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Lifting the veil on quark matter in compact stars with core g-mode oscillations
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ABSTRACT

Compact stars containing quark matter may masquerade as neutron stars in the range of measured
mass and radius, making it difficult to draw firm conclusions on the phase of matter inside the star.
The sensitivity of core g-mode oscillations to the presence of a mixed phase may alleviate this difficulty.
In hybrid stars that admit quark matter in a mixed phase, the g-mode frequency rises sharply due
to a marked decrease in the equilibrium sound speed. Resonant excitation of g-modes can leave an
imprint in the waveform of coalescing binary compact stars. We present analytic and numeric results
to assess the sensitivity displayed by g-mode oscillations to quark matter in a homogeneous or mixed
phase and also compute relevant damping times in quark matter due to viscosity.
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1. INTRODUCTION

The discovery by the Advanced LIGO and Advanced
VIRGO collaborations of the binary neutron star merger
GW170817 (Abbott et al. 2017) opens a new observa-
tional window into compact star properties. Many re-
cent works (Hu et al. 2020; Radice et al. 2018; Sieni-
awska et al. 2019; Abbott 2018; De et al. 2018; Chatzi-
ioannou et al. 2018; Malik et al. 2018; Tews et al. 2018;
Zhu et al. 2018; Christian et al. 2019; Li et al. 2018)
have explored constraints on the neutron star equation
of state (FoS) using tidal polarizabilities extracted from
gravitational waveforms during the late inspiral phase.
It appears possible, though not conclusive, that one or
both of the component stars in the merger could be hy-
brid stars; that is, they support a phase transition to
quark matter at high density (Paschalidis et al. 2018;
Nandi & Char 2018). In effect, the so-called “masquer-
ade” problem (Alford et al. 2005) for compact stars per-
sists: a hybrid star with quark matter in its interior is
indistinguishable from an ordinary neutron star based
on the current observational status, especially if quark
matter is in a mixed phase with hadronic matter. A
confirmation of this possibility was made in Wei et al.
(2019) for nuclear to 2-flavor, 3-flavor and sequential
flavor transitions. It has been suggested (Brillante &
Mishustin 2014; Flores & Lugones 2014; Sotani et al.
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2011, 2013) that mapping out the radial or non-radial
oscillation mode frequencies can provide a clear distinc-
tion between neutron and hybrid stars, with only a weak
dependence on the poorly known equation of state (EoS)
of the quark phase. Given this idea, and that non-radial
oscillations couple to gravitational waves, we examine a
diagnostic of the phase structure of matter inside neu-
tron stars: the core g-mode oscillations (Reisenegger
& Goldreich 1992; Miniutti et al. 2003). We find that
these modes are sensitive to the presence and the pro-
portion of quark matter inside neutron stars, similar to
the conclusions in Dommes & Gusakov (2016); Yu &
Weinberg (2017), which focused on hyperons. However,
the appearance of hyperons does not involve any phase
transition, so their effect on the g-mode is less dramatic.
The effect of resonant g-mode oscillations on the tidal
phase accumulated during the inspiral for compact stars
is probably too small to detect with the current sensi-
tivity of gravitational wave detectors (Lai 1994; Yu &
Weinberg 2017), but the effect may be more pronounced
in hybrid stars, which could finally lift the veil on quark
matter inside neutron stars and solve the masquerade
problem.

In this paper, our focus is on the characteristics of
g-mode oscillations in the quark-hadron mixed phase
through a theoretical analysis of the restoring force
(buoyancy) and damping. Typically, buoyancy arising
from thermal and/or chemical stratification inside the
star (core or crust) drives the g-mode. It can also arise
due to sharp density discontinuities as a result of first or-
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der phase transitions (Miniutti et al. 2003; Kruger et al.
2015). Core g-mode oscillations arising from chemi-
cal stratification carry the imprint of the fluid’s com-
position, a feature that can potentially be exploited by
gravitational wave detectors operating in the (0.1-1) kHz
regime (Yu & Weinberg 2017). The g-mode is driven by
the mismatch between mechanical and chemical equilib-
rium rates of a displaced fluid parcel, expressed by the
difference between the local equilibrium and adiabatic
sound speed, i.e., the Brunt-Vaiséla frequency. Com-
pared to a pure phase, a mixed phase system (ignoring
surface and Coulomb forces) is more compressible due to
its ability to distribute conserved charges globally. The
drop in the equilibrium sound speed upon onset of the
mixed phase is reflected in an increase of the g-mode
frequency. This is the basic result we exploit in this pa-
per to characterize the g-mode as a diagnostic for the
phase transition to quark matter.

The g-mode for (n,p,e”) matter with or without
additional leptonic and hadronic species has been ad-
dressed in previous works (Reisenegger & Goldreich
1992; Lai 1994; Kantor & Gusakov 2014; Yu & Wein-
berg 2017; Dommes & Gusakov 2016; Zhou & Zhang
2017; Passamonti et al. 2016). For quark matter, model-
dependent numerical studies have been reported (Sotani
et al. 2011; Fu et al. 2017; Vasquez Flores & Lugones
2014; Ranea-Sandoval et al. 2018), but none are in the
context of a mixed phase (continuous phase transition).
We take a simpler but more general approach that allows
for analytic estimates of the Brunt-Vaisild frequency in
quark matter, and reveals the sensitivity of the g-mode
to the onset and the proportion of the quark phase. The
g-mode frequency vanishes in non-interacting and mass-
less two and three (or any Ny) flavor quark matter, but
can appear in any of the following realistic situations:
non-zero quark mass, inclusion of interactions, a quark-
hadron mixed phase. We illustrate these three cases sep-
arately for the sake of simplicity. The first and second
are treated with analytic approximations, whereas for
the third, we employ a common parameterization, where
hadronic matter is described by a member of the fam-
ily of Dirac-Brueckner-Hartree-Fock (DBHF) EoS (van
Dalen et al. 2004), and quark matter is described by the
vector-enhanced Bag model (vBag EoS) (Klahn & Fis-
cher 2015). Within acceptable parameter ranges of these
models, we find a steep rise in the g-mode frequency
upon the appearance of a mixed phase. We discuss how
this can impact tidal resonance phenomena in binary
neutron star mergers where one or both components are
hybrid stars with a (mixed-phase) quark matter core,
and whether the effect can survive mode damping. A
more detailed study of g-mode resonant coupling to dy-

