 2 1. oy B0
to to Bar(xo)—Br/2(%0)

Moreover, by an easy extension of Poincaré inequality (weighted Poincaré inequality in [8]) we have also

¢ 2
u(x,t) —u
/ | ( ) R,x0t| dx <ec / ‘Du‘2d$

R2
Bagr(x0)—Br/2(%0) Bagr(z0)—Bry2(%0)

Collecting results we have

(to+4R?)AT (. 1) |2
u(x,t) — cp
/ / PERE L dadt
to Bar(z0)—Bry2(%0)
(to+4R*)AT
< C(p) / / | Dua,t)Pdzdt + el [k]7a(gup (o) BT
to Bagr(z0)—Bry2(0)
and thus

J < C(p)d'(e)R™™ / | Duf*dzdt + C(p)|[kI|Za(g (208 () B*™

Q2r(20)—QRr/2(20)

and thus from (7.14) we obtain that (7.25) is satisfied.
We next consider the case tg — 6 + ¢2R?> < T. We consider again the terms I and J. For I we may
assume T < to + 4R?. The constants c,p are defined by formula (7.24). So we have to evaluate the term



A. Bensoussan et al. / J. Math. Pures Appl. 149 (2021) 135-185 165

me(mo) |h(x) — cr|?Gy(x, T)dz. We begin by considering cg — u%,on =cp— h%wo. We have since T' <
to + 412,

T ¢ ¢
¢ ftov(t0—9+e2R2) (U‘R,mot - uR,on) dt
CR —UR 20T = gt

)

T
-fto\/(to—g-'r62R2)

hence

T ¢ ¢ 2
lcr — M4, |* < Jrovio—otere) Wiagr = Ui ayr!”dt
sTO —
dt

)

T
fto\/(tgfaJresz)
and from Lemma 17 we can assert that

T
ler — Wy, P < Clo)R™ / / |Du(, B)2dzdt + cllbl 2 aggp oy B2 (7.26)
toV(to—0+€2R?) Bar(xo)—Br/2(zo0)

9 b2 R o |z — 20?
Now, from ¢t > tg — 0 + € R* and 3 < |z —x0] < 2R, we get t > tg — 0 + e2——————. On the other hand,
t —to+ 6 < 4R? + BR?, recalling § < BR?. So t —tg + 0 < (16 + 483)|z — x¢|?. Therefore we can apply
(7.4) to obtain Gy(z,t) > dg (%) |z — zo|™™ > do (%) (2R)~™. Therefore also R™" < Gy(z,t)K’(e) where

K'(€) — 400 as € — 0. From (7.26) we then have

T

er — Wy < COK' (0 [ DG 0P Gote dadt + llflE g, B
toV(to—60+€2R?) Bar(2x0)—Br/2(%0)
hence also
=t F<COR@ [ IDue PG et + sy B (720

Q2r(20)—QRr/2(20)
Now, we take x € Bag(x(), we have
[h(2) = el < 2ler = hy 4, ° + 20h(2) = b4, 1%
and

Is (h(z) = h(&))Cr(E)dE
) —hS = 21 (20)
h( ) hR,xU fBQR(g;O) CR(f)dﬁ )

so, for x € Bag(xo), |h(x) — h%,mo‘ < || Dh|| B, g (o) BR- Therefore also, from (7.27), for x € Bagr(o),

ler — h(z)|* < C(p)K'(e) / |Du(z,t)*Go(z, t)dwdt + C(|[k|| La(Qun(z0)) 1 PPl Bar(wo) ) R
Q2r(20)—QRr/2(20)

But then recalling that fBQR(IO) Go(x,T)dxr < C, we obtain
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I < C(p)K'(e) / |Du(z, )]*Go(x, t)dwdt + C(||k]| La(Qup(z0)) PRl Bar(wa)s 0) R
Q2r(20)—QR/2(20)

We next turn to

|u(z,t) — crl?

J =Cl(p) 2

Q2r(20)—QRr(20)

Go(x,t)dzdt = C(p).J.

Then J < 2(J; + J3) with

¢ 2
(e, 1)~ ufyal?

Ji = B o(x, t)dxdt,
Q2r(20)—QRr/2(20)
q 2
CR—U
J2 = / —‘ " Rf7x0t| G@(J}, t)da?dt

Q2r(20)—QRr/2(20)

Noting that Q2r(20) — Qr/2(20) = 5
2Rand (tg + R AT <t < (tg +4R?) AT}. Therefore,

J1 = Ju + Jio,
with
(to+4R*)AT ¢

|u(x7 t) - uR’(ljot
R2

2
Jii =

Go(x,t)dxdt,
to Bar(z0)—Br/2(z0)

(to+4R*)AT

uRl t|2
Jig = / / O Gy(x, t)dzdt.

(to+R2)AT Bagr(zo)

We still split Ji; in two parts,

tov(t0—9+€2R2) |U(£E t) _ 'U,C |2
Jiy = ! =2 Rzot Goy(z,t)dxdt
to Bag(x0)—Br/2(x0)
2
ot nt (2, 8) = Wy
n / =2 ’ Goy(z,t)dxdt.

tov(t0—9+€2R2) BQR(Io)—BR/Q(wo)

R
t|— < |r—x9] <2Rand tg <t < (to+4R2)/\T}U{x,t||x

(7.28)

.To‘ <

In the first integral, we have t —tg + 0 < €2R? < 4e?|x — xo|? then, from (7.3), Gy(z,t) < 6(2€)|x — x| ™ <

0(2€)2"R~™, hence

toV(to—6+€> R?)

