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Abstract

We present a search for RR Lyrae stars using the full six-year data set from the Dark Energy Survey covering
∼5000 deg2 of the southern sky. Using a multistage multivariate classification and light-curve template-fitting
scheme, we identify RR Lyrae candidates with a median of 35 observations per candidate. We detect 6971 RR
Lyrae candidates out to ∼335 kpc, and we estimate that our sample is >70% complete at ∼150 kpc. We find
excellent agreement with other wide-area RR Lyrae catalogs and RR Lyrae studies targeting the Magellanic Clouds
and other Milky Way satellite galaxies. We fit the smooth stellar halo density profile using a broken-power-law
model with fixed halo flattening (q= 0.7), and we find strong evidence for a break at = -

+R 32.1 kpc0 0.9
1.1 with an

inner slope of = - -
+n 2.541 0.09
0.09 and an outer slope of = - -

+n 5.422 0.14
0.13. We use our catalog to perform a search for

Milky Way satellite galaxies with large sizes and low luminosities. Using a set of simulated satellite galaxies, we
find that our RR Lyrae-based search is more sensitive than those using resolved stellar populations in the regime of
large (rh 500 pc), low-surface-brightness dwarf galaxies. A blind search for large, diffuse satellites yields three
candidate substructures. The first can be confidently associated with the dwarf galaxy Eridanus II. The second has a
distance and proper motion similar to the ultrafaint dwarf galaxy Tucana II but is separated by ∼5 deg. The third is
close in projection to the globular cluster NGC 1851 but is ∼10 kpc more distant and appears to differ in proper
motion.

Unified Astronomy Thesaurus concepts: RR Lyrae variable stars (1410); RRab variable stars (1413); Milky Way
stellar halo (1060); Milky Way Galaxy (1054)

Supporting material: machine-readable table

1. Introduction

Studies of the Milky Way stellar halo provide unique
insights into the formation and evolution of our Galaxy (e.g.,
Johnston et al. 2002; Helmi 2008). Over the past several
decades, wide-area digital sky surveys have shown that the
Galactic halo hosts a large population of stellar substructures
that can be classified as satellite galaxies, star clusters, and
stellar streams (e.g., Belokurov et al. 2006; McConnachie 2012;
Shipp et al. 2018; Simon et al. 2020). The abundance,
distribution, and properties of halo substructures can be used
to inform models for the assembly, chemical evolution, and star
formation history of our Galaxy (e.g., White & Frenk 1991;
Johnston et al. 2008; Tolstoy et al. 2009; Mo et al. 2010;
Sharma et al. 2011a; Gallart et al. 2019). In addition, halo
structure and substructure are valuable tools for estimating the
matter density profile and total mass of the Milky Way (e.g.,
Deason et al. 2012; Kafle et al. 2012; Bonaca & Hogg 2018). A
wide variety of luminous tracers have been used to map the
structure and substructure of the Milky Way halo, including
main-sequence turnoff stars (e.g., Belokurov et al. 2006; Shipp
et al. 2018), blue horizontal branch stars (e.g., Deason et al.
2014), and red giant branch stars (e.g., Sharma et al. 2011b;
Sheffield et al. 2014). However, among these stellar tracers,
pulsating variable RR Lyrae stars (RRL) are especially useful,
due to their distinct temporal signature and standardizable
luminosity.

RRL are low-mass stars in the core helium-burning phase of
evolution that radially pulsate when they fall within the
instability strip (e.g., Walker 1989; Smith 1995; Bono et al.
2011; Marconi 2012). They are found in the horizontal
branches of old stellar systems (>10 Gyr) and follow a well-
understood period–luminosity–metallicity (PLZ) relation (e.g.,
Cáceres & Catelan 2008; Marconi et al. 2015). Their age,
relatively high luminosity (MV= 0.59 at [Fe/H]=−1.5;
Cacciari & Clementini 2003), and well-understood PLZ
relation make them excellent distance indicators for old, low-
metallicity stellar populations in the outer halo of the Milky
Way (e.g., Catelan et al. 2004; Vivas et al. 2004; Cáceres &
Catelan 2008; Sesar et al. 2010; Stetson et al. 2014; Fiorentino
et al. 2015). RRL are sufficiently luminous to be detected at

large distances and are sufficiently numerous to trace the halo
substructures with good spatial resolution (e.g., Sesar et al.
2010, 2014; Baker & Willman 2015; Martínez-Vázquez
et al. 2019; Torrealba et al. 2015; Vivas & Zinn 2006; Vivas
et al. 2020a).
The most numerous subtype of RRL are RRab, which

pulsate in the fundamental mode and have light-curve shapes
resembling a sawtooth curve with short periods (0.4 P 0.9
days) and large amplitudes (0.5� Ag� 1.5 mag). In contrast,
RRc pulsate in the first overtone and have smoother, more
sinusoidal-shaped light curves with shorter periods (0.2
P 0.5 days) and smaller amplitudes (0.2� Ag� 0.5 mag).
The detection and classification of RRL that contain additional
pulsation modes require very well-sampled light curves over a
long and continuous baseline. For example, RRd pulsate
simultaneously in the fundamental and first overtone (e.g.,
Jerzykiewicz & Wenzel 1977), while RRL may be subject to
the Blazhko effect (Blažko 1907; Buchler & Kolláth 2011), that
is, a modulation of period and amplitude of unknown origin
that can span several to hundreds of days.
Thanks to their distinct light curves and well-defined PLZ

relation, RRL overdensities have been shown to be a good
tracer of halo substructure (e.g., Vivas et al. 2001; Ivezic et al.
2004; Sesar et al. 2014; Baker & Willman 2015; Sanderson
et al. 2017). Indeed, RRL have been detected in nearly all
Milky Way satellite galaxies (e.g., see the recent compilation in
Martínez-Vázquez et al. 2019) and are abundant in Milky Way
stellar streams (e.g., Mateu et al. 2018; Price-Whelan et al.
2019; Ramos et al. 2020; Koposov et al. 2019). While
Martínez-Vázquez et al. (2019) and Vivas et al. (2020a)
showed that galaxies fainter than MV∼− 4.5 are expected to
contain fewer than three of these variables, even a few tightly
clustered RRL in the outer halo could indicate the presence of
an ultrafaint galaxy (Baker & Willman 2015). Such a technique
was recently used to aid in the discovery of the ultradiffuse
satellite Antlia 2 (Torrealba et al. 2019).
As the sensitivity of wide-field optical imaging surveys has

increased, it has become possible to use RRL to probe the outer
halo of our Milky Way at increasingly large distances.
However, the temporal coverage of these surveys can be
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sparse and nonuniform, requiring the development of statistical
algorithms to detect and measure RRL (Hernitschek et al. 2016;
Sesar et al. 2017; Medina et al. 2018). In Stringer et al. (2019,
hereafter S19), we showed that a substantial number of RRab
can be detected even in extremely sparsely sampled multiband
light curves from the first three years of the Dark Energy
Survey (DES; DES Collaboration 2005; DES Collaboration
et al. 2016). Here, we extend this work to use the full six-year
DES data set (DES Y6) to assemble a catalog of RRL over
5,000 deg2 in the southern Galactic cap with sensitivity out to a
heliocentric distance of ∼500 kpc.

On average, DES Y6 has approximately twice as many
observations of each astronomical source as the three-year data
(DES Y3) explored in S19. This larger data set allows us to
perform better identification and characterization of RRL
candidates. While we show that our catalog agrees well with
other overlapping surveys, DES Y6 only provides a median of
35 observations (combining all filters) per RRL candidate.
High-cadence follow-up observations will be able to confirm
and better characterize candidates in our sample. The catalog
resulting from our analysis of the DES Y6 data consists of the
locations, periods, and estimated distances of 6971 RRL, with
the most distant candidate residing at ∼335 kpc. We clearly
resolve RRL structures associated with classical Milky Way
satellite galaxies (i.e., the Large Magellanic Cloud, Small
Magellanic Cloud, Fornax, and Sculptor), we detect previously
known RRL associated with Milky Way ultrafaint satellite
galaxies (Tucana II, Phoenix II, and Grus I), and we report the
first candidate RRL associated with the ultrafaint satellites
Eridanus II, Cetus III, and Tucana IV. Based on the successful
detection of RRL associated with known ultrafaint satellites,
we use our catalog to perform a search for previously
undiscovered satellite galaxies in the DES footprint. No high-
confidence satellite galaxy candidates are discovered, and we
interpret the sensitivity of our search in the context of a suite of
satellite galaxy simulations from Drlica-Wagner et al. (2020).

This paper is organized as follows. In Section 2, we present
the DES Y6 single-epoch catalog data, our criteria for selecting
stellar objects, and our calibration of the photometric
uncertainties of steady sources. In Section 3, we describe the
color and variability criteria used to select a set of objects for
further analysis. In Section 4, we describe the RRL light-curve
template-fitting procedure, which yields our catalog of
candidate RRL. In Section 5, we discuss our resulting catalog
of candidate RRab. We estimate the total efficiency of our
identification techniques (Section 5.1), and we associate our
RRab catalog with known classical dwarf satellite galaxies,
ultrafaint satellites, and globular clusters residing in the DES
footprint (Sections 5.2–5.5). In Section 5.6 we use our catalog
to estimate the halo density profile. In Section 5.7, we perform
a search for low-surface-brightness substructures using our
RRab catalog. We state our conclusions in Section 6. The
catalog of DES Y6 RRab candidates is available online.50

2. Data Preparation

2.1. DES Y6 Quick Catalog

DES (DES Collaboration 2005; DES Collaboration et al.
2016) was a six-year optical/near-infrared imaging survey
covering ∼5000 deg2 of the southern Galactic cap using the

Dark Energy Camera (DECam; Flaugher et al. 2015) mounted
at the prime focus of the 4 m Blanco telescope at the Cerro
Tololo Inter-American Observatory (CTIO). Observations were
completed in 2019 January. DES obtained ∼10× 90 s
exposures in five broadband filters, grizY (Neilsen et al.
2019).51 DES observed with gri in dark time, iz in gray time,
and zY in bright time, with each field of the footprint being
observed two to three times per year (Diehl et al. 2016, 2019;
Neilsen et al. 2019). The 5σ point-source depth of the DES
exposures is estimated to be grizY∼ (24.3, 24.1, 23.5, 22.9,
21.5) (Morganson et al. 2018).
As in S19, the light curves for this work were assembled

using the internal DES “Quick” release pipeline. The DES Y6
Quick Release catalog (hereafter Y6Q) was constructed using
survey exposures processed with the “Final Cut” pipeline from
the DES Data Management system (DESDM; Morganson et al.
2018). This pipeline applies instrumental calibrations and
detrending corrections to the images, then creates photometric
source catalogs for each exposure using SourceExtractor

(Bertin & Arnouts 1996). The full details of the DESDM
image-reduction and catalog-creation pipelines are summarized
in Morganson et al. (2018); we note that the Y6 processing
used a lower source detection threshold (Y6 single-epoch
catalogs have a detection threshold of ∼3σ compared to a Y3
threshold of ∼5σ), and it has an improved astrometric
calibration based on Gaia DR2. All coordinates used in this
paper are in the (J2000) equinox. The photometric calibration is
performed with the Forward Global Calibration Module
(FGCM; Burke et al. 2018). The relative photometric
calibration accuracy in griz is estimated to be better than
3 mmag across the footprint (Sevilla-Noarbe et al. 2020), while
the absolute photometric calibration in these bands is estimated
to be ∼3 mmag based on a comparison with the Hubble Space
Telescope standard star C26202 (DES Collaboration et al.
2018). Complete details of the Y6 data processing, calibration,
and validation will be released in forthcoming publications by
the DES Collaboration.
After the images were reduced through the Final Cut

pipeline, several quality cuts were applied to select exposures
for the single-epoch catalog. Any images with insufficient
depth, poor seeing, poor sky subtraction, astrometric errors, or
that contained artifacts such as ghosts, bleed trails, and airplane
streaks were excluded. Additionally, only exposures with
FGCM zero-point solutions (Burke et al. 2018) were included
in the catalog. These selections were applied to images from
years one through six of survey operations (Y6), yielding a
total of 78,364 exposures.52

We assembled a Y6Q unique catalog of astronomical objects
by matching sources in a given image to the nearest
neighboring detections (within 1″ in radius) in all other
exposures using cKDTree as implemented in scipy.

spatial (Virtanen et al. 2020). When multiple detections
from one exposure were located within 1″, these were split into
multiple objects in the Y6Q catalog. All objects with at least
one detection in any band were included in the Y6Q catalog to
ensure the inclusion of transient and moving objects.
Additionally, the Y6Q catalog was cross-matched with objects
detected in the Y6A1_COADD images to provide easy reference

50
https://des.ncsa.illinois.edu/releases/other/y6-rrl

51
DES took 45 s exposures in the Y band in the first three years.

52
The DES Y6Q catalog does not include observations from the DES Science

Verification period.
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to quantities only available from the DES processing of the
coadded images.

