Model-Based Multi-Agent RL in Zero-Sum Markov
Games with Near-Optimal Sample Complexity

Kaiqing Zhang Sham M. Kakade
ECE and CSL CS and Statistics
University of Illinois at Urbana-Champaign University of Washington
kzhang66@illinois.edu Microsoft Research

sham@cs.washington.edu

Tamer Basar Lin F. Yang
ECE and CSL ECE
University of Illinois at Urbana-Champaign University of California, Los Angeles
basari@illinois.edu linyang@ee.ucla.edu
Abstract

Model-based reinforcement learning (RL), which finds an optimal policy using
an empirical model, has long been recognized as one of the cornerstones of RL.
It is especially suitable for multi-agent RL (MARL), as it naturally decouples the
learning and the planning phases, and avoids the non-stationarity problem when all
agents are improving their policies simultaneously using samples. Though intuitive
and widely-used, the sample complexity of model-based MARL algorithms has
been investigated relatively much less often. In this paper, we aim to address the
fundamental open question about the sample complexity of model-based MARL.
We study arguably the most basic MARL setting: two-player discounted zero-sum
Markov games, given only access to a generative model of state transition. We

show that model-based MARL achieves a sample complexity of O(|S||.A||B|(1 —
v)~3e=2) for finding the Nash equilibrium (NE) value up to some ¢ error, and
the e-NE policies, where  is the discount factor, and S, A, B denote the state
space, and the action spaces for the two agents. We also show that this method is
near-minimax optimal with a tight dependence on 1 — « and |S| by providing a
lower bound of Q(|S|(|.A] + |B|)(1 — ) ~3¢~2). Our results justify the efficiency
of this simple model-based approach in the multi-agent RL setting.

1 Introduction

Recent years have witnessed phenomenal successes of reinforcement learning (RL) in many appli-
cations, e.g., playing strategy games [[1} 2], playing the game of Go [3| 4], autonomous driving [5],
and security [6, [7]]. Most of these successful while practical applications involve more than one
decision-maker, giving birth to the surging interests and efforts in studying multi-agent RL. (MARL)
recently, especially on the theoretical side [I8, 9} 110, [11} 112} [13]]. See also comprehensive surveys on
MARL in [14}, 15/ 16].

In general MARL, all agents affect both the state transition and the rewards of each other, while
each agent may possess different, sometimes even totally conflicting objectives. Without knowledge
of the model, the agents have to resort to data to either estimate the model, improve their own
policy, and/or infer other agents’ policies. One fundamental challenge in MARL is the emergence of
non-stationarity during the learning process [14}[15]: when multiple agents improve their policies
concurrently and directly using samples, the environment becomes non-stationary from each agent’s
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perspective. This has posed great challenge to development of effective MARL algorithms based on
single-agent ones, especially model-free ones, as the condition for guaranteeing convergence in the
latter fails to hold in MARL, and additional non-trivial efforts are required to address it [17} 18, [19].
One tempting remedy is the simple while intuitive method — model-based MARL: one first estimates
an empirical model using data, and then finds the optimal, more specifically, equilibrium policies
in this empirical model, via planning. Model-based MARL naturally decouples the learning and
planning phases, and can be incorporated with any black-box planning algorithm that is efficient,
e.g., value iteration [20]] and (generalized) policy iteration [21} 22].

Though intuitive and widely-used, rigorous theoretical justifications for these model-based MARL
methods are relatively rare. In this work, we aim to answer the following standing question: how good
is the performance of this simple “plug-in” method in terms of non-asymptotic sample complexity?
To this end, we focus on arguably the most basic setting of MARL, well recognized ever since [17]]:
two-player discounted zero-sum Markov games (MGs) with simultaneous-move agents, given only
access to a generative model of state transition. This generative model allows agents to sample
the MG, and query the next state from the transition process, given any state-action pair as input.
The generative model setting has been a benchmark in RL when studying the sample efficiency of
algorithms [23], 24} 25| 26, 27]]. Indeed, this model allows the study of sample-based multi-agent
planning over a long horizon, and helps develop better understanding of the statistical properties of
the algorithms, decoupled from the exploration complexity.