¢ 2
4. 0) = il

I o(x,t)dxdt

to Bar(x0)—Bry2(z0)
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toV(to—60+e2R?)

¢ ‘2
<§(e)R™™

u(z,t) —u
ule,t) — gl

R2

to Bar(r0)—Bry2(x0)
and by the weighted Poincaré inequality, it is further less than

toV(to—0+€2R?)
cs' () R™" / / | Du|?dadt.

to BzR(Io)fBR/g(alo)

R
Consider next the second integral. We have t > to—0+¢>R? and ) < |z—mo| < 2R, hence t—ty+60 > 2 R? >
2 |z — xo?
4 € €
(7.3) we get dg (5) |z — 2o]™™ < Go(x,t) < |z — x9]™™, hence also dy (5) 27"R™" < Gy(x,t) < c2"R™™.
Therefore

. Also t < to + 4R? implies t — to + 6 < (4 + B)R?* < (16 + 453)|z — x0|*. Therefore, from (7.2),

(to+4R?AT

/ Ju(z t) }—pufz,mﬁ Gol, Ddudt
toV(to—0+€2R2) Bagr(z0)—Brya(z0)
Lo (1) 1y al?
<cR™ 7 20 daxdt
toV (to—0+€2R2) Bag(w0)—Br 2 (w0)
(to+4RA)AT
<cR™ / | Du|*dxdt
toV(to—6+€2R?) Bar(xo0)—Br/2(%0)
(to+4R*)AT
< cK'(e) / / |Dul?Go(x, t)dzdt.

to\/(t079+62R2) BZR(CUo)*BR/Q(IU)

Therefore we have obtained, connecting the estimates of the two integrals

Jn<ec / DU (K’ (€)Go(z, 1) + &' () R-")dadt.
Q2r(20)—QRr/2(20)

For Jia, we may assume to + R? < T. Then for tg + R?> < t < (to + 4R?) AT, we have t —to + 6 > R

|z — z0|?

hence t —to + 6 > . Also t < tg + 4R?, hence from the estimates (7.2), (7.3) we can assert that

cR™™ < Gy(z,t) < cR™™. Therefore, combining with Poincaré inequality, we get

(to+4R*)AT
Jig <c / / |Dul*G(, t)dxdt,

(to+R?)AT Bagr(zo)

and from the estimate of Ji1, we can infer that

Ji<e / \DuP (K (€)Go (1) + & ()R~ dadt. (7.29)
Q2r(20)—Qr/2(20)
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We turn to Jo. We have first

(to+4R*)AT

¢ 2
CR— U
Jy < c / wdt’

to
and replacing cg, then by an easy majoration

(to+4R*)AT . TA(to+4R?) lu ¢
J <£ toV(to—0+€2R?) UR zot
2= Tpe2 TA(to+4R?) d
to fo\/(tg 0+€2R2?) §

¢ 2
- uR,wos' dS

dt,

which we write as Jy < Jo1 + Ja2, where

toV(to—6+€>R?) .TA (to+4R?)
ot — C fo\/(to 0+€e2R2) |u§% ot u%,zos|2d‘sdt
2= R TA(to+4R2) ’
to fov(to 9+€2R2)
(to+4RAAT fT/\(f0+4R2 | ¢ _ uc |2d8
c toV(to—0+e2R2) YR, zot R,zos
Joo = dt.

ﬁ fT/\ t0+4R2) ds
toV(to—0+€2R?) toV(to—0+€2R?)

For Jy1, we note that tg < t < s < T A (tg + 4R?), therefore from Lemma 17 and t — ty < €2R?, we can
assert

TA(to+4R?)
Joy < |C(p)R™™ / / | Du(z, t)|*dxdt + c||k||%d(Q2R(ZU))R250
tO BQR(I())*BR/Q(IQ)
<c) [ DGOSR et + el g0

Q2r(20)—QRr/2(20)
Consider then Jo5. We use

max(s,t)
Wt~ W <CORT [ [ IDuPdndr bl s B

min(s,t) Ber(2z0)—Br/2(x0)

R
But the variable 7 lies in the interval to — 6 + ¢?R? < 7 < (tg + 4R?) A T. Since also 3 < |z — xo| < 2R,

we have Gg(z,7) > do (%) 27" R™". Therefore,

max(s,t)

e = waeP <) [ [ IDUPK @G r)dadr + el g B

min(s,t) Bar(wo)—Br/2(wo)

(to+4R?)AT
<C(p) / / |Dul*K'(€)Go(z, t)dxdt + c||k| |%d(QgR(zg))R2/607
to Bar(z0)—Br/2(%0)

and
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Jag < C(p) / |Dul* K’ (€)Go(, t)dxdt + c|k][7 (g (-0 B
Q2r(20)—QR/2(20)
Collecting results, we can state
J < C(p) / |Dul*(K'(€)Go(w,t) + &' ()R~ )dwdt + C(p)| k]| 7 a( gy (o) B (7.30)
Q2r(20)—QRr/2(20)

Collecting all estimates, we obtain again from (7.14) the inequality (7.25). The proof is complete. O
We can then state:

Proposition 19. We make the assumptions of Theorem 1. Consider a bounded open subset O of R™ and
Ry = diam O > /T. Define O = UyzoeoB2r, (o), then p by (7.6). There exists 6, < %, depending only of
p such that