namical tides in neutron stars and the subsequent im-
pact on gravitational wave phasing during inspiral is left
to future work.

This paper is organized as follows: sec II describes
how core g-mode oscillations probe the phase structure
of compact star interiors, sec III contains analytic results
for the Brunt-Vaiséla frequency in models of interacting
nuclear and quark matter, sec IV gathers our numerical
results for the g-mode jump at the onset of the mixed
phase, sec V and VI discuss estimates of g-mode damp-
ing times and detectability using gravitational waves,
followed by our conclusions in sec VII.

2. G-MODE OSCILLATIONS

The g-modes arising from chemical stratification are
quite sensitive to the composition of dense matter.
Therefore, they may be a better probe of the EoS than
the f and p-modes. For example, the g-mode frequency
depends on the proton fraction which is affected by the
nuclear symmetry energy. The latter determines im-
portant physical quantities such as the compact star’s
radius, its tidal deformability and neutrino emission
thresholds (Sahoo et al. 2016; Zhang & Li 2019; Krastev
& Ti 2019; Lattimer et al. 1991; Gandolfi et al. 2012).
The symmetry energy also plays a key role in the prop-
erties of terrestrial nuclei, such as neutron skin thick-
ness and dipole polarizabilities (Cao et al. 2015; Dong
et al. 2015). As such, theoretical studies of the g-
modes add to the list of diagnostics of dense matter
properties coming from other phenomena in nuclear as-
trophysics. We emphasize that the g-mode addressed
in this work is different from the crustal (Finn 1987),
thermal (Strohmayer 1992) and discontinuity (McDer-
mott 1990) g-modes, since we assume a continuous phase
transition without a density discontinuity.

In order to determine the g-modespectrum, we first
construct the stellar structure using General Relativ-
ity (TOV equations). To simplify the linearized fluid
perturbation equations from which we calculate the fre-
quency of the g-mode, we employ the Newtonian and
Cowling approximations, neglecting the back reaction
of the Newtonian gravitational potential. While this is
not strictly consistent with the fully relativistic treat-
ment of the background structure, the impact of these
simplifying approximations is not severe, typically only
affecting the frequencies of the p-mode and g-mode at
the 5-10% level (Gregorian 2015). However, the f-mode
frequencies at low angular quantum number can be more
sensitive to the the Cowling approximation. To go be-
yond the Cowling approximation involves a considerable
complication since the fluid equations must be treated
in full General Relativity. While this is essential for a



self-consistent calculation of gravitational waves, here
we are only trying to obtain the approximate trend in
the frequency as a function of stellar parameters, not
the explicit wave forms, for which the Cowling approxi-
mation is sufficient.

Accordingly, the system of equations used to compute
g-mode frequencies in the neutron star are given by (Fu
et al. 2017; Bildsten & Cumming 1998)
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where &, is the radial component of the fluid pertur-
bation, dp the Eulerian pressure perturbation, p is the
energy density and the Brunt-Viisila frequency

depends on the equilibrium (c.) and adiabatic (¢s) sound
speeds. The solution of the system of egs.(1) & (2) un-
der relevant boundary conditions, viz., regularity at the
stellar center (r — 0) and vanishing of the Lagrangian
pressure variation Ap = c¢2Ap at the surface, can exist
only for discrete values of the mode frequency w. While
we present numerical results for the f- and p-modes as
well, our theoretical focus in this work is on the [=2
g-modes. Also, all our results, including the estimate
of the tidal overlap integral in hybrid stars, are for the
gl mode - the one with lowest radial quantum number
and the highest frequency. As this mode has the largest
tidal coupling coefficient and is likely to be excited late
in the merger when the tidal force is stronger, we have
chosen to study this mode alone. Though overtones are
definitely present, we did not perform any explicit com-
putations with those.

Once a background stellar configuration is specified,
we solve egs.(1) and (2) numerically, subject to the
boundary conditions mentioned above, and pick out
the gl mode from the resulting spectrum by count-
ing the number of nodes of the eigenfunction. We
note in passing that one can perform a local analysis
of these equations in the eikonal approximation, which
yields (Reisenegger & Goldreich 1992)
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but this approximation is less accurate for low-order
g-modes, so we do not use it in this work. Convectively
stable g-modes exist for N2 > 0, implying that

dp dx
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should be fulfilled, where x = n,/np is the proton-
to-baryon density ratio, which equals the electron-to-
baryon density ratio Y. = n./np in charge neutral
(n,p,e”) matter.