Motivated by recent minimax optimal complexity results for single-agent model-based RL [23]],
we address the question above with a positive answer: model-based MARL approach can achieve
near-minimax optimal sample complexity in finding both the Nash equilibrium (NE) value and
policies. See a detailed description as follows. Our results have justified the efficiency of this simple
model-based approach to MARL.

Contribution. We establish the sample complexities of model-based MARL in zero-sum Markov
games, when a generative model is available. We show that the approximate solution to the empirical

model can achieve the NE value of the true model up to some e-error with O(|S||A||B|(1 —~) 3¢ 2)

samples, where O suppresses the logarithmic factors,  is the discount factor, and S, A, B denote
the state space, and the action spaces for the two agents, respectively. Establishing a lower bound of
Q(S|(JA] + |B])(1 — ) ~3e~2), we show that this simple method is indeed near-minimax optimal,
with a tight dependence on 1 — ~ and |S|, and a sublinear dependence on model-size. This result then

induces a O(|S||A||B|(1 — ~)~®¢2) sample complexity for achieving e-NE policies. Moreover, we
provide a planning oracle that is smooth in producing the approximate NE policies, and show that
obtaining e-NE policies can also achieve the near-optimal complexity of O(|S||A||B|(1 — ) 3e2).
These near-optimal results are first-of-their-kind in model-based MARL, to the best of our knowledge.

Related Work. Stemming from the seminal work [[17], MARL has been mostly studied under the
framework of Markov games [20]]. There is no shortage of provably convergent MARL algorithms
ever since then [19, /18| [28]]. However, most of these early results are Q-learning-based (thus model-
free) and asymptotic, with no sample complexity guarantees. To establish finite-sample results,
(22,129, 30} 31} 32] have studied the sample complexity of batch model-free MARL methods. There
are also increasing interests in policy-based (thus also model-free) methods for solving special MGs
with non-asymptotic convergence guarantees [33} 34} [11]]. No result on the (near-)minimax optimality
of these complexities has been established.

Specific to the two-player zero-sum setting, [35, [10] have considered turn-based MGs, a special
case of the simultaneous-move MGs considered here, with a generative model. Specifically, [10]

established near-optimal sample complexity of O((1 — v)~3¢~2) for a variant of Q-learning for this
setting. More recently, [36l [12] have established both regret and sample complexity guarantees for
finite-horizon zero-sum MGs, without a generative model, with focus on efficient exploration. The
work in [13] also focused on the turn-based setting, and combined Monte-Carlo Tree Search and
supervised learning to find the NE values. In contrast, model-based MARL theory has a relatively
limited literature. [37]] proposed the R-MAX algorithm for average-reward MGs, with polynomial
sample complexity. [8] developed a model-based upper confidence algorithm with polynomial sample
complexities for the same setting. These methods differ from ours, as they are either model-free
approaches, or not clear yet if they are (near-)minimax optimal in the corresponding setups.



In the single-agent regime, there has been extensive literature on non-asymptotic efficiency of RL
in MDPs; see [24, 251138139, 126/ 140, 141} 42| 1431277, [44]. Amongst them, we highlight the minimax
optimal ones: [26] and [42] have provided minimax optimal results for sample complexity and regret
in the settings with and without a generative model, respectively. Specifically, [26] has shown that to
achieve the e-optimal value in Markov decision processes (MDPs), at least Q(|S||A|(1 — ) 3¢~ 2)
samples are needed, for € € (0, 1]. They also showed that to find an e-optimal policy, the same
minimax complexity order in 1 —~ and € can be attained, if € € (0, (1 —~)~'/2|S|~*/2] and the total

sample complexity is O(|S|?|.Al), which is in fact linear in the model size. Later, [27] has proposed
a Q-learning based approach to attain this lower bound and remove the extra dependence on |S|, for
e € (0, 1]. More recently, [23]] developed new techniques based on absorbing MDPs, to show that
model-based RL also achieves the lower bound for finding an e-optimal policy, with a larger e range
of (0, (1 —~)~'/2], which has motivated our present work. While preparing the present work, [43]
has further improved the results in [23], in that they cover the entire range of sample sizes.

