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ABSTRACT

Compact stars containing quark matter may masquerade as neutron stars in the range of measured

mass and radius, making it difficult to draw firm conclusions on the phase of matter inside the star.
The sensitivity of core g-mode oscillations to the presence of a mixed phase may alleviate this difficulty.

In hybrid stars that admit quark matter in a mixed phase, the g-mode frequency rises sharply due

to a marked decrease in the equilibrium sound speed. Resonant excitation of g-modes can leave an

imprint in the waveform of coalescing binary compact stars. We present analytic and numeric results

to assess the sensitivity displayed by g-mode oscillations to quark matter in a homogeneous or mixed
phase and also compute relevant damping times in quark matter due to viscosity.
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1. INTRODUCTION

The discovery by the Advanced LIGO and Advanced

VIRGO collaborations of the binary neutron star merger

GW170817 (Abbott et al. 2017) opens a new observa-

tional window into compact star properties. Many re-

cent works (Hu et al. 2020; Radice et al. 2018; Sieni-

awska et al. 2019; Abbott 2018; De et al. 2018; Chatzi-
ioannou et al. 2018; Malik et al. 2018; Tews et al. 2018;
Zhu et al. 2018; Christian et al. 2019; Li et al. 2018)

have explored constraints on the neutron star equation

of state (EoS) using tidal polarizabilities extracted from

gravitational waveforms during the late inspiral phase.

It appears possible, though not conclusive, that one or

both of the component stars in the merger could be hy-

brid stars; that is, they support a phase transition to

quark matter at high density (Paschalidis et al. 2018;

Nandi & Char 2018). In effect, the so-called “masquer-

ade” problem (Alford et al. 2005) for compact stars per-

sists: a hybrid star with quark matter in its interior is

indistinguishable from an ordinary neutron star based
on the current observational status, especially if quark
matter is in a mixed phase with hadronic matter. A

confirmation of this possibility was made in Wei et al.

(2019) for nuclear to 2-flavor, 3-flavor and sequential

flavor transitions. It has been suggested (Brillante &
Mishustin 2014; Flores & Lugones 2014; Sotani et al.
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2011, 2013) that mapping out the radial or non-radial

oscillation mode frequencies can provide a clear distinc-
tion between neutron and hybrid stars, with only a weak

dependence on the poorly known equation of state (EoS)
of the quark phase. Given this idea, and that non-radial
oscillations couple to gravitational waves, we examine a

diagnostic of the phase structure of matter inside neu-

tron stars: the core g-mode oscillations (Reisenegger

& Goldreich 1992; Miniutti et al. 2003). We find that

these modes are sensitive to the presence and the pro-

portion of quark matter inside neutron stars, similar to

the conclusions in Dommes & Gusakov (2016); Yu &

Weinberg (2017), which focused on hyperons. However,

the appearance of hyperons does not involve any phase

transition, so their effect on the g-mode is less dramatic.

The effect of resonant g-mode oscillations on the tidal

phase accumulated during the inspiral for compact stars

is probably too small to detect with the current sensi-

tivity of gravitational wave detectors (Lai 1994; Yu &

Weinberg 2017), but the effect may be more pronounced

in hybrid stars, which could finally lift the veil on quark

matter inside neutron stars and solve the masquerade

problem.

In this paper, our focus is on the characteristics of
g-mode oscillations in the quark-hadron mixed phase

through a theoretical analysis of the restoring force

(buoyancy) and damping. Typically, buoyancy arising

from thermal and/or chemical stratification inside the

star (core or crust) drives the g-mode . It can also arise
due to sharp density discontinuities as a result of first or-
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der phase transitions (Miniutti et al. 2003; Kruger et al.
2015). Core g-mode oscillations arising from chemi-

cal stratification carry the imprint of the fluid’s com-

position, a feature that can potentially be exploited by

gravitational wave detectors operating in the (0.1-1) kHz

regime (Yu & Weinberg 2017). The g-mode is driven by

the mismatch between mechanical and chemical equilib-
rium rates of a displaced fluid parcel, expressed by the
difference between the local equilibrium and adiabatic

sound speed, i.e., the Brunt-Väisälä frequency. Com-

pared to a pure phase, a mixed phase system (ignoring

surface and Coulomb forces) is more compressible due to

its ability to distribute conserved charges globally. The

drop in the equilibrium sound speed upon onset of the

mixed phase is reflected in an increase of the g-mode

frequency. This is the basic result we exploit in this pa-

per to characterize the g-mode as a diagnostic for the

phase transition to quark matter.
The g-mode for (n, p, e−) matter with or without

additional leptonic and hadronic species has been ad-
dressed in previous works (Reisenegger & Goldreich

1992; Lai 1994; Kantor & Gusakov 2014; Yu & Wein-

berg 2017; Dommes & Gusakov 2016; Zhou & Zhang

2017; Passamonti et al. 2016). For quark matter, model-

dependent numerical studies have been reported (Sotani
et al. 2011; Fu et al. 2017; Vásquez Flores & Lugones

2014; Ranea-Sandoval et al. 2018), but none are in the
context of a mixed phase (continuous phase transition).