3. ANALYTIC ESTIMATES FOR SIMPLE MODELS
OF DENSE MATTER

The sound speeds and g-mode frequency can be ap-
proximately calculated analytically in a few simple, and
surprisingly, even interacting models of nuclear or quark
matter. As an example, we compute these quanti-
ties in interacting two flavor quark matter based on
the vBag model (Klihn & Fischer 2015), which has
been recently introduced to reconcile the missing fea-
tures of the perturbative or thermodynamic Bag model
(no chiral symmetry breaking) and Nambu-Jona-Lasinio
(NJL)-type models (no confinement) within a single
non-perturbative picture. This model is similar in spirit,
but different in details than the more recent vMIT
model (Gomes et al. 2019). The vBag model has proved
to be versatile, with astrophysical applications such
as mixed phases in neutron stars, protoneutron stars
and supernova explosions, as demonstrated in recent
works (Kldhn et al. 2017; Fischer et al. 2017b,a). The
purpose of studying these simple models is to emphasize
the key quantities that determine the occurrence of sta-
ble g-modes, typically the nuclear or quark symmetry
energy.

3.1. Nuclear Model : The DBHF Equation of State

Before we list the analytic results, we emphasize the
importance of the symmetry energy in nuclear/quark
matter to the g-mode. Employing the widely used func-
tional form for the nuclear contribution to the energy
per baryon (Prakash et al. 1988; Wiringa et al. 1988),
Eg(np,z) =~ Eo(ng) + Es(ng)(1 —22)?, it follows that

x _ 64E,(np)?
(1-2x)3  3n2np

(6)

for (n,p,e”) matter in 8 equilibrium, where E;(np)
is the symmetry energy of uniform matter and Ey(ng)
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is the energy per baryon of symmetric matter. Working

in the parabolic approximation, we find
N~ (£> (L)
ce) N3 JE(REy +2npE, +n}E)
(7)
where ¢ is the local gravitational field and primes
denotes density derivatives. It is clear from this ex-
pression that the g-mode spectrum warrants further in-
vestigation to determine its sensitivity to properties of
the nuclear medium. For the non-interacting (n,p,e™)
gas, N ~ (g/co)(3z/7)"/?, which is consistent with
other approximate estimates in the literature (Lai 1994;
Reisenegger & Goldreich 1992). Here, we have used nat-
ural or Planck units A=c=1. The Brunt-Viisila fre-
quency in the non-interacting case N ~ 100 Hz. Ex-
tensions to various parameterized models of the nuclear
interaction have been considered in (Lai 1994; Reiseneg-
ger & Goldreich 1992; Fu et al. 2017). In our numerical
calculations, we use the nuclear EoS DBHF used in Wei
et al. (2019). The proton fraction and symmetry energy
as a function of baryon density is displayed for this EoS
in Fig.1.
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Figure 1. Symmetry energy Es(np) and proton fraction
z for the DBHF nuclear EoS across a typical density range
from the inner crust boundary to the core of the neutron
star.

3.2. Quark Model I: The Thermodynamic Bag
Equation of State

Since we are interested in the impact of quark mat-
ter on the g-mode, we consider some simple models
of quark matter where the g-mode frequency can be
estimated analytically. For non-interacting two flavor
quark matter, charge neutrality and S-equilibrium pro-

vide two constraints on the up and down quark chem-
ical potentials p, and pg. This renders the electron
fraction x. independent of the baryon density, as . ac-
quires the fixed value =~ 0.0056, implying that wpy =0,
and the absence of g-mode oscillations. This situation
is not realistic however, and we can imagine three dif-
ferent ways in which composition gradients can appear
in quark matter. Firstly, the moderately heavy strange
quark can appear at high density, modifying the charge
neutrality condition such that .~ m?2/(4u,), where p1,
is the quark chemical potential. Consequently, the elec-
tron fraction depends on density, providing the neces-
sary variation of composition. Secondly, quark-quark
interactions can generate N#0, which we demonstrate
in the vBag model in the two-flavor sector. In this par-
ticular model, repulsive vector interactions that support
hybrid stars as heavy as 2M, determine the electron
fraction. Thirdly, even though non-interacting homoge-
neous two-flavor quark matter has a fixed electron frac-
tion, N # 0 can occur when such matter is part of a
mixed phase with nuclear matter, where the pressure
varies smoothly as the quark fraction grows. We model
this case a little later in this section using Wood’s rela-
tion (Wilson & Roy 2008) for a mixture of compressible
fluids and show that it can support g-modes. In a more
detailed numerical analysis in section IV, we will em-
ploy the Gibbs construction for the mixed phase and
compute the g-mode frequency therein.

For non-interacting massless two-flavor quark matter
in the corresponding parabolic approximation for the
energy per baryon of the quarks Fy(np,z.), the isospin
asymmetry is given by § = 1 — 2z, = 3(ng — ny)/(ng +
ny). The quark symmetry energy Fgs(ng) o n]lg/3
which leads to a fixed value for x, =~ 0.0053, within
5% of the value obtained previously with no approxi-
mation to Eq(np,z.). In quark matter with massive
strange quarks, the symmetry energy depends addition-
ally on the fraction of strange quarks z,=ns/np (Chu
& Chen 2014), wherefore E,(np,d,25) =~ Ey(np,zs) +
Es(np,25)8? leads to a system of two equations that
determine z.(np) and zs(npg).

Te _ 64Es(n3)3
(1 -2z, —224/3)3  3n2np
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Therefore, the g-mode frequency, which directly in-
volves the gradient of the composition with baryon num-
ber (or energy) density via eq.(5), serves as a probe of
the symmetry energy.



