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Abstract

We introduce MART, Motion-Aware Recurrent neural
network (MA-RNN) for Tracking, by modeling robust long-
term spatial-temporal representation. In particular, we pro-
pose a simple, yet effective context-aware displacement at-
tention (CADA) module to capture target motion in videos.
By seamlessly integrating CADA into RNN, the proposed
MA-RNN can spatially align and aggregate temporal infor-
mation guided by motion from frame to frame, leading to
more effective representation that benefits a tracker from
motion when handling occlusion, deformation, viewpoint
change etc. Moreover, to deal with scale change, we present
a monotonic bounding box regression (mBBR) approach
that iteratively predicts regression offsets for target object
under the guidance of intersection-over-union (IoU) score,
guaranteeing non-decreasing accuracy. In extensive exper-
iments on five benchmarks, including GOT-10k, LaSOT, TC-
128, OTB-15 and VOT-19, our tracker MART consistently
achieves state-of-the-art results and runs in real-time.

1. Introduction

Visual tracking has been one of the most important com-
ponents in computer vision with many applications such as
robotics, surveillance and so on. For a robust tracker, one
of the core problems is how to design an effective feature
representation for target appearance modeling [56] so that
the tracker can well deal with various challenges in videos
such as occlusion, deformation, view changes, etc.

Early approaches usually leverage various hand-crafted
representation (e.g., pixel value [4], HoG [24]) for track-
ing. Recently, inspired by powerful deep networks [23,31],
researchers have resorted to deep representation for track-
ing and achieved significant improvement [2, 8, 17, 18,32,

,41,42,55,57,62]. Despite considerable advancement,
most existing trackers focus on spatial feature representa-
tion of current frame for tracking, while leaving rich tem-
poral information under explored. Consequently, their per-
formances may degrade when target feature is corrupted by
challenges such as occlusion, deformation, etc.

A natural remedy for this problem is to use both spatial
and temporal representation for appearance modeling. This
way, current frame can be effectively enhanced for tracking
with extra support from historical frames, even when diffi-
cult challenges occur. A recent representative effort in [64]
develops such a spatial-temporal representation for track-
ing. Since target features are usually not spatially aligned
between frames due to motion, this method estimates op-
tical flow using a sub-network (FlowNet [14]) to capture
motion dynamics of the target for spatial feature alignment.
Despite upgrading performance, this method can be im-
proved in two aspects: (1) Efficiency. To obtain optical flow,
a large extra optical network is integrated into feature repre-
sentation network, resulting in more computation and inef-
ficient tracking inference. (2) Long-term representation. In
tracker [64], spatial-temporal representation is achieved by
warping and aggregating features on a short fixed temporal
window, making it difficult to obtain a long-term represen-
tation, which is desired for tracking.

To handle the above issues and obtain an efficient long-
term spatial-temporal representation, we propose a novel
Motion-Aware Recurrent neural network (MA-RNN) for
Tracking. Specifically, an MA-RNN consists of two parts, a
context-aware displacement attention (CADA) module and
an RNN. The RNN component, implemented based on Con-
vGRU [1], aims at long-term representation by learning to
aggregate temporal features. Due to motion dynamics, how-
ever, targets are usually spatially misaligned across frames
(see Fig. 1 for an example). In such situation, direct aggre-
gation of features into RNN may even be detrimental to the
representation. Attacking this problem, we propose a sim-
ple, yet effective CADA module for efficient motion capture
and apply it to align feature aggregation in RNN for robust
representation. In particular, the motion dynamics of a tar-
get are captured by modeling displacement of each unit on
feature maps across frames. To achieve this, we match each
unit in current frame to a local region in last frame, and
compute a soft attention score map to represent such dis-
placement. For robustness, context of each unit is taken into
consideration for matching. After obtaining the displace-
ment attention score map, we propagate it to guide spatial
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Figure 1. Misalignment caused by target motion. The yellow
patches in (b) and (c) have the same spatial positions with yellow
patch in (a) while they do not semantically align with it. Instead,
the green patches in (b) and (c) with slight displacements are se-
mantically better aligned with the yellow patch in (a).

alignment of cross-frame features in RNN. By seamlessly
integrating CADA into RNN, MA-RNN can model long-
term spatial-temporal appearance in feature representation.