We take a simpler but more general approach that allows

for analytic estimates of the Brunt-Väisälä frequency in

quark matter, and reveals the sensitivity of the g-mode

to the onset and the proportion of the quark phase. The

g-mode frequency vanishes in non-interacting and mass-

less two and three (or any Nf ) flavor quark matter, but
can appear in any of the following realistic situations:

non-zero quark mass, inclusion of interactions, a quark-

hadron mixed phase. We illustrate these three cases sep-

arately for the sake of simplicity. The first and second

are treated with analytic approximations, whereas for

the third, we employ a common parameterization, where

hadronic matter is described by a member of the fam-
ily of Dirac-Brueckner-Hartree-Fock (DBHF) EoS (van

Dalen et al. 2004), and quark matter is described by the

vector-enhanced Bag model (vBag EoS) (Klähn & Fis-

cher 2015). Within acceptable parameter ranges of these

models, we find a steep rise in the g-mode frequency

upon the appearance of a mixed phase. We discuss how
this can impact tidal resonance phenomena in binary
neutron star mergers where one or both components are
hybrid stars with a (mixed-phase) quark matter core,

and whether the effect can survive mode damping. A

more detailed study of g-mode resonant coupling to dy-

namical tides in neutron stars and the subsequent im-

pact on gravitational wave phasing during inspiral is left

to future work.

This paper is organized as follows: sec II describes

how core g-mode oscillations probe the phase structure

of compact star interiors, sec III contains analytic results

for the Brunt-Väisälä frequency in models of interacting

nuclear and quark matter, sec IV gathers our numerical

results for the g-mode jump at the onset of the mixed

phase, sec V and VI discuss estimates of g-mode damp-

ing times and detectability using gravitational waves,

followed by our conclusions in sec VII.

2. G-MODE OSCILLATIONS

The g-modes arising from chemical stratification are

quite sensitive to the composition of dense matter.

Therefore, they may be a better probe of the EoS than

the f and p-modes. For example, the g-mode frequency

depends on the proton fraction which is affected by the

nuclear symmetry energy. The latter determines im-

portant physical quantities such as the compact star’s

radius, its tidal deformability and neutrino emission

thresholds (Sahoo et al. 2016; Zhang & Li 2019; Krastev

& Li 2019; Lattimer et al. 1991; Gandolfi et al. 2012).

The symmetry energy also plays a key role in the prop-

erties of terrestrial nuclei, such as neutron skin thick-

ness and dipole polarizabilities (Cao et al. 2015; Dong

et al. 2015). As such, theoretical studies of the g-

modes add to the list of diagnostics of dense matter
properties coming from other phenomena in nuclear as-
trophysics. We emphasize that the g-mode addressed

in this work is different from the crustal (Finn 1987),

thermal (Strohmayer 1992) and discontinuity (McDer-

mott 1990) g-modes, since we assume a continuous phase
transition without a density discontinuity.

In order to determine the g-mode spectrum, we first
construct the stellar structure using General Relativ-

ity (TOV equations). To simplify the linearized fluid

perturbation equations from which we calculate the fre-

quency of the g-mode , we employ the Newtonian and

Cowling approximations, neglecting the back reaction
of the Newtonian gravitational potential. While this is

not strictly consistent with the fully relativistic treat-
ment of the background structure, the impact of these
simplifying approximations is not severe, typically only

affecting the frequencies of the p-mode and g-mode at

the 5-10% level (Gregorian 2015). However, the f -mode

frequencies at low angular quantum number can be more
sensitive to the the Cowling approximation. To go be-

yond the Cowling approximation involves a considerable
complication since the fluid equations must be treated
in full General Relativity. While this is essential for a
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self-consistent calculation of gravitational waves, here
we are only trying to obtain the approximate trend in

the frequency as a function of stellar parameters, not

the explicit wave forms, for which the Cowling approxi-

mation is sufficient.
Accordingly, the system of equations used to compute

g-mode frequencies in the neutron star are given by (Fu
et al. 2017; Bildsten & Cumming 1998)

∂

∂r
(r2ξr)=

[

l(l + 1)

ω2
− r2

c2s

](

δp

ρ

)

(1)

∂

∂r

(

δp

ρ

)

=
ω2 − ω2

BV

r2
(r2ξr) +

ω2
BV

g

(

δp

ρ

)

(2)

where ξr is the radial component of the fluid pertur-

bation, δp the Eulerian pressure perturbation, ρ is the
energy density and the Brunt-Väisälä frequency

ω2
BV ≡ N2 = g2

(

1

c2e
− 1

c2s

)

(3)

depends on the equilibrium (ce) and adiabatic (cs) sound

speeds. The solution of the system of eqs.(1) & (2) un-

der relevant boundary conditions, viz., regularity at the

stellar center (r → 0) and vanishing of the Lagrangian

pressure variation ∆p = c2s∆ρ at the surface, can exist

only for discrete values of the mode frequency ω. While

we present numerical results for the f - and p-modes as
well, our theoretical focus in this work is on the l=2

g-modes. Also, all our results, including the estimate

of the tidal overlap integral in hybrid stars, are for the

g1 mode - the one with lowest radial quantum number

and the highest frequency. As this mode has the largest

tidal coupling coefficient and is likely to be excited late

in the merger when the tidal force is stronger, we have

chosen to study this mode alone. Though overtones are

definitely present, we did not perform any explicit com-

putations with those.

