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Abstract

Seismic wavefield modeling is an important tool for the seismic interpretation. We consider
modeling the wavefield in the frequency domain. This requires to solve a sequence of Helmholtz
equations of wave numbers governed by the Nyquist sampling theorem. Inevitably, we have to
solve Helmholtz equations of large wave numbers, which is a challenging task numerically. To
address this issue, we develop two methods for modeling the wavefield in the frequency domain
to obtain an alias-free result using lower frequencies of a number fewer than typically required by
the Nyquist sampling theorem. Specifically, we introduce two ℓ1 regularization models to deal
with incomplete Fourier transforms, which arise from seismic wavefield modeling in the frequency
domain, and propose a new sampling technique to avoid solving the Helmholtz equations of large
wave numbers. In terms of the fixed-point equation via the proximity operator of the ℓ1 norm,
we characterize solutions of the two ℓ1 regularization models and develop fixed-point algorithms
to solve these two models. Numerical experiments are conducted on seismic data to test the
approximation accuracy and the computational efficiency of the proposed methods. Numerical
results show that the proposed methods are accurate, robust and efficient in modeling seismic
wavefield in the frequency domain with only a few low frequencies.

Key Words. Compressed sensing, seismic wavefield modeling, incomplete Fourier transform,
proximity algorithms.

1 Introduction
Seismic wavefield modeling is an important tool in geological hypothesis testing including synthetic
seismograms, crosshole tomography, and seismic migration. It can be carried out in both the time-
space domain and the frequency-space domain [14, 26]. The time-domain finite-difference technique
for the generation of synthetic seismograms has achieved considerable success in waveform crosshole
tomography and seismic reverse-time migration. Finite-difference frequency-domain modeling for
the generation of synthetic seismograms and crosshole tomography has been an active field of
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research since 1980s. The frequency domain method was pioneered by Lysmei and Drake in [19].
The fundamental advantages of frequency domain methods were clearly pointed out in papers
[15, 21, 26, 27, 28, 30] and the references cited therein. The key advantage of a frequency domain
approach is that direct solution methods are available that allow solutions to the wave equation for
additional source positions to be obtained at a minimal extra cost. Each frequency can be computed
independently, which favors parallel computing. Furthermore, frequency domain modeling allows
accurate modeling of attenuation effects, and allows optimal spatial discretization intervals to be
chosen at each frequency.

Seismic wavefield modeling in the frequency domain can be formulated as a frequency domain
boundary value problem (cf. [9, 15, 18]). Mathematically, we convert the wave equation, which
models seismic wave propagation, to a collection of Helmholtz equations of different frequencies
(wave numbers) by using the continuous Fourier transform. When solutions to the Helmholtz
equations for all frequencies are available, we can obtain the corresponding time domain results by
the inverse discrete Fourier transform (IDFT) (cf. [4, 14, 29]), in which case the Nyquist-Shannon
criterion must be satisfied. Otherwise, aliasing artifacts will be visible in the resulting modeled
wavefield. As a result, in order to represent a solution of the wave equation accurately for a
given time interval, we are required to solve many Helmholtz equations of different wave numbers
including large wave numbers.

Solving the Helmholtz equation of large wave numbers is a challenging task in the field of compu-
tational mathematics [2]. As the wave number becomes large, the solution of the Helmholtz equation
becomes highly oscillatory and the numerical solution of this equation requires high computational
complexity. Hence, there is a growing interest in developing numerical methods whose computa-
tional complexity increases only moderately as the wave number increases (see, [9, 12, 15, 30, 31]).
However, there are still some cases for which iterative methods fail to converge for all frequencies
(especially for high frequencies), or the computer storage is exhausted while direct methods are used
to solve the resulting linear system for all frequencies. Thus, we shall have to invert an incomplete
Fourier transform data.