Sp
[u(ert) = u(ez, t2)] < CUIKl a0y 1DAllo: oy o) (o = 2ol + [t = ta] ¥ ). (7.31)
for all (x1,t1) and (xa,ts) with 1,29 € O and t1,t2 € (0,T).
Proof. We first note that Ggz(x,t) > ¢R~™. This follows easily from the left inequality (7.1), using |x—xo| <
|z — w02
4R, then

t—to+ R?
constant C(p):

< 16 and from t < to + 4R?. Therefore, the inequality (7.25) implies, modifying the

a / |Dul*Gy(z, t)dzdt < C(p) | K (¢) / Go(z,t) + 0(¢) / Grz(x,t)| dadt
Qr(20) Q2r(20)—Qr/2(20) Q2r(20)—Qr/2(20)
+ C(HkHLd(CbR(Zo))’ HDh||BQR(930)7 Ps R1>Rﬁo.
(7.32)
By the famous hole-filling technique, see [9], we can also write
(a+ C(p)K(e)) / \Dul2Go (x, #)dadt < C(p)K (€) / |\ Dul2Go(w, t)dadt
Qr/2(20) Q2r(20)
+ C(p)d(e) / | Dul*G g2 (x, t)dxdt
Q2r(20)
+ C(1kl| L4(Qan(20))s PRI Bap (o) s B1)R™.
Since # < BR? and S can be assumed larger than 1, we can assert that
C(p)K(e) + C(p)é(e) 2
sup / Dul|?>Gy(z,t)dzdt < sup / Du|*Gy(z, t)dxdt
0<0<BR2 1D (1) +C(p)K(€) 0<H<168R2 [Dul (1)
Qr/2(20) Qzr(20) (7.33)
+ C(”kHLd(QQR(zo))a ||DhHB2R(zo)7 P Rl) R’BO
o+ ClPK(C) '

We choose ¢ (not to be confused with d(¢)), to be defined precisely below, such that 26 < By and set
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@(R) =R sup / |Du|*Gy(z, t)dxdt.
0<0<BR2
Qry/2(20)

We deduce from (7.33)

Cp)K(€) + C(p)d(e) 425

= R

v(4R)+ B

with

C(”kHLd(QgRl (20))» HDhHBle (z0)1 P> Rl)
[0

b Rbo=2.
COIK(e) +ClpIG) o
Clp)K (<)

is possible, since K (€) and d(e) are fixed functions depending only on € and 6(e) — 0 as € — 0; indeed, we
must guarantee that

We then choose 6 = §, and € = ¢, sufficiently small so that » =v(p) < 1. This

K(e) (42 — 1) + 6(e)4® < -2
(0 (42 1) +3(e4 < o
We first fix €, by setting d(e,)40 < We then choose d, by setting K 4% 1) < a and
p PY g 6(€p) 20( )’ Y g K(e )( ) 2C(p)

also 0, < %. This choice of § = J, completes the definition of B. We then have
¢(R) <v(p)p(4R) + B, R < Ry,

then ¢ (%) < v(p)p(R) + B < 1?*(p)p(4R) + (v(p) + 1) B, and more generally

4 <ﬁ) <" (p)p(dR) + (VF(p) +--- +1) B.

Ry B R R
In particular, ¢ <4k ) <v(p)p(dRy) + =00 But for ﬁ <R< 4—;, it follows from the definition of

©(R), that p(R) < 4%% ¢ (f ) This clearly implies that

B

=) = C(|k[|a(Qar, (z0))+ [IPPl| Bag, (2o)s Ps B1)-

sup ) < 5 |u(p)plaR) + -

0<R<R;

In particular, R=2% fQR/Q(ZO) | Dul?G gz (x, t)dzdt < C([|El|La(Qar, (z0)) 1Pl Byg, (20) £ B1), hence

/ |Dul*dadt < C(| |kl La(@an, 20)): [Pl Bor, (z0)» 5 Ry)R™ % R < R,. (7.34)
QRr(z0)

We set then Br(zo) = Br(xo) NO and Qr(20) = Br(zo) N {t|to <t < (to + R?) AT}. Clearly from (7.34),

we can write

/ ‘Du‘2dxdt < C(‘|/€‘|Ld(Q2R1(ZO)), ||DhHBzR1 (20)1 Ps Rl)RTL+25p, R < R;. (7.35)
Qr(20)
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IQR(ZO) u(x, t)dxdt

|Qr(20)|

We next set ug ., = . We can estimate [ u(z,t) — usp., |2drdt. We have
120 QzR(ZO) 320

/ u(z, t) — uap - |*dedt < / u(z, t) — u$ | Pdwdt < / u(z,t) — uf,,, [Pdwdt,  (7.36)
Q2r(20) Q2r(20) Q2r(20)

(to+4R*)AT ¢
to R,xot

(to +4R2) AT —tg

with u%, = . The first inequality (7.36) follows from the properties of the mean. Then,

|u(z,t) — u%,ZO |dadt

Q2r(20)

(to+AR*)AT ¢ 2

ds

¢ 2 ¢ t UR, a0t

<2 / [u(w,t) — uf 4 |"dodt + 2 / U pot — (1‘;0 AR AT - 1 dxdt
Q2r(20) Q2r(%0)

(to+4AR?)AT (to+4R*)AT | ¢ ¢ 2
fto “ [UR pr — U |2dtds

R,xos
(to + 4R2) AT —ty

<cR? / |Du|?dzdt + cR"
Q2r(20)

Using then Lemma 17, we obtain
/ lu(z,t) — u%’ZO|2dxdt < C(p)R? / | Dul*dxdt + c||k||2Ld(Q2R(ZO))R"+2+2ﬁ°,
Q2r(20) Q2r(20)

and from (7.34)

|u(x,t) — u%’/,zo |2d$dt < C(Hk”Ld(Qle (20))> ||Dh||BzR1 (z0)» P, Rl)Rn+2+26P
Q2r(20)

2 n+2+28
+ HkHLd(QgR(zO))R ’.

