Algorithmic Versatility of SPF-regularization Methods

Lixin Shen* Bruce W. Suterf Erin E. Trippt

March 11, 2020

Abstract

Sparsity promoting functions (SPFs) are commonly used in optimization problems to find so-
lutions which are sparse in some basis. For example, the ¢;-regularized wavelet model and the
Rudin-Osher-Fatemi total variation (ROF-TV) model are some of the most well-known models
for signal and image denoising, respectively. However, recent work demonstrates that convex-
ity is not always desirable in sparsity promoting functions. In this paper, we replace convex
SPF's with their induced nonconvex SPFs and develop algorithms for the resulting model by
exploring the intrinsic structures of the nonconvex SPFs. These functions are defined as the
difference of the convex SPF and its Moreau envelope. We also present simulations illustrating
the performance of a special SPF and the developed algorithms in image denoising.
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1 Introduction

Sparsity is a crucial assumption in various applications ranging from signal processing to machine
learning and statistics. The widespread interest in sparsity can be attributed to the fact that (i)
sparsity infers intrinsic structures of data and (ii) sparse data is easier to manipulate and interpret.
Informally, data in the form of vector or matrix is sparse if it contains few nonzero entries. The
natural mathematical measure of sparsity is the so-called “fy-norm”, which counts the number of
nonzero entries in a vector. In the context of optimization, this measure can be viewed as a penalty
on non-sparse solutions, and it is in this context that we call the £p-norm a sparsity promoting
function (SPF). However, solving {y-regularized optimization problems is known to be NP-hard.
To overcome this difficulty, the ¢;-regularization methods such as least absolute shrinkage and
selection operator (LASSO) [23] and Dantzig selectors [4] have been proposed. This relaxation
allows application of the many tools of convex analysis, making the problem numerically tractable,
but it also introduces bias by heavily penalizing entries with large magnitude. To address this,
nonconvex penalties have been proposed to replace the fi-penalty, including the ¢,-norm with
0 < p < 1[5, 11], the smoothly clipped absolute deviation penalty [10], the continuous exact £y
penalty [21], and the minimax concave penalty (MCP) [27]. There is increasing evidence that
supports the use of nonconvex penalties in many applications, see, for example [1, 14, 25] and the
references therein. Like the fp-norm, these penalty functions are all widely accepted as SPF, and,
as noted in [10], they all share certain essential properties.
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Based on these observations, we have attempted to give a formal mathematical definition of
SPF's in our recent work [20]. Loosely speaking, a function is an SPF if its subdifferential at the
origin contains the origin and at least one other element; that is, an SPF has a corner or cusp at the
origin. Viewed another way, the subdifferential of the function at the origin is a set which defines
a threshold for “small” entries which are considered noise. The proximity operator of the SPF will
send all elements under this threshold to the origin. Fortunately, all of the above penalties fit this
definition.

In [20], we introduced a family of SPFs each of which is the difference of a convex SPF with
its Moreau envelope. Functions in this family have the desired nonconvexity but enough useful
properties to develop efficient algorithms for optimization problems penalized by these SPFs. These
functions are non-negative, semiconvex, and a special case of difference of convex functions with one
term having a Lipschitz continuous gradient. Due to these properties, we refer to these functions
as structured SPFs. As an example, the MCP is a particular instance of this construction. Many
other examples and interesting properties of the structured SPFs can be found in [20].

The goal of this paper is to demonstrate the applicability of structured SPFs to a variety of
optimization models. To illustrate these ideas, we consider the regularized least squares model:

argmin{;)\H:v—ZHQ—l—(@oB) () Z{L‘EC}, (1)

where C' is a closed convex subset of R?, \ is a regularization parameter, z € R4, B € R"*¢, and
® is a sparsity promoting function on R”. We note that all of the discussion and results below
hold true if the quadratic term is replaced by a differentiable strongly convex function. We simply
choose this model as our prototype because of its simplicity and its applicability. Problems of
interest in the context of image/signal processing at large can be formulated as finding a solution
to (1). For example, if z is an image corrupted by Gaussian noise, and ® o B is a composition
of the fo-norm with the two-dimensional first order difference operator, model (1) reduces to the
well known Rudin-Osher-Fatemi total variation (ROF-TV) model. If ® is the ¢;-norm and B is
formulated from a tight framelet, then the resulting model (1) was discussed in [19].

We propose replacing convex ® with the structured SPFs. The flexibility provided by these
functions allows us to approach (1) from several perspectives and to make use of algorithmic ad-
vances in convex, difference of convex, and nonconvex optimization. In each case, we are able to
see how the structures of the SPF plays out in the algorithms and to what effect. More precisely,
three different algorithms for model (1) will be proposed by fully employing the various properties
of ®. The first algorithm explores the semiconvexity property of ® to identify the objective func-
tion of (1) in a form which can be optimized by the primal-dual splitting algorithm in [7]. The
second algorithm is based on the natural difference of convex form of ®, by its design, so that the
difference of convex algorithm (DCA), e.g., in [13, 14, 22], can be applied directly. As shown in
our previous work [20], the proximity operators of many constructed structured SPF's have explicit
expressions available, but, not utilizing it in the development of the above two algorithms. The
third algorithm makes use of the explicit form of the proximity operator of ®. The convergence
analysis of these algorithms and their applications in image denoising will be provided. Numerical
results demonstrate increased accuracy without additional computational time in many instances.

The rest of the paper is organized in the following manner. In the next section we recall
some necessary background in optimization, briefly review the definition of structured SPFs, and
point out some properties of these functions that will be explored in the development of algorithms
suitable for model (1). We also give examples that can be used in the model (1) for image denoising
application. In Section 3, the properties of structured SPFs are used to develop efficient algorithms



for model (1). Numerical experiments are conducted in Section 4 to demonstrate the performance
of the developed algorithms in image denoising. Our conclusions are drawn in Section 5.

2 Structured Sparsity Promoting Functions

In this section, we define precisely what we mean by sparsity promoting functions (SPFs) as well
as the family of structured SPFs introduced in our recent paper [20]. The relevant results to this
paper are included here for completeness and two examples of interest are provided in detail.