The incomplete Fourier transform usually has the form of an underdetermined linear system.
Hence, to reconstruct a digital signal or image from incomplete Fourier transform data is an inverse
problem, and it is an ill-posed problem. There are infinitely many candidate signals or images
to satisfy the related linear system. But one could perhaps imagine a way out by relying on
realistic models of objects which naturally exist. Compressed sensing [11] is a method to invert
incomplete Fourier transforms. It is based on the idea that a signal can be reconstructed from a
very small number of measurements, provided that these measurements are obtained in a correct
basis. Candès, Romberg and Tao [5, 6] studied the stable recovery of sparse signals from incomplete
and inaccurate measurements, and they gave conditions for stable recovery. Goldstein and Osher
[13] applied the Split-Bregman method to deal with the inverting incomplete Fourier transform
problem. Lin and Herrmann demonstrated that, information redundancy exists for the seismic
wavefield itself in the frequency domain [17]. Furthermore, Lebed and Herrmann [16] showed
numerically that, in the problem of recovering seismic signals from missing temporal frequencies,
one can expect to see better results from transforms that are more spread in the frequency domain
and hence more incoherent, for example, using shift-invariant wavelets. In the paper [18], based
on the shift-invariant wavelet transform and random sampling, the problem of recovering seismic
signals from missing temporal frequencies is resolved by solving an ℓ1-regularization minimization.
In addition, the resulting ℓ1-regularization minimization is dealt with an iterative soft thresholding
method. However, as random sampling is used in [18], solving the Helmholtz equation with large
wave numbers is still needed.

To avoid solving the Helmholtz equation with large wave numbers, in this paper we first propose
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a new sampling method for seismic wavefield modeling in the frequency domain, that is, only the
solutions of the Helmholtz equations for a band of low frequencies are required. Then we use the
ℓ1 regularization technique to reconstruct the wave solution from the solutions of the Helmholtz
equations of low frequencies. A tight frame wavelet transform is used as the “sparsifying” transform
that maps a signal (e.g., an image) to a sparse vector. Based on the wavelet transform, we propose
two regularization models for inverting incomplete Fourier transforms, and finally solve these models
by using fixed-point proximity algorithms.

This paper is organized in five sections. In Section 2, we review seismic wavefield modeling in the
frequency domain and describe the mathematical formulation of the incomplete Fourier transform
arising from the context of wavefield modeling. A new sampling method is also presented in this
section. In Section 3, we present two regularization models based on the wavelet transform and
propose two convergent algorithms to compute the models based on fixed-point equations. In
Section 4, five numerical examples are presented to show that the proposed methods are robust
and efficient for seismic wavefield modeling in the frequency domain. Finally, Section 5 concludes
this paper.

2 An incomplete Fourier transform model for seismic wavefield
modeling in the frequency domain

The seismic wave propagation is often modeled by the 2D acoustic wave equation. In the time
domain the equation has the form

1

v2
∂2u

∂t2
−∆u = g, on R2, (2.1)

where u, v and g denote, respectively, the unknown pressure of the wave field, the background
velocity and the source term in the medium. Both u and g are functions in the spatial-time space
R2 × R+, while v is a function in the spatial space R2. By using the Fourier transform, one may
convert the wave equation as a family of Helmholtz equations. Upon solving these Helmholtz
equations and converting back to the solution of the wave equation, one can model the propagation
of seismic wavefield. This is the frequency approach for modeling the seismic wave propagation.

We present below the 2D acoustic wave equation in the frequency domain. To this end, for a
function φ of time t ∈ R, its continuous Fourier transform at frequency f ∈ R is given as

φ̂(f) :=

∫
R
φ(t)e−i2πftdt.

The function φ can be reconstructed from φ̂ through the inverse Fourier transform. For any
(x, z) ∈ R2, we denote by û(x, z, f) and ĝ(x, z, f), respectively, the continuous Fourier transforms
at the frequency f of the functions u(x, z, ·) and g(x, z, ·) which appear in (2.1). With the Fourier
transform, the acoustic wave equation (2.1) is converted to the well-known Helmholtz equation

−∆û− k2û = ĝ, (2.2)

where k is the wave number defined by k := 2πf
v , and f denotes the frequency in Hz. The solution

u(x, z, t) of the acoustic wave equation (2.1) may be obtained by the inverse Fourier transform
from the solutions û(x, z, f) of the Helmholtz equation, for all f ∈ R. Therefore, the fundamental
problem for solving the acoustic wave model in the frequency domain is to solve the family of the
Helmholtz equations (2.2) for all f ∈ R.
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Take the synthetic seismogram for a fixed point (xr, zr) in the computational domain as an
example. To obtain the synthetic seismogram for this fixed point, we need to evaluate the solution
of the wave equation (2.1) at the point (xr, zr). In the context of seismic modeling, two commonly
used source functions, the first order derivative of the Gaussian function and the Ricker wavelet,
approximately have limited spectrums. We take the first order derivative of the Gaussian function
as an example, which is expressed as