Since 26, < By, and recalling (7.36) we can state, changing 2R into R,

/ |u(z,t) — UR,zo|2diUdt < C(Hk||Ld(Q2R1 (20))> ||Dh\|B2R1 (20)) P> R1)Rn+2+26p’ R < Ry, (7.37)
Qr(z0)
and also
[ 1utt) — sy Pdadt < CUlHLs(o 0 IDHlorp, B )RV 2425 R< R (739
Qr(20)

We now use the characterization of the space C%%/2(O x [0,T]) as a Campanato space. We have, see
4], [3], setting Q = O x (0,T),

2
sup JG e 1102 1) — U 2o ["ddt sup w1, t1) — u(a, t2) |
20€Q,R<diam O Rn+2+20, w1,22€0,t1 15€[0,7] [ T1 — T9|2% + [t1 — to|%

(7.39)

which implies (7.31). The proof is complete. O
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7.5. The uniform Hélder case
Suppose now that in addition to the assumptions of Theorem 1 we assume, see (2.5), (2.6), that

Ao, A, are bounded, and k, is bounded, (7.40)

and
h, is bounded and uniformly Lipschitz, (7.41)

then the function ®(z,t) is bounded, see (4.6). Therefore, the number p can be taken as a fixed
number. We have d = +oo and Sy = 2 and the quantities ||k|[ 454 (0,1)): [[Dhlle can be replaced
by quantities independent of O, namely ||k||z~ and ||Dh||fe. It follows that the constants J, and
C([|kllLa@x (0, IPl|o, p, R1) depend only on the diameter of O which we can assume larger than /T,
so we obtain from (7.31).

Proposition 20. We make the assumptions of Theorem 1 and (7.40), (7.41). Then a solution of (1.1) satisfies
[u(1,t1) = u(@s,t2)| < Car (Jon = @l + 6y = 1al?), (7.42)

for a fivzed number 6 < 1 and |x; — x| < M. The constant Cp; depends only on M.

8. Existence results

8.1. Full reqularity estimates

We want to obtain the following estimates, following methods initiated for elliptic systems, see Frehse

[7].

Proposition 21. We make the assumptions of Theorem 1. Then the functions u, belong to L4(0,T; W?24(0)),
ou

8—1;/ belongs to L1(Q), for g < d.
Proof. Instead of balls Br(zg), we will need cubes centered in z( and side length R. We denote such cubes
by Qr (o). We shall associate to these cubes the same types of function 7r(x) = Tp 4, (2) used in Section 7.2.

In the context of cubes we consider a smooth function 7(z) such that

{1, on Q1(0),
7(z) =
0, outside Q2(0),

and Tr(z) = TRz, (x) = 7( ). Going back to the equations (1.1) we have

I}IO
_ O(uwTr)

Ou, 01 0 < OTR )
u - )
ot

Qi3 ———
j@xj

We can then apply the linear theory of parabolic equations thanks to the regularity of a;; and the functions
h,. This implies for g < d that



A. Bensoussan et al. / J. Math. Pures Appl. 149 (2021) 135-185 173

q T q T q

T
q
/] ‘aaut” wir| | [ [ wrwasar| i, | [ [ iouasa |+ sagto)

0 Qr(zo) 0 Qr(zo) 0 Q2r(z0)

(8.1)
in which the constant Krq(p) depends on the bound on u on O x (0,T), as discussed in section 7. The
set O is adapted to cubes instead of balls. This is not the case for the constant K,. We note the algebraic

inequality
T a T v
ou |? 1 Ou,, |?
/ / 57| dwdt | < Nu o / / ‘m drdt |
0 Qr(xo) Y \0 Qr(=o)
and |D*ul* =" |D*u,|?, which also implies that
1 1
T a T a
/ / |D?u|"dzdt | < Na Y / / |D2u, |9dxdt
0 Qr(wo) Y \0 Qr(z0)
Therefore, we obtain from (8.1) that
a 7 7 7 a

]

q
dedt |+ / / |D?u|*dzdt | < K, / / |Du|*dzdt |+ Kry(p). (8.2)
0

0 Qr(z0) 0 Qr(zo) Q2r(z0)
We will use the inequality
T T
/ / | Du|?ddxdt S/ / |Tor Du|*dxdt, (8.3)
0 Q2r(z0) 0 Qar(zo)

and we define

cm(ﬂz%( min  w,(2,t) + max u,,(a:,t)).

x€B4gr(x0) 2€Byr(x0)
We have
T
/ / |Tor Du|*4dxdt
0 Qar(zo0)
T
= / / Tag| Dul?™2> " |Du,, |*dxdt
0 Qar(wo) Y
T
= — / / Tom DulI™2 N " Ay (uy — cyr(t))dadt
0 Qar(zo) Y
T

- 2q/ / TQQ}(I%_HDUF(]?Q Z(uV — ¢yr(t))DTag - Duy,dxdt
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T
2q B / / 2q |Du|2q 4 Z _ CVR Duy D ul,Dul,dxdt