Based on the spatial-temporal representation, we apply
a classifier to localize target. To handle scale change, we
propose a separate scale estimation component using multi-
step bounding box regression (BBR). The core is a target-
aware BBR-IoU network that, given a reference target, pre-
dicts the offsets of its bounding box and IoU score for re-
gression result. The IoU score is used to guide iterative
bounding box regression. Since the IoU score of the can-
didate box is guaranteed to be non-decreasing, we call our
method monotonic bounding box regression (mBBR). As a
single step of regression usually works well (as observed
in recent studies as well [32,33]), mBBR works efficiently
most of time, with very few iterations by using IoU score as
an early-stop condition.

To evaluate our tracker, we conduct experiments on five
popular benchmarks including GOT-10k [25], LaSOT [16],
TC-128 [38], OTB-15 [59] and VOT-19 [30]. The proposed
MART consistently achieves state-of-the-art results'.

In summary, the contributions in this paper include: (i)
a novel motion-aware recurrent neural network (MA-RNN)
for spatial-temporal representation for tracking; (ii) a novel
context-aware displacement attention (CADA) module for
target motion dynamic capture and spatial feature align-
ment; (iii) a simple yet effective monotonic bounding box
regression (mBBR) for accurate target scale estimation; and
(iv) state-of-the-art performances on five benchmarks.

2. Related Work

Visual tracking has been extensively studied in recent
years. In the following we discuss the most related work
and refer readers to [36,37,47] for recent tracking surveys.

Deep Tracking. Inspired by success in image classifi-
cation [23, 31], deep feature has been used for tracking

The code will be available at ht tps: //hengfan2010.github.
io/projects/MART/MART.htm

and demonstrated state-of-the-art performance [42,55,57].
One of recent trends is to integrate correlation filter track-
ing with deep feature to learn a discriminative classifica-
tion model [9, 41, 44, 48, 49, 64]. Especially, the work
of [64] leverages temporal information for tracking. De-
spite robustness, these trackers cannot well deal with heavy
scale variation. To handle this issue, the work of [8] de-
composes tracking into localization and estimation sub-
tasks and adopts IoU prediction [27] for scale estimation,
achieving significant improvement. Another trend is to
learn a similarity measurement for tracking using Siamese
networks [2, 50]. Owing to balanced accuracy and effi-
ciency, the work of [2] has been improved with many ex-
tensions [21,22, 33, 58]. Notably, by integrating with re-
gion proposal network (RPN) [45], the work of [33] greatly
improves Siamese tracker in dealing with scale change,
which is further enhanced by incorporating distractor de-
tection [63], multi-stage mechanism [18, 54] and deeper ar-
chitecture [32,62].

Our work is related to but different from [64] that uses
a large FlowNet [14] for motion capture. In contrast, we
propose an efficient CADA module for motion dynamics.
Besides, we model a long-term representation using RNNS,
which differs from [64] with a short-term representation.
Our work is relevant to [8] by sharing the similar spirit
of decomposing tracking into two sub-problems. However,
our solutions to the two sub-problems are very different than
those in [8]. In addition, IoU prediction [27] is employed in
both [12] and our work, but in different ways. The work
of [8] directly utilizes IoU score for scale estimation, while
our approach uses it to guide bounding box regression. Dif-
ferent from the multi-step BBR in [18, 54], ours is more
adaptive by using IoU score to guide BBR.

An interesting observation is that, our CADA module
can be connected to the recent Siamese tracker [2] that
learns a similarity measurement for tracking. The difference
is, the displacement, obtained by matching, is directly used
at box-level for target localization in [2], while we use it
at pixel-level to capture motion dynamics and guide spatial
feature alignment. Besides, our CADA module leverages
contextual information for robust matching.

RNN for Spatial-temporal Representation. RNN has
been extensively explored in computer vision owing to its
capacity in modeling long-term feature representation in-
cluding video object segmentation [5 ], video action classi-
fication/recognition [, 1 5], video object detection [40, 60].