Let us now address the three examples that provide
for g-modes in quark matter. The first of them involves
introducing the strange quark at sufficiently high den-
sity. Within the thermodynamic Bag model (henceforth,
tdBag) with a Bag constant B, we can write the EoS
for quark matter P(p) to leading order in the strange
quark’s current mass mg as

Lp—ap) - T

. m; Vp—B (10)

where p is the pressure and p the energy density. We
can ignore the tiny contribution of the electrons to the
pressure, of order m%/ ug. Effectively, this means the
adiabatic sound speed is given by

p(p) =

1 m2
2 s
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Eq.(5) can be recast as (Lai 1994)
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For the non-interacting case, an approximate solution to
egs.(8) and (9) that is accurate to better than a few per-
cent for densities of interest yields u. ~ m?/4p,. This
implies that r. = n./ng x m$/n% so that (dz./dnp) =
—2(ze/np). Since pe/pq < 1, we can also approximate
the quark pressure for homogeneous three-flavor quark
matter as

Phgs te) = polig) — nQ(tig) e + O(1d) (13)

with the charge density ng=(0p/du.)=m2pu,/(27%).

Noting that z. oc p12, we obtain

p \  mipgpie
<8xe> T 6m2z, (14)

Substituting this result in eq.(12) and using eq.(3),

2
~ V3g <mS> (15)
p— B

The difference between the adiabatic and equilibrium
sound speeds is, in this case, of order m%/B. For the
case of a strange star, near the surface, p ~ 4B, so that
N =~ (g/(2mc.))(m?/v/B), which is in good agreement
with the estimate in Abney et al. (1996). For neutron
stars with a quark core, we may conclude from eq.(15)
that the resulting g-mode frequency (for low-I values)
wpy ~ 100 Hz, which is very similar to the estimate for
non-interacting (n, p,
results for realistic models of nuclear and quark matter
with interactions show that their g-mode frequencies are
quite different (see Fig.6).

e”) matter. However, numerical

3.3. Quark Model II: The Non-perturbative vBag
Equation of State

We now consider the case of a 2-flavor interacting
quark model, namely, the vBag model, as an exam-
ple of how interactions can induce g-mode oscillations.
The vBag model is a hybrid approach that accounts for
scalar interactions and hence chiral symmetry breaking
by assuming bare quark masses and flavor dependent
chiral bag constants (B, ¢) to reproduce the proper crit-
ical chemical potential for each flavor’s chiral symmetry
restoration. Vector interactions are taken into account
non-perturbatively in analogy to the NJL model (Kle-
vansky 1992). The quark pressure and energy density
are given by

Pq:ZPf+Bdc; eqzzef—Bdc. (16)
! f
where By, is the confinement Bag constant, intro-
duced to ensure that quarks are confined in the chirally
restored phase. We may take it to be the same for both
light flavors. The individual flavor pressure and energy
density appearing in the equations above are

* KU *
Pi(pg) = Pre,f(u}) + 7”%G,f(uf) —By,y (17)

* KU *
er(pr) = erc,r(uy) + 7”%‘6,f<ﬂf) + By,r (18)

with the subscript F'G denoting the Free Fermi gas
expression. We choose B, ,, = B,,q to avoid sequential
restoration, which is a more complicated scenario. These
equations contain the vector repulsion term < K, which
comes from vector current-current interactions and is
connected to the gluon mass scale in Dyson-Schwinger
studies of non-perturbative QCD. The repulsion term is
essential to stiffen the quark equation of state, and sup-
port compact stars at least as heavy as 2M;. We will
see that it also controls the electron fraction in quark
matter, thereby influencing the g-mode. The introduc-
tion of the vector term also modifies the quark number
densities and chemical potentials as:

py =y + Konra, (1) (19)
ng(ug) =nra,f(1}) (20)

The vBag equation of state can be expressed as:

an fir)

which has a non—barotropic form since ny(pf) encodes
composition information. Charge neutrality requires

1
Py = (& 4ZBXf += Bdc
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(2/3)xy,—(1/3)xq—x.=0, where z;=n;/npg are the quark
to baryon number fractions of species i. We also impose
B-equilibrium : g — py=pe. Since x, + r4=3, we can
obtain z.(np) numerically from these conditions. It is
useful to note that the depressed cubic eq.(19) has the
solution

_ 1
p* ¢ = sinh (3 sinh ™! (S,uf)) (22)

with the scaling i=(v/3K,/(27)) pr. Subsequently, we
obtain an analytic approximation for the electron frac-
tion, which is within 5% of the numerical result.

7 1/3 _ 1) (x277)1/313
o) = 2 ] (23)

n=K3?ng (24)

For values in the typical parameter range K, ~ (2-6)
GeV~2, the dimensionless baryon density is 72 ~ (0.002-
0.02) for densities of relevance to quark matter in com-
pact stars (np ~ (3-6)nsat), implying that z. ~ (0.006-
0.014). To obtain the difference in sound speeds from
eq.(12), we note that (with p, E' denoting the total pres-
sure and energy per baryon from quarks and electrons)

8])_ 5 0 8E_ 5 0
Or. "BanB Ox. _”BanB

[/’Le + Mo — Ud] (25)

Expressing the chemical potentials p; in terms of the
partial fractions x;, we arrive at

op 2

e, = —gnQBKv(l —21,) (26)
From eq.(23) and (24), it follows that
dz, 2K,

e 20w 2/3
annB = G2/ (nBxe) (27)

From eqs.(26) and (27), and to leading order in z,, we
find

2 _ 2 333/3 K; ”?3/3
s e T (3p2)1/3 ij(em’f(u;) + 3Ky nhg  (15))
(28)
To the same order in x., the Brunt-Vaisala frequency
in this model is

21/3
N~ g ce X (29)
4/3
K, nB/

¢<Pq +€q) +2 ;(Kvn%c,fm;) +Bys) — Buc

Finally, we consider the case of a mixed phase of non-
interacting 2-flavor quark matter with nuclear matter,
which also implies the existence of g-mode oscillations.
This foreshadows the more realistic numerical treatment
of the mixed phase in the next section.