2 Preliminaries

Zero-Sum Markov Games Consider a zero-sum Mcﬂ G characterized by (S, A, B, P, r,), where
S is the state space; A, B are the action spaces of agents 1 and 2, respectively; P : Sx Ax B — A(S)
denotes the transition probability of states; r : S x A x B — [0, 1] denotes the reward function"| of
agent 1 (thus —r is the bounded reward function of agent 2); and v € [0, 1) is the discount factor. The
goal of agent 1 (agent 2) is to maximize (minimize) the long-term accumulative discounted reward
(a.k.a. return). In MARL, neither the transition nor the reward function is known to the agents.

Specifically, at each time ¢, agent 1 (agent 2) has a stationary (not necessarily deterministic) policy
w:S = A(A) (v : S — A(B)), where A(X) denotes the space of all probability measures over
X, sothat a; ~ u(-|s¢) (by ~ v(-|s¢)). The state makes a transition from s; to s, following the
probability distribution P(- | s¢, at,bt), given (a¢, b). As in the MDP model, one can define the
state-value function under a pair of joint policies (u, /) as

S = 8:| .

Vlial’(s) = Eatw‘u(A | s¢),berv(- | s¢) [Zwtr(st, g, bt)
t>0
Note that V#*(s) € [0,1/(1 — )] forany s € S as r € [0, 1], and the expectation is taken over the
random trajectory produced by the joint policy (u, v/). Also, the state-action/Q-value function under
(11, V) is defined by

QMY (s,a,b) 1= Eaymn(- | 50),bemv(-| s0) |:Z 77 (se,ac,be)

t>0

sozs,ao:a,bozb}.

The solution concept usually considered is the (approximate) Nash equilibrium, as defined below.
Definition 2.1 ((e-) Nash Equilibrium). For a zero-sum MG (S, A, B, P, r,), a Nash equilibrium
policy pair (u*, v*) satisfies the following pair of inequalitie forany s € S, u € A(A)IS!, and
v e A(B)IS!

VHYT (5) S VIV (5) S VIV (s). 2.1
If (2.1 holds with some e > 0 relaxation, i.e., for some policy (¢, '), such that
V,u.,y/(s) —c S Vll,’,y/ (S) S V,LL’,V(S) + €, (2.2)

then (1, ') is an e-Nash equilibrium policy pair.

By [20L[21]], there exists a Nash equilibrium policy pair (1%, v*) € A(A)ISI x A(B)!S! for two-player
discounted zero-sum MGs. The state-value V* := V# ¥ is referred to as the value of the game.
The corresponding Q-value function is denoted by Q*. The objective of the two agents is to find the
NE policy of the MG, namely, to solve the saddle-point problem

maxmin V¥ (s), 2.3)
w v

"We will hereafter refer to this model simply as a MG.
2Qur results can be generalized to other ranges of reward function by a standard reduction, see e.g., [27].
3In game theory, this pair is commonly referred to as “saddle-point inequalities”.



for every s € S, where the order of max and min can be interchanged [46] [20]. For notational
convenience, for any policy (u, v), we define

VH* = min VﬂvV’ V*Y = max ‘/'“’V7 (24)
v "

and denote the corresponding optimizers to be v() and p(v), respectively. We refer to these values
and optimizers as the best-response values and policies, given y and v, respectively.

Model-Based MARL As a standard setting, suppose that we have access to a generative
model/sampler, which can provide us with samples s’ ~ P(-| s, a, b) for any (s, a,b). The model-
based MARL algorithm simply calls the sampler /N times at each state-joint-action pair (s, a, b), and
estimates the actual game model G using data, by constructing an empirical model G. Let P denote
the transition probability of the empirical model. Then P is estimated by

count(s’, s, a, b)

N )

where count(s’, s, a, b) is the number of times the state-action pair (s, a, b) forces a transition to state
s'. Except for the transition model, all other elements in the empirical MG Q\ are identical to those
in QH We then use XA/“’”, XA/“’*, ‘A/*”’, and V* to denote the value under (1, V), the best-response

~

value under p and v, and the NE value, under the empirical game model G, respectively. A similar
convention is also used for Q-functions.