Once a background stellar configuration is specified,

we solve eqs.(1) and (2) numerically, subject to the

boundary conditions mentioned above, and pick out

the g1 mode from the resulting spectrum by count-

ing the number of nodes of the eigenfunction. We

note in passing that one can perform a local analysis

of these equations in the eikonal approximation, which

yields (Reisenegger & Goldreich 1992)

ω2 ≈ l(l + 1)

(kr)2 + l(l + 1)
N2 (4)

but this approximation is less accurate for low-order
g-modes, so we do not use it in this work. Convectively

stable g-modes exist for N2 > 0, implying that

c2s − c2e = −
(

∂p

∂x

)

ρ

(

dx

dρ

)

> 0 (5)

should be fulfilled, where x = np/nB is the proton-

to-baryon density ratio, which equals the electron-to-

baryon density ratio Ye = ne/nB in charge neutral
(n, p, e−) matter.

3. ANALYTIC ESTIMATES FOR SIMPLE MODELS

OF DENSE MATTER

The sound speeds and g-mode frequency can be ap-

proximately calculated analytically in a few simple, and

surprisingly, even interacting models of nuclear or quark

matter. As an example, we compute these quanti-

ties in interacting two flavor quark matter based on

the vBag model (Klähn & Fischer 2015), which has

been recently introduced to reconcile the missing fea-
tures of the perturbative or thermodynamic Bag model
(no chiral symmetry breaking) and Nambu-Jona-Lasinio

(NJL)-type models (no confinement) within a single

non-perturbative picture. This model is similar in spirit,

but different in details than the more recent vMIT

model (Gomes et al. 2019). The vBag model has proved

to be versatile, with astrophysical applications such
as mixed phases in neutron stars, protoneutron stars
and supernova explosions, as demonstrated in recent

works (Klähn et al. 2017; Fischer et al. 2017b,a). The

purpose of studying these simple models is to emphasize

the key quantities that determine the occurrence of sta-

ble g-modes, typically the nuclear or quark symmetry
energy.

3.1. Nuclear Model : The DBHF Equation of State

Before we list the analytic results, we emphasize the

importance of the symmetry energy in nuclear/quark

matter to the g-mode. Employing the widely used func-

tional form for the nuclear contribution to the energy

per baryon (Prakash et al. 1988; Wiringa et al. 1988),

EB(nB , x) ≈ E0(nB) +Es(nB)(1− 2x)2, it follows that

x

(1− 2x)3
=

64Es(nB)
3

3π2nB
(6)

for (n, p, e−) matter in β equilibrium, where Es(nB)
is the symmetry energy of uniform matter and E0(nB)
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Let us now address the three examples that provide
for g-modes in quark matter. The first of them involves

introducing the strange quark at sufficiently high den-

sity. Within the thermodynamic Bag model (henceforth,

tdBag) with a Bag constant B, we can write the EoS
for quark matter P (ρ) to leading order in the strange

quark’s current mass ms as

p(ρ) =
1

3
(ρ− 4B)− m2

s

3π

√

ρ−B (10)

where p is the pressure and ρ the energy density. We
can ignore the tiny contribution of the electrons to the

pressure, of order m8
s/µ

4
q. Effectively, this means the

adiabatic sound speed is given by

c2s =
1

3
− m2

s

6π
√
ρ−B

(11)

Eq.(5) can be recast as (Lai 1994)

c2s − c2e = −
(

nB

p+ ρ

)(

∂p

∂xe

)(

dxe

dnB

)

(12)

For the non-interacting case, an approximate solution to
eqs.(8) and (9) that is accurate to better than a few per-

cent for densities of interest yields µe ≈ m2
s/4µq. This

implies that xe ≡ ne/nB ∝ m6
s/n

2
B so that (dxe/dnB) =

−2(xe/nB). Since µe/µq � 1, we can also approximate

the quark pressure for homogeneous three-flavor quark

matter as

p(µq, µe) = p0(µq)− nQ(µq)µe +O(µ2
e) (13)

with the charge density nQ=(∂p/∂µe)=m2
sµq/(2π

2).

Noting that xe ∝ µ3
e, we obtain

(

∂p

∂xe

)

=
m2

sµqµe

6π2xe
(14)

Substituting this result in eq.(12) and using eq.(3),

N ≈
√
3

2π

g

ce

(

m2
s√

ρ−B

)

(15)

The difference between the adiabatic and equilibrium

sound speeds is, in this case, of order m4
s/B. For the

case of a strange star, near the surface, ρ ≈ 4B, so that

N ' (g/(2πce))(m
2
s/
√
B), which is in good agreement

with the estimate in Abney et al. (1996). For neutron

stars with a quark core, we may conclude from eq.(15)

that the resulting g-mode frequency (for low-l values)

ωBV ∼ 100 Hz, which is very similar to the estimate for

non-interacting (n, p, e−) matter. However, numerical

results for realistic models of nuclear and quark matter

with interactions show that their g-mode frequencies are
quite different (see Fig.6).

3.3. Quark Model II: The Non-perturbative vBag

Equation of State

We now consider the case of a 2-flavor interacting

quark model, namely, the vBag model, as an exam-
ple of how interactions can induce g-mode oscillations.