The resulting Y6Q catalog contained ∼610 million objects
distributed across the DES survey footprint. A large number of
these objects possess only a single detection, which can occur
due to spurious background fluctuations or transient objects.
Overall, objects in the Y6Q catalog had a median of six
observations spread over the grizY bands. If we require that
objects be detected at least once in every band, then the catalog
is reduced to ∼109 million objects and the median total number
of observations for all objects across all bands is 34. This
nearly doubles the median total number of observations for
RRL identified in the DES Y3 release (S19). Because of the
lower signal-to-noise threshold for detections, this catalog is
deeper than the DES Y3 one by ∼0.75 mag in each band.

Unless explicitly stated otherwise, all magnitudes in this
paper are point-spread function (PSF) magnitudes derived by
SourceExtractor and corrected for interstellar extinction.
Interstellar extinction is calculated following the prescription in
DES Collaboration et al. (2018) using the Schlegel et al. (1998)
dust maps with the normalization correction from Schlafly &
Finkbeiner (2011) and the Fitzpatrick (1999) reddening law.

2.2. Rescaling Photometric Uncertainties

Similar to S19, we found magnitude-dependent residuals in
the reduced chi-squared of the photometric measurements of
objects classified as stars using the criterion described in the
following section. The residuals found in DES Y6 were
significantly smaller than those found in DES Y3, but they
were still large enough to bias the identification of variable
sources if left uncorrected. Thus, we followed the same
procedure as in S19 to rescale the magnitude errors of each
observation according to trends in the reduced chi-squared.
Within each region of the survey (HEALPix pixel with
nside= 32), we define the reduced median chi-squared in
band b as

˜
( ( ))

( )åc
s

=
-

-
n N

m m1

1

med
, 1

b
b

N
i b b

i b
,
2

1

,
2

,
2

b

where mi,b is the observed PSF magnitude of an object in

observation i, σi,b is the reported magnitude uncertainty on that

observation, and Nb is the total number of observations of that

object in that band. We fit a quadratic function of the form

( ˜ )

( ( ) )

( ( ) ) ( )

c =

+ -

+ -

n c

c m

c m

log

med 20

med 20 . 2

b b

b b

b b

10 ,
2

0,

1,

2,
2

Figure 1 shows a noticeable trend in log ( ˜ )cn r10 ,
2 , similar to

those seen in S19; however, we find that the uncertainties are

slightly underestimated for bright objects in DES Y6, as shown

by the negative slope in Figure 1. Although this trend is far less

pronounced than the trend in DES Y3, we perform this

correction since the trends vary slightly over the wide-field

footprint. We independently fit the coefficient for each

HEALPix region in each band and corrected the uncertainties

of the observed MAG_PSF quantities using the appropriate

scale factor calculated from these relations. This process

effectively rescaled the errors and flattened the trends in c̃n b,
2 .

3. Selection for Template Fitting

3.1. Stellar Source Selection

Since the faint end of the DES object sample is dominated
by galaxies, we perform an initial star–galaxy separation to
select stellar sources. We use the SPREAD_MODEL_I
parameter from the exposure with the largest effective
exposure time (Neilsen et al. 2016). The i band is preferred
for star–galaxy separation because it typically has the best
seeing of the gri bands observed during dark time (see
Section 2.3 in DES Collaboration et al. 2018 and Figure 8 in
Diehl et al. 2019). This procedure differs from S19, which
considered all objects that passed this SPREAD_MODEL
criterion in any of the griz bands to avoid omitting objects
that were missing observations in a single band. While this
enabled the catalog in S19 to be more complete, many
extended sources leaked into the sample and had to be
removed through visual inspection. In comparison, a much
larger fraction of DES Y6 sources have at least one
measurement in the i band. Any object for which
SPREAD MODEL I SPREADERR MODEL I∣ ∣ ( )< +_ _ 0.003 _ _
was considered (∼310 million sources from the Y6Q catalog
pass this cut). Additionally, only objects that were associated
with an object detected in the Y6A1 coadded images were
considered (0 7 match radius).

Figure 1. Left: reduced median chi-squared in the r band, ( ˜ )cnlog
r10 ,

2 , versus median r-band magnitude, mr , for objects classified as stars in a single DES HEALPix

pixel (l, b ∼ 302, − 52). Unlike DES Y3, the photometric uncertainties are found to be slightly underestimated for brighter objects in the DES Y6 data. Blue points
show objects that were used to fit the quadratic curve (black line), while red points were objects excluded by a 3σ outlier clipping. Right: We correct this trend by

rescaling the photometric errors using the quadratic fit so that the remaining trend in ( ˜ )cnlog
r10 ,

2 is flat. Although this trend is very minor, it is necessary to correct

because the trends differ as a function of band and sky position.
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3.2. External Catalogs and Simulated Data Used to Define the
Sample

After rescaling the photometric uncertainties and applying
the star–galaxy separation, we remove any objects with fewer
than 10 total observations. Such a small number of observa-
tions skews their variability statistics and makes template fitting
challenging. We then further reduce the size of our catalog by
selecting objects that match the colors and temporal variability
that are characteristic of RRL.

To determine optimal color and variability cuts to select
RRL, we cross-match objects in Y6Q with RRL identified by
external surveys, variable objects that are not RRL, and stars
used for the photometric calibration that are largely nonvari-
able. Our sample of external RRL includes objects from Sloan
Digital Sky Survey (SDSS) Stripe 82 (hereafter S10; Sesar
et al. 2010), the Catalina Sky Surveys DR2 (Drake et al.
2013a, 2013b, 2014; Torrealba et al. 2015; Drake et al. 2017),
Pan-STARRS PS1 (Sesar et al. 2017), variables from the
Sculptor dSph (Martínez-Vázquez et al. 2016a), RRL from the
Fornax dSph (Bersier & Wood 2002), and RRL from Gaia DR2
with measured periods (Holl et al. 2018; Clementini et al. 2019;
Rimoldini et al. 2019). As a likely contaminant class, we also
select ∼16,000 quasars (QSOs) from the KiDS DR3 survey
(Nakoneczny et al. 2019; de Jong et al. 2017) and the SDSS-
POSS southern sample (MacLeod et al. 2012). Finally, to
compare against other (likely nonvariable) contaminants, we
match to an internal DES catalog of ∼17 million stars that were
used in the FGCM zero-point calibration (Burke et al. 2018).
We remove calibration stars located less than 10 arcmin from
the centers of the Fornax and Sculptor dwarf galaxies since the
DES photometry suffers from crowding in these regions. We
randomly downsample the QSO and calibration star catalogs to
match the size of our external RRab sample. The resulting
comparison samples contain 5055 RRab, 472 RRc, 46 RRd, 4
Blazkho RRL, 5055 QSOs, and 5055 calibration stars.

To further guide our selection criteria, specifically at faint
magnitudes, we simulate a set of mock RRL light curves. This
process follows the procedure described in S19, and we only
provide a brief summary below. Our simulated light curves are
based on well-sampled light curves of RRL from S10. First, we
construct smoothed light-curve shapes using the best-fitting
templates and observational parameters for each of the 483
RRL (379 RRab and 104 RRc) identified by S10 and convert
their magnitudes into the DES filter system.53 We then subtract
the S10 estimated distance moduli from each light curve to
transform to absolute magnitude. For a set of magnitude bins in
the range 15.5� g� 24.5 with a bin width of 0.5, we shift the
light curve for each of the 483 light-curve shapes to an average
g magnitude randomly drawn from a uniform distribution
within that magnitude bin. As each light curve is shifted to a
random distance, any simulated measurement fainter than the
Y6 single-epoch limiting magnitude in that band is removed.54

We then assign photometric uncertainties to each observation
using the rescaled values from Section 2.2 and use them to
introduce scatter into the observations. The light curves are
then downsampled to the DES observing cadence as deter-
mined from a random set of bright stars in DES. The total

simulated sample includes 8211 light curves, of which 6443
were RRab and 1768 were RRc. We do not specifically search
for RRc in this work, but include their simulated curves to
assess the RRc contamination in our final sample.

3.3. Color Selections

RRL inhabit a well-defined region of color–color space (e.g.,
Ivezić et al. 2005). We therefore apply a color selection to
further reduce the number of objects that are passed to the light-
curve template-fitting stage. This selection specifically
excludes variable stars that are too red to be RRL (e.g., low-
mass main-sequence stars). Since the colors of RRL change
over the course of their pulsation cycle (e.g., Guldenschuh et al.
2005; Vivas et al. 2017), calculations based on observations
obtained at multiple phases will degrade the separation power
of this method. Thus, we take advantage of the DES observing
cadence to measure “instantaneous colors” based on observa-
tions taken within one hour of each other. To reduce the time
spent slewing between fields, DES often took sequences of two
to three consecutive exposures of the same field in different
filters, with the filters chosen according to the seeing, lunar
phase, and number of previous observations (see Figure 3 in
Diehl et al. 2016). To select these sequences, we group together
any observations taken within one hour of each other and,
depending on the filters used, calculate g− r, r− i, or i− z
colors. Due to the observing cadence of DES, the median
separation time for each color combination is ∼120 s. If there
are multiple instantaneous colors for an object, we store only
the maximum and minimum values.
We develop a multistage color selection to remove objects

based on their instantaneous colors (when available), while
retaining any objects that did not have a particular instantaneous
color available. Using our sample of previously identified RRab,
we defined selections as the 99% percentile value of the RRL
population (Figure 2). The first two selections use the extinction-
corrected minimum instantaneous colors, ( )-r i min,0 and
( )-g r min,0, to select objects lying near the blue end of
the stellar locus. The first cut selects objects with
( ) ( )s- - - r i r i 0.068min,0 min . Any objects that do not
have an instantaneous measurement of r− i but have one in
g− r are passed into the next step, which retains all objects with
( ) ( )s- - - g r g r 0.268min,0 min . Any objects that do not
have instantaneous measurements of r− i or g− r are retained
if they satisfy (WAVG_MAG_PSF_G−WAVG_MAG_PSF_
R)0� 0.488. As can be seen from Figure 2, this is the least
restrictive of the three cuts. In total, ∼51 million stellar sources
pass our color cuts, including 98.65% of the sample of
previously known RRab.