P(s'|s,a,b) =

Planning Oracle With a good empirical model QA at hand, we further assume, as in [23]] for single-
agent RL, that we have an efficient planning oracle, which takes G as input, and outputs a policy pair
(1, 7). This oracle decouples the statistical and computational aspects of the estimate model G. The
output policy pair, referred to as being near-equilibrium, is assumed to satisfy certain €,,;-order of
equilibrium, in terms of value functions, and we would like to evaluate the performance of i, 7 on the
original MG G. Common planning algorithms include value iteration [20] and (generalized) policy
iteration [21} 22]], which are efficient in finding the (e-)NE of Q\ . In addition, it is not hard to have an
oracle that is smooth in generating policies, i.e., the change of the approximate NE policies can be
bounded by the changes of the NE value. See our Definition [3.4]later for a formal statement.

3 Main Results

We now introduce the main results of this paper. We first establish a lower bound on both approximat-
ing the NE value function, and learning the e-NE policy pair.

Lemma 3.1 (Lower Bound). Let G be an unknown zero-sum MG. Then, there exist g, dg > 0, such
that for all € € (0,¢p), § € (0,00), the sample complexity of learning an ¢-NE policy pair, or an

e-approximate NE value, i.e., finding a @ such that ||@ — Q|0 < €efor G, with a generative model
with probability at least 1 — 4, is

ISICA[+1B) (L
oS5 (5

The proof of Lemma 3.1] adapted from the proof of lower bound for MDPs [26] 47], is provided in
In the absence of the opponent, the lower bound reduces to that of a single-agent setting. As we will
show momentarily, our sample complexity is nearly tight in 1 — « and |S|, while has a gap in |.A|, | B|
dependence. We thus conjecture that the lower bound might still be improvable in |A|, |B], but
also highlight the challenges in generalizing the lower-bound proof for MDPs [26} 47] in In the
extended version of the present work (after the conference submission) [48]], we have separated some
reward-agnostic setting from the reward-aware setting, where in the former, the reward information
is only revealed to the agent in the planning phase (not in the sampling phase). Indeed, this model-
based approach can inherently handle both cases, as reward is not used in estimating P. Tn this

more challenging reward-agnostic setting, we make the lower bound of ) (IS|IA[B|(1 — ~)~3e2)
possible. This separation seems unique in the multi-agent setting. See [48]] for more details.

*Without loss of generality, the reward function is assumed to be known. As argued in [23]], the complexity
of estimating r that contributes to the total complexity is only a lower order term.



3.1 Near-Optimality in Finding ¢-Approximate NE Value

We now establish the near-minimax optimal sample complexities of model-based MARL. We start by
showing the sample complexity to achieve an e-approximate NE value.

Theorem 3.2 (Finding e-approximate NE Value). Suppose that the policy pair (fi, V) is obtained
from the Planning Oracle using the empirical model G, which satisfies

VA7 = Voo < €opt-
Then, forany 6 € (0,1] and e € (0,1/(1 — ~)'/?], if

o Y log [eSIAIBIL - 7)%51]
= (1—)e

for some absolute constant c, it holds that with probability at least 1 — 9,

< % + 5’>/€0pt7 H@ﬁ,z’) _ Q*|

HQ/L,V_Q* ©<3 1_7

§€+ gfyeopt.
[eS) 1—’7

Theorem [3.2] shows that if the planning error €,y is made small, e.g., with the order of O((1 — 7)e),

then the Nash equilibrium Q-value can be estimated with a sample complexity of O(|S||Al1B](1 -
v)~3e2), as N queries are made for each (s, a,b) pair. This planning error can be achieved by

performing any efficient black-box optimization technique over the empirical model G. Examples
of such oracles include value iteration [20] and (generalized) policy iteration [21} 22]]. Moreover,
note that, in contrast to the single-agent setting, where only a max operator is used, a min max (or
max min) operator is used in these algorithms, which involves solving a matrix game at each state.
This can be solved as a linear program [49], with at best polynomial runtime complexity [50, [51]].
This in total leads to an efficient polynomial runtime complexity algorithm.