0 Qar(zo)
T T
<c@ [ [ DN - cn®ldode+ Co) [ [ DU cn(o)ldod
0 Qir(zo0) 0 Q4r(zo)
T
v [ [ prallu = en(olast,
0 Q4ir(zo)

we now use the Holder property to claim that it is less than

T

T
R5/ / 28| D2u|%dzdt + K, (p Rﬁ/ / 28| Dul®dzdt + K, (p).
0 Qar(zo0) 0 Qar(zo0)

Therefore, we also have

T T
(17Kq(p)R5)/ / 28| Dul*tdzdt < K,(p Rﬁ/ / o | D?ul|? dzdt + Kyr(p),
0 0 Qar(zo)

Q4R (IO

hence
T
Ky (p) Kqr(p)
2 q 2 2 q
/ / TQR‘D’LL‘ qd.det < Kq Ré/ / TQ}%‘D U|qd$dt+ W (84)
0 Qar(zo) 0 Qar(zo)

We assume naturally that R is sufficiently small so that 1 — K,(p)R° > 0. From (8.2), (8.3) and (8.4), we

obtain
T
//|D2u\dedt< p R5/ / |D?u|%dxdt + K} p(p).
0

Qr(zo) 0 Qar(zo0)

T : T
Define & := sup,,co.r<rs Jo Jon(a) | D?u|dzdt. Since sup, co r<r, Jo Jountzo) |D?u|%dxdt < C§¢, where

K7 (p)
1_[5ng6 + K(I]R(p) We may assume R2

RS < 1. Then ¢ is bounded. For any bounded domain O, we

C is a fixed constant. Therefore, we have obtained £ <

K{(p)
1~ K, (o)
can consider a finite covering by cubes @ g, therefore we have fOT /. o | D?u|%dxdt < +oc. From the Equations
Ou,, |?
ot

sufficiently small in order that

(1.1), we then have fOT Jo dxdt < +oo. This concludes the proof. O

8.2. Proof of Theorem 1

We approximate the H,(z,t,y,p) by the sequence

Hy(z,t,y,p)
1+elH(z,t,y,p)|’

Hi(x,t,y,p) =
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where H(z,t,y,p) is the vector of coordinates H,(z,t,y,p). We verify easily that the Hamiltonians

1
HE(x,t,y,p) satisfy the same assumptions as H,(x,t,y,p) uniformly in e. Moreover |HS(z,t,y,p)| < —.
€

hy (x)

We also consider the final condition hS (z) = m
elh(z

We can then solve the system of PDEs

8 €
Sy + Au;, = Hj(z,u®, Du), x € R", t € [0,T],
ot (8.5)

us (x,T) = h,(z).

We can then apply the a priori estimates to the solution u¢ which thus remains bounded in L4(0, T; W?2(0))
remains bounded in L?(0,T; L1(0)), VO bounded subset of R™, with ¢ < d. We can take a sequence

of balls By; = Bps(0). We can construct a subsequence of u¢ which converges pointwise to a limit «, which
0
belongs to L4(0,T; W24(Byy)) and a—ltb belongs to L1(0,T; LY(Byy)), for any M. From the continuity of the

Hamiltonians it is fairly easy to check that u is a solution of (1.1). This concludes the proof.

and

8.8. Proof of Theorem 2

Considering the Hamiltonians HS(z,y, p) and the functions h¢(x) as before, we can consider the system
of BSDEs

T
Y;rf(s) :h;(Xzf /He er( ) YeTf( ) Ze’I‘t /Zerf X’I‘t( ))dw(r), tS s ST,

(8.6)
which has a Markovian solution:

Yo (s) = up (X™(s),8), Z5"(s) = Duy, (X™(s), 5).

In fact, we can take the functions u (z,t) to be solutions of the system of PDE (8.5). We can also proceed
1

directly since the Hamiltonians HS and the functions hf, are bounded by —. Let By; = By (0). We denote
€

by T = 73} = inf{s > t|X*!(s) ¢ Bps}. From now on, to simplify notation, we drop the indices x, ¢ which
remain fixed. We write X (s), Y¢(s), Z5(s). From (5.15) and (6.5), we state that

/|Ze |2 S<TMdS <Cwum, E /k s<TMdS < Cw, (87)

which implies, from the majorations on H¢,

/ [H (X (5), Y(5), Z°(5))Loryeds < Cr. (.8)

From Ito’s formula
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B [ (Z500) - 25 00) - aXONZELS) ~ 25 (9D eryds + E (5100~ Y7 0 )
=E (%|Y€(T/\ ™) =Y (T A TM)|2)

+ E/Z(YS(S) =Y () (H(X (5), Y(5), Z°(s)) = Hy (X(5), Y (5), 2% (5))) Lo<ry, .

We next write
sup [Y(s) = Y (8)[Locry = sup [u(X(s),5) — u (X(s),5)|Lozry,
t<s<T t<s<T

< sup  |u(z,s) — u (x,s8)| = 0, as € and € — 0.
o <M t<s<T

It then follows, from (8.9), and the majoration (8.8), that

T
]E/ |Z¢(s) — ZE/(s)|2]lS§TM — 0, as €,¢ — 0.

t

(8.10)

This implies that Z¢(-) converges in L> (Q, A, P; L? (t, v AT ]RN”)) for any M. The limit is necessary of

the form Z(s)1s<-,, and

T
E / 1Z5(5) — 2(5)PLocry, — 0, as € — 0, VM.
t

(8.11)

Also u®(z, s) = u(z, s) uniformly on By x (¢,T), hence Y(8)Ls<ry, — Y (8)Lls<ry, Vs, a.s., ¥V M. Thanks
to (8.11) we have also, for a subsequence, Z¢(s)Ls<r,, — Z(8)Lls<ry, a.€. a.s. From the continuity of the

Hamiltonians, we obtain
H (X (5),Y(s), Z°(5))Lo<ra, — Hu(X(5),Y(5), Z(5))Ls<ry a.e., as., VM.