G(t, t0, α̃) = −2α̃(t− t0) exp(−α̃(t− t0)
2). (2.3)

Clearly, its Fourier transform has the form

Ĝ(f, t0, α̃) = 2

√
π

α̃
πf exp

(
−π

2f2

α̃

)
[sin(2πft0) + i cos(2πft0)] . (2.4)

In Figure 1, we plot the first order derivative of the Gaussian function (2.3) and its frequency
spectrum for the case when t0 = 0.3 and α̃ = 200. From Figure 1 (b), we find that the function
(2.3) is approximately band limited, and its highest frequency can be approximately seen as 15Hz.
In general, we assume that there exists T > 0 such that the solution u of the wave equation (2.1)
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Figure 1: (a) the first derivative of the Gaussian function; (b) the frequency spectrum for the first
derivative of the Gaussian function in the frequency domain.

at the point (xr, zr) satisfies the condition u(xr, zr, t) = 0 for all t /∈ [0, T ]. The Fourier transform
of u(xr, zr, ·) is written as

û(xr, zr, f) =

∫ T

0
u(xr, zr, t)e

−i2πftdt. (2.5)

For convenient exposition, we shall use the following notation ur(t) := u(xr, zr, t) and ûr(f) :=
û(xr, zr, f).

Now, we illustrate how we obtain the values of ur(t) at N equally spaced points taken in the
interval [0, T ] in the frequency modeling. Applying the rectangle method to equation (2.5) yields

ûr(f) ≈ λ
N−1∑
n=0

ur (λn) e
−i2πfλn, for any f ∈ R, (2.6)
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where λ := T
N . As the source function in the seismic case approximately has a limited spectrum

(see, Figure 1 (b)), we denote by fmax the approximate highest frequency of the source. Therefore,
we assume that equation (2.6) holds approximately for f ∈ [0, fmax]. Then, following the Nyquist
sampling theorem, the frequency step size ∆f satisfies

∆f ≤ 1

T
. (2.7)

Hence, we choose f = m
T , m = 0, 1, . . . , N − 1, and the corresponding frequency step size ∆f = 1

T .
Also, let

u :=


ur(0)

ur
(
T
N

)
...

ur

(
(N−1)T

N

)
 and û :=


ûr(0)
ûr

(
1
T

)
...

ûr
(
N−1
T

)
 .

Hence, from equation (2.6), we have that

û ≈ λ
√
NFu,

where F is the N × N discrete Fourier transform (DFT) matrix with 1√
N
exp

(
−i2π(m−1)(n−1)

N

)
as its (m,n)-th entry. We can reconstruct u from û with the inverse discrete Fourier transform
(IDFT), that is,

u ≈ 1

λ

1√
N
F⊤û.

Here, the notation A⊤ denotes the conjugate transpose of A. Note that each component of û is
obtained by solving the Helmholtz equation.

In computation, the Helmholtz equation is usually discretized by finite difference [9, 15] or finite
element methods [2, 12]. For a large scale problem, solving the Helmholtz equation with large wave
numbers is a difficult task (see, [2, 14]). We even have difficulty in obtaining ûr(f) for frequencies
f satisfying f ≤ fmax. Therefore, only part of components of û are available. We use the vector
robs to record the available components of û. The relation between û and robs is linked by a “row
selector” matrix R that comprises a subset of the rows of an identity matrix such that

Rû ≈ robs. (2.8)

Let r := 1√
N
robs. With the DFT, the relation of u and r can be presented as

λRFu ≈ r, (2.9)

which is an incomplete Fourier transform system.
Different row selector matrices correspond to different ways of sampling. Since solving the

Helmholtz equation with a large wave number is a challenging task, we propose to sample only
lower frequencies in recovering the seismic wavefield. In this case we choose to use the following
“row selector” matrix

R :=


0 1 0 . . . 0 . . . 0
0 0 1 . . . 0 . . . 0
...

...
...

...
...

...
...