The vBag model is a hybrid approach that accounts for

scalar interactions and hence chiral symmetry breaking

by assuming bare quark masses and flavor dependent

chiral bag constants (Bχ,f ) to reproduce the proper crit-

ical chemical potential for each flavor’s chiral symmetry

restoration. Vector interactions are taken into account

non-perturbatively in analogy to the NJL model (Kle-

vansky 1992). The quark pressure and energy density

are given by

Pq =
∑

f

Pf +Bdc ; εq =
∑

f

εf −Bdc . (16)

where Bdc is the confinement Bag constant, intro-

duced to ensure that quarks are confined in the chirally

restored phase. We may take it to be the same for both

light flavors. The individual flavor pressure and energy

density appearing in the equations above are

Pf (µf ) = PFG,f (µ
∗

f ) +
Kv

2
n2
FG,f (µ

∗

f )−Bχ,f (17)

εf (µf ) = εFG,f (µ
∗

f ) +
Kv

2
n2
FG,f (µ

∗

f ) +Bχ,f (18)

with the subscript FG denoting the Free Fermi gas

expression. We choose Bχ,u = Bχ,d to avoid sequential

restoration, which is a more complicated scenario. These

equations contain the vector repulsion term∝ Kv, which
comes from vector current-current interactions and is

connected to the gluon mass scale in Dyson-Schwinger
studies of non-perturbative QCD. The repulsion term is
essential to stiffen the quark equation of state, and sup-
port compact stars at least as heavy as 2M�. We will

see that it also controls the electron fraction in quark
matter, thereby influencing the g-mode. The introduc-
tion of the vector term also modifies the quark number

densities and chemical potentials as:

µf =µ∗

f +KvnFG,f (µ
∗

f ) (19)

nf (µf )=nFG,f (µ
∗

f ) (20)

The vBag equation of state can be expressed as:

Pq =
1

3
(εq−4

∑

f

Bχ,f )+
4

3
Bdc+

Kv

3

∑

f

n2
f (µf ) . (21)

which has a non-barotropic form since nf (µf ) encodes
composition information. Charge neutrality requires
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(2/3)xu−(1/3)xd−xe=0, where xi=ni/nB are the quark
to baryon number fractions of species i. We also impose

β-equilibrium : µd − µu=µe. Since xu + xd=3, we can

obtain xe(nB) numerically from these conditions. It is

useful to note that the depressed cubic eq.(19) has the

solution

µ∗
f = sinh

(

1

3
sinh−1 (3µ̄f )

)

(22)

with the scaling µ̄=(
√
3Kv/(2π))µ. Subsequently, we

obtain an analytic approximation for the electron frac-

tion, which is within 5% of the numerical result.

xe(nB)=
[ñ+ (21/3 − 1)(π2ñ)1/3] 3

3π2ñ
(23)

ñ=K3/2
v nB (24)

For values in the typical parameter range Kv ∼ (2-6)

GeV−2, the dimensionless baryon density is n̄ ∼ (0.002-

0.02) for densities of relevance to quark matter in com-
pact stars (nB ∼ (3-6)nsat), implying that xe ∼ (0.006-

0.014). To obtain the difference in sound speeds from

eq.(12), we note that (with p,E denoting the total pres-

sure and energy per baryon from quarks and electrons)

∂p

∂xe
= n2

B

∂

∂nB

∂E

∂xe
= n2

B

∂

∂nB
[µe + µu − µd] (25)

Expressing the chemical potentials µi in terms of the

partial fractions xi, we arrive at

∂p

∂xe
= −2

3
n2
BKv(1− 2xe) (26)

From eq.(23) and (24), it follows that

nB
dxe

dnB
=

2Kv

(3π2)1/3
(nBxe)

2/3 (27)

From eqs.(26) and (27), and to leading order in xe, we

find

c2s − c2e ≈ x
2/3
e

(3π2)1/3







K2
v n

8/3
B

∑

f

(εFG,f (µ∗

f ) +
3
4
Kv n2

FG,f (µ
∗

f ))







(28)
To the same order in xe, the Brunt-Väisälä frequency

in this model is

N ≈ g x
1/3
e

ce
× (29)









Kv n
4/3
B

√

(Pq + εq) + 2
∑

f

(Kvn2
FG,f (µ

∗

f ) +Bχ,f )−Bdc









Finally, we consider the case of a mixed phase of non-
interacting 2-flavor quark matter with nuclear matter,

which also implies the existence of g-mode oscillations.

This foreshadows the more realistic numerical treatment

of the mixed phase in the next section.
As an analogy, consider an admixture of two (un-

charged) components such as water and air. Even at

very low bubble fraction χ, the effective incompressibil-

ity is reduced sharply since the density of the mixture is

hardly changed, whereas air bubbles significantly reduce

the pressure compared to a pure liquid. The resulting

equilibrium sound speed is given by (Wood 1930)

1

c2mixed

=
(1− χ)2

c2l
+
χ2

c2g
+χ(1−χ)

(

ρg
ρl c2l

+
ρl

ρg c2g

)

(30)

where l and g stand for the liquid (dense) and gas

(void) phase respectively. This assumes that the bub-

ble can exchange heat with the surrounding fluid fast

enough during the perturbation to maintain equilibrium.