As per Lemma 3.1} our O(|S||A||B|(1 — ) ~3¢~2) complexity is near-minimax optimal, in that it is
near-tight in the dependence of 1 — +y and |S|, and sublinear in the model-size (which is |S|?|.A||B)).
The optimality in 1 — + and |S| dependence is significant, as in practice the discount factor can
be very close to 1, and the large state-space size |S| is usually the bottleneck for algorithm-design.
Moreover, if the action-space size of one agent dominates the other’s (e.g., |.A| > | B|), then our result
is also optimal in the |.A|, |B| dependence. Unfortunately, without further assumption on the MG, e.g.,
being turn-based, the model-based algorithm can hardly avoid the O(|S||.A||B|) dependence, as it is
required to estimate each P(-| s, a,b) accurately to perform the planning. Instead, as we discussed
in we suspect that the (|.A| + |B|) lower bound might be achievable by model-free MARL
algorithms. Our result also matches the only known near-optimal sample complexity in zero-sum
(but turn-based) MGs [[10], which was achieved by a model-free Q-learning-based algorithm, with a
O(|A| + |B|) dependence on |.A|, |B], as the transition P is only controlled by one action in A U B.

However, this near-optimal result does not necessarily lead to near-optimal sample complexity for
obtaining the e-NE policies. We first use a direct translation to obtain such an e-NE policy pair based
on Theorem 3.2] for any Planning Oracle.

Corollary 3.3 (Finding e-NE Policy). Let (fz,7) and N satisfy the conditions in Theorem[3.2] Let

~ 2 9’yeopt)
6'_1—7 (6+1—'y ’

and (Ji, 7) be the one-step Nash equilibrium of Q7-7, namely, for any s € S

w(-1s),v(-|s)) € argmax min E,y pe @ﬁ’ﬁ s,a,b)|.
(130,50 1)) € ngmae min, Eomspms [@7(,0,0)

Then, with probability at least 1 — 6,
VAT < VRV <V 4 2F (3.1)

namely, ([, ) constitutes a 2¢-Nash equilibrium policy pair.



Corollary [3.3]is equivalently to saying that the sample complexity of achieving an e-NE policy pair is
O((1 — v)~®e~2). This is worse than the model-based single-agent setting [23]], and also worse than
both the model-free single-agent [27] and turn-based two-agent [10] settings, where O((1—~) 3¢~2)
can be achieved for learning the optimal policy. This also has a gap from the lower bound given in
Lemma[3.1] Note that the above sample complexity still matches that of the Empirical QVI in [26] if
e € (0,1] for single-agent RL, but with a larger choice of ¢ of (0, (1 — ~)~'/2]. We also note that the
Markov game setting is more challenging than MDPs, and using a general Planning Oracle, it is not
clear so far if the lower bound given in Lemma [3.T|can be matched. In contrast, we show next that a
stable Planning Oracle can indeed match the lower bound.

3.2 Near-Optimality in Finding ¢-NE Policy

Admittedly, the results in Corollary [3.3]do not fully exp101t the model-based approach, since it finds

the NE policy according to the Q-value estimate Q“ 7 instead of using the output policy pair (i, D)
directly. This loses a factor of 1 — ~y. To improve the sample complexity of obtaining the NE policies,
we first introduce the following definition of a smooth Planning Oracle.

Definition 3.4 (Smooth Planning Oracle). A smooth Planning Oracle generates policies that are
smooth with respect to the NE Q-values of the empirical model. Specifically, for two empirical models

G1 and Go, the generated near-equilibrium policy pair (111, V1) and (fi2, U2 ) satisfy that for each s € S,
B2 (-15) = B2(-[8)[[zv < C-[|QF — Q5[ and [[21(-[ ) — wa(- [ 8)[[rv < O+ [[QF — Q3o for
some C' > 0, where Q is the NE Q-value of G; fori = 1,2, and || - ||y is the total variation distance.