0 0 0 . . . 1 . . . 0

 ,
where the number of its rows is less than N

2 with N being the number of its columns. The choice
of R depends on the value of the highest frequency we compute.
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3 Regularization Models for Inverting Incomplete Fourier Trans-
forms

Reconstructing a digital signal or an image from incomplete Fourier data is an inverse and ill-
posed problem. In practice, noise also exists in the observed data. To solve these problems,
regularization methods are usually used. In this section, we propose two regularization models for
inverting incomplete Fourier transforms and develop algorithms for solving these models.

We assume that the underlying signal u ∈ RN in (2.9) has a sparse representation with a
redundant tight framelet system in RN [16]. Suppose that W ∈ RÑ×N (with Ñ := LN) satisfies
W⊤W = I, where L denotes a positive integer and I is the N ×N identity matrix. Then W is a
tight frame in RN . The components of the vector Wu are called framelet coefficients representing
u. Below we present a concrete tight framelet matrix W . To this end, for a given filter with length
2J + 1

h := [h(−J), h(−J + 1), . . . , h(−1), h(0), h(1), . . . , h(J − 1), h(J)] ,

we define an N ×N matrix S(h) by

(S(h))i,j =


h(i− j) + h(i+ j − 1), if i+ j ≤ J + 1;
h(i− j) + h(−1− (2N − i− j)), if i+ j ≥ 2N − J + 1;
h(i− j), otherwise.

We shall use the matrix S(h) for specific filter h to construct W . Next we choose to use specific
piecewise linear tight frame filters. This frame has h(0)0 :=

[
1
4 ,

1
2 ,

1
4

]
as its low-pass filter and

h
(0)
1 :=

[√
2
4 , 0,−

√
2
4

]
and h

(0)
2 :=

[
−1

4 ,
1
2 ,−

1
4

]
as its high-pass filters. Performing a multilevel

wavelet decomposition without downsampling using this tight frame demands h(ℓ)0 , the filter h(0)0

at level ℓ:

h
(ℓ)
0 =

1

4
, 0, · · · , 0︸ ︷︷ ︸

2ℓ−1−1

,
1

2
, 0, · · · , 0︸ ︷︷ ︸

2ℓ−1−1

,
1

4

 .
The h(ℓ)1 and h(ℓ)2 , the filters corresponding to h(0)1 and h(0)2 at level ℓ, respectively, can be constructed
similarly. For i = 0, 1, 2, we let H(ℓ)

i := S(h
(ℓ)
i ). The tight framelet matrix W is then defined by

W :=



∏L−1
ℓ=0 H

(L−ℓ)
0

H
(L)
1

∏L−1
ℓ=1 H

(L−ℓ)
0

H
(L)
2

∏L−1
ℓ=1 H

(L−ℓ)
0

...
H

(2)
1 H

(1)
0

H
(2)
2 H

(1)
0

H
(1)
1

H
(1)
2


. (3.1)

It can be verified that W⊤W = I.
With the help of a tight framelet matrix W of size Ñ × N , we rewrite (2.9). To this end, we

define
y := λWu and K := RFW⊤.
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Then model (2.9) becomes
Ky ≈ r. (3.2)

We shall develop regularization methods to “invert” equation (3.2) to obtain the vector y.
The following ℓ1-norm based optimization model is proposed for the recovery of the sparse

vector y from (3.2)
ỹ = argmin

{
C(y) : y ∈ RÑ

}
, (3.3)

where
C(y) := ∥Γy∥1 + φ(Ky − r) (3.4)

with Γ being a diagonal matrix with non-negative diagonal entries and φ a function measuring
the distance between Ky and r. Recent results show that if the matrix K obeys the uniform
uncertainty principle, and y is sufficiently sparse, then the solution ỹ to equation (3.3) is exactly
y (cf. [7, 11]). As the tight framelet system, which is a kind of shift-invariant wavelet transforms,
is used in this paper, the two conditions above are satisfied [18].