Since the material density ρg � ρl, a distinct drop in

the equilibrium sound speed is seen at the onset of the

mixed phase.
For a quark-hadron mixed phase, eq.(30) is not di-

rectly applicable since each phase also carries charge

such that the system is globally neutral, with the void

fraction given by χq = nh
Q/(n

h
Q − nq

Q) where nQ de-

notes the charge density, and q and h refer to quark and

hadron phases. Furthermore, the energy density ρq and

ρh are similar in magnitude unlike for air and water,

which would imply cmix ≈ ch for small χ. Taking the
two conserved quantities (baryon number and charge)

into account, we have

c2mix =
dpmix(µB , µQ)

dρ
=

∂pmix

∂µB

(

dµB

dρ

)

+
∂pmix

∂µQ

(

dµQ

dρ

)

(31)

Accordingly, an additional contribution to eq.(30) ex-

ists, with the energy densities ρq and ρh replaced by the

respective charge densities ρQq and ρQh respectively. As
shown in Glendenning (1992) with an explicit quark-

hadron mixed phase construction, the first term in
eq.(31) is continuous with density at the onset of the

mixed phase, but the second term involving the charge

chemical potential is not. Therefore, we expect, as con-

firmed by our numerical results presented in sec IV, that

cmix has a negative discontinuity at the onset of the

mixed phase, in effect lowering the equilibrium sound

speed. The physical meaning is that the system is more

compressible in a charge separated state, as internal

forces have the freedom to rearrange charges between

the two phases to minimize the free energy. In effect,
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global charge neutrality makes the system more com-
pressible. We note that this effect is not specific to

the quark-hadron mixed phase, it will arise whenever a

mixed phase is encountered in the depths of a compact

star. Our numerical calculations show a similar sharp

drop in the equilibrium sound speed at the onset of the

mixed phase, with only a small change in the adiabatic
sound speed. Therefore, c2s − c2e > 0 and stable g-modes

can be found.

4. NUMERICAL RESULTS FOR G-MODES IN THE

MIXED PHASE
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Figure 2. The mass-radius curve for three different compact
star configurations - neutron stars (DBHF), hybrid stars and
quark stars (vBag). The parameters of quark matter for the
quark/hybrid star 1 are Beff=70 MeV fm−3 and for hybrid
star 2, Beff=80 MeV fm−3. Variations due to vector coupling
Kv=4×10−6 MeV−2 and Kv=6×10−6 MeV−2 are displayed.

We now examine the g-mode in the mixed phase us-

ing a realistic model for the nuclear phase (DBHF EoS)

and the vBag model for the 2-flavor quark phase. De-

tails about these EoS are given in Wei et al. (2019), also

in Klähn & Fischer (2015); Klähn et al. (2017); Cierniak
et al. (2018); Wei et al. (2019). Here, we employ param-

eters for the vBag model that yield a maximum mass of

at least 2M�, and result in the appearance of a mixed

phase of nuclear and two-flavor quark matter in the in-

terior of neutron stars. As explained in our paper (Wei

et al. 2019) on the masquerade problem, it is possible to
consider two phase transitions, the first involving only

(u, d) quark matter, and the second involving s-quarks
at a higher density. One could also choose vBag pa-

rameters to have only three-flavor matter in a mixed

phase. In either of these two more involved cases, we

expect that our conclusions about the rise in g-mode

frequency would not change qualitatively, but we do not

study them numerically here.
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Figure 3. The local Brunt-Väisälä frequency for neu-
tron/quark/hybrid stars plotted as a function of the relative
distance from the center r/R. The parameters are same as
in Fig.2. The mass of the chosen neutron and hybrid stars
are 2.1M� and the mass of the quark star is 1.9M�.

In Fig.2, which shows the mass-radius curve for neu-

tron, quark and hybrid stars with our chosen EoS, we

observe that the onset of the softening due to the ap-

pearance of the mixed phase happens at higher stellar

mass as Beff is increased, contributing to the masquer-
ade effect that was described extensively in Wei et al.

(2019). The vector interaction provides the necessary

stiffness to generate masses above 2M�. The value of

Beff is also constrained by the requirement that nuclei

must be stable against deconfinement to (u,d) matter

in vacuum. In the vBag model, the value of Beff that
allows deconfinement to (u,d) matter in vacuum has a

value of 60 MeV fm−3 at zero vector repulsion and some-

what lower at higher values of this repulsion. Our cho-

sen values of Beff of 70 and 80 MeV fm−3 avoid this

unphysical outcome while still permitting a phase tran-

sition to 2-flavor matter at high baryon density. From

Fig.2, it is clear that vBag model parameters can be
chosen so as to mask the effect of the phase transition

in the mass-radius curve, so we look to the g-mode sig-

nature instead. In Fig. 3, we show the Brunt-Väisälä

frequency in the star from outer core to the center. To

obtain positive values of N2 (i.e, log(N2) real) through-
out the core, as required by the lack of convection in

cold compact stars, we found it necessary to smooth the
DBHF EoS data before computing the sound speeds,
which involve derivatives of the pressure with respect to

energy density. The peak signals an abrupt rise of the
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Figure 4. The Newtonian eigenfrequencies of f -modes for
the neutron star, hybrid star and quark star as a function of
stellar mass. Parameters are same as in Fig.2.
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Figure 5. The Newtonian eigenfrequencies of p-modes for
the neutron star, hybrid star and quark star as a function of
stellar mass. Parameters are same as Fig.2. The trend of the
p-mode frequency for the quark star, which is opposite that
of the neutron and hybrid star, arises because the quark star
is self-bound.

Brunt-Väisälä frequency inside the star due to the dras-

tic reduction in the equilibrium sound speed, revealing

the onset of the mixed phase. Although this is a contin-

uous phase transition with no sharp density jump, the

g-mode frequency is seen to rise sharply at this point for
the reason explained at the end of the previous section.