As an analogy, consider an admixture of two (un-
charged) components such as water and air. Even at
very low bubble fraction y, the effective incompressibil-
ity is reduced sharply since the density of the mixture is
hardly changed, whereas air bubbles significantly reduce
the pressure compared to a pure liquid. The resulting
equilibrium sound speed is given by (Wood 1930)

1 (1—x)? X Pg P
= 5 tx(=x) | =5 + (30)
Cr2nixed 612 052] Pl Cl2 109 052]

where [ and ¢ stand for the liquid (dense) and gas
(void) phase respectively. This assumes that the bub-
ble can exchange heat with the surrounding fluid fast
enough during the perturbation to maintain equilibrium.
Since the material density p, < p;, a distinct drop in
the equilibrium sound speed is seen at the onset of the
mixed phase.

For a quark-hadron mixed phase, eq.(30) is not di-
rectly applicable since each phase also carries charge
such that the system is globally neutral, with the void
fraction given by x, = n}é/(n}é — ng) where ng de-
notes the charge density, and ¢ and h refer to quark and
hadron phases. Furthermore, the energy density p, and
pr are similar in magnitude unlike for air and water,
which would imply cpix = ¢, for small x. Taking the
two conserved quantities (baryon number and charge)
into account, we have

C2- _ dpmix(uBaMQ) _ apmix (d,U/B> apmix (dMQ>
e dp oup \ dp Opq \ dp
(31)
Accordingly, an additional contribution to eq.(30) ex-
ists, with the energy densities p, and pp, replaced by the
respective charge densities p? and p;’ respectively. As
shown in Glendenning (1992) with an explicit quark-
hadron mixed phase construction, the first term in
eq.(31) is continuous with density at the onset of the
mixed phase, but the second term involving the charge
chemical potential is not. Therefore, we expect, as con-
firmed by our numerical results presented in sec IV, that
Cmix has a negative discontinuity at the onset of the
mixed phase, in effect lowering the equilibrium sound
speed. The physical meaning is that the system is more
compressible in a charge separated state, as internal
forces have the freedom to rearrange charges between
the two phases to minimize the free energy. In effect,



global charge neutrality makes the system more com-
pressible. We note that this effect is not specific to
the quark-hadron mixed phase, it will arise whenever a
mixed phase is encountered in the depths of a compact
star. Our numerical calculations show a similar sharp
drop in the equilibrium sound speed at the onset of the
mixed phase, with only a small change in the adiabatic
sound speed. Therefore, ¢2 — ¢2 > 0 and stable g-modes
can be found.

4. NUMERICAL RESULTS FOR G-MODES IN THE
MIXED PHASE
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Figure 2. The mass-radius curve for three different compact
star configurations - neutron stars (DBHF), hybrid stars and
quark stars (vBag). The parameters of quark matter for the
quark/hybrid star 1 are Beg=70 MeV fm ™ and for hybrid
star 2, Beg=80 MeV fm 2. Variations due to vector coupling
Ky=4x10"%MeV~2 and K,=6x10" MeV~? are displayed.

We now examine the g-mode in the mixed phase us-
ing a realistic model for the nuclear phase (DBHF EoS)
and the vBag model for the 2-flavor quark phase. De-
tails about these EoS are given in Wei et al. (2019), also
in Klédhn & Fischer (2015); Kl&hn et al. (2017); Cierniak
et al. (2018); Wei et al. (2019). Here, we employ param-
eters for the vBag model that yield a maximum mass of
at least 2M, and result in the appearance of a mixed
phase of nuclear and two-flavor quark matter in the in-
terior of neutron stars. As explained in our paper (Wei
et al. 2019) on the masquerade problem, it is possible to
consider two phase transitions, the first involving only
(u,d) quark matter, and the second involving s-quarks
at a higher density. One could also choose vBag pa-
rameters to have only three-flavor matter in a mixed
phase. In either of these two more involved cases, we
expect that our conclusions about the rise in g-mode
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frequency would not change qualitatively, but we do not
study them numerically here.

logN°[km™]

/R

Figure 3. The local Brunt-Viisald frequency for neu-
tron/quark/hybrid stars plotted as a function of the relative
distance from the center r/R. The parameters are same as
in Fig.2. The mass of the chosen neutron and hybrid stars
are 2.1M©® and the mass of the quark star is 1.9M®.

In Fig.2, which shows the mass-radius curve for neu-
tron, quark and hybrid stars with our chosen EoS, we
observe that the onset of the softening due to the ap-
pearance of the mixed phase happens at higher stellar
mass as Beg is increased, contributing to the masquer-
ade effect that was described extensively in Wei et al.
(2019). The vector interaction provides the necessary
stiffness to generate masses above 2My. The value of
Beg is also constrained by the requirement that nuclei
must be stable against deconfinement to (u,d) matter
in vacuum. In the vBag model, the value of Beg that
allows deconfinement to (u,d) matter in vacuum has a
value of 60 MeV fm ™3 at zero vector repulsion and some-
what lower at higher values of this repulsion. Our cho-
sen values of Beff of 70 and 80 MeV fm~2 avoid this
unphysical outcome while still permitting a phase tran-
sition to 2-flavor matter at high baryon density. From
Fig.2, it is clear that vBag model parameters can be
chosen so as to mask the effect of the phase transition
in the mass-radius curve, so we look to the g-mode sig-
nature instead. In Fig. 3, we show the Brunt-Vaisila
frequency in the star from outer core to the center. To
obtain positive values of N? (i.e, log(N?) real) through-
out the core, as required by the lack of convection in
cold compact stars, we found it necessary to smooth the
DBHF EoS data before computing the sound speeds,
which involve derivatives of the pressure with respect to
energy density. The peak signals an abrupt rise of the
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Figure 4. The Newtonian eigenfrequencies of f-modes for
the neutron star, hybrid star and quark star as a function of
stellar mass. Parameters are same as in Fig.2.
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Figure 5. The Newtonian eigenfrequencies of p-modes for
the neutron star, hybrid star and quark star as a function of
stellar mass. Parameters are same as Fig.2. The trend of the
p-mode frequency for the quark star, which is opposite that
of the neutron and hybrid star, arises because the quark star
is self-bound.