We note that, for a subsequence

T

E/sup|Z€(s)|21537M <Cu,
f €

which implies that
T
E /sup |H(X(s),Y(s), Z°(s))|Ls<rpds < Cir.
7 €

Therefore,

T
]E/ [H(X (s), Y¥(s), Z(5)) — H(X(s), Y (), Z(5))[Locry, ds — 0.

t

(8.12)

(8.13)
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Also,

T 2

E /(Z;(s) —Z,(8))Ls<ry -0(X(s))dw(s)| — 0. (8.14)

t
Now, from the BSDE (8.6), we also have

T T
Locry Yy (8) = Locry, Yy (T ATor) + /L«MHﬁ(X(T),Ye(T%Ze(T))dT - /1T<TMZ§(T) -0 (X (s))dw(s).

Thanks to (8.13) and (8.14), we can pass to the limit and write

T T
Locry, Yo (8) = Lscry, Yo (T A Tar) /]].7-<TMHV(X(T),Y(T),Z(T))dT - /]].7-<TMZV(T).O'(X(S))dw(S).

S S

(8.15)
We then notice that almost surely there exists an M (which is random) such that 7p; > T, which proves
that the pair (Y (s), Z(s)) is a solution of the system (1.8). The fact that Z,(s) = Z%%(s) = Du, (X*(s), s)
is proved as in Proposition 15. This completes the proof.

Remark 22. The proofs of Theorem 1 and Theorem 2 look quite different. In Theorem 1, we rely on regularity
results of solutions on linear parabolic equations, which has no probabilistic analogue. In fact, it is possible
to prove Theorem 1 in a way similar to Theorem 2. We do not include it, to reduce the size of the paper.

The developments of Section 7 are simpler than those done in the paper [2]. This is due to the fact that
the proof in [2] does not use the smoothness of the functions a;;.

9. Uniqueness

We want to state a uniqueness result for smooth solutions. As for existence, we will first develop an
analytic theory, then a probabilistic theory, following [8]. The analytic theory, which is new, mimics closely
the probabilistic theory.

9.1. Analytic part
We state the following

Theorem 23. We make the assumptions of Theorem 1 and (7.40), (7.41). We also assume that H,(x,y,p) =
H,(x,p) independent of y with

|H, (2, p) — Hy(z,p)| < k(|pl + [p])|p — BI- (9-1)

Then there exists a unique smooth solution of (1.1) such that u,(x,t) is bounded and satisfies the Hélder
property (7.42).

We begin by an existence and uniqueness result based on (9.1), but not on all the assumptions of
Theorem 1. However, it will need that the horizon T be small. We will need a Banach space, called H%,,, =
H%,,0(R™ x (0,T)) defined as follows. A function f defined on R™ x [0, 7] is the space H%,, if
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T

—sup / / 1F(&, 5) PG (€, 8)deds < +o0, 9.2)

t Rn

1117

BMO

where G¢(€, s) is the Green function defined by (6.3). We can consider the natural extension to n— di-
mensional vector functions and also to multiple vector functions. In particular, for a family u, (x,t), we will
write

T
1Duls,,, =50 X [ [ 1Dus(€ 9P Cue, e (9.3)

t Rn

Theorem 24. We assume (2.1). The Hamiltonians are independent of y and satisfy (9.1). We assume that
H,(z,0) and hy,(x) are LT>°(R™). Also h,(x) is locally Hélder continuous in the sense of (7./2). When T
is sufficiently small, there is one and only one solution of the system (1.1), such that u is bounded and Du
s in H%MO with appropriate bounds.

We begin with a lemma for the linear equations

ony,
- + An, = H,(z,0), x € R", t € [0,T],
ey An, = Hy(x,0) 0.7 01
nV(va) = hV(x)7
which are in fact independent equations. We call ) the vector with components the functions 7, .
Lemma 25. The solution n of (9.4) is bounded and Dn is H% o with
2 5/2
IDnlZ; < T2, (9.5)

where C' is a constant independent of T except for an upper-bound, and depends only on the constants of
the equations; § is the Holder constant of the functions h,,.

Proof. First we have the formula

T
(1) = / o (€) Glar (6, T)E + / / Ho(6,0)Gaa(€, 5)deds, (9.6)

R” t Rn»

hence |n(z,t)] < C, where C depends only on the L* norms of h(z) and H(z,0). Next an easy calculation
leads to

. 8(7711)2
ot

oy
ot

+ A(n,)? = —2Dn,.a(z)Dn, + 21, (—

(1) (2, T) = hyy (=),

from which we can derive

+ Anl,> = —2Dmn,.a(x)Dn, + 2n, H,(x,0),

T

2 / / D (£, 5).0(€) Dy (€, 5)G (€, 5)dEds

"R (9.7)

T
- / B2(6) G (€, TYE — (1,)2(r 1) + 2 / / (€, 5V Hy (,0)Gor (€, ) déds.