We begin by introducing our notation. We denote by R¢ the usual d-dimensional Euclidean space
equipped with the standard inner product (-, -) and the induced Euclidean norm || -||. A function p
defined on R? with values in R U {+o0} is proper if its domain dom(p) = {x € R? : p(x) < 400} is
nonempty, and p is lower semicontinuous if its epigraph is a closed set. The set of proper and lower
semicontinuous functions on R% to RU {400} is denoted by I'(R?). The set of proper, convex, and
lower semicontinuous functions on R% to R U {+oc} is denoted by T'g(R%).

The subdifferential and proximity operator of a lower semicontinuous function are two important
concepts in nonlinear optimization. We review some aspects of these concepts that are needed in
this paper. Recall that the Fréchet subdifferential of a function p : R — R U {+o0} at z € R,
denoted by 0p(z), is defined as

ap(z) == {t € R liming W —PE) = (bu=2) 0}.

u—z lu — ]|

The set Op(z) is closed and convex. If Op(z) # 0, we say that p is Fréchet subdifferentiable at z. If
p is convex, then dp(z) := {t € R?: p(u) — p(z) > (t,u — 2), u € R}. If p is Fréchet differentiable
at z with a derivative, then dp(z) = {Vp(2)}.

We further review some useful simple calculus results for Fréchet subdifferentials. If a function
p: R = RU {+oo} attains its local minimum at z € R, then 0 € dp(z) and the point z is
called a critical point of p. For any o > 0, it holds that d(ap)(z) = adp(z). For any functions
p1: R = RU {+o00} and py : R? — R U {+o0} Fréchet subdifferentiable at z, then p; + po is
Fréchet subdifferential at z and 9(p1 + p2)(z) € Ipi(z) + Ip2(z). If one of the above functions is
Fréchet differentiable at z, say p1, then d(p1 + p2)(2) = Vp1(2) + Op2(2).

The proximity operator was introduced by Moreau in [17, 18]. For a function p € F(Rd), the
proximity operator of p at z € R? with index « is defined by

1
Prox,,(z) := arg min {p(w) + 2—Hw —z2|)*rw e Rd} .
a

The proximity operator of p is a set-valued operator from R — 2Rd, the power set of R%. Clearly,
for any w* € prox,,(z), by the calculus of Fréchet subdifferential, we have that

L2 —w*) € ap(w). )

@
The Moreau envelope of p at z € R? with index «, denoted by env,p(z) is closely related to the

proximity operator prox,(z). That is,

1
envap(z) = p(w*) + %HUJ* - 2H2a



where w* is in prox,,(z). If p is convex, then the proximity operator of p is a single-valued operator
from R?Y — RY. Furthermore, equation (2) becomes

é(ld —Prox,,)(2) € Op(prox,,(2)).

With this preparation, we are now able to give our definition of sparsity promoting functions and
describe some of their properties.

Definition 1. We say a function o € T(RY) is sparsity promoting if (i) @ achieves its global
minimum of zero at the origin and (ii) there is a nonzero element in dp(0). Denote by SPF(RY)
the set of sparsity promoting functions on RY.

The first item of Definition 1 ensures that nonzero entries are penalized. The second item
describes the necessary sharpness of SPF, and the set dp(0) defines what is considered small and
therefore what should be sent to zero. For example, if ¢ € T'o(R?), then (2) becomes

prox,,(z) =0 < z € adp(0).

We note that all of the penalties discussed above satisfy this definition, as does any norm on R¢.
Now for any convex ¢ € SPF(R") and any o > 0, we define

Yo = P — envy p. (3)

By construction, ¢, is a nonnegative difference of convex functions. We summarize relevant prop-
erties of ., below. Based on these properties, we refer to these functions as structured SPF’s.

Lemma 1. Given a convexr function ¢ € SPF(RY) and a > 0, the function ¢, defined by (3) has
the following properties:

(i) ¢a € SPE(RY) with 00 (0) = p(0);
(ii) o is L-semiconver, i.e. @o + 5| - || is conve;
(iii) given B € R"™4 .0 B is @—semiconvex.

Proof.  The proofs of items (i) and (ii) can be found in [20]. We now turn to prove item (iii).
Define ¢ = ¢q + 5=|| - [|%. Then, for any z € R"

B B2
o0 B@) + 1B 1012 — (e + 1B g2 -

Bzxl|%. 4
5o, 70 | Bz || (4)

|

2a

By item (ii), 1 o B is convex. Note that ||B|?||z||?> — ||Bz||> = =" (||B||?1d —B" B)z > 0 for all
2

r € R% so it is convex. Hence, ¢, 0 B+ % || -]|? is convex, which implies that item (iii) holds. [J

One benefit of Definition 1 is that it is sufficiently general to encompass many examples. In
practice, we often require more of ¢ than convexity and can therefore specify further properties
of .. Properties such as separability or block-separability are assumed to control the fineness
of sparsity enforcement, and convergence analysis may rely on the function being continuous or
subanalytic. In each of these cases, ¢, inherits the given properties. This is evident in the following
examples.



2.1 Example 1: ¢ is the absolute value function

Relying on the separability of the ¢1-norm, we simply let ¢ be the absolute value function, that is,
o(z) = |z| on R. Clearly, because ¢ achieves its minimum at the origin and dp(0) = [—1, 1], the
absolute value function is sparsity promoting. The proximity operator and the Moreau envelope of
| - | with parameter a > 0 are

1,2 :

_ B . _ [ a7t if |z] < o
prox,.|(z) = sgn(z) max{0,[z| —a} and envqy|-|[(z) { ] - 1a, otherwise,
respectively. It is well known that prox,, is called the soft thresholding operator in wavelet
literature [9] and env, | - | is Huber’s function in robust statistics [12]. We note that for z € R?

d
ProX|.|, (¥) = prox,).(z1) X -+ X prox,.(zq) and enve || - [l1(z) = 3 _i_; enva | - [(z:).

Figure 1(a) depicts the graphs of | - | (solid line) and its Moreau envelope (dotted line) while
Figure 1(b) shows the graph of its the proximity operator.

Figure 1: Let ¢ = | - | be the absolute value function. (a) The graphs of ¢ (solid), env,¢ (dotted);
(b) The typical shape of prox,,; and (c) the graph of ¢, = ¢(x) — envap(z). Near the origin ¢,
retains the structure of ¢, which is emphasized in black (solid-dotted).