3.4. Variability Selection

We select temporally variable objects by calculating several
variability statistics. Many of these quantities, which are
summarized in Table 4, are based on the analysis of
Sokolovsky et al. (2017) and are described in detail in
Appendix A. We calculate these variability statistics from the
MAG_PSF measurements and their rescaled uncertainties as
described in Section 2.2.
Since numerous color, magnitude, and variability measure-

ments are calculated (many of which are correlated), we use the
random forest algorithm to “learn” the optimal boundaries in
feature space to separate RRab from non-RRab. Random

53
The SDSS-DES filter transformation equations can be found in Appendix F

of S19.
54

The single-epoch limiting magnitude was estimated from Table 1 of DES
Collaboration et al. (2018) with an adjustment to account for the lower object-
detection threshold in Y6.
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forests use a collection of decision trees to predict an object’s
type. Each decision tree is trained on a random subset of the
training population by repeatedly subdividing the sample based
on feature values until a user-defined maximum depth or other
specified stopping condition is reached. The specific features
that are used in each split are chosen randomly and can
influence the characteristics of the population that a tree learns
to detect. A random forest classifier takes advantage of the
learning differences between individual trees by averaging the
predictions from a large number of trees to produce an
aggregate score (Amit & Geman 1997; Breiman 2001).
Random forests are a good choice for this task because they
are largely insensitive to uninformative features, so the
inclusion of a feature that does not separate the object types
well will not harm the overall results. For our classifiers, we use

the RandomForest implementation in scikit-learn

(Pedregosa et al. 2012). To reduce our sample of light curves
down to a manageable size for template fitting, we divide our
pretemplate selection criteria into two phases: (1) remove
nonvariable sources, and (2) remove common variable
contaminants (i.e., QSOs).
For the first classifier, our training set consists of equal

numbers of simulated RRab and calibration stars that are
largely nonvariable. We choose to use simulated RRab instead
of RRab cross-matched from external catalogs because the
simulated RRab cover the entire magnitude range of DES Y6
and thus do a better job of including the decreasing sensitivity
to variability for more distant objects with larger photometric
uncertainties. Hyperparameters for the random forest classifiers
are determined using the GridSearchCV function of
scikit-learn. This first classifier has 35 trees with a
depth of eight splits and eight features allowed at each split.
This stage of the selection is intended to remove as many

nonvariable sources as possible, so we choose the cutoff
classifier score using the Fβ score (Baeza-Yates & Ribeiro-
Neto 1999),

( ) ·

( ) · ·
( )

b
b b

=
+

+ + +
bF

1 TP

1 TP FN FP
, 3

2

2 2

where TP (true positives) and FN (false negatives) reflect how

many true RRab have classifier scores above or below the

cutoff threshold, respectively. Similarly, the FP (false positives)

and TN (true negatives) show the number of non-RRab with

classifier scores above or below the cutoff threshold. We

choose this particular score over other popular metrics like the

“informedness” or “F1-score” because we wish to prioritize

purity at this stage in the analysis (Powers 2008). The Fβ score

with β= 0.5 allows us to weigh the precision twice as heavily

as the recall. The classifier value that maximizes Fβ is 0.755.

This value yields a sample with an RRab precision of 99.71%

and a recall (completeness) of 97.96% when applied to the

training set. Approximately 20% of the 51 million input objects

pass this classification.
As a second step, we train and apply a classifier optimized to

remove variable objects that do not show the strong variability
pattern of RRL. In particular, due to the sparse temporal
sampling of DES, it can be difficult to distinguish the
variability of QSOs from that of RRL (e.g., S19). In addition,
QSOs can be unresolved, have blue colors similar to RRL, and
are abundant at the faint magnitudes reached by DES (e.g., Tie
et al. 2017). Thus, for our training set, we use an equal number
of simulated RRab and real QSOs cross-matched from the
KiDS DR3 survey (Nakoneczny et al. 2019; de Jong et al.
2017) and the SDSS-POSS southern sample (MacLeod et al.
2012). For this classifier, we use a random forest with 18
deeper trees with nine features allowed for consideration at a
total of 16 splits. To prioritize RRL completeness, we use the
Fβ score with β= 1.5 to choose a cutoff score of 0.34. This
cutoff score returns a purity of 86.28% and completeness of
96.04% for the training set.
After applying both of these classifiers, ∼1.1 million objects

remain for light-curve template fitting. The performance curves
for both of these initial variability classifiers and their top
features are included in Appendix B.

Figure 2. Multistage color cuts applied to DES stars to remove non-RRL. Each
panel shows the distribution of colors for RRab in red, QSOs in blue, and stars
used for photometric calibration in gray. The black dashed line indicates the
99th percentile of the RRab distribution and was set as the threshold for
inclusion in our sample. Top: distribution of instantaneous ( )-r i min,0. Middle:
distribution of instantaneous ( )-g r min,0. Bottom: distribution of the
extinction-corrected (g − r)0 using weighted-average magnitudes.
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4. Template Fitting and Classification

4.1. Template Fitting

Following S19, we fit a multiband RRab light-curve template
to the extinction-corrected light curves of each object passing
our aforementioned selection criteria. Our template is empiri-
cally derived from the well-sampled RRab light curves of S10.
Our template-fitting procedure is particularly effective when
applied to sparsely sampled multiband light curves because it
solves for only four independent parameters: period (P), phase
(f), g-band amplitude (Ag), and distance modulus (μ). In S19,
we showed that these parameters can be effectively constrained
with a small number of observations, and we refer the reader to
that paper for a thorough discussion of this method.

We apply the same template-fitting procedure as S19 with
only minor modifications. In particular, we expanded the period
range from 0.44–0.89 days in S19 to 0.2–1 days. As in S19, the
periods, amplitudes, phases, distance moduli, and residual sum
of squares (RSS) per degree of freedom of the fits are kept for
the three best-fitting templates. Fitting one light curve requires
∼2–6 minutes, depending on the CPU load at the time of
processing.

Although both RRab and RRc can be used to estimate
distances (Cáceres & Catelan 2008; Marconi et al. 2015, and
references therein), RRc are more easily confused with other
types of variable objects due to their lower amplitude of
variation and more sinusoidal light curves. This, combined with
their lower rates of occurrence in halo RRL populations
(Martínez-Vázquez et al. 2017), makes them less attractive
targets for our analysis of Galactic structures in Section 5.
Thus, our template fit and subsequent classification are
optimized to identify and fit RRab light curves and properties.
Some RRc do pass all of the steps of our identification and
fitting procedure and are misidentified as RRab. We explore the
recovery rate for RRc with simulated light curves in
Section 5.1.

4.2. Classification

Even though our color and variability selections decrease by
>100× the number of objects that require template fitting,
there are still too many for individual visual inspection. Thus,
we train another random forest classifier to select potential
RRL. We input the RSS, amplitudes, and von Mises–Fisher
concentration parameter κ (see Section 4.3 in S19 for more
details) from the top three best template fits for each candidate.
As in S19, we also calculate the distances of each set of periods
and amplitudes to the scaled Oosterhoff relations (Oosterhoff
1939) parameterized by Fabrizio et al. (2019) and scaled to the
g band by Vivas et al. (2020b, see their Figure 7).

For this training set, we used the previously known cross-
matched RRab described in Section 2, instead of the simulated
light curves. Although the former do not span the full
magnitude range of DES Y6, they provide a more realistic
representation of the performance of template fits to RRab
beyond those from S10. The template-fitting procedure
performs artificially too well on simulated light curves because
the templates and simulations are based on the same data (S19).
For the non-RRab set, we include objects likely to contaminate
our sample, such as the cross-matched QSOs from Section 3.2
as well as objects that were visually rejected as extended
sources and artifacts in a previous iteration of the catalog.

The cutoff score is selected using Matthew’s correlation
coefficient (MCC), which balances true and false positives and
negatives for binary classification problems, even in the case of
imbalanced class sizes (Matthews 1975). The MCC is defined
as

( )( )( )( )

( )

=
´ - ´

+ + + +
MCC

TP TN FP FN

TP FP TP FN TN FP TN FN
,

4

where TP is the true positives, TN is the true negatives, FP is

the false positives, and FN is the false negatives. We choose a

classifier score cutoff of 0.605 that maximizes the MCC for the

training sample. For the training set, this cutoff score recovers

96.07% of the input RRab with 98.92% purity. When we apply

this classifier to the full results of the template fitting, 10,812

objects pass the cutoff as potential candidates. The performance

curves and top features are shown in Appendix B. We discuss

the recovery fraction for a broader range of RRL distances in

Section 5.1.
Since the purity of the DES star–galaxy separation decreases

dramatically at fainter magnitudes (e.g., Shipp et al. 2018), we
visually inspect every candidate that had not been previously
identified as an RRab by another survey (see Figure 3). During
this visual inspection, we remove any obvious extended
sources, bright oversaturated objects, and extremely poor-
fitting light curves. After this visual inspection, our final sample
consists of 6971 objects.

5. Results

Our selection process results in a catalog of 6971 objects that
are consistent with the colors, variability, and light curves of
RRab. We hereafter refer to objects in this sample as DES Y6
“RRab candidates.” We show a selection of light curves
covering the full magnitude range of our sample in Figure 3.
DES Y6 provides a median of 35 observations per RRab
candidate. The equatorial positions and heliocentric distances
of DES Y6 RRab candidates are shown in the top and bottom
panels of Figure 4, respectively. The RRab candidates that were
previously identified by other studies, including the DES Y3
RRab search of S19, are shown in Figure 5. Because the
boundaries of the DES Y3 and Y6 catalogs differ (most
significantly around the LMC outskirts), this is not a one-to-one
comparison.
Although image cutouts and light-curve fits are visually

inspected for each of these candidates, they still require
additional observations to confirm that they are RRL. This is
especially true of objects with sparsely sampled light curves or
located beyond 150 kpc. The properties of visually accepted
and previously identified RRab candidates are summarized in
Table 1 (full version available online).

5.1. Completeness for Faint Objects

Due to the limited depth and area of external RRL catalogs,
we are required to use simulated RRL to assess the
completeness of our selection for faint RRL (D 100 kpc).
To assess the recovery of our template-fitting and classification
process and to assess how frequently RRc are misclassified as
RRab, we follow the procedure described in Section 3.2 to
simulate an independent set of light curves for ∼3100 RRab
and ∼900 RRc. We subject these simulated light curves to the
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same minimum number of observations, color cuts, variability
classifier, template fitting, and final classifier that are applied to
the real data. The recovery rate and precision of the parameter
estimates are shown in Figure 6.

We find that our ability to identify RRab and recover periods
within 1% of the input value improves dramatically as the
number of observations increases and degrades dramatically at
distances 200 kpc. The uncertainties in period and amplitude
for both RRab and RRc using the template-fitting technique
improve when there are more observations available and
decline for objects at larger distances since their photometric
uncertainties are larger. The period recovery for RRab
approaches 100% when the light curve has �30 observations.
The fraction of RRc misidentified as RRab by the classification
pipeline is overall very low (�10% for light curves with �25
observations and <20% at all distances). Given that RRc make
up 30% of RRL (Soszyński et al. 2019; Martínez-Vázquez
et al. 2017), the low efficiency suggests that RRc are unlikely
to contribute substantially to our final catalog.