Such a smooth Planning Oracle can be readily obtained in several ways. For example, one simple
(but possibly computationally expensive) approach is to output the average over the entire policy
space, using a softmax randomization over best-response values induced by Q*. Specifically, for
agent 1, the output f is given by

exp( min anu b~ [@* S’a’b ]/T)

a(-|s) = / oe2® - udu,
A(A) fA(A) exp (ﬁénAln Eomuw’ brw [Q* s,a,b ]/T)du

where 7 > 0 is some temperature constant. The output of 7 is analogous. With a small enough 7, [

approximates the exact solution to argmax min Eq.y py [Q*(s, a, b)], the NE policy given Q.
ueA(A) VEA(B)

Moreover, notice that i satisfies the smoothness condition in Deﬁnition This is because for each

u € A(A) in the integral: 1) the softmax function is Lipschitz continuous with respect to the input

0?2?8) Egnu,bd [Q*(s, a, b)} /7' [152f]; ii) the best-response value ﬁénAi?B) Egru,bm [Q*(Sa a, b)] is

smooth with respect to Q*. Thus, such an oracle is an instance of a smooth Planning Oracle.

Another more tractable way to obtain (i, V) is by solving a regularized matrix game induced by Q.
Specifically, one solves

(- |s),0(-|s)) = argmax min = Eqoy b [@* (s,a,b)] = 11 Q1 (u) + 12Q2(0), (3.2)

A(A) VEA(B)

for each state s € S, where Q; is the regularizer for agent i’s policy, usually a strongly convex
function, 7; > 0 are the temperature parameters. Such a strongly-convex-strongly-concave saddle
point problem admits a unique solution, and can be solved efficiently [53 154, 55]]. This regularized
objective has been widely used in both single-agent MDPs [56, 157, 158, 159]], and learning in games
(60,611 162], with the advantages of having both better exploration and better convergence properties.

With small enough 7;, the solution to (3.2) will be close to that of the unregularized one [59], up
to some error captured by €,,,¢. More importantly, many commonly used regularizations, including
negative entropy [56l], Tsallis entropy [58] and Rényi entropy with certain parameters [61], naturally
yield a smooth Planning Oracle; see Lemma [C.1]in the appendix for a formal statement. Note that
the smoothness property of the oracle does not affect the sample complexity of our model-based
MARL algorithm.

Now we are ready to present another theorem, which gives the e-Nash equilibrium policy pair directly,
with the near-minimax optimal sample complexity of O(|S||A||B|(1 — v)3e~2).



Theorem 3.5 (Finding e-NE Policy with a Smooth Planning Oracle). Suppose that the policy r

(11, D) is obtained from a smooth Planning Oracle using the empirical model G (see Definition [3.4),
which satisfies

”‘7ﬁ* - ‘7*Hoo < €opt; ||‘A/*ﬁ - ‘7*”00 < €opt-
Then, for any 6 € (0,1] and € € (0,1/(1 — ~)/?], if

o 1o [e(C + DISIAIBI(L = 1) ~*57Y]
- (=)

for some absolute constant c, then, letting € := € + 4e,; /(1 — ), with probability at least 1 — 6,

VY 28 < VBV < VB 4 9E
namely, ({1, V) constitutes a 2¢-Nash equilibrium policy pair.

Theorem [3.5]shows that the sample complexity of achieving an e-NE policy can be near-minimax
optimal, if a smooth Planning Oracle is used. This also matches the only known near-optimal sample
complexity in MGs in [10], with a turn-based setting and a model-free algorithm. Inherited from [23]],
this improves the second result in [26] that also has O((1 — «)~3¢~2) in finding an e-optimal policy,
by removing the dependence on |S|~'/2 and enlarging the choice of e from (0, (1—~)~/2|S|71/2] to
(0, (1—~)~'/2], and removing a factor of | S| in the total sample complexity for any fixed e. Theorems
and[3.3]together for the first time justify that, this simple model-based MARL algorithm is indeed
sample-efficient, in approximating both the Nash equilibrium values and policies.