Our approach is closely related to [ 1] that proposes con-
volutional gated recurrent unit networks (ConvGRU) and
then applies it for action recognition. Implemented based
on ConvGRU, our work MA-RNN is different than Con-
vGRU in two main aspects. First, MA-RNN aims at distin-
guishing target/background in videos instead of classifying
a video clip. Second, MA-RNN uses a motion-aware mod-



..................................................................

ft

Backbone

Test image in frame £ *vsuvveenseeanen: MART -

fe| |He
vy

time

Classification

......................................................................

Figure 2. The MART tracking pipeline, including target localization and scale estimation. The localization branch, based on our MA-
RNNs, provides target position to generate candidate proposals, which are sent to mBBR for scale estimation.

ule to capture dynamics for robust representation in RNN,
which is important for visual tracking.

Motion Dynamic Modeling. As a crucial component in
video understanding, how to capture and model motion dy-
namics attracts increasing attention. A common solution
is to compute optical flow between frames. Inspired by
deep learning, the accuracy of optical flow has been greatly
improved (e.g., FlowNet/FlowNet 2.0 [14, 26]). Despite
this, it is time-consuming to obtain such motion information
with optical flow when considering efficiency requirement
in tracking. An alternative solution for motion modeling is
to explicitly compute displacement of pixels by performing
correlation [19]. Unlike [19] that aims at detecting object
movements for video object detection, we utilize CADA to
align features in RNNs for tracking. Besides, we take into
consideration context information of each unit to better cap-
ture motion dynamics, which significantly differs from [19].

3. Motion-Aware RNN for Tracking (MART)
3.1. Overview

Following paradigm in [8], we decompose tracking into
two exclusive sub-tasks, including target localization and
target scale estimation. Fig. 2 illustrates the overview of
our tracking algorithm.

In target localization, for a test image, we employ a
backbone network (i.e., ResNet [23] pre-trained on Ima-
geNet [13]) to extract initial feature representation ;. Con-
sidering the gap between classification and tracking tasks,
we apply an extra conv layer to transform the initial fea-
ture z; to f;. Together with spatial feature f;_; and spatial-
temporal representation H;_; from last frame, f; is fed to
MA-RNN for spatial-temporal representation H; in current
frame. Classification is performed on H, to obtain the target
position.

Target scale estimation is performed using mBBR. With

the target position by localization component, we sample a
set of candidate proposals { B} around target position us-
ing previous scale information. These proposals { B!} and
the test image feature x, together with initial bounding box
B and reference image feature 1, are sent to mBBR for
fianl target scale estimation.

3.2. Motion-Aware RNN (MA-RNN)

In this work, we aim at learning a robust long-term
spatial-temporal representation for object tracking. For this
purpose, a natural choice is RNN that captures long-term
representation by aggregating temporal information from
frame to frame. Considering the importance of spatial in-
formation in 2D images/videos, the work of [I] replaces
linear product operation in GRU-RNN [6] with convolution
and proposes ConvGRU for action recognition, achieving
superior performance. Mathematically, ConvGRU can be
formulated as follows,

2 =W s fr +Up, x Hi_1 +b,)

e =¢(Wypx fr +Upp x Hi_y +by)

H, = CWegxfr+Usg*(reoHi1) +b)
H, :ztofIt—i—(l—zt)oHt,l

(D

where f; and H;_; are feature input to ConvGRU and
spatial-temporal representation in last frame, Wy, Uy,
Wer, Ugr, Wf U 1 Tepresent convolutional kernels and
are end-to-end learned, z; and r; are update and reset gates,
and H; denotes spatial-temporal representation in current
frame. ‘x’ and ‘o’ are convolution operation and Hadamard
product, respectively. The bias terms in Eq. (1) are omitted
for simplicity.