Our recovery rate for distant RRab (�50% for μ� 22) opens
an exciting new discovery space for stellar structures beyond
100 kpc. In the following sections, we compare the DES Y6
RRab candidate sample to external catalogs in classical and
ultrafaint dwarf galaxies. In addition, we use this catalog to fit
the Milky Way stellar halo profile and search for previously
undiscovered Milky Way satellites.

5.2. The Magellanic Clouds

The variable star content of the Magellanic Clouds (MCs)
has been extensively studied, with the OGLE-IV catalog of
Soszyński et al. (2019) containing 47,828 RRL in both MCs.
Although the DES footprint only covers the outskirts of the

MCs, a comparison with the OGLE catalog still yields a

relatively large number of objects in common (792) and allows
us to assess the recovery of light-curve properties of the DES
Y6 RRab candidates. The OGLE catalog is ideal for this
comparison because its light curves have <100 epochs (and

consequently, period estimates and classifications are very
robust) and it contains many types of variables (allowing us to
investigate the contamination rate of our catalog).
The variables in common between the two catalogs include

53 objects classified as RRc or RRd by OGLE, implying a
∼7% contamination by these types in our sample. This is
consistent with estimates from our simulations (Figure 6) under

the assumption that stellar populations are similar in the Milky
Way and LMC halos, and with the “cloud” seen in the period–
amplitude diagram (left panel of Figure 7) at short periods and

low amplitudes.
A total of 720 (91%) of the matches have an excellent

agreement in period (right panel of Figure 7). The median

difference in period for objects on the 1:1 line in Figure 7 is
only 0.001%. Most period mismatches are due to 1-day
aliasing.
We also search for matches between our catalog and other

types of variables in OGLE, finding one object that they
identified as an anomalous Cepheid (AC). The light curves of
ACs and RRL are similar, and it is difficult to distinguish them

in the field. ACs are rare, so the contamination of ACs in the
DES Y6 RRab catalog is expected to be low. We found no
matches with the OGLE catalog of 40,204 eclipsing variables

in the MCs (Soszyński et al. 2019).
We search for new RRab in the MCs using the DES Y6

coverage beyond the OGLE footprint. We start by selecting a
range of distance moduli for each MC based on stars in

Figure 3. Sample of RRab candidates selected to represent the magnitude range of our catalog. Light curves are arranged vertically by increasing magnitude with best-
fit heliocentric distances ranging from 7 kpc (top left) to 280 kpc (lower right). Observed magnitudes and RRab template light curves are colored by band (g: green, r:
red, i: orange, z: blue, Y: purple). If not visible, photometric errors are smaller than the plotting symbols.
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common with OGLE. For the LMC, the distance modulus
distribution showed a clear peak at 17.9< μ< 18.8, containing
608 RRL. The SMC overlap with OGLE is significantly
smaller, but there is still a clear peak in the distance modulus
distribution at 18.1< μ< 19.2, with 27 RRL matching OGLE
in that distance range. Matched OGLE-DES stars are shown as
black diamonds in Figure 8. We then select DES Y6 RRab
candidates that were not in OGLE but have distance moduli

consistent with the selection defined above and have an angular
separation of less than 25° and 15° from the centers of the
LMC and SMC, respectively. These stars are potential new
members of the MCs. Most of them are located outside the
OGLE footprint, although there are also some stars that may
have been missed by OGLE.
We use Gaia DR2 data (Gaia Collaboration et al. 2018) to

check whether our candidate MC members exhibit proper

Figure 4. Top: sky location of DES Y6 RRab candidates colored by distance modulus. This figure uses a McBryde–Thomas flat polar quartic projection with the DES
footprint shown in black. Bottom: heliocentric distance distribution of the DES Y6 RRab candidates as a function of R.A. Overdensities corresponding to the LMC
(α ∼ 80°), Fornax (α ∼ 39°), and Sculptor (α ∼ 15°) can be seen in both panels. Stars associated with Eridanus II can be seen in the bottom panel at α ∼ 56° and
D > 300 kpc.
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motions (PMs) consistent with those of the MCs. In Figure 9
we show the PMs of the stars matched to OGLE in each of the
MCs and compare them with the new member candidates. For
clarity, we show two plots for the LMC: one containing new
candidate members within 20° of its center (top panel), and
another for those lying between 20° and 25° (center panel). We
find that new LMC member candidates in the former group
have a distribution of PMs that is consistent with OGLE stars,
while the latter do not. We find 202 LMC candidate RRL out to
20°, excluding 16 members of the LMC globular cluster
Reticulum (which we discuss separately in Section 5.5).
Beyond this limit and out to 25°, the density of LMC candidate
RRL drops appreciably with only 25 possible members.

The old stellar population of the LMC extends to large
angular separations, as shown in previous studies. Saha et al.
(2010) traced the LMC population with main-sequence turnoff
stars out to 16° from its center. Using a similar technique,
Nidever et al. (2019) further extended the detection to 21°. In
addition, Belokurov & Koposov (2016) used publicly available
DES images to find a lumpy distribution of blue horizontal

branch (BHB) stars extending out to 30° and possibly up to
50°. We note in passing that some of our candidates match the
location and distance of their “S1” substructure. Our strong
detection of RRL in the LMC periphery confirms these
previous results and strengthens the case for an extended, old
(10 Gyr) stellar population in the LMC.
The southern decl. limit of DES is δ=−65°.3. Conse-

quently, only the very external parts of the SMC (which is
centered at δ∼−72°.8) are within the footprint of the survey.
Nonetheless, the OGLE catalog contains SMC RRL as far
north as δ∼−62°.7, 27 of which are in common with our
sample (Figure 8). We find 18 other RRL within the distance
range of the SMC out to an angular separation of 15 deg (a
region beyond the OGLE coverage). There is good agreement
in the PMs of these new member candidates, as seen in the
bottom panel of Figure 9.
An interesting feature associated with the SMC in this part of

the sky is the so-called Small Magellanic Cloud Northern Over-
Density (SMCNOD; Pieres et al. 2017), whose area is indicated
by a blue ellipse in the left panel of Figure 8. Pieres et al. (2017)

Figure 5. Overlap with external RRab catalogs. The distribution of this RRab catalog as a function of the average extinction-corrected r magnitudes, 〈r〉, are plotted in
red. The distributions of previously identified RRab from external catalogs that were recovered in our catalog are plotted in black. Bottom right: We note that the
combination of the increased number of observations, decreased signal-to-noise threshold, and alternative selection cuts in Y6 increased the depth of our catalog by
∼1 magnitude, but also extended the detection range to brighter magnitudes as well.

Table 1

DES Y6 RRab Candidates

DES Y6 ID α δ 〈g〉 〈r〉 〈i〉 〈z〉 〈Y〉 P Ag μ

(deg, J2000) (mag) (days) (mag)

871765223 300.6754 −53.9670 16.647 16.495 16.489 16.512 16.561 0.5956 0.881 15.98

871820547 300.4591 −50.7457 15.352 15.201 15.221 15.225 15.039 0.5441 1.107 14.55

872060389 301.1574 −54.3232 19.217 18.935 18.841 18.647 18.647 0.6158 1.181 18.14

872212127 301.4859 −57.0505 17.941 17.671 17.770 17.715 17.810 0.5638 1.059 17.13

872268895 301.5402 −52.5811 14.797 14.721 L 14.637 14.741 0.5807 0.670 14.17

872444946 300.5736 −56.2696 16.417 16.272 16.270 16.223 16.241 0.6750 0.974 15.68

Note. DES Y6 ID: DES Y6A1 COADD_OBJECT_ID number. α: R.A. δ: decl. 〈grizY〉: Mean extinction-corrected magnitude. P: Best-fit period. Ag: Best-fit amplitude

in DES g. μ: Best-fit distance modulus. The full version of this catalog, including feature values and cross-matching information, is available in the online data

products at this URL.

(This table is available in its entirety in machine-readable form.)
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estimated that the SMCNOD is primarily composed of an

intermediate-age population of ∼6 Gyr, which is too young to

contain RRL. Indeed, the variable star content in the SMCNOD

was examined by Prudil et al. (2018) with an earlier release of

the OGLE catalog (Soszyński et al. 2017). Although they found

eight OGLE RRab inside the SMCNOD area, they concluded

their density was compatible with the expected SMC back-

ground at that distance. In contrast, we find almost twice as

many (15 RRab candidates) in the same region.

5.3. Sculptor and Fornax

In addition to the MCs, two other prominent overdensities of
RRab candidates are within the DES footprint: the classical
dwarf spheroidal (dSph) galaxies Sculptor (α, D= 15°.02,
86 kpc) and Fornax (α, D= 39°.96, 147 kpc). Both can be
clearly seen in Figure 4.
Martínez-Vázquez et al. (2016a, hereafter MV16) presented

the most complete and extensive study of the variable star
population in Sculptor, reporting 536 RRL, of which 289 were

Figure 6. Recovery of simulated RRL light curves. RRab results are plotted in red, while RRc are plotted in purple. All quantities in the left column are plotted as
functions of the number of light-curve observations, Nobs, while the right column shows these same quantities plotted as a function of distance modulus, μ. We do not
explicitly search for RRc in this work, and these values can be used to assess the RRc contamination in our catalog. The quantities shown are as follows. First row:
fraction of simulated curves identified as RRab by the full classification pipeline. Second row: fraction of periods correctly estimated within 1% of their input values.
The period accuracy approaches 100% near Nobs � 30 and rapidly decreases beyond μ ∼ 21. Third row: standard deviation of period estimate precision. Bottom row:
standard deviation of amplitude estimate precision. We see a degradation in precision of the amplitude measurement for light curves with Nobs  30 and μ  21,
similar to that of the period estimates. Uncertainties on the recovery efficiency in the first two rows are assessed through the Bayesian technique of Paterno (2004),
while the bottom two rows show uncertainties from bootstrap resampling (e.g., Efron 1982).
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RRab. We search for potential Sculptor members by selecting
all RRL in our catalog out to 1.5× its tidal radius of 69 1
(Munoz et al. 2018) and with distance moduli within
19.67± 0.75. We find 116 RRL within these limits, all but
four matching the catalog of MV16. The lower-than-average
completeness in this region (39% at μ∼ 19.5) is due to
crowding effects near the center of the galaxy.

MV16 classified six of our RRL candidates as RRc/RRd.
This represents a 5% contamination, in agreement with the
value derived from the MCs (Section 5.2). Removing these
misclassified stars, we find that the periods for the rest of our
sample agree very well with those from MV16, with a median
difference of only 0.002%.