As defined in (3), for the absolute value function ¢,

2| — =a?, if 2] < o

pa() = [2] — cnva |- |(x) = { :

5Q, otherwise.

This function ¢, (see Figure 1(c)) is identical to the minimax convex penalty (MCP) function given
in [27], but motivated from a statistical perspective. The expression of proxg, depends on the
relative values of @ and 3, and takes the form as follows (see [20]):

25 (x| = B) - sgn(x) - max{[z| — 8,0} - X{jzj<a) T {=}  X{ju|>a}, B <
proxg,, () = ¢ {0} X{je|<a} T 580(7) - [0, 0 - X{jz|=a} T {7} X{jz|>a}s if 8=«
{0} - X{jz)<ay +sgn(@) - {0, VaB} - X{jo=vamy + {2} X{z)>vapy, B >a
(5)
Here xs has value 1 at points of the set S, and 0 at points of R\ S. The graphs of proxg, for
different values of a and 3 are plotted in Figure 2. It is straightforward to extend this to R¢. In

fact, we have (| - [1)a(z) = L, @al@i)-
2.2 Example 2: ¢ is a compositional norm

The example here is motivated from the total variation that will be defined in Section 4. To define
this function, let the disjoint sets w;, j = 1,...,J be the partition of the set {1,2,...,d}, that is



Figure 2: Typical shapes of the proximity operator of | - |, for (a) 8 < «, (b) 8 =, (¢) f > a.
The sparsity threshold and the thresholding behavior depend on the relationship between « and .

U‘]-lewj ={1,2,...,d}; and let 1, be the #w; x d matrix formed by those rows of the d x d identity
matrix with indices in w;. Since I,z for x € R? is the vector whose entries are those of x with
indices in wj, we call I,; an extraction matrix. With these preparation, in the second example, we
will consider the following function: for z € R?

J
pla) = > Ll (®

It is not difficult to show that ¢ in (6) is a norm of R? (associated with the given partition). In [3],
this ¢ is referred to as a compositional norm since it is a norm composed of norms over disjoint
sets of variables.

For this example, we will show that ¢ in (6) is a sparsity promoting function and ¢, can be
presented in terms of | - |, from Example 1. Indeed, the following result says that ¢ in (6) is a
sparsity promoting function.

Proposition 1. Let ¢ be a compositional norm on R?, as defined by (6). Then ¢ € SPF(R?).

Proof. Clearly, ¢(0) = 0 and ¢ achieves its global minimum at the origin. Further, we have
dp(x) = Z;-Izl IJ],(?H - ||(1o;2). Since 9| - [|(L,;0) is the unit ball of R#“  we know that dp(0)
contains nonzero elements, so ¢ is an SPF. O

To compute p, and its proximity operator, we need the following lemma, which can be viewed
as an extension of the first example.

Lemma 2. Let f be the fa-norm on R?, that is, f = || - ||. Then, it holds that for any nonzero
z € R? and two positive parameters o and f3
x T
proxgs(z) = Pr0X5\~|(H$H)m and proxgy (v) = prox5|.|a(H:z:H)m

with the convention ﬁ =0.

Proof. The derivation of proxss can be found in [2]. A direct computation (for example, see [16])
gives env,, f(z) = envy| - |(||z]|). Therefore, fq(x) = ||z|| —enva| - |[(||z]]) = |- |o(||z|]). This function



is isotropic, meaning it depends only on the magnitude of its argument and not the direction. Then
for any = € R?, every element of proxgy, (z) should be a multiple of ﬁ Moreover, we have

1
proxgy () = argmin {fa(w) + —Hw —z|*we Rd}

= . argmin —(r—|z|)?: T
- {r|<>+ 57~ el s 7 € R

T
= g POt (21D
This completes the proof. D

The expression of ¢, is given in the following lemma.

Proposition 2. Let ¢ be a compositional norm on R?, as defined by (6). For any x € R? and a
positive parameter o, we have that

J
D1 lalll L, 2. (7)

7j=1
Furthermore, for any positive parameter 3, we have that

1, X

proxﬁw ZI Proxg,. ‘(||ij:£||) i ﬁUH (8)
Jj=1 Wi
and
rox ZI roxg. (|| 1w, x||) Ly 9)
ProXgy, ( PrOXg) o \lHw; T 1.z
Jj=1 7

Proof. We omit the proof of equation (8) here since its proof is similar to that of equation (9).
Because of the block structure of ¢ given in (6), and using the definition of Moreau envelope, we
have that

J
envy(x me {Hv —Lx|?+ v :v e R#"JZ} = Zenva| (|, x]])-
Jj=1 j

From the above equation, we have

J

J
pa(@) =D (Hull = enval - |11z ]) = D |- ol Loy),
7=1

Jj=1

which is (7).
Next, we compute the proximity operator of .. We have that

J
. 1
proxg, (r) = argmin g <\ NallHw;wll) + %lejw — ijx\2> cw € RY
i=1

J
— Z[Ejargmin{o loo([Jue]]) + ﬁ||u - Iw]x\|2> Tu € R#‘*’J}’
j=1

which is (9) by Lemma 2. O



3 Problem Formulation and Algorithms

We are now able to state the model under consideration in this paper and to provide some insight
into its benefits. We are interested in solving

argmin{ %||a:—zH2+g0a(B:r) :CCEC}, (P)

where C' C R? is closed and convex, z € R%, B € R™*9 and ¢, is an SPF as defined by (3).

While in some instances ¢, may be convex (e.g. if ¢ is sufficiently strongly convex), without
further information, we regard ¢, as nonconvex. However, depending on the parameters a and A
as well as the choice of matrix B, we see that (P) may be convex.

Lemma 3. For any convex function @ on R™, an n x d matriz B, positive parameters \ and «,
and any fired z € R™, define

1
W(zx) := ﬁHx — 2||*> 4+ ¢a(Bz).
If A < ﬁ, then W is strictly convexr on R™. If A = ﬁ, then W 1is convex.

Proof. This is a direct consequence of item (iv) in Lemma 1. O

6]
1B]1*

Clearly, the above lemma tells us that for A < , any critical point of (P) is a global

minimum, and for A < ﬁ, the minimizer is unique.