From Eq. (1), we observe that the temporal information
is derived through direct aggregation between features f;
and H;_; (see Fig. 3 (a)), which ignores the misalignment
problem caused by motion dynamics in videos (see Fig. 2
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Figure 3. Comparison between feature aggregation in existing RNN (e.g., ConvGRU [1]) and our MA-RNN. Instead of directly aggregating
features, we leverage CADA module to align and guide feature aggregation for better spatial-temporal representation.

again). To deal with this issue, we propose the MA-RNN
with a key innovative CADA module, which efficiently cap-
tures motion flow to guide temporal feature aggregation
over frames. The idea is to compute the displacement of
a unit (on feature map) to capture motion flow. Since target
object usually moves smoothly or slowly in videos, we com-
pute the displacement of a unit within a local region. In spe-
cific, for a feature unit f;(p, ¢) at position (p, ¢) on feature
map f;, the CADA module matches f;(p, q) and each fea-
ture unit within a small region centered at (p, ¢) on feature
map f;—1. The attentional matching score map, denoted by
S, is then utilized to transform the spatial-temporal repre-
sentation H;_ to align with feature f;. Mathematically, the
matching process by CADA can be formulated as follows,

Sim(ft(pa q)7 ftfl(p + i7 q +.7))

Zi’je{,d’m \d} Sim(ft(p» Q)» fi—1 (p +i,q+ ]))

2)
where S}, 4(4, j) denotes the normalized similarity score for
feature unit f;_1(p + 4,9 + j) on fi_1, d controls the size
of local region, and sim(-,-) computes the similarity be-
tween two feature units, which can be defined by dot prod-
uct for its simplicity, i.e., sim (f;(p, q), fi—1(p+i,q+j)) =
fi(p,q) o fi1(p+i,q+ 7).

For the same units of target between different frames,
their contexts are similar to each other. Therefore, we in-
troduce contextual information of each unit into similarity
computation. For a unit f;(p, q), its context region feature
C(p, q) is defined as a set of unit features for a local region
centered at (p, ¢) with size k (excluding itself) as follows
(also see the dashed red rectangle in Fig. 3 (b)),

3)
Considering deformation of target, we apply max pooling
operation to C¢(p, q), and obtain the contextual feature unit

Sp.q (Z,]) =

fE€(p.q) as
1€ (p, q) = maxpool(Cy(p, q)) )

Therefore, we re-write sim(-, -) as containing two weighted
terms,

sim(f+(p, q), fr1(p+i,q+ 7)) = afi(p,q) o feor(p+1i,q+ 7)
+(L=a)f (pa) o fCa(p+iq+1) “
where the « adjusts the importance of contextual informa-
tion.

Note that, our CADA module shares the similar spirit
with recent Siamese tracker [2] that computes a soft atten-
tional matching score between a template and a search re-
gion for tracking. Different from [2], however, we utilize
CADA module to capture motion flow and align spatial fea-
tures in RNN. Besides, we consider contextual information
in CADA for more robust matching.

With Eq. (2), MA-RNN is obtained using attention score
Sp (1, 7) to align spatial features in RNN, and mathemati-
cally expressed as followed as,

H 1(p,q) =Y (Hia(p+i,q+ 5)Spq(ir4))

i,j€{—d, - ,d}

2y =Wy s fy + Up. x Hy_q)

Tt :¢(Wfr*ft+Ufr*-H—t71) ©)
I:Tt = @(Wfﬁ * fr + Ufﬁ] % (ry 0 I;Tt,l))

Ht:Ztoﬁt‘l‘(l_Zt)OFItfl

This way, MA-RNN is able to learn a robust long-term
spatial-temporal representation. Fig. 3 (b) illustrates the
spatial feature alignment in RNN by CADA module. It is
worth noticing that, our CADA module is computed within
3ms, which is much more efficient than optical flow.



3.3. Target Localization with MA-RNN

With long-term spatial-temporal representation by MA-
RNN, we perform classification for target localization. To
adapt to target appearance change, the classifier requires on-
line update. Inspired by the simplicity and efficiency of
classifier in [8], we adopt the same classification network
that consists of two convolutional layers and is defined as
follows,

Y(H; {ws, w1 }) = o(wg * 6(wy * H)) @)

where H is the spatial-temporal feature representation,
{wsy, w1} denote convolutional kernels, o(-) and J(-) are
parametric exponential linear unit (PELU) [52] and identity
activation functions.
Inspired by discriminative correlation filter trackers [9,
,41,48], the classification model is learned by minimizing
the square loss, similar to [8], as follows,

Las =Y vl (Hi; {wa,wi }) =il P+ Asllwi |1 (8)
i=1 J

where y; denotes a 2D Gaussian label, ~; represents im-
portance of each training sample, and A; the regularization
parameter.