In Figs. 4, 5 and 6, we observe the impact of the phase
transition on the fundamental f, p, g-modes.

While the f and g-modes both have frequencies within

the sensitivity range of Advanced LIGO/Advanced
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Figure 6. The Newtonian eigenfrequencies of g-modes for
the neutron star, hybrid star and quark star as a function of
stellar mass. Parameters are same as Fig.2. Note the abrupt
change in slope of the g-mode frequency curve as soon as
the mixed phase is favored.

VIRGO (with the g-modes more so), only the g-modes

show a trend for hybrid stars that is very different from

neutron stars/bare quark stars. The f -modes for hy-

brid stars appear to interpolate between the neutron

star and quark star as we go to increasing mass. The

g-modes for the hybrid star on the other hand can

have frequencies much higher than either the neutron

star/quark star. It is surprising that a local change in

the Brunt-Väisälä frequency can impact the g1 mode

frequency, given the latter’s large wavelength which is

comparable to the stellar radius. However, the phase

fraction of quark matter rises very fast at the onset of

the mixed phase, causing dramatic compositional gra-

dients that drive the sound speed difference (and hence
the Brunt-Väisälä frequency) to higher values than for
ordinary neutron stars. Compared to say, the change in
sound speed when muons or hyperons enter Dommes &

Gusakov (2016), the fall in sound speed when quarks en-

ter is several times larger. As a result, the magnitude of
the change in the Brunt-Vaisala frequency is also much

larger when the mixed phase begins. The logarithmic

scale on the vertical axis of Fig.3 gives an idea of this

effect. The large magnitude of this shift with respect
to a normal or pure phase counters the fact that it is a

local effect, resulting in a significant g-mode frequency
shift nevertheless. The parameter set HS(4,70) yields
the most compact configuration of all, as seen in Fig.2.

Quark matter appears at the lowest density in this case,

softening the equation of state the most and strongly

decreasing the sound speed. Consequently, we see the

largest g-mode frequency shift for HS(4,70).
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Even if the compact star’s mass is not measured, a
g-mode frequency of about 0.8 kHz or more is likely to

be supported only in a hybrid star. Within our chosen

model, this also constrains the stellar mass to be above

2.0M�, so it could be a way to identify the most massive
compact stars. We also note that lower g-mode frequen-

cies (0.4-0.8 kHz) could originate from low/intermediate

mass hybrid stars or high-mass neutron stars. These

two possibilities can be distinguished if the f -mode fre-

quency, which is very different for low and high mass

stars irrespective of model parameters, is also measured.

Therefore, even in the absence of a mass measurement, it

is possible to extract information on the interior compo-

sition of the compact star such as whether it can support

a phase transition to quark matter, using its oscillation

spectrum. If the mass is known to better than a few

% (Lattimer et al. 2019) and the frequency to better

than few tens of Hz (Pratten et al. 2020), we can begin
to constrain the parameters of the quark model which

derive from the non-perturbative sector of the strong
force. It is also worth noting that while the g-mode and

the p-mode frequencies are both quite distinct between

neutron stars and pure quark stars, only the g-mode

frequencies would be in the sensitivity band of currently
operational detectors. In the next section, we estimate
the g-mode damping time as this affects the likelihood

of practically detecting these modes with gravitational
wave interferometers.

5. DAMPING TIMES FOR THE G-MODE IN

QUARK MATTER

In this section, we provide estimates for the damp-

ing time of the g-mode in two-flavor quark matter, to

provide some comparison with ordinary neutron stars.

These are only order of magnitude estimates that can

be refined by utilizing the g-mode wave functions ob-
tained from the solution of the fluid perturbation equa-

tions along the lines of Lai (1994). However, that is
beyond the scope of the current paper. Three sources

of damping are identified in Reisenegger & Goldreich

(1992): neutrino damping (bulk viscosity), damping by

shear viscosity and gravitational wave damping (the lat-

ter being negative corresponds to mode growth). We

address these in turn. Neutrino damping of the g-mode

involves the relaxation of the departure from chemical

equilibrium δµ(nB , xe)=µd − µu − µe due to the non-

equilibrium β-decay rate. Working at fixed baryon den-

sity, we define the typical relaxation timescale through

τβ ≡ 1/Γrel ; ξ̇ = −Γrelξ ; ξ =
δµ

T
(32)

Adopting the expression for Γrel=Γd→u+e+ν̄e
−

Γu+e→d+νe
from Anand et al. (1997), we obtain

τβ(yr) ≈ 8.2T−4
9

(

nsat

nB

)2/3
1

(δµ/MeV)
(33)

where nsat=0.154 fm−3 is the nuclear saturation den-

sity, and we have assumed Kv = 4 GeV−2. The magni-

tude of δµ depends on the amplitude of the oscillation,

which is uncertain, but we may assume an upper limit

of δµ ≈ 1 MeV, which corresponds to fluctuations in

the chemical potentials at the 1% level. Since the os-

cillation timescale for the g-mode in quark matter is

∼ 0.01− 0.1 seconds, it is clear from eq.(33) that unless

T > 1011K, the g-mode is not damped by this mecha-

nism. Even assuming tidal heating during the inspiral,

the temperature is insufficient to damp the g-mode in
quark matter through off-equilibrium β decays. Turn-

ing to the damping timescale from shear viscosity, recent

work (Reisenegger & Goldreich 1992; Lai 1999)

τvisc(yr) ∼
L2

ν
≈ 1.5× 103L2

6T
5/3
9

(

nsat

nB

)5/9

(34)

where ν is the kinematic viscosity, related to the shear
viscosity as ν=η/ρ, and we have used the shear vis-

cosity for quark matter given in Heiselberg & Pethick

(1993), which takes Landau damping into account for

the gluons. L6=L/(106 cm) where L is a typical wave-

length scale of oscillation. This timescale is too large to
damp the g-mode by itself unless T9 . 10−3, i.e, unless

T . 10−6K, which is the case only for very old neutron
stars.