The structure of ¢, lends flexibility to this model; (P) can be made to fit a variety of generic
models by grouping terms in different ways. For example, the objective function of the model can
be viewed as a difference of convex functions sy ||z — z[|* + ¢(Bz) and env, ¢(Bz), and therefore
suitable for the rich framework of DC algorithms [1]. Based on this structure, we can decompose
model (P) in three ways which correspond to different classes of algorithms: convex, difference
of convex, and nonconvex. More precisely, we study three algorithms which highlight each of
these cases: primal-dual splitting (PD), difference of convex (DC), and primal-dual hybrid gradient

(PDHG) method.

3.1 Primal Dual Splitting

By identifying
1
F(z) = gy llo = 2[5 = enva ¢(Bz),  G(2) =1c(z), H(z) = ¢(2), (10)
model (P) can be viewed as a special case of the following generic model

argmin{F(m)—i—G(m)—i—H(B:c) 1x € Rd}. (11)

Under the assumptions that (i) F' is convex and differentiable with L-Lipschitz gradient and (ii) G
and H are proper, convex, lower semicontinuous, and prox-friendly, several algorithms have been
developed for the optimization problem (11), see, for example, [6, 7, 24]. We adopt the primal-dual
splitting algorithm in [7] as follows: given initial points (x(o),y(o)) and positive parameters o, T, p,
iterate

0D = prox_o(z® — 7V F(®) - rBTy®) (12)
G = prox, e (y® + o BEFHD — 4R (13)
L (E+1) F(k+1) (k)

|:y(k:+l)] =P [g(k:-i-l)] +(1=p) [y(kr)] : (14)



In the above scheme, H* is the Fenchel conjugate of H. The convergence analysis of the above
iterative scheme given in [7] is stated in the following result.

Proposition 3 (Condat [7]). Let 7, o, and p be the parameters in (12)—(14). Suppose that the
functions F, G, and H in (11) are convex, the gradient of F is L-Lipschitz with L > 0, and the
following hold: (i) L —o||B||> > £; and (ii) p € (0,1]. Then the sequence () ey converges to a
solution of the problem (11).

We now verify the assumptions of Proposition 3 through the identifications (10).
Proposition 4. Let F' be defined as in (10). Then the following statements hold:
1. F 1is differentiable. Moreover, its gradient is L-Lipschitz continuous with

(% if 1B < %
= 2
\/% N HszH (IB)|2 — &), otherwise.

>

2. F is strictly convex on R™ if A < convex if X =

HBH2’ 1BI1%*

Proof. (i): We know that Moreau envelope of a convex function is differentiable. Hence, F' is
differentiable and is simply the difference of two differentiable functions. Actually, we have that

1

VF = X( —z)— BTproxa_lw*(a_lB-).
For any x and y in R", let us denote p = proxaflw(a*le) and g = ProxX,—1,« (a"'By). Then,
one has
VE@) - VEQIE = —fa—yl? - (0B - — BT (p—q)|?
IVF(x) WI" = wllz-yl" = (" Ble-y.r-a+[B (p-dl
1 2c
< szl —ul? = llp—al® + 1B (0 - o)
1 2a
= zle—ulP+@-a (BBT - -1d)(p-q).

Obviously, 1f |B||* < 22, then BB' — %*1d is semi-negative. Thus, |[VF(z) - VF(y)| < 3zllz—yl.
If || B||> > 2, then, by using the mequahty lp —qll < a7 YB||||x — y|, we have

20 HBH2

5% Id)(p —q) <

(p—q)T(BBT - (IBII? - “)Hw—yn?.

The result follows immediately.
(ii): By the definition of the Moreau envelope, we have

1 1
F(z)= 5”1‘ — zH2 — min {2(1‘16 _ BxH2 +o(u)tu e R”}
= oxllo = 2l = s Bl + o wax {208 Tu, ) — [l - 200(w) s u € R}
2\ 2 2 ’ : :

Since

1 2 1 2 __ T 1 2 T
Sl =27 = 5 1Bal? = = <2)\Id B B>x+2)\(||z|] 2:"x),

which is strictly convex if A < B2 and max {2(BTu,z) — ||ul* — 2ap(u) : u € R"} is convex as a

HB |
function of x, we see that F' is strictly convex. Finally, if A = ﬁ, it is clear that F' is convex. [

9



Algorithm 1 is the direct application of (12)-(14) to (P) through the identifications (10). We
note that for the given F',

VF(x)= %(x — 2) — B'"Venv, ¢(Bx).

Applying the Moreau identity, we write V envy p(Bx) = prox,-1,- (a~'Bux).

Algorithm 1: Primal-Dual Splitting Algorithm for (P)
Input: Choose the positive parameters 7, o, the sequence of positive relaxation

parameters (p,)nen, and the initial estimates (%) € R9, y(©) € R”,
for n=0,1,... do

A
F5D — prox, . <y(k) + o B2k _ x(k)))

[w(kﬂ)} F(k-ﬁ-l)] ra ) I:l.(k:)]
<_ ~ —
y(k+1) P y(k+1) p y(k)

F* D proje <9€(k) - (1(37(k) - Z)> s (prox@”%’*(ailB‘”(k)) B y(k))>

Theorem 1. Let A\, a, and z be as in problem (P), and let T, o, and p be the parameters in

Algorithm 1. Suppose that A < ﬁ and the following hold:

-y 1 1.
(i) 7 —olB|I* > 5x;
(i) p € (0,1].

Then the sequence (l‘(k))keN produced by Algorithm 1 converges to a solution of the problem (P).

«

Proof. By Lemma 3 and Proposition 4, if A < B2 then the objective function of problem (P)

is strictly convex, and the gradient of F' given in (10) is %—Lipschitz continuous. Hence, the

convergence of the sequence (x(k)) kenN 1s the consequence of Proposition 3. O

3.2 Difference of Convex Algorithm
By ¢a = ¢ — env,p from (3), set

1
Qz) = 5y lw = 2[5+ 10(2) + ¢(Bz), P(z) = enva(Ba), (15)
then model (P) can be viewed as a special case of the following generic model
min{Q(z) — P(z) : € RY}, (16)

where both P and @ are convex functions. Due the objective function is the difference of convex
(DC) functions, model (16) is referred to as DC program.