Two different choices for the function φ are considered. When the observation r is contaminated
with the Gaussian noise, we choose φ := 1

2∥ · ∥22. When the observation r is contaminated with
non-Gaussian noise, we choose φ as the Moreau envelope of the ℓ1-norm. For a positive number τ
and a convex function ψ in Rd, the Moreau envelope of ψ with index τ at z ∈ Rd is defined as

envτψ(z) := min

{
1

2τ
∥x− z∥22 + ψ(x) : x ∈ Rd

}
, (3.5)

which is again a convex function in Rd (see, e.g., [24]). Moreover, there exists a unique vector,
denoted by proxτψ(z), in Rd such that the minimum value envτψ(z) can be achieved, that is,

envτψ(z) =
1

2τ
∥proxτψ(z)− z∥22 + ψ(proxτψ(z)).

We call proxτψ : Rd → Rd the proximity operator of ψ with index τ [22, 23]. The second choice of
φ in (3.3) is then envτ∥·∥1 , whose ith entry at z ∈ RÑ is, via the definition of the Moreau envelope,

(φ(z))i =

{
1
2τ |zi|

2, |zi| ≤ τ ;
|zi| − τ

2 , otherwise.

We can easily see that this function φ approaches to the ℓ1-norm ∥ · ∥1 as the parameter τ goes to
zero. It has been well demonstrated in [1, 25] that the ℓ1-norm fidelity term is particularly effective
for handling non-Gaussian additive noise such as impulsive noise and the Laplace noise.

The functions φ for both choices are differentiable. Using their differentiability together with a
result from [8, 10, 20, 22], we can characterize the solutions of model (3.3) in terms of a fixed-point
equation. Precisely, if y ∈ RÑ is a solution to model (3.3), then for any positive number δ

y = prox 1
δ
∥·∥1◦Γ

(
y − 1

δ
K⊤∇φ(Ky − r)

)
. (3.6)

Conversely, if y ∈ RÑ satisfies the equation (3.6) for some δ > 0, then y is a solution of model (3.3).
The fixed-point equation (3.6) together with an idea of [3] leads to efficient algorithms for finding

a solution of model (3.2) via the optimization model (3.3). We first consider the case φ := 1
2∥ · ∥

2
2.
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Algorithm 1
Input: the matrix K, the vector r, and the diagonal matrix Γ = γI
Initialization: y0 = v1 = 0, t1 = 1.
repeat (k ≥ 0)

yk = prox∥·∥1◦Γ
(
vk −K⊤(Kvk − r)

)
tk+1 =

1+
√

1+4t2k
2

vk+1 = yk +
(
tk−1
tk+1

)
(yk − yk−1)

until ∥yk − yk−1∥2/∥yk−1∥2 > tol
Return: u = 1

λW
⊤y∞

Implementing Algorithm 1 requires computing the proximity operator prox 1
δ
∥·∥1◦Γ. This opera-

tor at a vector z ∈ RÑ can be explicitly evaluated by

prox 1
δ
∥·∥1◦Γ(z) =

[
prox γ1

δ
|·|(z1), prox γ2

δ
|·|(z2), . . . , prox γ

Ñ
δ

|·|(zÑ )

]⊤
, (3.7)

where γi is the i-th diagonal entry of Γ and

prox γi
δ
|·|(zi) = sign(zi) ·max

{
|zi| −

γi
δ
, 0
}
. (3.8)

Making use of formulas (3.7) and (3.8), we can implement Algorithm 1 efficiently.
Algorithm 1 can be seen as a special case of FISTA proposed in [3]. We next make a similar

argument to Theorem 4.4 in [3] to analyze the convergence property of Algorithm 1. For the
completion of this paper, we include this theorem here.

Theorem 3.1 (Theorem 4.4 in [3]) Consider the optimization problem

min{C(y) ≡ p(y) + q(y) : y ∈ Rn}

where both p and q are convex on Rn, and p is continuously differentiable with Lipschitz continuous
gradient L(p). Let {tk}∞k=1 be a sequence with t1 = 1 and tk+1 =

1+
√

1+4t2k
2 for all k ≥ 1. Beginning

with y0 = v1 ∈ Rn, we generate two sequences {yk}∞k=1, {vk}∞k=1 of Rn as follows:

vk+1 = prox 1
L(p)

q

(
yk − 1

L(p)
∇p(yk)

)
vk+1 = yk +

(
tk − 1

tk+1

)
(yk − yk−1).

Then for any k ≥ 1

C(yk)− C(y⋆) ≤ 2L(p)∥yk − y⋆∥2

(k + 1)2
,

where y⋆ is any solution of the optimization problem.