Three of the four new candidate members associated with
this galaxy lie outside the footprint explored by MV16. One is
located at 93′, significantly beyond the tidal radius of Sculptor
but with a compatible Gaia DR2 proper motion. The mean
distance modulus of our Sculptor RRL is 〈μ〉= 19.49± 0.09
mag, while Martínez-Vázquez et al. (2015) found a value of
19.62± 0.04 mag. Although small, the difference can be
attributed to the fact that our analysis assumes all RRL have the
mean metallicity of the Milky Way halo, while the old stellar

population in Sculptor has a wide range of metallicities
extending down to [Fe/H]∼−2.4 (Martínez-Vázquez et al.
2016b).
While more distant than the MCs and Sculptor, Fornax also

displays a prominent overdensity of DES Y6 RRL candidates.
Again, we select candidate members as stars within 1.5× of its
tidal radius of 77 5 (Wang et al. 2019) and distance moduli within
20.82± 0.75, yielding 1385 RRL. The mean distance modulus of
these stars is 20.67± 0.08, which is again slightly smaller than the
best-available value of 20.82± 0.02 (Karczmarek et al. 2017),
likely due to the higher metallicity of our template.
Surprisingly, 51 of our Fornax RRL candidates are located

beyond its tidal radius. These stars are uniformly distributed
around the galaxy (Figure 10), reaching out to 114′ from its
center (note that our search radius only extended to 116 2). In a
recent study based on data from DES Y3, Wang et al. (2019)
concluded that no significant extratidal disturbances are
observed down to a surface brightness limit of ∼32.1 mag
arcsec−2. Fornax is known to have several bursts of star
formation and is dominated by a population of age ∼5 Gyr (de
Boer et al. 2012; Rusakov et al. 2021). While this dominant
population is too young to have produced the observed RRL,

Figure 7. Left: period–amplitude diagram for DES Y6 RRab candidates. Overplotted are the Oosterhoff relations parameterized by Fabrizio et al. (2019) and scaled to
the g band by Vivas et al. (2020b). Right: comparison of the periods of 792 RRL in common with OGLE. The red line is a 1:1 relation (91% of objects), while the cyan
lines correspond to the ±1-day aliases.

Figure 8. Aitoff projection of the sky in equatorial coordinates showing the region around the LMC (left) and SMC (right). In both panels, the gray points show the
density of OGLE RRL, the black diamonds show the DES RRab candidates matched with OGLE, while the red circles are DES RRab candidates that are not matched
to OGLE but have distance moduli in agreement with the distance of each galaxy. Left: Teal points show possible LMC member stars that have distance moduli
matching the LMC (17.9 < μ < 18.8) but are separated from the LMC by 20°–25°. The green square shows the location of the Reticulum globular cluster, which has
16 DES Y6 RRab candidates associated with it. Right: RRab candidates potentially associated with the SMC (18.1 < μ < 19.2); the location of the SMCNOD (Pieres
et al. 2017) is indicated with a blue ellipse.
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an old stellar population (>10 Gyr) is also present in Fornax.

This older stellar population has been found to be more

spatially extended than the younger populations (Wang et al.

2019). The detection of RRL outside the tidal radius suggests a

very low surface brightness, old extratidal population.
Fornax is known to be rich in RRL, but a complete census is

not readily available yet. Bersier & Wood (2002) found 525

RRL in the central part of Fornax, although the quality of their
light curves was not good enough to do a proper classification
into RRab and RRc types. Based exclusively on their periods,
they estimated that 396 of those stars may be RRab. We
identified 275 of those stars in our catalog, shown in red in
Figure 10, which suggests a 69% recovery rate, higher than in
Sculptor. A more complete search for RRL was most recently
made by Fiorentino et al. (2017). In this work, they found 990
RRab and 436 RRc in a region of 54′× 50′ centered on the
galaxy. Unfortunately, this catalog is not publicly available,
preventing a direct comparison. However, our results suggest
that the total population of RRL in Fornax is not yet known,
especially at large angular separations.
We notice that within the Fornax search area, there is a group

of seven stars with 19.5< g< 20.7, ∼1 mag brighter than the
Fornax RRL. It is unlikely that these are field halo stars, since
RRL are rare at such large distances from the Galactic center. A
more likely explanation for this group is that they are actually
AC stars associated with Fornax. As discussed previously, the
light curves of RRL and ACs are easily confused. In this case,
these stars reside in the region of the Fornax color–magnitude
diagram (CMD) that is expected for AC stars, and such objects
are known to exist in Fornax (Bersier & Wood 2002; Greco
et al. 2005), although none of these stars match previously
known variables. The spatial distribution of these candidates is
shown in Figure 10.

5.4. Cepheids in Local Group Galaxies and Beyond

The Local Group galaxies Phoenix, IC 1613, and Tucana are
located within the DES footprint at approximate distances of
415 kpc, 755 kpc, and 887 kpc, respectively (McConnachie
2012). Both Phoenix and IC 1613 are spatially coincident with
overdensities of objects in our catalog, while Tucana is not.
In the case of Phoenix, we found three RRL candidates

within 5′ from the center of the galaxy, which has a half-light
radius rh= 3.76′, with 22.3< g< 22.7. True RRL stars in this
galaxy are expected to be ∼1 mag fainter. Since it is unlikely to
find distant halo field stars in the line of sight of Phoenix, we

Figure 9. Gaia DR2 proper motions of DES Y6 RRab candidates around the
LMC (top and middle panels) and in the SMC (bottom panel). In all panels, the
black points are candidates that match the OGLE catalog. For the LMC, we
show separately the candidates closer to the center of the galaxy in red (top
panel) and candidates with larger separation in teal (middle panel). For the
SMC, we show new candidate members within 15° in red.

Figure 10. RRL from DES in the Fornax dSph galaxy. The black ellipse shows
the tidal radius and structural parameters as derived by Wang et al. (2019). The
red crosses indicate the RRL that match Bersier & Wood (2002). Magenta
triangles are possible anomalous Cepheids in Fornax that were confused as
RRL in the DES catalog.
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believe instead that these may be misclassified AC stars; such
objects are known to exist in this galaxy (Gallart et al. 2004).

In the case of IC1613, we found a group of 11 RRL
candidates with 22< g< 23 and within 3 rh from the center of
the galaxy. Given the larger distance of IC1613, this range of
observed magnitudes is appropriate for classical Cepheids, as
even ACs will be too faint for our catalog in this galaxy. The
sample of classical Cepheids in IC1613 by Bernard et al.
(2010) shows numerous stars in this magnitude range, a few of
which have periods as short as 0.6 days. Udalski et al. (2001)
found 138 Cepheids within the central ¢ ´ ¢14.2 14.2 region of
IC1613. We thus suspect some of the 11 objects in our catalog
may be short-period classical Cepheids in this galaxy, even
though we do not find any matches with previous catalogs. It is
also possible that at these faint magnitudes crowding and the
misclassification of background galaxies may lead to spurious
detections.

Other nearby galaxies (beyond the Local Group) in the DES
footprint are ESO 410-G005, ESO 294-G010, NGC 55,
NGC 300, and IC 5152. Since these galaxies have distance
moduli of ∼26.5 mag (McConnachie 2012), it is unlikely that
our analysis would detect any variable stars. Indeed, no
overdensities in the DES Y6 RRab catalog are associated with
these objects.

5.5. Ultrafaint Dwarf Galaxies and Globular Clusters

RRL in ultrafaint dwarf galaxies (UFDs) can provide
independent estimates of the distances to these systems, which
are particularly important given their low surface brightnesses
and sparsely populated CMDs. Recent censuses of RRL in
UFDs can be found in Martínez-Vázquez et al. (2019) and
Vivas et al. (2020a). We use the DES Y6 RRab candidate
catalog to search for RRL in the vicinities of 19 UFDs in the
DES footprint and find strong evidence of variables associated
with Eridanus II, as well as tentative identifications in Cetus III
and Tucana IV.

Eridanus II is among the most luminous (MV∼− 7.1) and
distant (D∼ 366 kpc) UFDs (Crnojević et al. 2016). We search
for RRL in our catalog within = ¢r10 10.1h and find five stars
with a very narrow range of distance moduli, μ0= 22.45±
0.04 mag. All variables are tightly concentrated within

= ¢r2.4 3.4h and are confirmed to be RRL in this system by
C. E. Martínez-Vázquez et al. (2021, in preparation). Their
mean period is 0.663 days, consistent with the Oo II group
found in other UFDs (Martínez-Vázquez et al. 2019). Given the
low completeness of our survey at these faint magnitudes, the
RRL population in this system should be significantly larger.
There are two additional stars in our search area with
g= 22.1− 22.3, or ∼0.8 mag brighter than the RRL. These
may be anomalous Cepheids in Eridanus II.

Cetus III is somewhat closer (D∼ 251 kpc) and has an
absolute magnitude of only MV∼− 2.5 (Homma et al. 2018).
Little is known about this small ultrafaint dwarf, and spectro-
scopic confirmation of its nature is not yet available. We found
one RRab candidate located 1′ from its center (∼1 rh) with
μ= 21.33 mag, which would put the galaxy at 185 kpc from
the Sun, somewhat closer than the aforementioned estimate.
However, the difference is consistent with the bias introduced
by our adoption of the mean halo metallicity for our RRL
template and the lower metallicity expected for this UFD.
Further studies of Cetus III and this RRL candidate are needed
to confirm their association.

We identify one RRL in Tucana IV with g= 18.78,
consistent with spectroscopically confirmed HB members of
this galaxy (Simon et al. 2020). The variable, however, is
located at 56′ from the center, equivalent to 6 rh. Thus, the
physical association is unclear, although the Gaia DR2 proper
motion is consistent. Another possibility is that this may be an
extratidal star, similar to those seen in Tucana III, Eridanus III,
and Reticulum III (Vivas et al. 2020a).
We also note that we recover known RRL in other UFDs,

including star V1 in Tucana II (Vivas et al. 2020a), V1 in
Phoenix II, and V2 in Grus I (Martínez-Vázquez et al. 2019).
However, since more comprehensive analyses of these objects
exist in the referenced publications, we do not examine them in
detail here.
Finally, there are several globular clusters within the DES

footprint. RRL in Milky Way globular clusters closer than
10 kpc often saturate the DES images. Nonetheless, we recover
star V21 in M2 (NGC 7089; Clement et al. 2001, 2017 July
version), which is one of the 23 RRab known in that cluster. On
the other hand, the LMC globular cluster Reticulum is a better
target for the range of magnitudes of our catalog. We recover
14 of its 22 known RRab (Kuehn et al. 2013), a 63% recovery
rate. We find two additional RRab candidates spatially
coincident with the cluster that have the appropriate magnitude
and proper motions (from Gaia DR2) to be members. The mean
distance modulus of these 16 variables is μ= 18.36±
0.04 mag, in agreement with the value obtained by Kuehn
et al. (2013) of 18.40± 0.20 mag. The good agreement in these
estimates is due to the similar metallicity of the RRL in the
cluster ([Fe/H]∼−1.6) and the mean metallicity of the Milky
Way halo adopted for our templates. Additionally, there is a
third new possible member that has consistent magnitude and
PM, but it is located farther away, at 14′ from the center of the
cluster.