DCA (DC algorithm) is based on local optimality conditions and duality in DC programming
[13]. The main idea of DCA is as follow: at each iteration k, DCA approximates the second DC

10



component P(x) by the affine approximation Py(z) = P(z®)+(y®) z—2®) with y*) € 9P (z*)),
and minimizes the resulting convex function. DCA for (16) is as follows:

y*) e aP(®) (17)
2 ) e argmin{Q(z) — Py(z) : x € R%} (18)

As the optimal solution set of (18) is 9Q*(y*)), the DCA scheme can be expressed in another form:
For k=0,1,...,set y® caopPE®);, z*+D e aQ*(y*).
We state the local convergence properties of DCA in the following theorem (see [22]).

Theorem 2 ([22],Theorem 3.7). Suppose that the sequence {x*)}rey is defined by the iterative
scheme (17)-(18) for problem (16). Then we have

(i) The objective value sequence {Q(z*)) — P(x*))}ren is monotonically decreasing.

(ii) If the optimal value of problem (16) is finite and the sequence {x®}nen is bounded, then
every limit point x° of {x(k)}keN s a critical point of the problem.

With these properties on DC programming in hands, we turn back to the problem (16) with P
and @ given in (15).

Algorithm 2: DCA scheme for (16) with P and @ given in (15)

Input: Choose initial estimate (9 € domdP.
for k=0,1,... do

y*) «— BTVenv, p(Bz™) (19)

)« argmin {;}\Hx —z2)? +wo(z) + o(Bz) — (y®) z) sz € Rd} (20)

Theorem 3. Suppose that the sequences {x*¥)}en and {y*)}pen are generated by Algorithm 2 for
problem (16) with P and Q given in (15). Then every limit point z° of {x"*)Yicn is a critical point
of the problem. Moreover, limy_,o [|*+1) — 2(®)|| = 0.

Proof. Recall that Q(z)—P(z) = ||z —z||*+tc(2)+¢a (Bx) which is nonnegative and continuous
on its domain. Hence, the optimal value of problem (16) is finite. From item (i) of Theorem 2, we
have that

1

o le® = 2l? < Q™) - P®) < Q") - P®) < oo
This leads to the boundedness of the sequence {z¥)},cn. From (19), prox,,(0) = 0, and the
fact that Id —prox,, is nonexpansive operator, we have ly®)|| = BT (1d —proxaw)(Bx(k))H <

@Hx(“H, hence the {y®)}ren is bounded. By item (ii) of Theorem 2, we know that every limit
point z° of {z(*)},cn is a critical point of the problem.

By y*) ¢ aP(z®), we have P(z**+D) > P(zx®*)) 4 (y*) z+D _ 2k Since Q is strongly
convex and 21 minimizes Q(z) — (y*), ), we get

1
Qa0 =y, 28+D) < Q@) - (y®,2%)) — - la+D — 2|2

11



Therefore, it follows that

Qz*1) — P(aF+D)
Qz® D) — (Pz®) 1+ (y®) pk+D) _ x(k)>)

= Q@) — () 2ty — (P(a) — (y®,20))

1
< Q™) — .20 — Z et 2|2 — (PE®) - (49,2 ))

IN

= QW) — P®) - 2+ - W2,
From this, we get
1
S5z — WP < QW) — PE)) - (@) — PtD))

Summing the above inequality for all k& from 0 to infinity yields
1 oo
3 ) — )2 < Q) - PEO),
k=0

which implies limy_,o |21 — 2(#)|| = 0.

3.3 Primal-Dual Hybrid Gradient Methods

Set )
Q) = g5 llz — 23 + (@), Pa) = pala),

then model (P) can be viewed as a special case of the following generic model

min{Q(z) + P(Bz) : z € R%},

(21)

(22)

where P is semiconvex and @ is convex. In this setting, a primal-dual hybrid gradient (PDHG)
method was proposed for model (22) in [15] as follows: Given a pair (z(?), () € R? x R and for

0 =20 5 >0 7>0,and p € [0, 1], iterate for all k >0

w1 = argmin {%Hu — BzWI2 = (u,0®)) + P(u) 1 u € Rd}

g+l = 9 4 5Bz — (D)

2D argmin{;Hx _ x(k)||2 + (Bu, g(k+1) > +Q(z):z € Rn}
T

gkt (k1) +p(x(k+1) —:):(k))

(26)

We note that both u*+1) in (23) and z**1) in (25) can be explicitly expressed in terms of proximity
operator. Below we give our PDHG-based algorithm for solving the optimization problem (22).

Theorem 4. For optimization model (22) with P and Q given in (21), if a > M||B||?, then
Algorithm 3 converges to the unique solution x* of model (22) for oo = 2, ro||B||? < 1, and any

p € [0,1], with rate ||z® — z*||2 < C/k for some constant C.

Proof. As we know, P is E—semiconvex and @ is X—strongly convex. By Theorem 2.8 in [15], the

conclusion of this theorem holds for the given parameters o, 7.

12
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Algorithm 3: PDHG scheme for problem (22)
Input: Choose A > 0, a > M| B|?, 0 =227, 7 < o7!||B||72, and p € [0,1]. Initialize
gg(o) =2z, 0(0) = O7 and j(o) = 1;(0)
for k=0,1,... do
1) w1 « prox, 1

oo (B2 1 30

2) k1) ¢ g(k) 4 o (Bz(k) — y k1)
2) 2+ « projg (T%x(w + Tz ;—AABTH(H”)

3) f(k—l—l) . (L'(k+1) —|—p(az(k+1) . x(k))

3.4 Discussion

As noted above, one of the main motivations for using nonconvex penalties is to avoid biased
solutions. We now provide some discussion to show how this is accomplished in practice in each
of the above algorithms. To illustrate these ideas, we look at the example of piecewise constant
signals in R?. To be precise, we set ¢ = | - |1, C = R? and let B be the one dimensional
difference matrix. The vector z € R? is the noisy observation from which we hope to recover the
true signal. Piecewise constant signals are sparse under the transformation B; in other words, all
of the information about these signals is contained in the amplitude changes. When noise is added,
the signal becomes nonsparse, though we assume that the noise is small compared to the signal.
An example of such a signal and the noisy observation are given in Figure 3.