A convergence result for Algorithm 1 is given as follows.
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Theorem 3.2 Let {yk} and {vk} be generated by Algorithm 1. If the set of solutions to model (3.3)
with φ = 1

2∥ · ∥
2
2 is nonempty, then for any k ≥ 1 and any solution y⋆ of model (3.3)

C(yk)− C(y⋆) ≤ 2∥yk − y⋆∥2

(k + 1)2
.

Proof: This result follows from Theorem 3.1. Specifically, for y ∈ RÑ , we let

p(y) :=
1

2
∥Ky − r∥22.

Clearly, we have that
∇p(y) = K⊤(Ky − r), y ∈ RÑ

and the gradient ∇p of p is Lipschitz continuous with the Lipschitz constant L(p) := ∥K∥2. More-
over, due to the relation

KK⊤ = RFW⊤WF⊤R⊤ = I,

we have that ∥K∥ = 1. Thus, L(p) = 1.
We further define

q := ∥ · ∥1 ◦ Γ.

In this notation, Algorithm 1 is a special case of FISTA. By directly applying Theorem 3.1 (Theorem
4.4 of [3]) to the sequence generated by Algorithm 1, we complete the proof of this theorem. 2

Next, we consider the case φ := envτ∥·∥1 . In this case, the flow of finding a solution of model (3.2)
is described in Algorithm 2.

Algorithm 2
Input: the matrix K, the vector r, the diagonal matrix Γ = γI, and the parameter τ .
Initialization: y0 = v1 = 0, t1 = 1.
repeat (k ≥ 0)

yk = proxτγ∥·∥1

(
vk −K⊤(I − proxτ∥·∥1)(Kvk − r)

)
tk+1 =

1+
√

1+4t2k
2

vk+1 = yk +
(
tk−1
tk+1

)
(yk − yk−1)

until ∥yk − yk−1∥2/∥yk−1∥2 > tol
Return: u = 1

λW
⊤y∞

Implementing Algorithm 2 requires computing the proximity operator proxα∥·∥1 . It is well-
known [22] that for α > 0 and x ∈ RÑ , the i-th component of proxα∥·∥1x is proxα|·|xi, which is
proxα|·|xi = max{|xi|−α, 0}sign(xi). With these formulas, we can implement Algorithm 2 efficiently.

A convergence result of Algorithm 2 is given in the following theorem.

Theorem 3.3 Let {yk} and {vk} be generated by Algorithm 2. If the set of solutions to model (3.3)
with φ = envτ∥·∥1 is nonempty, then for all k ≥ 1 and all solutions y⋆ of model (3.3)

C(yk)− C(y⋆) ≤ 2∥yk − y⋆∥2

τ(k + 1)2
.
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Proof: Again, this result follows from Theorem 3.1. Define

p(y) := envτ∥·∥1(Ky − r), for y ∈ RÑ .

Recalling a well-known result about the Moreau envelope [24]

∇(envτ∥·∥1) =
1

τ
(I − proxτ∥·∥1),

we observe that
∇p(y) = 1

τ
K⊤(I − proxτ∥·∥1)(Ky − r).

Note that the operator I − proxτ∥·∥1 is nonexpansive and ∥K∥ = 1. Hence, the gradient of ψ is
Lipschitz continuous with the Lipschitz constant L(p) = 1

τ . We further define q := γ∥ · ∥1. Then
the result of this theorem follows from Theorem 4.4 of [3] with L = L(p). 2

4 Numerical experiments
In this section, five numerical experiments which include one for noise-free data, one for noisy data,
one homogenous velocity model with two different sources and a three layered velocity model, are
presented to illustrate the efficiency of the proposed algorithms in this paper. All the experiments
are performed with Matlab 7v on an Intel Xeon (4-core) with 3.60 GHz and 16 Gb RAM.

We begin with setting up model (3.2). The matrices R, F and W involved in the model are
chosen in the same way as that in previous sections. In the following computation, by ∆f we
denote the step size of the frequency, fmin and fmax represent, respectively, the lowest frequency
and the highest frequency that we compute. The signal-to-noise ratio (SNR) defined by

SNR := 10 log10

(
∥dataorig∥22

∥dataorig − datareco∥22

)
is adopted, where dataorig and datareco represent the original data and the recovered data, respec-
tively. Furthermore, we set the tolerance as tol = 10−6, and obtain the SNR-values by implementing
Algorithms 1 and 2 with large enough iteration numbers to guarantee convergence.