4 Sketch of Proofs

Detailed proofs are provided in the appendix. For the lower bound in Lemma [3.1] the proof is given
in §B] together with some insights and comments that may benefit the tackling of sample complexity
questions in zero-sum MGs in general. For the upper bounds, we provide below a proof roadmap:

Proof Roadmap. Our proof for the upper bounds mainly consists of the following steps:

1. Helper lemmas and a crude bound. We first establish several important lemmas, including
the component-wise error bounds for the final Q-value errors, the variance error bound, and a
crude error bound that directly uses Hoeffding’s inequality. Some of the results are adapted from
the single-agent setting to zero-sum MGs. See §A.T]

2. Establishing an auxiliary Markov game. To improve the crude bound, we build up an ab-
sorbing Markov game, in order to handle the statistical dependence between P and some value

function generated by ]3, which occurs as a product in the component-wise bound above. By
carefully designing the auxiliary game, we establish a Bernstein-like concentration inequality,
despite this dependency. See §A.2] and more precisely, Lemmas[A.9]and [A.10]

3. Final bound for e-approximate NE value. Lemma in Step 2 allows us to exploit the
variance bound, see Lemma to obtain an O(1/1/[(1 — 7)3]N) order bound on the Q-value

error, leading to a O((1 — v) ~3¢~2) near-minimax optimal sample complexity for achieving the
e-approximate NE value. See §A.3]

4. Final bounds for e-NE policy. Based on the final bound in Step 3, we then establish a O((1 —
)~ 5¢~2) sample complexity for obtaining an e-NE policy pair, by solving an additional matrix
game over the output Q-value @‘7’9. See - In addition, given a smooth Planning Oracle,
by Lemmain Step 2, and more careful self-bounding techniques, we establish a 6((1 —
v)~3e~2) sample complexity for achieving such an e-NE policy pair, directly using the output

policies (i, 7). See

The key in Step 1 is to establish the component-wise bounds for the error between the approximate
and the actual NE value functions, which will finally give an e-approximate NE value/e-NE policy
complexity. We consider here finding the e-NE policy as an example, and note that the inequalities



needed for finding the e-approximate NE value are similar, but without using the smoothness of the
Planning Oracle. For agent 1, by the component-wise bounds (see Lemma[A.T),

VA > V5 [|QH — QMoo — [V = Voo — Q" — Qo 4.1)

Then, it suffices to quantify the bounds for [|Q"* — Q"*||« and [|Q" * — Q*||. as the middle
term in @.T) is just the optimization error €, from the Planning Oracle, which can be made very
small. To this end, the following bound is important

y(I — 4 PP @)=L (p — PYYT < QR — Qv < (I — PP @D)"1(p — PYUT (42)

where i is the output of the Planning Oracle using P, v(p) and 1/( ) denote the best-response
policy of fi under the empirical and true models, respectively. The last important result in Step 1 is
the following variance bound

<o
S T
which will eventually give us (1 — 7) 2 dependence (the key for minimax optimality), if the terms
(P — P)V®* and (P — P)V™* in {#2) can be related to the variances of V* and V** in {@3).

[ =y e ()

4.3)

Nonetheless, the critical issue here is that (P — P) is statistically dependent on Vi* and V>,
preventing the use of Bernstein-like concentration inequality to connect the two. Step 2 is devoted
to addressing this. We introduce a new Markov game G, ,, as follows (with s € Sandu € R a
constant): G ,, is identical to G, except that Pg_  (s|s,a,b) = 1forall (a,b) € A x B, namely, state
s is an absorbing state; and the instantaneous reward at s is always (1 — 7)u. The rest of the reward
function and the transition model of G; ,, are the same as those of §. For simplicity, we use X /‘ Y to

denote X" , where X can be either the value functions @ and V', or the reward function r, under the

model G ,,. Slmllarly, an absorbing game gs « 18 also established for the empirical model G. Now
the Values/pohcles obtained from the absorblng models (those quantities with (s, u)), specifically,

V* and V#s.«* become independent of P — P, enabling the use of Bernstein concentration and
the variance bound “3).