Brunt-Vaisala frequency inside the star due to the dras-
tic reduction in the equilibrium sound speed, revealing
the onset of the mixed phase. Although this is a contin-
uous phase transition with no sharp density jump, the
g-mode frequency is seen to rise sharply at this point for
the reason explained at the end of the previous section.
In Figs. 4, 5 and 6, we observe the impact of the phase
transition on the fundamental f,p, g-modes.

While the f and g-modes both have frequencies within
the sensitivity range of Advanced LIGO/Advanced
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Figure 6. The Newtonian eigenfrequencies of g-modes for
the neutron star, hybrid star and quark star as a function of
stellar mass. Parameters are same as Fig.2. Note the abrupt
change in slope of the g-mode frequency curve as soon as
the mixed phase is favored.

VIRGO (with the g-modes more s0), only the g-modes
show a trend for hybrid stars that is very different from
neutron stars/bare quark stars. The f-modes for hy-
brid stars appear to interpolate between the neutron
star and quark star as we go to increasing mass. The
g-modes for the hybrid star on the other hand can
have frequencies much higher than either the neutron
star/quark star. It is surprising that a local change in
the Brunt-Vaiisdla frequency can impact the gl mode
frequency, given the latter’s large wavelength which is
comparable to the stellar radius. However, the phase
fraction of quark matter rises very fast at the onset of
the mixed phase, causing dramatic compositional gra-
dients that drive the sound speed difference (and hence
the Brunt-Viisila frequency) to higher values than for
ordinary neutron stars. Compared to say, the change in
sound speed when muons or hyperons enter Dommes &
Gusakov (2016), the fall in sound speed when quarks en-
ter is several times larger. As a result, the magnitude of
the change in the Brunt-Vaisala frequency is also much
larger when the mixed phase begins. The logarithmic
scale on the vertical axis of Fig.3 gives an idea of this
effect. The large magnitude of this shift with respect
to a normal or pure phase counters the fact that it is a
local effect, resulting in a significant g-mode frequency
shift nevertheless. The parameter set HS(4,70) yields
the most compact configuration of all, as seen in Fig.2.
Quark matter appears at the lowest density in this case,
softening the equation of state the most and strongly
decreasing the sound speed. Consequently, we see the
largest g-mode frequency shift for HS(4,70).



Even if the compact star’s mass is not measured, a
g-mode frequency of about 0.8 kHz or more is likely to
be supported only in a hybrid star. Within our chosen
model, this also constrains the stellar mass to be above
2.0Mg), so it could be a way to identify the most massive
compact stars. We also note that lower g-mode frequen-
cies (0.4-0.8 kHz) could originate from low/intermediate
mass hybrid stars or high-mass neutron stars. These
two possibilities can be distinguished if the f-mode fre-
quency, which is very different for low and high mass
stars irrespective of model parameters, is also measured.
Therefore, even in the absence of a mass measurement, it
is possible to extract information on the interior compo-
sition of the compact star such as whether it can support
a phase transition to quark matter, using its oscillation
spectrum. If the mass is known to better than a few
% (Lattimer et al. 2019) and the frequency to better
than few tens of Hz (Pratten et al. 2020), we can begin
to constrain the parameters of the quark model which
derive from the non-perturbative sector of the strong
force. It is also worth noting that while the g-mode and
the p-mode frequencies are both quite distinct between
neutron stars and pure quark stars, only the g-mode
frequencies would be in the sensitivity band of currently
operational detectors. In the next section, we estimate
the g-mode damping time as this affects the likelihood
of practically detecting these modes with gravitational
wave interferometers.

5. DAMPING TIMES FOR THE G-MODE IN
QUARK MATTER

In this section, we provide estimates for the damp-
ing time of the g-mode in two-flavor quark matter, to
provide some comparison with ordinary neutron stars.
These are only order of magnitude estimates that can
be refined by utilizing the g-mode wave functions ob-
tained from the solution of the fluid perturbation equa-
tions along the lines of Lai (1994). However, that is
beyond the scope of the current paper. Three sources
of damping are identified in Reisenegger & Goldreich
(1992): neutrino damping (bulk viscosity), damping by
shear viscosity and gravitational wave damping (the lat-
ter being negative corresponds to mode growth). We
address these in turn. Neutrino damping of the g-mode
involves the relaxation of the departure from chemical
equilibrium dp(np, Te)=pd — fiu, — te due to the non-
equilibrium [B-decay rate. Working at fixed baryon den-
sity, we define the typical relaxation timescale through

4]

B = 1/Frel§ 5 - _Frelf; f = ?M (32)

Adopting the expression for I'ie=I'a—utets,
Tute—dtr, from Anand et al. (1997), we obtain