4.1 Recovering time-domain data with exact data of low frequencies
In this subsection, we concentrate on recovering the first derivative of the Gaussian function (see
equation (2.3)) with insufficient exact data in the frequency domain (see equation (2.4)) for the
case of t0 = 1 and α̃ = 200. In our computation, let T := 2s and N := 129. Comparisons between
Algorithm 1 and Algorithm 2 are made to demonstrate the efficiency of the proposed methods.

We first test the effect of the parameters L, γ, and τ of Algorithms 1 and 2. In this test,
we choose ∆f := 0.5Hz, fmin := 0.5Hz and fmax := 7.5Hz. For Algorithm 1, Figures 2 (a)-(b)
show that decreasing γ yields a higher SNR-value, while the number of iterations increases quickly.
Therefore, a proper γ should be chosen to balance the quality of a reconstructed signal and the
computational cost for obtaining the signal. Figure 2 (c) shows that the reconstructed signal cannot
have a good SNR-value if L is too small. However, if L is too large, the computational cost increases
quickly. Figure 2 (d) shows that L = 3 or 4 may be a proper choice. For Algorithm 2, Figures
3 (a)-(b) illustrate that a balance between SNR-values and iterations is also needed. Figures 3
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Figure 4: Algorithm 1, ∆f = 0.5Hz : (a) fmax = 7.5Hz, γ = 0.02, (b) fmax = 6Hz, γ = 0.01, (c)
fmax = 4.5Hz, γ = 0.005, (d) fmax = 3Hz, γ = 0.15.

4.2 Recovering time-domain data with noisy data of low frequencies
We consider an example of noisy data in this subsection. All conditions that we impose in this
example are the same as those in the last one except the exact data is contaminated with noise (of
standard deviation σ = 0.1, 0.3, 0.5). Each SNR-value reported in all tables for this example is
the average over five runs.

We first test the restoration ability of Algorithms 1 and 2 for noisy data. The data are first
sampled from the intervals [0.5Hz, fmax] with ∆f being 0.5Hz and then contaminated by noise
with σ = 0.1, 0.3, 0.5, where fmax are chosen to be 7.5Hz, 6Hz, 4.5Hz and 3Hz. Again, the selector
matrix R for this example is chosen according to the values of fmax. fmax in each test is much
smaller than 15Hz, which is deemed by the Nyquist sampling theorem. Table 3 reports the SNR-
values of the restored signals by Algorithms 1 and 2. From Table 3, we find that both Algorithms
1 and 2 can restore the signal well with noisy data of low frequency components.

We next test the anti-aliasing ability of Algorithms 1 and 2 for noisy data. The data are first
sampled from the interval [0.5Hz, fmax] with ∆f = 1.5Hz and then contaminated by noise with
σ = 0.1, 0.3, where fmax are 8Hz, 6.5Hz, 5Hz and 3.5Hz. We remark that the frequency step size
∆f = 1.5Hz is bigger than 0.5Hz which is deemed by the Nyquist sampling theorem. fmax in
each test is much smaller than 15Hz which is again deemed by the Nyquist sampling theorem. The
restored results by Algorithms 1 and 2 in terms of SNR-values are reported in Table 4. Comparing
the results in Table 4 with those in Table 3, we find that the results of Table 3 are much better,
which indicates that the step size of the frequency ∆f should abide by the Nyquist sampling

13
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Figure 5: Algorithm 2, ∆f = 0.5Hz : (a) fmax = 7.5Hz, γ = 0.01, τ = 2, (b) fmax = 6Hz,
γ = 0.002, τ = 7, (c) fmax = 4.5Hz, γ = 0.01, τ = 3, (d) fmax = 3Hz, γ = 0.01, τ = 5.

theorem when the observed data are contaminated with noise.