. | B :
| H\ TR R | e o
1 LUl R i

Figure 3: (a) A piecewise constant signal z, (b) the signal with additive Gaussian noise z, (c) the
sparse representation Bz, and (d) the nonsparse Bz.
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In Algorithm 1, the primal update is
£+ = proje ($(k) — %(az(k) —z)+7B" (V env, o(Bz®)) — y(k))> ,

where V(env, woB)(z*) = BT PIOX, -1, (a~'Bz®)), as written in Section 3. When ¢ = ||-||1, this
term is projection of the differences of the current iterate onto the £, unit ball {z € R?: ||z|| < 1}.
This moves z*) away from the set argminenv, ¢ o B = argmin ¢ o B, which keeps relevant data
from being pulled to zero. As shown in Figure 4, the addition of this term boosts the features of
the current iterate in proportion to their magnitude, balancing the shrinkage enforced by the dual
update.

1 iy .
g | k g
il ) | Ulr :WUH 1

(a) (b)

Figure 4: Algorithm 1. (a) One iterate z(*) and (b) 2*) 4+ BTV env,, ¢(Bz*®) (dashed black) over
) (solid blue). The scaling factor 7 is omitted for visibility.

Algorithm 2 requires solving a convex optimization problem in each iteration. Note that
i Lo e (k) ) d
argmin{y(Bz) + o |z — z||* — (V(envq @ 0 B)(z\"), x) : x € R}

=argmin{p(Bz) + (24 AV(envy @ o B) ()2 : = € RY}.

1

B3 | —
That is, this algorithm modifies the noisy signal at each iteration using the most recent update. This
is very similar to Bregman iterations for solving the TV denoising problem with the subgradient
of || B - ||1 replaced by the gradient of the envelope (see [26]). As before, this boosts the relevant
features of the signal, as illustrated in Figure 5.

(- LA

W™, i F“'"J ahi h |
s m M\ & 5”,‘1' vaM | L MvJM‘

|
il

| 0
o
b b
1 ot 1
e
» s
T w0 w0 T m m m m @ w0 w0

(a) (b)

Figure 5: Algorithm 2. The noisy signal (a) and the L1 initialization points z + AB " env, ¢(Bz*))
for (b) k = 4.
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Algorithm 3 uses the proximity operator of ¢, directly, splitting the problem into a sparsity
update and a fidelity update. As sparsity promoting functions, the proximity operators of both ¢
and ¢, send small entries to zero. However, the nonconvexity of ¢, gives us a greater tolerance
for large entries. For instance, when ¢ = || - ||1, prox,, shrinks all entries towards zero, while prox,,
is the identity on entries beyond a certain threshold. These large entries correspond to true signal
information. This is illustrated in Figure 6.

x | M } N 5 Lokl M | L.l .x . 1

o
s
o
s
o o LA o
s ' Y s
0 Y Y 10
s
0 o
0 s w0 so a0 20 w0 0 w0 a0 50 0 s s a0 a0 w0 w0 w0 a0 50

(a) (b) (c)

Figure 6: Algorithm 3. (a) The true sparse representation of the signal, (b) Bz*) + ;9(]“) for
(Bz®) + Lok),

k =10, and (c) the update prox,-1,

In summary, each algorithm reduces bias differently: Algorithm 1 emphasizes the signal fea-
tures of each primal iterate, Algorithm 2 consists of Bregman-like iterations which incorporate the
boosting term into the noisy signal, and Algorithm 3 uses the form of prox,,  directly. However, in
each case we see that the inclusion of the envelope works to preserve signal features, either directly
(as in the first two algorithms) or implicitly (as in the last algorithm).

4 Numerical Experiments

In this section, we specify the matrix B, the function ¢, and the set C' in model (P) so that the
resulting model is suitable for image denoising.
We choose the matrix B of size 2N? x N2 through an N x N matrix D as follows:

0

-1 1

B = [IdN ®D} with D := ) ) ,

D ®Idy .
-1 1
where Idy is the N x N identity matrix and the notation P ® () denotes the Kronecker product of
matrices P and Q. We know that || B|> = 8sin? % <1 (see, e.g., [16]).
Let u be a vector in R2V*. We choose @ R2N ‘SRasa compositional norm given in (6) with

wj = {4, N? + j}, that is,
N2
Uj
u) =
=3 [,

With B and ¢ given in the above, p(Bz) is called the total variation of the image = in RV 2,
and the pair of ¢(Bx) with indices in w; is essentially the discrete gradient of the image at the
j-th pixel. Here, x is the vectorization of an image formed by stacking the columns of this image

2
. ueR,
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into a single column vector. For easier reading without causing ambiguity, an image is treated as a
two-dimensional array and a one-dimensional vector 1nterchangeably Finally, smce all pixel values
of a gray-scale image are in [0,255], we choose C := [0, 255" for images in RY

Prior to applying Algorithm 1 (PD), Algorithm 2 (DCA), and Algorithm 3 (PDHG) for model (P),
we also need to know the proximity operators of the functions ¢ and tc. The proximity operator
of g is given in (9). From the Moreau identity and (8), we know that for any u € R2N”

iju

[y

ProX, «(u) = u — aproxaflw(a_lu) = ZIJJ_ - projo, 1) ([ Lw,ul) -

which does not depend on o. This formula says that for each pair of u with indices wj, its projection
onto the unit ball centered at the origin is the pair of prox,«(u) with the same indices. For the
indicator function v¢, prox,, = projo which will send the values in a vector larger than 255 or
lower than 0 to 255 and 0, respectively.

For comparison, we include the ROF-TV model which is a special case of model (11) with
= 55l —2||%, G = ¢, and H = ¢. This model is solved by the iterative scheme given in
2)-(14). The corresponding algorithm is referred to as ROF-TV algorithm.

In the rest of this section, we present all parameters used in Algorithms ROF-TV, PD, DCA,
and PDHG, and compare their numerical performance for image denoising.