It is worth noting that, different from [8] that adopts
feature representation (i.e., x; in Fig. 2) extracted from
pre-trained ResNet [23], our classification model is built
on long-term spatial-temporal representation (i.e., H; in
Fig. 2) by MA-RNN. Considering the gap between classi-
fication and tracking tasks, we apply an extra conv layer,
followed by a ResNet backbone, for feature transformation
before feeding it to MA-RNN (see Fig. 2). During train-
ing, the additional conv layer, MA-RNN and classification
network are jointly end-to-end trained using the ADAM op-
timizer [28]. In inference phase, only the classification net-
work is updated. For efficiency, we utilize strategy in [8]
for online learning of classifier. Please refer to [8] for more
details.

3.4. Target Scale Estimation with m-BBR

While providing target position, the localization compo-
nent cannot well estimate target scale. Inspired by detection
community (e.g., [27,45]), recent trackers use either one or
multi-stage BBR (e.g., [18, 32, 33, 54, 62, 63]) or IToUNet
(e.g., [3, 8]) to estimate target scale. The former method is
efficient by predicting offsets within one forward pass while
lack of localization confidence reasoning, which may re-
sults in non-monotonic regression problem [27]. The latter
one is reliable, however, requires both forward pass w.r.t.
computing IoU score and backward pass w.r.t. computing
gradients for box update. In addition, the IoU increment
is relatively small compared to regression. Thus, it often
needs multiple iterations for final scale estimation.
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Figure 4. Illustration of BBR-IOU network that regresses target
bounding box and performs IoU prediction.

Taking advantages of both the aforementioned ap-
proaches, we introduce a multi-step iterative method, i.e.,
monotonic bounding box regression (mBBR), for target
scale estimation. The core of mBBR is a BBR-IoU net-
work that first predicts regression offsets for a box and then
perform IoU prediction [27] for the regression result. To
implement BBR-IoU network, we employ the similar fea-
ture modulation strategy in [8]. Fig. 4 shows the pipeline of
BBR-IoU network, and due to space limited, we refer read-
ers to supplementary material for its detailed architecture.

As demonstrated in Fig. 4, BBR-IoU takes as inputs the
reference image [;, the initial bounding box Bj, the test
image I7 and a candidate bounding box B, and outputs a
4d regression offset vector (71, 2,73, 74) and IoU score O,
for regressed box B; (B; is obtained by applying regression
offsets to B.). To train the BBR-IoU network, we use the
follow loss function,

Eest = Z ﬁsmooth(riy T;k) + Emse (067 O:) (9)

i={1,2,3,4}

where (r7,75,75,7;) are the regression labels of box B,
and O} denotes the IoU between B; and groundtruth tar-
get bounding box in the test image. Lgmootn 1S Smooth-1q
loss [20] and L5 the mean square loss.

Once training completed, we utilize BBR-IoU network
to iteratively estimate target scale under the guidance of
IoU. If IoU score is above an acceptable threshold 61,7, we
directly output regression for scale estimation; if it is de-
creased compared to last iteration, we stop regression and
output offsets of last iteration for scale estimation. Other-
wise, regression iterates over new box until reaching to the
maximum number N,¢, of regressions. Owing to the guid-
ance by IoU score, mBBR guarantees that the regression
accuracy is monotonically increasing. Algorithm | summa-



Algorithm 1: Monotonic Bounding Box Regression

1 Input: Iy, By, I, B, 615U, Nyeg, trained model
BBR-IoU;

2 Output: Final refined target bounding box B;

3 B! =B., B=B;

4 for i =11to Ny do

5 /*regression and IoU prediction®/
6 | (rirbrhry). Of
BBR-IOU([y, By, It, BY);
7 | Bit! <« Regressing B: using (rt, b, ri, ri);

8 B « Bift
9 if O > 61,y then

10 break; /*IoU score as early-stop
condition*/

un | elseif O < O:~! then

12 /*recover B using last regression result®/

13 B + B

14 break;

15 end

16 end

rizes the working pipeline of mBBR.