Nsat 2/3 1
~ 82T 4 =2 —_—
mi) w2t () s e

where ng=0.154 fm~3 is the nuclear saturation den-
sity, and we have assumed K, = 4 GeV~2. The magni-
tude of du depends on the amplitude of the oscillation,
which is uncertain, but we may assume an upper limit
of du ~ 1 MeV, which corresponds to fluctuations in
the chemical potentials at the 1% level. Since the os-
cillation timescale for the g-mode in quark matter is
~ 0.01 — 0.1 seconds, it is clear from eq.(33) that unless
T > 10K, the g-mode is not damped by this mecha-
nism. Even assuming tidal heating during the inspiral,
the temperature is insufficient to damp the g-mode in
quark matter through off-equilibrium S decays. Turn-
ing to the damping timescale from shear viscosity, recent
work (Reisenegger & Goldreich 1992; Lai 1999)

L? 37r245/3 (nsat>5/9
Tyise(YT) ~ — =~ 1.5 x 10°L5 Ty — (34)
14 np

where v is the kinematic viscosity, related to the shear
viscosity as v=n/p, and we have used the shear vis-
cosity for quark matter given in Heiselberg & Pethick
(1993), which takes Landau damping into account for
the gluons. Lg=L/(10°cm) where L is a typical wave-
length scale of oscillation. This timescale is too large to
damp the g-mode by itself unless Ty < 1073, i.e, unless
T < 107K, which is the case only for very old neutron
stars.

Finally, we can estimate the effect of the secular in-
stability of the g-mode in rotating configurations due
to gravitational wave emission, also known as the CFS
instability (Chandrasekhar 1970; Friedman & Schutz
1975). The low frequencies of the g-mode in quark mat-
ter implies that the critical rotation speed at which the
CFS instability can be triggered in pure quark stars is
Qs ~ 10 — 100 Hz. When the mixed phase enters and
the g-mode frequency rises sharply, stability can be re-
stored. From the analysis in Lai (1999), we estimate

1+& . 5. Riy (107
Tew ) ~ o5 ey \ 5D, (35)

where w; and w, are normalized mode angular fre-
quencies in the inertial and rotating frames respectively,
0 D4o is the mass quadrupole and £ is a sub-leading con-
tribution to the g-mode energy. Mode instability in the
inviscid case sets in when w; turns negative, which hap-
pens at a critical spin frequency of v; &~ 0.681, (Lai
1999), where v is the mode frequency.
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Applying eq. (35) to our quark model EoS for a 1.4M
star, for which d Dy &~ .0008 and & =~ 0.7, we estimate
the mode damping timescale to be Tgw ~ 10% yrs at
zero rotation for a pure quark star and 7y ~ 1072 yrs
for a hybrid star with a mixed phase quark core. This
large difference in damping times is due to the much
higher g-mode frequency in the mixed phase configura-
tion. Taking viscous damping and rotation into account,
the overall damping timescale 7, which is given by

T= (15" + Tyme + Taw) (36)

implies that the g-mode can be unstable to gravita-
tional wave emission (i.e, 7 < 0) in the temperature
range 108K< T < 10°K for a stellar rotation frequency
of about twice the frequency of the g-mode frequency
at zero rotation ~ 200 Hz . With decreasing rotation
speed, the instability window narrows and ultimately
closes. However, at slower rotation speeds, additional
sources of damping such as mutual friction could be-
come important if the quarks are in a superfluid phase.

6. DETECTING G-MODES WITH
GRAVITATIONAL WAVES

How can we observe the predicted effect? If the g-
mode is resonantly excited by tidal forces during the
late stages of binary inspiral, the resulting energy trans-
fer from the orbital motion to the star via tidal coupling
can affect the phase of the gravitational waveform. To
estimate this effect, we computed the orbital phase shift
A®(7) induced by a tidal resonant excitation of the prin-
cipal g-mode using Eq.(21) of Reisenegger & Goldreich
(1994) (with [=m=2)

0.33 we N3/ 5 \?
~ —2 _ g
A(I)(T) ezl |:7—3/8 1:| <2wdyn) <102>

with 7 the time to coalescence (in seconds), wy,=2mf
the g-mode angular frequency, wayn=+/GM/R? and S
o (P [€™™) with | Pyy,)=V (r'Y;,n (0, ¢)) is an overlap
integral that quantifies the coupling of the g-mode to
the 2'-pole component of the forcing tidal field. The
overlap integral in eq.(37) is computed from the solu-
tion of egs.l and 2, and is scaled to its typical value
for a (1.441.4)Mg binary, assuming vBag parameters
that generate a hybrid star. We obtain A®(7)~O(1)
radian for 7 ~10 milliseconds, which is about when the
g1 mode is excited. Compared to core g-modes in a pure
neutron star (Reisenegger & Goldreich 1994), the phase
error for hybrid stars is larger since the overlap integral
S is an order of magnitude larger for the latter. Previous
similar works (eg., (Lai 1994; Yu & Weinberg 2017)) ob-
tained S = 1073 —10~2 for neutron stars with or without