Finally, we can estimate the effect of the secular in-

stability of the g-mode in rotating configurations due

to gravitational wave emission, also known as the CFS
instability (Chandrasekhar 1970; Friedman & Schutz
1975). The low frequencies of the g-mode in quark mat-

ter implies that the critical rotation speed at which the
CFS instability can be triggered in pure quark stars is
Ωs ∼ 10 − 100 Hz. When the mixed phase enters and

the g-mode frequency rises sharply, stability can be re-

stored. From the analysis in Lai (1999), we estimate

τgw(yr) ∼
1 + E
25

ω̂−5
i ω̂r

R4
10

M3
1.4

(

10−4

δD22

)2

(35)

where ω̂i and ω̂r are normalized mode angular fre-

quencies in the inertial and rotating frames respectively,

δD22 is the mass quadrupole and E is a sub-leading con-

tribution to the g-mode energy. Mode instability in the
inviscid case sets in when ωi turns negative, which hap-

pens at a critical spin frequency of νs ≈ 0.68 ν0 (Lai

1999), where ν0 is the mode frequency.
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Applying eq. (35) to our quark model EoS for a 1.4M�

star, for which δD22 ≈ .0008 and E ≈ 0.7, we estimate

the mode damping timescale to be τgw ∼ 103 yrs at

zero rotation for a pure quark star and τgw ∼ 10−2 yrs

for a hybrid star with a mixed phase quark core. This
large difference in damping times is due to the much

higher g-mode frequency in the mixed phase configura-
tion. Taking viscous damping and rotation into account,

the overall damping timescale τ , which is given by

τ = (τ−1
β + τ−1

visc + τ−1
gw )−1 (36)

implies that the g-mode can be unstable to gravita-

tional wave emission (i.e, τ < 0) in the temperature

range 108K< T < 109K for a stellar rotation frequency

of about twice the frequency of the g-mode frequency

at zero rotation ≈ 200 Hz . With decreasing rotation
speed, the instability window narrows and ultimately

closes. However, at slower rotation speeds, additional

sources of damping such as mutual friction could be-

come important if the quarks are in a superfluid phase.

6. DETECTING G-MODES WITH

GRAVITATIONAL WAVES

How can we observe the predicted effect? If the g-

mode is resonantly excited by tidal forces during the

late stages of binary inspiral, the resulting energy trans-

fer from the orbital motion to the star via tidal coupling

can affect the phase of the gravitational waveform. To

estimate this effect, we computed the orbital phase shift

∆Φ(τ) induced by a tidal resonant excitation of the prin-
cipal g-mode using Eq.(21) of Reisenegger & Goldreich

(1994) (with l=m=2)

∆Φ(τ) ≈ 2× 10−2

[

0.33

τ3/8
− 1

](

ωg

2ωdyn

)−1/3 (
S

10−2

)2

(37)
with τ the time to coalescence (in seconds), ωg=2πf

the g-mode angular frequency, ωdyn=
√

GM/R3 and S

∝ 〈Plm|ξnlm〉 with |Plm〉=∇(rlYlm(θ, φ)) is an overlap

integral that quantifies the coupling of the g-mode to

the 2l-pole component of the forcing tidal field. The

overlap integral in eq.(37) is computed from the solu-
tion of eqs.1 and 2, and is scaled to its typical value

for a (1.4+1.4)M� binary, assuming vBag parameters

that generate a hybrid star. We obtain ∆Φ(τ)∼O(1)

radian for τ ∼10 milliseconds, which is about when the

g1 mode is excited. Compared to core g-modes in a pure

neutron star (Reisenegger & Goldreich 1994), the phase

error for hybrid stars is larger since the overlap integral
S is an order of magnitude larger for the latter. Previous

similar works (eg., (Lai 1994; Yu & Weinberg 2017)) ob-
tained S ≈ 10−3−10−2 for neutron stars with or without

superfluidity, whereas we find S ≈ 10−2 − 10−1 for hy-
brid stars. This difference is due to the presence of the

mixed phase which makes the matter more compress-
ible, increasing the amplitude of the density perturba-
tion there and increasing S. Furthermore, the adiabatic

sound speed in the mixed phase (at a given density) is

smaller than for a uniform nuclear phase, which also
acts to increase the density perturbation. In the case
of neutron stars, we recover S about 0.01 or smaller,

while S ∼ 0.1 is possible in hybrid stars for the soft-

est parameter set HS(4,70), potentially yielding a tidal
phase error of order one. While this is promising, one