F
(1

4.1 Parameters and Stopping Criterion

We first talk about the parameters related to the underlying models, then discuss the parameters
associated with each algorithm, and finally describe the stopping criterion for all algorithms.

Model (P) involves two parameters A and «. It is well known that the regularization parameter
A varies according to the noise level of the noisy image to be denoised. From Proposition 4, we
know that model (P) is strictly convex, hence, has a unique solution when o > A||B||?. Therefore,
in our experiments, we always choose a = 1.5)\|| B||? for each given \.

Methods of ROF-TV and PD exploit the iterative scheme (12)-(14) for which the proper values
of the parameters o, 7, and p are to be assigned. We use the model for ROF-TV algorithm as
an example to show how to set these parameters. We reformulate the associated model (11) with
F=3|-—2|%, G = ic, and H = ¢ without changing its minimizer, to the one with F = 3||- —z|2,
G = 10, and H = \p. In our simulations, we choose o = 0.1, 7 = 0.99/(0.5 + ¢| B||?), and p = 1.
With these chosen parameters, the sequences of {x(k)}keN, generated by ROF-TV, PD, and DCA,
converge to the solutions of the corresponding optimization models, respectively.

For PDHG, we choose o = 2/, 7 = 0.99/(c||B|?), and p = 1. Then, the convergence of the
sequence of {z(¥)},cy, generated by PDHG, is the consequence of Theorem 4.

Iterations in the algorithms of ROF-TV, PD, DCA, and PDHG are terminated whenever one
of the following two conditions occurs: the maximum number of iterations has been exceeded or

lz®+D — @) /]2®)| < tor,

where tol denotes a prescribed tolerance value. In our experiments, we set tol = 107*. For
Algorithms ROF-TV, PD, and PDHG, the maximum number of iterations is set to be 300. For
Algorithm DCA, there are basically two levels of looping: outer loop and inner loop. The outer
loop refers to the procedure of generating y*) and z(*+1) via (19) and (20), respectively. The inner
loop is used to find z(*+1) via an iterative scheme. We set the maximum number of iterations for
the outer loop to be 10, and 100 for the inner loop.
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4.2 Numerical Results for Denoising

In our experiments, we choose the images of “Cameraman” (Figure 8(a)), “House” (Figure 9(a)),
and “Peppers” (Figure 10(a)) with size 256 x 256, as the original images x. The noisy images (for
example, see, Figures 8(b), 9(b), and 10(b)) are modeled as

z2=x+¢€

with € being the white Gaussian noise of standard derivation 7. The noise at level n being 15,
20, and 25 will be added to the test images to evaluate the performance of the proposed model
and the corresponding algorithms. The quality of the denoised image  obtained from a denoising
algorithm is measured by the peak-signal-to-noise ratio (PSNR)

255
PSNR := 201og,, <256Hx — %‘> .

In Table 1, we reported the average PSNR values of the denoised images of “Cameraman” and
the CPU time consumed by all tested algorithms for various values of A over 20 realizations at
the same noise level. Note that algorithms PD, DCA, and PDHG are developed to find a solution
to model (P). From this table, we observed that PDHG performs always better than PD and
DCA in terms of both the PSNR values of the denoised image and the CPU time used. The
same conclusion can be drawn for the image of “House” as shown in Table 2. Numerical results
for the image of “Peppers” are listed in Table 3. In this case, DCA produced better denoised
images than PD and DCA in terms of the PSNR values, however, using much more CPU times.
From the PSNR values in these tables, we can see that the quality of the denoised images via
the optimization model penalized by the proposed structured promoting functions (solved by PD,
DCA, and PDHG) is better than that with the classical ROF-TV model. For noise at level n = 20,
Figure 7(a) illustrates the PSNR values of the denoised “Cameraman” images via all methods over
20 noise realizations while Figure 7(b) presents the used CPU times. We can see that PDHG
consistently produces the highest quality images with the least CPU time used.

Figure 8 shows the denoised images when all algorithms apply to the noisy image of “Cam-
eraman” with noise level of 20. For the same noise level, Figure 9 shows the denoised images of
“House” while Figure 10 shows the denoised images of “Peppers”. Although all denoised images
look similar, visually, we can see that the denoised images by PDHG have less artifacts than the
others.
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Table 1: Numerical results of ROF-TV, PD, DCA, and PDHG methods for the image of “Camera-
an”. The pair (-,-) is used to report both the PSNR value (the first number) of a denoised image
and the CPU time (the second number).

A \ ROF-TV PD DCA PDHG
White Gaussian noise with standard deviation 15
(30.32, 0.19) (30.20, 0.18) (30.17, 1.41)  (30.22, 0.18)
10 | (30.30, 0.20) (30.50, 0.21) (30.44, 1.51) (30.52, 0.18)
11 | (30.18,0.22) (30.62, 0.22) (30.54, 1.52) (30.65, 0.18)
(
(

12 | (30.01, 0.24) (30.61, 0.24) (30.52, 1.59)  (30.63, 0.19)
13 | (29.80, 0.26) (30.50, 0.27) (30.41, 1.54)  (30.52, 0.20)
White Gaussian noise with standard deviation 20
14 | (28.79, 0.25) (29.00, 0.26) (28.92, 1.70)  (29.02, 0.23)
15 | (28.73,0.26) (29.10, 0.28) (29.02, 1.80)  (29.13, 0.22)
16 | (28.64, 0.28) (29.13,0.30) (29.03, 1.94) (29.16, 0.22)
(
(

17 | (28.52,0.30) (29.09, 0.31) (28.99, 2.15)  (29.11, 0.22)
18 | (28.38,0.33) (29.00, 0.34) (28.91, 1.91) (29.03, 0.23)
White Gaussian noise with standard deviation 25

18 [ (27.67, 0.38) (27.87, 0.41) (27.78, 2.55)  (27.89, 0.38)
19 | (27.65, 0.38) (27.97,0.39) (27.87, 3.09)  (28.04, 0.27)
20 | (27.60, 0.33) (28.01,0.36) (27.90, 2.28) (28.04, 0.26)
21 | (27.43,0.38) (27.96,0.39) (27.85,2.47) (27.99, 0.26)
22 | (27.33,0,40) (27.89,0.41) (27.78,2.34) (27.91, 0.26)

Table 2: Numerical results of ROF-TV, PD, DCA, and PDHG methods for the image of “House”.
The pair (+,-) is used to report both the PSNR value (the first number) of a denoised image and
the CPU time (the second number).