5.6. Halo Density Profile

The structure of the Milky Way stellar halo encapsulates
information about the formation and evolution of our Galaxy
(e.g., Johnston et al. 2002). Several lines of observational
evidence suggest that the halo density profile exhibits a break at
Galactocentric distances of 20–35 kpc, with star counts falling
off more rapidly beyond this radius (e.g., Watkins et al. 2009;
Sesar et al. 2010; Deason et al. 2011; Sesar et al. 2011; Zinn
et al. 2014; Pila-Díez et al. 2015; Xue et al. 2015; Pieres et al.
2020). Such a broken-power-law profile may be produced
through the accretion of a massive satellite galaxy (Bullock &
Johnston 2005; Deason et al. 2013, 2018), which corroborates
recent claims of the Gaia–Enceladus merger (Belokurov et al.
2018; Helmi et al. 2018). While quantitative estimates vary by
analysis, studies across a wide range of stellar tracers find that
shallower power-law slopes (n1∼−2 to −3.5) are preferred in
the inner region of the halo, while steeper values (n2∼−3.8 to
−5.8) are preferred at larger distances (see Pila-Díez et al. 2015
for a recent compilation). RRL have provided an important
probe of the stellar density profile, with evidence for the
broken-power-law model first claimed by Saha (1985) and
more recently by Zinn et al. (2014) and Medina et al. (2018).
The deep, wide-area catalog of DES Y6 RRab candidates offers
an excellent opportunity to measure the density profile of the
Milky Way stellar halo over a wide region of the southern sky.
We estimate the halo density profile by first removing RRab

candidates around the LMC, SMC, Fornax, and Sculptor (see
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Appendix C), which yields a sample of 3603 candidate RRab.
We group these stars into 51 bins of heliocentric distance
9<D< 400 kpc, and we calculate the number density by
correcting for the detection efficiency of our catalog
(Figure 11). We find that the density profile of RRab exhibits
a break at a heliocentric distance of D∼ 25 kpc, with an excess
relative to a simple broken-power-law model at heliocentric
distances of 80 kpc<D< 300 kpc. The excess of candidates at
large distances is not explained by a change in detection
efficiency, which is found to be decreasing monotonically with
distance and is a fractionally smaller effect than the observed
excess (Section 5.1). To investigate this excess in more detail,
we select a subpopulation of high-confidence RRab candidates
close to the Oosterhoff I sequence with a measured amplitude
change of >0.75 mag. We find that the excess is greatly
reduced in the high-confidence subpopulation, suggesting that
contamination from faint sources may be responsible for the
excess. To further investigate possible contamination, we
cross-match RRab candidates in the S82 region with spectro-
scopically confirmed QSOs from SDSS DR7 (Schneider et al.
2010) and SDSS DR16 (Lyke et al. 2020). We find that the
QSO contamination of our catalog in the S82 region is ∼2%;
however, we find that all contaminating QSOs are fit with
distance moduli 20< μ< 22 (100 kpc<D< 250 kpc), leading
to a contamination rate of ∼16% in the same distance range as
the observed excess.

While suggestive, this contamination is still far less than
would be necessary to account for the observed excess.
Furthermore, we note that the RRab candidates in this distance
range are not uniformly distributed over the footprint, as would
be expected from extragalactic contamination and the uniform
recovery efficiency estimated from our RRL simulations.
Rather, RRab candidates in this distance range are preferen-
tially distributed at α∼ 0, coincidentally close to where the
Magellanic Stream crosses the DES footprint.

Large-scale anisotropies in the halo RRL distribution have
been claimed by Iorio et al. (2018) using a combined catalog of
Gaia+2MASS RRL. Boubert et al. (2019) provided supporting
evidence for this structure using observations from the Catalina
Surveys (e.g., Torrealba et al. 2015; Drake et al. 2017) and the

sample of RR Lyrae variables identified in PS1 (Hernitschek
et al. 2016). While this structure is significantly closer than the
excess observed here (Galactocentric distance of ∼20 kpc),
Boubert et al. (2019) claim a Magellanic origin for this
overdensity, which could extend to greater distances where the
infall track of the Magellanic Clouds crosses the DES footprint.
Further investigation of these distant candidates is necessary to
better understand possible anisotropies in the RRL distribution
at distances 80 kpc.
Given the significant uncertainties in the contamination rate

and possible anisotropies at heliocentric distances 80 kpc, we
constrain our study of the Milky Way halo to smaller distances,
where we estimate that our completeness is 75%. To measure
the Milky Way stellar halo density, we transform each of our
RRab candidates into Galactocentric coordinates, (x, y, z),
assuming that the solar Galactic center distance is 8.178 kpc
(Gravity Collaboration et al. 2019). We further calculate the

elliptical Galactocentric radius, ( )= + +r x y z qe
2 2 2 . Fol-

lowing Faccioli et al. (2014), we perform our fit assuming a
fixed halo flattening of q= 0.7 (e.g., Sesar et al. 2011). We
group candidate RRab into 41 bins in elliptical Galactocentric
radius 9 kpc< re< 100 kpc, and we fit the halo profile with an
elliptical broken power law following the description of Pila-
Díez et al. (2015):
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where ρ0 is the density normalization, n1 is the inner power-law

index, n2 is the outer power-law index, and R0 is the break

radius (in elliptical Galactocentric coordinates). We perform a

binned Poisson maximum-likelihood fit for the observed counts

in each bin, k, as a function of the model parameters, θ= {ρ0,

R0, n1, n2}. Our likelihood analysis is described in more detail

in Appendix C. Within each bin, we correct the observed

number of RRL for the detection completeness of our catalog

estimated from simulated RRab described in Section 5.1. We fit

the model parameters using a Markov Chain Monte Carlo

ensemble sampler (emcee; Foreman-Mackey et al. 2013), and

Figure 11. Left: period–amplitude diagram of DES Y6 RRab candidates (black) and high-confidence candidates associated with the Oosterhoff I sequence and
possessing amplitude variations >0.75 mag (blue). Right: density of RRab candidates as a function of heliocentric distance. The gray points show the observed
distribution of all RRab candidates, while the black curve corrects for the detection efficiency estimated in Section 5.1. The blue curve shows the density of high-
confidence RRab associated with the Oo-I sequence in the left panel, corrected by detection efficiency (which is >95% out to 150 kpc).
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we report the median, 16th, and 84th percentiles of the

marginalized posterior distributions of each parameter in

Table 2. We perform this analysis for both the full DES Y6

RRab candidate sample and the high-confidence RRab

associated with the Oosterhoff I sequence (Figure 12).
In Figure 13 we compare the best-fit parameters from our

two RRab candidate samples to broken-power-law fits to the
halo in the literature. We generally find that our best-fit break
radius of ∼32 kpc is slightly larger then many other analyses;
however, this could be brought into better agreement through a
smaller halo flattening. Our measured inner slope values are
consistent within 2σ of each other and are broadly consistent
with other values in the literature. Due to the saturation
threshold of the DES images, fits for n1 are largely driven by
RRL with re 14 kpc and are highly correlated with the overall
normalization parameter, ρ0. Due to the large area and
sensitivity of DES, we have several thousand RRab candidates
in the range 30 kpc< re< 100 kpc. This allows the DES data
to provide tight constraints on the outer power-law slope, n2.

The value of = - -
+n 5.422 0.14
0.13 measured using DES RRL

candidates is steeper than that measured by many other tracers
and surveys (e.g., Sesar et al. 2011; Xue et al. 2015; Pieres
et al. 2020), but it is consistent with RRL measurements by
Sesar et al. (2010) and Zinn et al. (2014).

5.7. Search for New Satellite Galaxies

Clusters of RRL can be used to identify faint satellite
galaxies that may have evaded detection by other methods. In
particular, Baker & Willman (2015) argued that the combina-
tion of three-dimensional information and the sparsity of halo
RRL at distances >50 kpc make RRL particularly useful for
identifying Milky Way satellites with half-light radii
rh> 500 pc residing in the outer halo. The RRL catalogs from
Gaia DR2 have demonstrated the viability of this search
technique through the discovery of the ultradiffuse satellite
Antlia II (Torrealba et al. 2019) and the detection of several
candidate stellar streams (e.g., Mateu et al. 2018).

We search for satellite galaxies coincident with each of the
DES Y6 RRab candidates beyond the masked regions around

the LMC, SMC, Fornax, and Sculptor. Our algorithm is based

on a simple binned Poisson likelihood, which is qualitatively

similar to searches for resolved stellar populations (Bechtol

et al. 2015; Drlica-Wagner et al. 2015), but optimized to the

detection of satellites with half-light radii rh 500 pc. At the

location and distance of each RRab in our masked catalog, we

define a search cylinder with a fixed radius of 2rh= 1 kpc. The

depth of our search cylinder is calculated from the quadrature

sum of 2rh and the systematic uncertainty on the measured

distance to the RRL, 2σ(μ)= 0.2 mag. Each cylinder is

expected to contain ∼90% of the RRL population of a satellite

with rh= 500 kpc centered at the search location.
We determine the local expected density of field RRL, ρf,

from a cylindrical annulus centered on our search location with

inner and outer radii of 4rh and 8rh, respectively. In cases

where no RRL are contained within our background annulus,

we assume the global background rate as estimated from the

field density at that distance (Figure 11). We multiply the

background density by the volume of our search cylinder to

predict the expected number of field RRL within our search

region, λ.
We calculate the significance of a putative satellite at each

search location (i.e., at the location of each RRab candidate in

our catalog) as the Poisson probability of detecting k or more

Figure 12. Density of RRab candidates binned in elliptical Galactocentric
radius (q = 0.7). The black markers show the full RRab candidate sample,
while blue markers show high-confidence RRab associated with the Oosterhoff
I sequence and having measured amplitude of variations of >0.75 mag. Errors
represent the square root of the number of stars in each bin and the bin width.

Table 2

Broken-power-law Halo Density Parameters

Sample ρ0 R0 n1 n2
(kpc−3

) (kpc)

Full -
+990 230
300

-
+32.1 0.9
1.1 - -

+2.54 0.09
0.09 - -

+5.42 0.14
0.13

Oo-I -
+240 80
110

-
+31.3 1.0
1.3 - -

+2.32 0.13
0.14 - -

+5.59 0.19
0.17

Note. The halo density profile fit assumes a fixed halo flattening of q = 0.7.

Figure 13. Comparison of best-fit broken-power-law halo parameters from this
work (S21) and those collected from the literature. Circle markers represent
measurements from RRL, squares represent measurements from main-sequence
turnoff stars, while triangles represent measurements from giant branch stars.
Parameters are the break radius (left), the inner power-law index (center), and
the outer power-law index (right). References are W09 (Watkins et al. 2009),
S10 (Sesar et al. 2010), S11 (Sesar et al. 2011), D11 (Deason et al. 2011), F14
(Faccioli et al. 2014), Z14 (Zinn et al. 2014), P15 (Pila-Díez et al. 2015), X15
(Xue et al. 2015), D16 (Das et al. 2016), M18 (Medina et al. 2018), and P20
(Pieres et al. 2020).
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RRL given an expectation of λ:
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To select candidate satellites, we apply a significance threshold

of p< 3× 10−7, which corresponds to a one-sided Gaussian

significance of 5σ. We also require that satellite candidates

consist of at least three RRab candidates.
We quantify the sensitivity of our search using a suite of 105

simulated satellite galaxies generated by Drlica-Wagner et al.
(2020). These satellites span a range of stellar mass,
heliocentric distance, size, ellipticity, and position angle (see
Table 1 of Drlica-Wagner et al. 2020). The simulated satellites
are distributed uniformly over the DES footprint and uniformly
in distance modulus. For each simulated satellite, we predict
the expected number of RRL as a function of MV using a fit to
the RRL population of Milky Way satellites provided in
Equation (4) of Martínez-Vázquez et al. (2019):

( ) ( )= - ´ -N Mlog 0.29 0.80. 7VRRL

To predict the number of RRab, we multiply the number of

RRL by the fraction of RRab, NRRab= fabNRRL, where

fab= 0.71 for Milky Way satellites (see Table 6 of Martínez-

Vázquez et al. 2017). The expected number of RRab observed

by DES is corrected for the detection efficiency of our search

and fitting procedure, which depends on the distance of the

simulated satellite. The spatial distribution of simulated RRab

was drawn from an elliptical Plummer profile (Plummer 1911).