Finally, we do need to connect the quantities in the absorbing models (with (s, u)) back to the true ones
in the non-absorbing ones (without (s, u)). As in [63]], one can show that the best-response/NE values
are robust to such small perturbations of u. Hence, one can construct an e-net with respect to this

parameter u, to control the error between V* and ‘A/*, and thus obtain the following Bernstein-like
concentration bound

(P~ P)V*

_ 2 . v
_ \/210g(165||A|B|/[(1 D) VeV e s

N

with some small order term Ag, - By noticing that V* above can then be replaced by [ e

Vﬁ7*, while the error V* — V7* can be controlled by €opt, we resolve the bound for the right-hand
side of (#.2). More subtly, the left-hand side involving V7#:* is not in general robust to the small
perturbation of . Indeed, the NE policy fis ,, obtained from §s7u may vary a lot from i, making the
value V#* deviate from V”s*_ Using a smooth Planning Oracle, such a deviation can be carefully

controlled, too, yielding a similar bound as (@.4)), with v being replaced by V7*. Steps 3 and 4
combine the building blocks (@.I)-({@.4) above, and obtain the final near-optimal bounds by careful
self-bounding techniques. The result for finding e-NE policy in Corollary (3.3) is built upon Theorem

. 2| by additionally quantifying the error caused by one-step Nash equilibrium operation on Q“ v

5 Conclusion & Discussion

In this paper, we have established the first near-minimax optimal sample complexity for model-based
MARL, in terms of both achieving the Nash equilibrium value and policy, when a generative model is
available. Our setting has been focused on the basic model in MARL — infinite-horizon discounted
zero-sum Markov games [17], and our techniques have been motivated by the recent “absorbing MDP”’
idea stemming from [23]]. Our results naturally open up the following interesting future directions:



e Closing the gap. As mentioned in §3| the Q(].A||B|) sample complexity seems inevitable for

model-based approaches in general, due to estimating P(- | s, a, b); while as discussed in the
Q()A] + |B|) lower bound might be hard to improve. As such, to close the gap, it is imperative
to either develop a MARL algorithm, possibly model-free, that attains O(|.A| + | B|), or develop
new techniques to improve the lower bound to O(|.A||B]), possibly with some coupling among
matrix games at different states.

o Near-optimal model-free algorithms. Besides the turn-based setting in [[L0l], the near-minimax
optimal sample complexity of model-free algorithms for general simultaneous-move zero-sum
MG:s is still open. It would be interesting to compare the results and dependence on the
parameters with our model-based ones.

e Near-optimality in other settings. It would also be interesting to explore the near-optimal sample
complexity or regret in other MARL settings, e.g., when no generative model is available, or
for general-sum Markov games. Some of these questions have also been raised and partially
answered recently in [36]). It would also be interesting to go beyond the tabular case and consider
cases with function approximation.

Broader Impact

We believe that researchers of multi-agent reinforcement learning (MARL), especially those who
are interested in the theoretical foundations of MARL, would benefit from this work. In particular,
prior to this work, though intuitive and widely-used, the sample efficiency, specifically the minimax
optimality of the sample complexity, of this model-based approach had not been established for
MARL. This work justified the efficiency of this simple method for the first time in the MARL
setting. We have also raised several important open questions on the sample complexity of MARL in
zero-sum Markov games in general, which open up some future research directions toward rigorous
theoretical understandings of MARL. In contrast to the rich literature on the theory of model-free
MARL algorithms, the theory of model-based ones is relatively lacking. Our results have advocated
the use of model-based MARL due to its sample efficiency, which would benefit MARL practitioners
when choosing between the two types of algorithms in practice. As a theory-oriented work, we do
not believe that our research will cause any ethical issue, or put anyone at any disadvantage.
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