still has to overcome the statistical phase error for an

event given that there are still about 10 other param-

eters of the binary that can impact the orbital phase

during inspiral. For a tidally excited resonance, using

∆φstat≈
√
D − 1/(SNR), where D is the number of pa-

rameters and SNR is the signal-to-noise ratio, a con-

servative estimate is SNR ≥ 30 at frequencies f ≈ 0.5

kHz. For a single detector (LIGO) at current sensitiv-

ity, this implies a nearby event (luminosity distance∼40
Mpc or less, similar to GW170817), but with a network

of detectors (Yang et al. 2018) or even the A+ upgrade

to LIGO, there should be a much better chance of de-

tecting the g-mode . The growth (or damping) of the

g-mode in hybrid stars is also relevant to the question

of detection. Once excited, the g-mode can become be-

come secularly unstable if its growth timescale is much

shorter than the viscous damping timescale in the tem-

perature range T ≈ 1010K that is reached just before the

merger (Meszaros & Rees 1992). The growth timescale

τgw ∼ 10−2 yrs from eq.(35). The damping timescales

from viscosity in mixed phases inside neutron stars have

not been calculated precisely, but our estimates in the
previous section suggest that the damping timescale of
the g-mode due to bulk viscosity is longer than the grav-

itational wave timescale τgw for typical merger tempera-

tures and rotation speeds. This implies that any g-mode

excited pre-merger can grow to large amplitude, beyond

which it is likely to be damped due to the effect of higher

temperature or non-linear effects. The g-mode may be
excited post-merger as well, but their nature (thermally

or discontinuity-driven) is different than the ones consid-

ered here. Another distinct possibility is the superfluid

g-modes, which can be excited during coalescence (Yu &

Weinberg 2017), depending on the particle species in the

star’s core. Based on these estimates, it would appear

that the g-mode is likely to be detectable once ongoing
improvements in sensitivity of gravitational wave detec-

tors are complete. The g-modes could also have an ob-

servable electromagnetic signature, since the maximum

energy absorbed by the mode (Reisenegger & Goldreich
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1994)

∆E(ergs) ≈ 7× 1049
(

ωg

2ωdyn

)−1/3 (
S

10−2

)2

(38)

is four orders of magnitude larger than the steady state

Poynting luminosity of a merging binary integrated over

the resonance timescale of the g-mode (Fernandez &

Metzger 2016). If even 1% of the mode energy couples

to the magnetic field, it could be released in the form
of hard X-ray precursors to short gamma-ray bursts or
non-thermal emission.

7. CONCLUSIONS

Based on our study of core g-modes in compact stars

with and without quark matter, we conclude that the
frequency of these modes is very sensitive to the presence

of a mixed phase containing quarks and hadrons. The
equilibrium sound speed drops sharply at the boundary
of the mixed phase, raising the local Brunt-Väisälä fre-
quency and the fundamental g-mode frequency of the

star. If this mode can be resonantly excited during the
late stages of binary inspiral, the resulting energy trans-
fer from the orbital motion to the star via tidal coupling

can affect the phase of the gravitational waveform, or
couple to electromagnetic precursors, possibly giving a
signature of the quark-hadron phase transition in the
star. Previous works have examined the accumulated

phase error from tidal coupling to the g-mode for ordi-

nary neutron stars with composition gradients (but no
phase transition) and concluded that it is about two or-

ders of magnitude too small to be detected by current
detectors (Lai 1994; Yu & Weinberg 2017; Xu & Lai

2017). However, if one or both stars support a mixed

phase of quark-hadron matter, there are really two fluid

components inside each star that can be tidally forced.

This, and the fact that the spectrum of g-mode is shifted
to higher frequencies and is about 5 times more dense 1

than for ordinary neutron stars, imply that more modes
can become resonant as the signal sweeps through the
bandwidth of the detector and possibly accumulate a

larger phase error. Yu & Weinberg (2017) studied this

effect in superfluid neutron stars and found that since

higher frequency modes are excited later in the merger,

there is effectively no enhancement of the phase error

compared to ordinary neutron stars. To determine if

a similar cancellation occurs for hybrid stars, one must

perform a detailed calculation of the mode amplitude
evolution, energy transfer and the resulting phase error
in the case of a hybrid star. All we can say based on

our calculation is that g-modes from hybrid stars may

lead to a larger tidal phase error than that in an ordi-
nary neutron star due to the larger coupling coefficient
for the former.

There are a few more physical effects that can alter our

results quantitatively, which have not been taken into
account. Rotation and full general relativity have not

been incorporated at the level of the perturbative anal-

ysis. Non-linear mixing between p and g-modes due to
tidal coupling is possible (Weinberg 2016) without any

resonant excitation, and this can also impact the orbital

dynamics and tidal phasing. This effect seems to be

disfavored by the data on GW170817 (Reyes & Brown

2020; Abbott et al. 2019) but only for extreme values

of the p-g parameters. Other nuclear EoS parameteri-

zations and the possibility of strange quarks appearing
together or at a higher density than the light quarks

would change the sound speed profile and hence the g-

mode frequency. Therefore, we refrain from making any

bold statements on the quantitative impact of the effect

proposed here on the gravitational wave signal from bi-

nary mergers. However, given the subtle nature of the

masquerade problem and optimism for increased statis-

tics on binary mergers from the next observing runs of

Advanced LIGO/VIRGO as well as next generation de-

tectors, the g-mode is a promising diagnostic for the

quark-hadron phase transition deserving of further in-

vestigation.
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