Distances were assigned from a Gaussian distribution centered

on the distance of the simulated satellite matched to the 3D

half-light radius of the satellite. An additional systematic

Gaussian scatter in distance modulus, Δ(μ)= 0.1 mag, was

applied to each simulated RRab. We inject each simulated

satellite into the DES Y6 RRab candidate catalog individually

and attempt to recover it with our search algorithm. The

resulting detection efficiency as a function of MV and physical

half-light radius rh is shown in Figure 14.
As expected, our search is more sensitive than isochrone-

matched filter searches (Drlica-Wagner et al. 2020, dashed line)
for satellites with large sizes. Our RRL satellite search is
significantly less sensitive for compact satellites, due to the
large assumed kernel (2rh= 1 kpc). At small heliocentric
distances, this large search kernel leads to an expected
background contribution from halo RRL that is comparable
with the RRL signal from a satellite with MV∼−6. At larger
distances, the density of halo RRL decreases, and the
sensitivity of our search increases until RRL detection
efficiency starts to dominate. As a test, we rerun these
simulations using a kernel matched to the true size of each
simulated satellite, and we find a significant improvement in
the sensitivity for small satellites. However, the isochrone-
matched filter searches remain more sensitive for satellites with
MV>−5, due to the small number of RRab expected from
these satellites.
With the sensitivity of our search characterized on simula-

tions, we apply our search to the DES Y6 candidate RRab
catalog. We find three satellite candidates that pass our
detection criteria of significance >5σ and NRRab> 3. The
characteristics of each RRab candidate member associated with
these satellite candidates are listed in Table 3.
One of these candidates (SubId= 1) is associated with the

known satellite Eridanus II, located at a distance of 360 kpc
(Section 5.5). Based on the simulations described above
(Figure 14), we expect our search to be ∼60% efficient for
satellites with the size, luminosity, and distance of Eridanus II.
This could suggest that Eridanus II may have a larger-than-
expected number of RRL.
A second overdensity (SubId= 2) consists of three RRab

candidates located at (α,δ)∼ 349.8, −55.6 at a distance of
59.5 kpc. This overdensity is in the same region of the sky and
at roughly the same distance as the Tucana II dwarf galaxy,

Figure 14. Detection efficiency of our search for Milky Way satellites using DES Y6 RRab candidates. Detection efficiency ranges from 0% (blue) to 100% (yellow)

and is shown as a function of azimuthally averaged, projected physical half-light radius and absolute V-band magnitude in different bins of heliocentric distance
(logarithmically spaced from 8 kpc to 512 kpc). The physical parameters of known satellite galaxies are indicated in gray. The light blue dashed line shows the 50%
detectability contour for RRL searches at distances >50 kpc predicted by Baker & Willman (2015), while the gray dashed line shows an analytic approximation to the
50% detectability contour from isochrone-matched filter searches (Drlica-Wagner et al. 2020).
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D= 57.5 kpc; however, it is separated from Tucana II by ∼5
deg on the sky. Interestingly, the Gaia DR2 proper motions of
the RRab candidates in this overdensity are similar to the
proper motions of confirmed members of Tucana II, albeit with
large uncertainties (Figure 15). It has been suggested that the
diffuse structure of Tucana II could be an indication of tidal
disruption (e.g., Bechtol et al. 2015). Belokurov & Koposov
(2016) showed evidence for extended stellar structure around
Tucana II using BHB stars (i.e., their “S2a” cloud at μ∼ 18.8),
and Chiti et al. (2020) used Gaia proper motions combined
with photometric metallicities to identify probable members >1
deg from Tucana II. Further observations are required to
confirm an association between this overdensity of RRab
candidates and the Tucana II dwarf galaxy.

The third candidate (SubId= 3) consists of four RRab
candidates located at (α,δ)∼ 78.3, −38.6 at a distance of
23.8 kpc. This is close in projection to the globular cluster
NGC 1851, but at a larger distance. Shipp et al. (2018) found
evidence for extended tidal features surrounding this cluster,
but the proper motions of the stars associated with this
candidate structure are not aligned with the motion of NGC
1851. We followed the procedure of Shipp et al. (2018) to use
the DES Y6 coadd object catalog to search for correlated
overdensities of main-sequence turnoff stars associated with
our candidate substructures using isochrone-filtered stellar
density maps. However, we do not detect any previously
unknown overdensities in turnoff stars, suggesting that radial
velocities will be critical for confirming the second two
candidate structures.

6. Conclusion

We have used various statistical techniques to derive a
catalog of candidate RRab detected in six years of deep, wide-
area imaging from DES. The DES Y6 data offers significant
improvements on prior results using only three years of data
(Stringer et al. 2019), resulting in a catalog of 6971 RRab
candidates. At the bright end, our catalog has significant
overlap with surveys such as Gaia DR2, Pan-STARRS, and the
Catalina surveys, providing strong evidence of the effective-
ness of this method. We publicly release the best-fit parameters
and light curves for our RRL candidates.

We find good agreement in the measured properties of our
RRab candidates when matched against external catalogs from

the MCs, Fornax, and Sculptor. In addition, we recover RRL
detected in the ultrafaint dwarfs Tucana II, Phoenix II, and
Grus I (Martínez-Vázquez et al. 2019). DES extends
significantly deeper than any of these surveys, allowing us to
detect RRab candidates out to a distance of ∼335 kpc, about 1
mag deeper than Stringer et al. (2019). Indeed, we discover a
group of five RRab candidates associated with the distant
ultrafaint dwarf galaxy Eridanus II. We also report tentative
RRL members of the ultrafaint systems Cetus III (Homma et al.
2018) and Tucana IV (Drlica-Wagner et al. 2015). We fit the
stellar density profile of the Milky Way halo in the range of
elliptical Galactocentric distances 9< re< 100 kpc. Assuming
a halo flattening of q= 0.7, we find that the halo is well fit by a
broken-power-law model with a break radius of = -

+R 32.10 0.9
1.1,

an inner slope of = - -
+n 2.541 0.09
0.09, and an outer slope of

= - -
+n 5.422 0.14
0.13. These values agree between analyses of the

full RRab candidate sample and a high-confidence sample of
RRab candidates with large measured amplitude variations
associated with the Oosterhoff I sequence. We further use our
catalog of DES Y6 RRab candidates to search for halo
substructures, with characteristic sizes of rh∼ 500 pc. This
search confidently detects the Eridanus II dwarf galaxy and two
other candidate overdensities that are not confidently associated
with known halo substructures.
RRL have long been recognized as a powerful probe of the

Milky Way’s outer stellar halo. However, it is only recently
that surveys have been able to combine wide area coverage,
deep imaging, and sufficient cadence to confidently identify
RRL at distances >100 kpc. While DES was not optimized to
search for RRL, it nonetheless provides an exceptional catalog
of RRab candidates at distances beyond what is achievable by
surveys on smaller telescopes (i.e., Gaia, Catalina, and PS1). In
the near future, the Vera C. Rubin Observatory Legacy Survey
of Space and Time will provide hundreds of observations over
the entire southern sky, promising to provide a high-quality
catalog of RRL extending to the edge of the Milky Way halo.
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Table 3

Halo Substructure Candidates

SubID Star ID α δ μ D

deg, J2000 mag kpc

1 1410940364 56.10118 −43.50492 22.5 316.2

1 1410941177 56.07512 −43.51257 22.4 301.8

1 1410942171 56.09949 −43.52116 22.4 305.1

1 1410943700 56.07939 −43.53486 22.5 314.1

1 1410944738 56.01504 −43.54419 22.4 307.6

2 994558814 348.37430 −55.77342 18.7 55.0

2 1002871838 349.83519 −55.33808 18.9 60.5

2 1007027294 351.32392 −55.76393 19.0 63.0

3 1533696855 77.66305 −38.90769 17.0 24.6

3 1539669959 77.95832 −38.64577 17.1 25.8

3 1548634844 80.17935 −39.58687 16.8 23.2

3 1616940370 77.32652 −37.11542 16.7 21.9

Figure 15. Proper motions of RRab candidate stars associated with satellite
candidate 2 (Table 3). Stars associated with this satellite candidate are shown in
blue, spectroscopically confirmed member stars and proper motion candidate
members from the Tucana II satellite are shown in green, the systemic motion
of Tucana II is shown in orange, and foreground stars are shown in red (Pace &
Li 2019).
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Appendix A
Variability Statistics

Here, we describe the variability statistics used to select
objects for template fitting. A glossary of terms is provided in
Table 4. For each object, we multiplied the reported
photometric uncertainties by scaling factors based on the
best-fit values from Equation (2). We use these rescaled errors
in the calculation of all variability statistics. To avoid
confusion, we will refer to the error-weighted mean as m and
the median as med(m).
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In addition to the reduced median chi-squared, c̃n b,
2

(Equation (1)), we calculate the reduced chi-squared from the
mean magnitude in each band, cn b,

2 , and its common logarithm

⎜ ⎟⎛
⎝

⎞
⎠

( )
( )

( )åc
s

=
-

-
n N

m m
log log

1

1
. A1

b
b

N
i b b

i b
10 ,

2
10

1

,
2

,
2

b

As these quantities use the rescaled errors determined in

Section 2.2, the nonvarying sources have a distribution

centered around zero, with positive outliers denoting true

variable objects.
We also measure the range in magnitude, which we call

Δ(mag)b, in each single-band light curve to relay information
about the amplitude of an object’s variation. The uncertainties
on the maximum and minimum magnitudes used to calculate
this quantity are recorded as well.

Another proxy for variability amplitude is the normalized
excess variance (sNXS

2 ). This statistic was first defined by
Nandra et al. (1997) as

[( ) ] ( )ås s= - -
=Nm

m m
1

. A2
i

N

i iNXS
2

2
1

2 2

Although this metric is commonly used for X-ray analyses of

active galactic nuclei, it has successfully been deployed on the

sparsely sampled Pan-STARRS 3π optical light curves (Simm

et al. 2015).
We measure the overall scatter of a light curve using the

median absolute deviation (MAD):

(∣ ( )∣) ( )= -m mMAD med med . A3i

MAD is slightly more stable in the presence of outliers than
the standard deviation as it does not amplify the effects of an
outlier by squaring it. This metric should be sensitive to
repeated variations; however, a real RRL with observations
sampled at close to the same phase value will not appear
variable in MAD.
The robust median statistic (RoMS) is a more robust analog

of c
red
2 , which is less sensitive to bias in the presence of non-

Gaussian uncertainties. This metric was first defined in Enoch
et al. (2003) as

∣ ( )∣
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In a single band, RoMS tends toward values of one for

nonvarying sources.
Alternative measures of deviation Sn and Qn were first

proposed by Rousseeuw & Croux (1993). These metrics seek
to measure the midpoint of a data set like MAD, but do not rely
on a central reference value and are thus better estimators for
asymmetric distributions. To account for the scatter caused by
the large uncertainties of faint observations, we will apply these
statistics to the pairwise distances between all individual
observations divided by their combined uncertainties. Here, Sn
measures the median of the median of these weighted pairwise
differences and is defined as

⎛
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Table 4

Glossary of Terms

Abbreviation Full Name Bands Used Ref.