R~ t Rn»
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Hence,

T

20 / / Dy (as)dsdssR[ 1€ Gt (6, T)dE — (e, t)? + CT. (9.8)

t Rn
We need to estimate I = [g, [h(£)[*G2i(€,T)dE — n(x,t)|*. But using (9.6), we see easily that

2

1< [ I@PGe. D)t ~ | [ WeGau(e 1| =23 [ m(OGun(e. 1)t [ [ HoAe 00Gn(e,s)ads
R Y Rn

R t R»
2

< / ()2 G (. T)de / WG (. T)dE| +CT.
Rn

R

Now,

2

n

J = / [P (E)* G (€, T)dE — L/ h(E)Gae (&, T)dE
R

2

=/L/(hw)—h(f))Gm(f,T)dé Gt (0,T)d0 (9.9)
R” R»
< //Ih(9)—h(&)IQGm(&T)th(e,T)dgde.

R™ R”

Using the estimate (6.4), we obtain also

;e (T]i—2t)n / / Ih(6) — h(€)|2exp <_T6it (16 —z)* + ¢ —xl?)) d¢do
R™ R»

= k3 / / ‘h (IE + \/ﬂu) —h (ZE + \/ﬂl}) ’Qexp (=02 (Jul* +|v[?)) dudv.

R Rn

From the local Holder regularity of A and easy manipulations, we obtain

J < C(T - t)% / / lu—v|® exp (—02(Jul? + [v]?)) dudv
R™ R™

b O -1 / / lu — o] exp (=8a((ul® + [v]2)) dudv.
R™ R™
At this stage all the constants are independent of T. We obtain (9.5) by collecting results and using an

upper bound of T'. This completes the proof.
We turn to the proof of Theorem 24: We first make a trivial change of unknown function. We set

au(fat) = UU($,t) - Wu(fat)v

' (9.10)
H,,(-ﬁ,p) = H,,(x,p) - H,,(ZL‘,O),
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so, recalling the equation for 7, (x,t), we can assert that u, satisfies

_9uy + A, = H,(x, Du),
ot (9.11)
Uy (z,T) = 0.
Note also that
\H,(x,p)| < klp|*. (9.12)

We want to solve (1.1), or equivalently (9.11), by a fixed point approach. We will work in the Banach space
H% .0 and consider functions v, (z,t) such that

2

k )

™

1Dvllsg 0 < 30 80P o (@) = (2, 1)) < (9.13)

where ( is a fixed number to be defined below. We also consider the Banach space B of functions v such
that

sup (@, ) + |[Dv||gz,,, < +00,
and the set (9.13) is a closed subset of 5.
We next define the map v — 7 (v) = u as follows
_Ou,
oy Aii, = H,(z, Dv),
ot
Uy (z, T) =0,

and v = u + n. Since

(1) = /T / (€, Du(€, 5)) G (€, 5)dEds,

we have
2 B2
sup i, (2,0)] < K|[Dulhs, < o
z,

and the second condition (9.13) is satisfied for u. Consider next u2(z,t). We have
9 72 —9 - - - 7
~ 5 u, + Au;, = —2Du,.aDu, + 24, H,(x, Dv),
u?(x,T) = 0.
Hence,

T T
@ (2, 1) +2 / / Dity.aDi (€, 5)Gay (€, s)deds = 2 / / (€, ) H, (€, Dul€, 8)) Gt (€, 5)dEds,

t Rn t Rn
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which implies that

T T
o [ [ 1D o)Gunle, deds < Dol | [ DR (€ 5)Gule,s)deds.

t R™ t Rn

Therefore, by easy majorations,

T T
«
o ‘DUV|2(£,8)GIt(§,8)d§d8 S k2||DU||%—[§Mo |D’U|2(£,S)Gzt(£,8)d£d8
2 /R[ t/]R[
T
+a [ [ D€ 5)Gai(€, 5)déds,
I

hence finally the inequality

(6%
DUl < KNDellly -+l Dl

BMO

From (9.13), it follows that

IN B4
2 2
[1Dullfys < o ﬁ+2||D77HH?3Mo'
. B .
We will have ||Dul|gz, < T if
2N 64 ) ﬁ2
— 72 T2Dnll,,, < 13-

(9.14)

(9.15)

(9.16)

If we can find S such that (9.16) is satisfied, we obtain that the map 7T is a map from B to B which preserves
the set (9.13). We now want to show that for a convenient choice of 8 the map T is a contraction. Consider
two elements of the set (9.13) denoted by v!, v? and u! = Tv!, u? = Tv?. Set & = u! —u?, ¥ = v! —v? then

*8;” + At, = Hy(z, Dv") — H,(z, Dv®),
ty(z,T) =0,
and
,3;3 + A@? = —2Dii,.aDi, + @, (H, (z, Dv') — H, (z, Dv?)),
iy (2, T) = 0.
Consequently, we have
T
Uy (2, 1) = //(Hv(ﬁval(&S))—Hu(&sz(&8)))Gxt(§,s)d§ds.
t R»

So,
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(1) +2 / / Dity (€, 5).a(€) Dty (&, 5)Gon (€, 5)deds

t Rn
//u (&, $)(H, (€, DV (€, ) —
t Rn
Hence,
sup |i, (z,t)| < sup |H, (&, Dv'(&,5)) —
ot t/R[
and

za/T/|DaV(§,s)2d§ds

t R
< sup ( /T [ e, Dot € ) -
t Rn
S

t Rn

T T
<2tsup [ [ (ID0(& o) + D€ 0)) Gle deds swp [ [ Do, )P Ge, s)ags

t R»

< 2% (Do I3,

H, (€, Dv*(€, 5))|Gan (€, S)dfd8>

Sup (// ‘Dv (&, s |+|DU (&, 5))| Do (¢, s)|G(E, )dfds)

+ D) I1D3I

H, (&, DvQ(f, 5))) Gt (&, 5)dEds.