A \ ROF-TV PD DCA PDHG
White Gaussian noise with standard deviation 15

9 [ (32.05, 0.18) (31.32,0.18) (31.30, 1.26) (31.45, 0.15)
10 | (32.30,0.21) (31.90, 0.21) (31.30, 1.40) (31 93, 0.16)
11 | (32.40,0.20) (32.26,0.22) (32.18, 1.25)  (32.30, 0.16)
12 | (32.42,0.21) (32.46,0.24) (32.35, 1.32)  (32.50, 0.16)
13 | (32.37,0.24) (32,53, 0.27) (32.41, 1.41) (32.56, 0.17)

White Gaussian noise with standard deviation 20

14 | (30.94, 0.24) (30.64, 0.26)  (30.55, 1.62)  (30.67, 0.18)

15 | (31.07, 0.25) (30.95, 0.27) (30.83, 1.71)  (30.99, 0.17)

16 (31.137 0.27) (31.15, 0.29) (31.02, 1.57) (31 19, 0. 18)
(
(

17 | (31.14, 0.28) (31.27,0.31) (31.12, 1.67) (31.31, 0.18)
18 | (31.11, 0.29) (31.31, 0.33) (31.16, 2.18) (31.35, 0.19)
White Gaussian noise with standard deviation 25

19 [ (30.01, 0.36) (29.91, 0.41) (29.77, 2.57)  (29.94, 0.26)
20 | (30.10, 0.41) (30.11, 0.48) (29.95, 2.37)  (30.15, 0.29)
21 | (30.14, 0.37) (30.24, 0.42) (30.07, 2.28)  (30.29, 0.26)
22 | (30.15, 0.36) (30.33, 0.40) (30.15, 2.22)  (30.37, 0.24)
23 | (30.14, 0.36)  (30.36, 0.43) (30.18, 2.31) (30.41, 0.24)
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Table 3: Numerical results of ROF-TV, PD, DCA, and PDHG methods for the image of “Peppers”.
The pair (-,-) is used to report both the PSNR value (the first number) of a denoised image and
the CPU time (the second number).

A \ ROF-TV PD DCA PDHG
White Gaussian noise with standard deviation 15
(31.13,0.21) (30.48, 0.20)  (30.58, 1.45)  (30.47, 0.19)
10 | (31.27,0.24) (30.91,0.23) (30.01, 1.60)  (30.89, 0.20)
11 | (31.31, 0.24) (31.18, 0.25) (31.28, 1.45) (31.15, 0.18)
( )
( )

12 | (31.26, 0.27) (31.29, 0.31) (31.40, 1.62) (31.28,0.21

13 | (31.16, 0.30) (31.32,0.31) (31.43,0.77) (31.30, 0.19

White Gaussian noise with standard deviation 20

14 | (29.27, 0.26) (29.50, 0.27) (29.58, 1.76)  (29.48, 0.21)

15 | (29.81, 0.28) (29.70,0.31) (29.78,1.94) (29.69, 0.20)

16 | (29.80, 0.36) (29.82,0.38) (29.91, 1.92)  (29.80, 0.24)
( )
( )

17 | (29.75, 0.36) (29.87, 0.40) (29.96, 2.06) (29.85, 0.24
18 | (29.68,0.38) (39.87, 0.47) (29.96, 2.25)  (29.85, 0.25
White Gaussian noise with standard deviation 25

19 | (28.66, 0.32) (28.55, 0.37) (28.63, 2.23)  (28.54, 0.22)
20 | (28.67,0.36) (28.67,0.40) (28.74, 2.38) (28.65, 0.23)
21 | (28.65, 0.38) (28.73,0.42) (28.80, 2.17) (28.71, 0.23)
22 | (28.61, 0.39) (28.75,0.45) (28.83,2.34) (28.73,0.25)
23 | ( ) (28.74,0.47) (28.82,2.42) (28.72,0.25)

28.55, 0.42
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Figure 7: (a) The PSNR value of the denoised image of “Cameraman” for each Gaussian noise
realization with standard deviation 20; and (b) the CPU time consumed for various algorithms.
The regularization parameter A is 15 for both ROF-TV model and (P).
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Figure 8: (a) The image of “Cameraman”; (b) the image of “Cameraman” corrupted by Gaussian
noise of standard deviation 20; (c) the denoised image using the ROF-TV denoising model; the de-
noised images using model (P) by (d) PD; (e) DCA; and (f) PDHG, respectively. The regularization
parameter A for both models is 16.

) | (0

Figure 9: (a) The image of “House”; (b) the image of “House” corrupted by Gaussian noise of
standard deviation 20; ((c) the denoised image using the ROF-TV denoising model; the denoised
images using model (P) by (d) PD; (e) DCA; and (f) PDHG, respectively. The regularization
parameter A for both models is 18.
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Figure 10: (a) The image of “Peppers”; (b) the image of “Peppers” corrupted by Gaussian noise
of standard deviation 20; (c¢) the denoised image using the ROF-TV denoising model; the denoised
images using model (P) by (d) PD; (e) DCA; and (f) PDHG, respectively. The regularization
parameter A for both models is 17.

5 Concluding Remarks

We propose a general denoising model based on structured SPFs, as introduced in [20], and dis-
cuss various algorithms for this model. The development of these algorithms is motivated by the
intrinsic structure of the model which makes it quite flexible and allows us to easily determine the
convergence of the proposed methods. We illustrate the effectiveness of the proposed model by
applying the modified ROF-TV model to the problem of image denoising. We see that in compar-
ison to the traditional ROF-TV model, we are able to achieve greater accuracy without increased
computation time in most cases.

Future work will feature variations of this denoising model; in particular, we are interested in
the addition of a blurring kernel and applications to compressed sensing. Moreover, we believe
that the structure of our proposed SPF’s can be used to improve convergence results for nonconvex
algorithms. Semiconvexity (or, more generally, prox-regularity) has been leveraged in this way here
and elsewhere (e.g. [8], [15]), but there are many other properties of these functions which may be
useful.
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