IQRb Interquartile range for band b g, r, i, z 1

Jb Stetson’s J statistic for band b g, r, i, z, (grizY) 2

MADb Median absolute deviation for band b g, r, i, z, (grizY) 1

NAPDb N absolute pairwise distances for band b g, r, i, z, (grizY) 1

s bNXS,
2 Normalized excess variance for band b g, r, i, z, (grizY) 3,4

Qn,b kth value of absolute pairwise distances for band b g, r, i, z 5

Δ(mag)b Magnitude range for band b g, r, i, z

cn b,
2 Reduced chi-squared statistic for band b g, r, i, z, (grizY)

c̃n b,
2 Reduced median chi-squared statistic for band b g, r, i, z, (grizY)

RoMSb Robust median statistic for band b g, r, i, z, (grizY) 6

Sn,b Median value of absolute pairwise distances for band b g, r, i, z 5

W_Rangeb Weighted magnitude range for band b g, r, i, z A

log ( )cn b10 ,
2

th Common logarithm of the reduced chi-squared above threshold for band b g, r, i, z A

rssν,j Residual sum of squares from template curves. j ä [0, 2] denotes the rank order minima of this function (grizY) S19

μ Distance modulus of the best-fitting template L S19

Ag g-band amplitude for the best-fitting template L S19

ampj g-band amplitude for the jth best-fitting template, j ä [0, 2] L S19

P Best-fitting template period in units of days L S19

f Template estimated phase offset in units of days L S19

D(Oo-I)j Distance from the Oosterhoff I sequence for jth best-fit period and g-band amplitude, j ä [0, 2] L S19

D(Oo-II)j Distance from the Oosterhoff II sequence for jth best-fit period and g-band amplitude, j ä [0, 2] L S19

D(Oo-int)j Distance from the intermediate Oosterhoff sequence for jth best-fit period and g-band amplitude, j ä [0, 2] L S19

RFi_score Output score from the ith random forest classifier, i ä [1, 2]

Note. References: (1) Sokolovsky et al. (2017), (2) Stetson (1996), (3) Nandra et al. (1997), (4) Simm et al. (2015), (5) Rousseeuw & Croux (1993), (6) Enoch et al.

(2003), (A) Appendix A, (S19) Stringer et al. (2019).
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where mi and mj are separate observations. A similar metric Qn

is defined as
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Note that Qn records the kth value in the weighted absolute

pairwise differences between all of the observations, and k is

the binomial coefficient ⎛⎝ ⎞⎠
h

2
with h= floor(n/2)+ 1 for n

observations. Thus, Qn records roughly the midpoint of these

values. Another way to measure this is to calculate quantiles for

the differences in separate observations. We use the 90%

quantile values of these error-weighted N absolute pairwise

distances (NAPD) as a proxy for the weighted range that is less

sensitive to outliers.
Stetson’s J variability index (Stetson 1996) has been widely

used to identify pulsating variables such as Cepheids and RRL.
It builds upon the Welch–Stetson variability index I (Welch &
Stetson 1993), which measures the correlation between n
subsequent pairs of observations. Stetson’s J index measures
this correlation using single observations as well as pairs, so we
can apply it to both the single-band and multiband light curves:
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for pairs of observations in bands v and b and for single

observations. For v and b , we calculate the weighted mean for

the observations in that band. Sources with purely noisy light

curves have values close to zero.
The DES observing strategy often yields sequences of two to

three exposures taken of the same field in different filters, with
the filters chosen according to the seeing, Moon phase, and
number of missing observations in that field (see Figure 3 in
Diehl et al. 2016). Thus, to take advantage of this, we group
together any observations taken within an hour. Any group
with three observations abc within the same hour was treated as
three pairs ab, bc, ac, each weighted with a factor of 2/3 as
prescribed in Stetson (1996). All other groups with one or two
observations are weighted equally with a factor of 1. For this
measurement, we excluded the generally noisier observations
in Y.

We defined two new variability metrics intended to avoid
overly penalizing faint objects, which can manifest measure-
ment variability beyond that expected from their statistical
uncertainties. The first of these metrics was calculated from the
difference between the minimum and maximum measured
magnitude in each band, magb, weighted by the photometric

uncertainties on these values added in quadrature:

[ ]
( )
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2
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2 1 2
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Fainter stars have larger photometric errors and are harder to

identify as variable, as reflected in smaller values of ( )cnlog
b,

2

(Figure 16). To avoid rejecting faint variable objects while

retaining high purity for bright variables, we define a threshold

on ( )cnlog
b,

2 that changes with magnitude. To derive this

threshold, we binned the simulated RRab by their weighted-

average magnitudes in bins of 1 magnitude and fit a quadratic

curve to the 1% percentile value of the ( )cnlog
i10 ,

2 , shown by

the black curve in Figure 16, which follows the form

( ) ( ) ( ) ( )c c= - - -n n a a alog log mag , A10
b b b10 ,

2
th 10 ,

2
1 2

2
3

where magb is the weighted-average PSF magnitude of the

individual measurements (WAVG_MAG_PSF) in band b. The

best-fit values of the constants were found to be

a1=−0.07305, a2= 17.5165, and a3= 1.6036. The magni-

tude independent quantity, ( )cnlog
b10 ,

2
th, can be thought of as

broadening the ( )cnlog
b10 ,

2 criteria to retain high efficiency for

faint variable sources. RRL have positive values or values near

zero across their entire magnitude range, while nonvariable

objects have more negative values.
We also define a metric for discriminating RRL based on

their locations in period–amplitude space. We define a distance

metric for the separation between the template-fit period and

amplitude of objects with the Oosterhoff I, Oosterhoff II, and

Osterhoff intermediate sequences as parameterized by Fabrizio

et al. (2019) and scaled to the g-band amplitude using

Ag/AV= 1.29 as determined by Vivas et al. (2020b). We

calculate the distance between each object and each Oosterhoff

sequence from the logarithm of the period in days and g-band

amplitude in magnitudes using a rectangular approximation.

These distances are denoted D(Oo-I)j, D(Oo-II)j, and

D(Oo-int)j, where jä [0, 2] indicates the jth best template fit.

Figure 16. Distribution of ( )cnlog
b10 ,

2 for simulated RRab light curves in each

band binned by magnitude. The mean ( )cnlog
b10 ,

2 in each band are plotted with

solid curves, while the first percentile values for ( )cnlog
b10 ,

2 in each band are

plotted with dashed curves. The black curve shows the best-fit quadratic curve
to the first percentile value of the i-band curve, which was used to transform the

( )cnlog
b10 ,

2 features for target selection.
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Appendix B
Performance Curves and Top Features for Random Forest

Classifiers

Tables 5–7 present the top 10 features for the initial variable

selection, second-stage variability classifier, and light-curve

selection, respectively. The performance curves for these

selections are shown in Figures 17–19.

Figure 17. Performance curves for the initial variability classifier. Left: Fβ scores over all possible cutoff score choices. The black star denotes where Fβ is maximized.
Right: receiver operating characteristic curve of the RF classifier trained on cross-matched RRab and calibration stars. The black star shows the location of the
preferred cutoff score.

Figure 18. Performance curves for the second-stage classifier.

Figure 19. Performance curves for the third-stage classifier after template fitting.
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Appendix C
Halo Profile Fit

We fit the halo profile using a standard binned Poisson
maximum-likelihood approach. However, as with many
maximum-likelihood analyses, the calculation of the predicted
number of counts from our model is sufficiently complex that it
merits a devoted discussion.

We define our likelihood, , as the product over bins, i, of
the Poisson likelihood for observing k RRab candidates given a
model prediction of λ counts:

!
( )

l
=

l-


e

k
. C1

i

i
k

i

i i

It is more computationally feasible to work with the logarithm

of the likelihood, and thus we define

( ) ( !) ( )å l l= - - k klog log log , C2
i

i i i i

where the term ( !)- klog does not depend on the model

parameters and can be discarded. The model-predicted number

of counts in a bin, λi, is a function of the elliptical

Galactocentric radius of the bin, re,i, and the model parameters

θ of the broken-power-law density model described in

Equation (5):

( ) ( ) ( ) ( )òl q r q=r r f D dV, , C3i e i e i, ,

where f (D) is the efficiency of detecting RRab at the

heliocentric distance, D, of each volume element. This

formulation naturally incorporates the geometric effects of the

solar offset from the Galactic center, which are most noticeable

for distances of D 15 kpc (i.e., the heliocentric distance cut

translates to a cut in re). Numerically, we perform the

integration in Equation (C3) over HEALPix pixels of area

∼0.84 deg2 (nside= 64), incorporating the coverage fraction

of each pixel, which is estimated at scales of ∼166 arcsec2

(nside= 16384).
With our likelihood thus defined, we seek to sample the

posterior probability distribution as defined by Bayes’ theorem.
We explore the posterior probability distribution with Markov
Chain Monte Carlo using the affine-invariant ensemble sampler
emcee (Foreman-Mackey et al. 2013). We exclude the regions
listed in Table 8 and assign uniform priors to each of the model
parameters following the range described in Table 9. We
sample the posterior using 100 walkers with 5000 samples
each, discarding the first 1000 samples as burn-in. The
resulting posterior distributions from the RRab and Oo-I
subselection can be found in Figure 20. The best-fit parameters
are assigned from the median of the posterior, and the errors are
derived from the 16th and 84th percentiles of the posterior
distribution.

Table 8

Masked Regions for Halo RRL Study

Galaxy (α, δ) Mask Radius

(deg, J2000) (deg)

LMC (80.8938, −69.7561) 27.1

SMC (13.1867, −72.8286) 12.6

Fornax (39.9583, −34.4997) 2.0

Sculptor (15.0183, −33.7186) 1.0

Table 9

Priors on the Broken-power-law Model Parameters

Parameter Name Prior Range

Normalization, ρ0 (kpc−3
) uniform [0, 106]

Break radius, R0 (kpc) uniform [10, 50]

Inner slope, n1 uniform [−3.5, −1.0]

Outer slope, n2 uniform [−3.0, −6.5]

Note. The halo density profile fit assumes a fixed halo flattening of q = 0.7.

Table 6

Top 10 Features for Second Variability Classifier

Feature Name Importance

RoMSg 0.1977

Jg 0.1097

W_Rangeg 0.0769

NAPD90,g 0.0562

cn g,
2 /cn r,

2 0.0485

RoMSr 0.0358

NAPD90,i 0.0562

log ( )cn r10 ,
2

th 0.0340

RoMSz 0.0312

log ( )cn g10 ,
2

th 0.0321

Table 5

Top 10 Features for Initial Variability Selection

Feature Name Importance

RoMSg 0.1637

JgrizY 0.1604

log ( )cn i10 ,
2

th 0.1357

W_Rangeg 0.1055

log ( )cn g10 ,
2

th 0.0842

RoMSr 0.0815

Jg 0.0581

log ( )cn r10 ,
2

th 0.0571

Jr 0.0544

s gNXS,
2 0.0292

Table 7

Top 10 Features for Candidate Light-curve Selection

Feature Name Importance

-n n

n

rss rss

rss

,1 ,0

,0
0.1603

-n n

n

rss rss

rss

,2 ,0

,0
0.1559

rssν,1 − rssν,0 0.0660

rssν,0 0.0644

n

amp

rss

0

,0
0.0543

rssν,2 − rssν,0 0.0448

( )+ scoreRF1_score RF2_
1

2
0.0282

D(Oo-int)0 0.0267

RF1_score 0.0262

amp0 0.0241
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As can be seen in Figure 20, there is significant correlation
between the normalization parameter, ρ0, and the inner power-
law slope, n1. We note that in this regime, the analysis is
especially sensitive to the geometric corrections described
above for calculating the model-predicted counts (i.e.,
Equation (C3)).
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