superfluidity, whereas we find S ~ 1072 — 10! for hy-
brid stars. This difference is due to the presence of the
mixed phase which makes the matter more compress-
ible, increasing the amplitude of the density perturba-
tion there and increasing S. Furthermore, the adiabatic
sound speed in the mixed phase (at a given density) is
smaller than for a uniform nuclear phase, which also
acts to increase the density perturbation. In the case
of neutron stars, we recover S about 0.01 or smaller,
while S ~ 0.1 is possible in hybrid stars for the soft-
est parameter set HS(4,70), potentially yielding a tidal
phase error of order one. While this is promising, one
still has to overcome the statistical phase error for an
event given that there are still about 10 other param-
eters of the binary that can impact the orbital phase
during inspiral. For a tidally excited resonance, using
Adgtar~v/D — 1/(SNR), where D is the number of pa-
rameters and SNR is the signal-to-noise ratio, a con-
servative estimate is SNR > 30 at frequencies f ~ 0.5
kHz. For a single detector (LIGO) at current sensitiv-
ity, this implies a nearby event (luminosity distance~40
Mpc or less, similar to GW170817), but with a network
of detectors (Yang et al. 2018) or even the A+ upgrade
to LIGO, there should be a much better chance of de-
tecting the g-mode. The growth (or damping) of the
g-mode in hybrid stars is also relevant to the question
of detection. Once excited, the g-mode can become be-
come secularly unstable if its growth timescale is much
shorter than the viscous damping timescale in the tem-
perature range T' ~ 10'°K that is reached just before the
merger (Meszaros & Rees 1992). The growth timescale
Tew ~ 1072 yrs from eq.(35). The damping timescales
from viscosity in mixed phases inside neutron stars have
not been calculated precisely, but our estimates in the
previous section suggest that the damping timescale of
the g-mode due to bulk viscosity is longer than the grav-
itational wave timescale 74y, for typical merger tempera-
tures and rotation speeds. This implies that any g-mode
excited pre-merger can grow to large amplitude, beyond
which it is likely to be damped due to the effect of higher
temperature or non-linear effects. The g-mode may be
excited post-merger as well, but their nature (thermally
or discontinuity-driven) is different than the ones consid-
ered here. Another distinct possibility is the superfluid
g-modes, which can be excited during coalescence (Yu &
Weinberg 2017), depending on the particle species in the
star’s core. Based on these estimates, it would appear
that the g-mode is likely to be detectable once ongoing
improvements in sensitivity of gravitational wave detec-
tors are complete. The g-modes could also have an ob-
servable electromagnetic signature, since the maximum
energy absorbed by the mode (Reisenegger & Goldreich



1994)

w “1/3 ;g \2
AE(ergs) ~ 7 x 10 (g) (102) (38)

Wdyn

is four orders of magnitude larger than the steady state
Poynting luminosity of a merging binary integrated over
the resonance timescale of the g-mode (Fernandez &
Metzger 2016). If even 1% of the mode energy couples
to the magnetic field, it could be released in the form
of hard X-ray precursors to short gamma-ray bursts or
non-thermal emission.

7. CONCLUSIONS

Based on our study of core g-modes in compact stars
with and without quark matter, we conclude that the
frequency of these modes is very sensitive to the presence
of a mixed phase containing quarks and hadrons. The
equilibrium sound speed drops sharply at the boundary
of the mixed phase, raising the local Brunt-Vaiséla fre-
quency and the fundamental g-mode frequency of the
star. If this mode can be resonantly excited during the
late stages of binary inspiral, the resulting energy trans-
fer from the orbital motion to the star via tidal coupling
can affect the phase of the gravitational waveform, or
couple to electromagnetic precursors, possibly giving a
signature of the quark-hadron phase transition in the
star. Previous works have examined the accumulated
phase error from tidal coupling to the g-mode for ordi-
nary neutron stars with composition gradients (but no
phase transition) and concluded that it is about two or-
ders of magnitude too small to be detected by current
detectors (Lai 1994; Yu & Weinberg 2017; Xu & Lai
2017). However, if one or both stars support a mixed
phase of quark-hadron matter, there are really two fluid
components inside each star that can be tidally forced.
This, and the fact that the spectrum of g-mode is shifted
to higher frequencies and is about 5 times more dense *
than for ordinary neutron stars, imply that more modes
can become resonant as the signal sweeps through the
bandwidth of the detector and possibly accumulate a
larger phase error. Yu & Weinberg (2017) studied this
effect in superfluid neutron stars and found that since
higher frequency modes are excited later in the merger,
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there is effectively no enhancement of the phase error
compared to ordinary neutron stars. To determine if
a similar cancellation occurs for hybrid stars, one must
perform a detailed calculation of the mode amplitude
evolution, energy transfer and the resulting phase error
in the case of a hybrid star. All we can say based on
our calculation is that g-modes from hybrid stars may
lead to a larger tidal phase error than that in an ordi-
nary neutron star due to the larger coupling coefficient
for the former.

There are a few more physical effects that can alter our
results quantitatively, which have not been taken into
account. Rotation and full general relativity have not
been incorporated at the level of the perturbative anal-
ysis. Non-linear mixing between p and g-modes due to
tidal coupling is possible (Weinberg 2016) without any
resonant excitation, and this can also impact the orbital
dynamics and tidal phasing. This effect seems to be
disfavored by the data on GW170817 (Reyes & Brown
2020; Abbott et al. 2019) but only for extreme values
of the p-g parameters. Other nuclear EoS parameteri-
zations and the possibility of strange quarks appearing
together or at a higher density than the light quarks
would change the sound speed profile and hence the g-
mode frequency. Therefore, we refrain from making any
bold statements on the quantitative impact of the effect
proposed here on the gravitational wave signal from bi-
nary mergers. However, given the subtle nature of the
masquerade problem and optimism for increased statis-
tics on binary mergers from the next observing runs of
Advanced LIGO/VIRGO as well as next generation de-
tectors, the g-mode is a promising diagnostic for the
quark-hadron phase transition deserving of further in-
vestigation.
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