H, (€, Dv*(€, ))|Gar (€, 5)dEds,

2

2

t Rn

Since v! and v? satisfy the first inequality (9.13), we obtain

T
2a//|Dal,(§,s)|2d§ds < 4B2||D||32

t Rn

Hence,

~112
1Dall; <

In addition,

2Nﬂ2

10913

BZ\/IO

BMO

~ 2 2 ~112
s;}glu(:v,ﬂl < ANB(| Doz

Therefore,

1
76! = Tlls < 2V88 (1+ 1) " = 2l

and 7 is a contraction if

(9.17)
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1
B8 < — 1 (9.18)
2V N (1 + —)
@
a? 4k
So we must find § satisfying both conditions (9.16) and (9.18). We must first have INe T||D77||2 > 0.
Then (9.16) implies that
1 « \/ a? 4k
2 - I — "D 2
8 <2<2N TR
. . . 1 . .
and the right hand side will be smaller than —————— if, for instance,
4N (1+ 1)
o 3
1Dl [ (9.19)

< ——.
PMO T 32NE? (14 1)

Taking account of the estimate (9.5), we conclude that it is sufficient that T' be small enough, so that C'T%/2
is smaller than the right hand side of (9.19). This concludes the proof of Theorem 24. O

Proof of Theorem 23. Since the conditions of Theorem 24 are valid, there exists one and only one solution
of the system (1.1) on an interval (T — €, T for e sufficiently small, depending only on fixed constants but
also on the Holder constant of the final condition h. But since the conditions of Proposition 20 hold the
solution satisfies a uniform local Holder regularity property, like (7.42), as long as it exists, which is also
satisfied by h. We take the corresponding Holder constant to define €. Therefore we can start from final time
T — e with a final condition which corresponds to the value of the solution at time 7" — €. Then Theorem 24
will apply again on the interval (T' — 2¢, T — €] and ¢ is fixed. Therefore we have a unique solution on [0, T7.
This concludes the proof of Theorem 23.

9.2. Probabilistic part

In fact, our analytic part is a translation of the probabilistic part. So we will not give all details. To this
end, the probabilistic part as given by [8] relies on results and methods of C. Frei [6]. We have adapted
them in our analytic presentation. We then state

Theorem 26. We make the assumptions of Theorem 23. Then there exists one and only one solution of the
system of BSDE (1.8) with

Y(s) = w, (X™(s), ), Z3'(s) = Duy (X™(s), 5). (9.20)
The functions u, are bounded, and satisfy a local uniform Hélder reqularity property like (7.42).

Proof. As said, we do not give details of the proof. Recalling (4.7), we see that Y*!(s) is bounded. For
Markov solutions, the Holder regularity theory applies, including Proposition 20 and the property (7.42)
are valid. We then begin to prove the existence and uniqueness of a solution of (1.8) when 7" is small. We
need the equivalent of Theorem 24. We define n%!(s) = 7, (X% (s),s) and Y (s) = Y**(s) — n(s). We
write (¥¢(s) = Dn,(X*(s), s), then Y;*(s) satisfies

T T
Vot (s) = / H,(X*(9), Z7(6))d6 — / (Z2(6) — C24(s)) - o (X7(s))du(s). (9.21)
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We define ||Y||s~ = sup,; SUPg>¢ |Y,t(s)|| L, where the space L> = L>°(Q, A, P). We also consider the
norm

T
2 o . xt 2
||Z||H]25’1v10 —5;12321;12 E /|Z (0)|°deo
s I,

FP < 400

which is the analogue of the H%,,, norm (9.2). We then solve (9.21) by a fixed point argument. For U%(s)
in H%,,0, define the solution of the BSDE:

T T
/ H, (X7 (0), U7 (0)d0 — [ (Z5(6) - ¢2'(5)) - (X" ())du(), (9.22)

then we first have:

¥olls= < kU . (9.23)
We next apply Ito’s formula to (Y;**(s))? and after easy calculations, we obtain the estimate
4Nﬂ4 ﬂ2
1213, < - + 20l < o5 (9.24)
provided that [ satisfies the first condition
2
4 aﬂ
= ., < (9.25)

To check the contraction property, consider two elements U'**(§) and U?*!(f) and the correspond-
ing solutions (Y'#(s), Z'%*(s)) and (Y?*!(s), Z?**(s)) of (9.22). We set U~ (s) = U'™(s) — U™(s),
Yot(s) = Yo (s) — Y2%(s) and Z%(s) = Z'*(s) — Z%**(s), then we get the equations:

T T
/ H,(X"(0), U™ (9)) —HV(th(0)7U2’“'t(9)))d0—/fot(s) S (X7 (s))dw(s).

So,

T
— 2E / Vo4 (0)(H, (X7 (9), U (9)) — H,(X""(9), U (9)))do

Fi,
and we obtain

olZulls,,,, <2 5w (|2 ] [ |HV<X“<9>,U1“<0>>—HV<X“<0>,U?ftw))we\f:
)!S Loc
2
FP ,

S Lo

<22 suwp {|[E | [(U=10)] + (U2 @)DI0*(60)1d0

@t >t
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and like in the analytic part
5112 2 NTI177112
all 2l <8NII0IRs . (9:26)
We obtain the contraction property if 5 satisfies the second condition

832N
a

<1. (9.27)

We need a smallness condition on ||(] |§{2 which is satisfied if 7" is small. The calculations and the rest of
BMO
the proof are very similar to the analytic case. This concludes the proof. O
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