Note that, our mBBR significantly differs from [18, 54]
with multi-step BBR and [8] with IoU prediction. The
methods of [18,54] perform a fix number of steps of re-
gression for scale estimation. In addition, localization con-
fidence is ignored in each step, which may result in non-
monotonic regression issue [27]. By contrast, we leverage
IoU score to guide each step of regression and use it as an
early-stop condition. By doing so, we can achieve adaptive
regression with monotonically increasing accuracy. In [£], a
candidate box is refined within two stages: computing loU
score in forward pass and adjusting candidate box using gra-
dient descent method in backward pass. These two stages
are iteratively repeated for a fixed time. Unlike [8], our ap-
proach directly predicts offsets for scale estimation. Since
a single step of regression works well in most cases, our
mBBR stops within very few iterations most of time, which
is much more efficient.

3.5. Training and Tracking

Training. We train the target localization and estimation
parts separately. For the target localization component, the
transformation conv layer, MA-RNNSs and classification are
end-to-end trained using ADAM method [28] on videos. To
reduce redundancy, we sparsely sample a frame with a ran-
dom interval € [5,15] to form a new sequence for training.
For each frame, we sample a square patch with an area of
about 5 X 5 times the target and randomly shift it. These
image patches are resized to a fixed size and then sent for
training. For scale estimation, BBR-IoU network is trained

on image pairs with each consisting of a reference image
patch and a test image patch. These image pairs are sampled
from the same video with a maximum gap of 50 frames. For
reference image, we sample a square patch with an area of
about 5 x 5 times centered at the target. We sample a similar
image patch for test image, with perturbations in position
and scale as in [8]. The reference and test image patches
are resized to the same resolution before training. For each
image pair, we randomly generate 16 candidate boxes in
the test image and ensure each one with a minimum 0.6
IoU with the groundtruth bounding box. Data augmenta-
tion strategies, such as image flipping, rotation and color
jittering, are adopted.

Visual Tracking. We split tracking into target localization
and target scale estimation. For each sequence, we pre-
compute the feature for reference image in target scale es-
timation. When a new frame arrives, we extract a region
of interest based on tracking result of last frame and calcu-
late its spatial-temporal feature representation, which is fed
to the classification network for predicting target position.
For robustness, we sample a set of M initial target propos-
als around the target position, and apply mBBR for scale
estimation. The final target scale is determined by the re-
fined box with the maximum IoU score. To adapt to target
appearance changes, we collect, every V' frames, historical
spatial-temporal representations from up to U frames for
online updating of the classification model. In order to fa-
cilitate update, we utilize the strategy in [8] for online learn-
ing during tracking. Note that, MA-RNN does not need
online update as they have learned to model generic spatial-
temporal representation for our task.

4. Experiments

Implementation. We implement MART in python us-
ing PyTorch [43] on an Nvidia GTX-1080 GPU. We em-
ploy pre-trained ResNet-50 [23] as our backbone network
and freeze the parameters in both training and tracking. Our
MART runs at a speed of around 31 fps. We train the tar-
get localization branch using training splits of LaSOT [16],
GOT-10k [25] and VID [46]. We train for 50 epochs using
ADAM [28]. The learning rate starts from 1073 with a de-
cay of 0.1 every 10 epochs. The channel of spatial-temporal
representation H,; is 256. The time step for training MA-
RNNs is empirically set to 10. The d, k and « are set to
5, 1 and 0.8, respectively. For BBR-IoU network, we use
training splits of LaSOT [16], GOT-10k [25] and VID [46]
and COCO [39]. We train for 50 epochs with ADAM [28]
using learning rate of 10~3 with a decay of 0.1 every 10
epochs. The IoU threshold 6,y is set to 0.85. The maxi-
mum number N, of iterations is 3. The V" and U are set to
20 and 50, and the number M of initial proposals for scale
estimation is set to 5.



Table 1. Comparisons on GOT-10k [25]. The best two scores are
highlighted in red and blue colors, respectively.
Tracker AO SRo.50 SRo.75

ECO-HC[9] 0.286 0.276 0.096
CFNet [53] 0.293  0.265 0.087
MDNet [42]  0.299  0.303 0.099
HCF[41] 0315  0.297 0.088
ECO[9] 0316 0.309 0.111
SiamFC [2] 0.348  0.353 0.098
SPM [54] 0.513  0.593 0.359
ATOM [8] 0.556  0.634 0.402
DiMP-50 [3] 0.611  0.717 0.492
MART 0.628  0.732 0.504

4.1. Experiment on GOT-10k

GOT-10k [25] is proposed to assess short-term track-
ing performance. We evaluate MART on the server pro-
vided by the organizers using the testing split with 180
sequences. The performance is measured using average
overlap (AO) and success rate (SR) with different thresh-
olds 0.5 and 0.75. Tab. | demonstrates the comparisons to
other trackers, showing that MART achieves the best perfor-
mance under all metrics. Specifically, MART obtains AO of
0.628, SR .50 of 0.732 and SR 75 of 50.4, outperforming
the second best tracker DiMP [3] with AO of 0.611, SRq 59
of 0.717 and SR¢ 75 of 0.492 by 1.7%, 1.5% and 1.2%, re-
spectively. In comparison with ATOM [&] with 0.556 AO,
0.634 SR 50 and 0.403 SR 75, we obtain significant gains
by 7.2%, 9.8% and 10.2%, showing the advance of spatial-
temporal representation by our MA-RNN.

4.2. Experiment on LaSOT

LaSOT [16] is a large-scale dataset consisting of 1,400
sequences. Following the protocol, we utilize 1,120 se-
quences for training and the rest 280 for testing. We com-
pare MART with 12 state-of-the-art tracking algorithms
(DIMP [3], ATOM [8], SiamRPN++ [32], C-RPN [18],
SiamDW [62], MDNet [42], SiamFC [2], StructSiam [61],
DSiam [21], ECO [9], STRCEF [34] and TRACA [7]).

The results, evaluated using success plot, are demon-
strated in Fig 5 (a). We observe that, our MART achieves
the best performance with 0.571 success score, outperform-
ing the second best DiMP [3] by 0.3%. In comparison to
ATOM [8] with 0.523 success score, we obtain considerable
gains by 4.8%. Our MART outperforms SiamRPN++ [32]
by 7.5% in success plot. In addition, compared to multi-step
regression approach for tracking in C-RPN [ 18] with 0.455
success score, our tracker reveals clear improvements.

4.3. Experiment on TC-128

TC-128 [38] consists of 128 fully annotation colorful
videos. Following [38], we employ success plot in one-pass
evaluation (OPE) for evaluation. We compare our MART

to 9 state-of-the-art trackers (DiMP [3], SiamRPN++ [32],
ATOM [8], SiamFC [2], ECO [9], C-COT [12], PTAV [17],
DeepSRDCF [ 1] and HCF [41]), and the results are shown
in Fig. 5 (b). From Fig. 5 (b), we observe that, our MART
achieves the best result with success score of 0.621, outper-
forming the second best DiIMP [3] with 0.609 success score
by 1.2%. In comparison with ATOM that applies only spa-
tial feature for tracking and achieves 0.590 success score,
our approach obtains significant gains of 3.1%, showing the
advantages of spatial-temporal representation in robust lo-
calization.

4.4. Experiment on OTB-2015

OTB-2015 [59] contains 100 fully annotated sequences.
We employ success plot metric in OPE to assess different al-
gorithms. We compare our proposed MART to 12 state-of-
the-art trackers (DiMP [3], SiamRPN++ [32], ATOM [8],
C-RPN [18], DaSiamRPN [63], SiamRPN [33], Grad-
Net [35], SA-Siam [22], ACT [5], SiamFC [2], ECO-HC [9]
and TRACA [7]), and the results are shown in Fig. 5 (c).

We can see from Fig. 5 (c), our approach achieves
competitive result with success score of 0.678 compared
to SiamRPN++ [32] and DiMP [3]. In comparison with
ATOM that applies only spatial feature for tracking and
achieves 0.655 success score, our approach obtains sig-
nificant gains of 2.3%, showing the advantages of spatial-
temporal representation in robust localization. C-RPN [18]
proposes a cascade architecture that employs multi-step re-
gressions for scale estimation, and obtains 0.663 success
score. Different from [18], our multi-step regressions are
guided by the IoU score, and outperform C-RPN [18] by
2.5% in terms of precision and success plots.

4.5. Experiment on VOT-2019

VOT-2019 [30] contains 60 sequences which are devel-
oped by replacing 12 less representative videos in VOT-
2018 [29] with more challenging ones. Similar to VOT-
2018, each tracker is evaluated with EAO, accuracy and ro-
bustness. We compare our MART with several recent top-
performance trackers from VOT-2019, and Tab. 2 demon-
strates the results. DiMP [3] achieves the best EAO of
0.379. Our MART obtains promising result with EAO
of 0.356, which significantly outperforms ATOM [8] with
EAO of 0.292 and SiamRPN++ [32] with EAO of 0.285.

4.6. Ablation Experiment

To validate the effect of different components, we con-
duct ablation experiments on LaSOT,;; [16] regarding the
target localization and target estimation.

Tab. 3 shows the ablation experiments on target local-
ization. Without any temporal information aggregation, the
baseline tracker achieves 0.531 success (SUC) score. When
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achieves the best results on LaSOT and TC-128 and performs favorably against many trackers on OTB-2015.

Table 2. Comparisons on VOT-2019 [30]. The best two scores are
highlighted in red and blue colors, respectively.

Tracker EAO  Accuracy Robustness
DCFST [30] 0.361 0.589 0.321
SiamCRF [30]  0.330 0.625 0.296
SPM [54]  0.275 0.577 0.507
SiamRPN++ [32]  0.285 0.599 0.482
SiamDW [62]  0.299 0.600 0.467
ATOM [8]  0.292 0.603 0.411
DiMP-50 [3]  0.379 0.594 0.278
MART  0.356 0.607 0.362

adding RNN (i.e., ConvGRU [1]) for temporal representa-
tion, the performance is improved to 0.539, showing the ad-
vantage of leveraging temporal cue for tracking. To effec-
tively enhance spatial-temporal representation, we propose
to apply a matching based displacement attention module
to capture motion for feature alignment in RNN, and push
the SUC score to 0.565 with significant gain of 2.5%, which
suggests the importance of feature alignment for robust rep-
resentation. By incorporating contextual information, the
SUC score is further improved by 0.6% from 0.565 to 0.571.
The ablative experiments in Tab. 3 clearly evidence the ef-
fectiveness of our MA-RNN.

Tab. 4 demonstrates the results of our algorithm with
different strategies for target scale estimation. As shown
in Tab. 4, with one step of bounding box regression, we
achieve 0.546 SUC score. When directly adding more re-
gressions, the SUC score is improved to 0.567 while the
speed is decreased from 42 fps to 26 fps. Unlike direct use
of multi-step regression, we develop an adaptive regression
approach under the guidance of IoU prediction, and achieve
better performance with 0.571 SCU score and faster speed
with 31 fps. Besides, we compare our mBBR with IoU pre-
diction in [8] that estimates scale via iterative forward and
backward passes. When replacing mBBR with IoU predic-
tion network, we observe slight gain of 0.3% in SUC score

Table 3. Ablation study on target localization with spatial-temporal
representation.

Component MART
RNN v v v
Displacement Attention 4 v
Contextual Information v
SUC (%) 53.1 539 565 57.1

Table 4. Ablation study on target scale estimation with different
strategies.

IoU net- mBBR
work [8] | Onestep wo/IloU w/IoU
SUC (%) 57.4 54.6 56.7 57.1
Speed (fps) 23 42 26 31

from 0.571 to 0.574 while significant speed decrease from
31 fps to 23 fps, showing more balanced performance of our
method.

5. Conclusion

In this paper, we explore spatial-temporal representation
for visual tracking. In specific, we introduce novel motion-
aware recurrent neural networks to simultaneously capture
motion dynamics of target and align spatial temporal fea-
tures, leading to more effective representation. Based on
spatial-temporal representation, we develop an online clas-
sification model for target localization. In addition, for tar-
get scale estimation, we introduce a monotonic multi-step
regression approach that utilizes the IoU prediction score to
guide bounding box regression in each step. Integrating the
target localization and scale estimation, our tracker MART
achieves state-of-the-art results on five benchmark and runs
in real-time.
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