4.3 One homogenous velocity model with the Ricker wavelet as the source
We consider generating the synthetic seismogram for a given point based on solving the 2D
Helmholtz equation in a homogeneous medium. The related seismic model is shown in Figure
8 (a). The velocity of the medium is 1500m/s. The receiver is located at the point (xr, zr) =
(1500m, 1000m). The point source ĝ := δ(x − xs, z − zs)R̂(f, f0) is located at the point (xs, zs) =
(500m, 1000m), where R̂(f, f0) is the Ricker wavelet in the frequency domain defined by

R̂(f, f0) :=

∫ +∞

−∞
(1− 2π2f20 t

2) exp(−π2f20 t2)e−i2πftdt,

whose dominant frequency is f0 = 25Hz. The maximum frequency of the above Ricker wavelet is
approximately equal to 60Hz. In our computation, we let h := 10m and T := 1.3440s, and choose
N := 168, ∆f := 1

T , L := 4 and tol := 1e − 6. In addition, in this experiment all results by the
IDFT is obtained with frequency sampled from [1Hz, 60Hz].

For the wave equation (2.1) with v := 1500m/s and g := δ(x − xs, z − zs)R(t, f0), its exact
solution can be obtained by the D’Alembert formula:

u(x, z, t) =
1

4πr
R(t− r

v
, f0),

14
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Figure 6: Algorithm 1, ∆f = 1.5Hz : (a) fmax = 8Hz, γ = 0.1, (b) fmax = 6.5Hz, γ = 0.07, (c)
fmax = 5Hz, γ = 0.07, (d) fmax = 3.5Hz, γ = 0.05.

where R(t, f0) := (1 − 2π2f20 t
2) exp(−π2f20 t2) and r :=

√
(x− xs)

2 + (z − zs)
2. In the following,

we take the signal u(xr, zr, t), t ∈ [0, T ] obtained by the D’Alembert formula as the original signal.
In Figure 9 (a)-(b), we show the original signal and synthetic seismograms obtained by the

IDFT and the proposed methods. Figure 9 (a) compares results obtained by Algorithm 1 and
the IDFT, and Figure 9 (b) compares results obtained by Algorithm 2 and the IDFT. From these
figures, we see that the signals recovered by both Algorithms 1 and 2 are much better than that
by the IDFT, as the IDFT creates many spurious oscillations in the recovered signals.

To test our proposed methods, we show in Figure 10 (a)-(d) the original signal and the synthetic
seismograms by Algorithm 1 with frequency sampled from intervals [1Hz, fmax], where fmax are
54Hz, 48Hz, 42Hz and 36Hz, respectively. In Figure 11 we show the corresponding results for
Algorithm 2. According to these figures, we find that even though only low frequencies are used, a
better synthetic seismogram is obtained by Algorithms 1 and 2.

In Table 5, we list the parameter values used in the IDFT and Algorithm 1, which generate
Figure 10 (a)-(d). Let NH denote the number of times needed to solve the Helmholtz equation
and kmax represent the largest dimensionless wave number. The dimensionless wave number k̃ on
a nondimensional [0, 1] × [0, 1] domain is defined by k̃ := 2πfM

v , when the domain of interest is
[0,M ] × [0,M ]. As shown in Table 5, when the IDFT is applied, we need to solve the Helmholtz
equation 81 times with the largest dimensionless wave numbers k = 502.65. On the other hand,
when Algorithm 1 is used for Figure 10 (c), we only solve the equation 56 times with the largest
dimensionless wave numbers k = 351.86. Similar conclusions can be drawn for Algorithm 2 which
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Figure 7: Algorithm 2, ∆f = 1.5Hz, γ = 0.1, τ = 0.5: (a) fmax = 8Hz, , (b) fmax = 6.5Hz, (c)
fmax = 5Hz, (d) fmax = 3.5Hz.

generates the results shown in Figure 11 (a)-(d). From Figures 10-11 and Table 5, we find that
with the proposed method low frequencies of a signal contain enough information to recover the
signal. It avoids solving the Helmholtz equation with large wave numbers.

To end this subsection, we give some illustrations on the phase displacement between the the
original signal and the synthetic seismograms obtained by the IDFT or our proposed algorithms.
This is due to the difference between the numerical phase velocity and the exact velocity (see, [15]).

4.4 The homogenous velocity model with the first order derivative of the Gaus-
sian function as the source

We continue to generate synthetic seismograms based on the 2D Helmholtz equation in a ho-
mogeneous medium, and its seismic model is shown in Figure 8 (a). All the conditions are
the same as those in the last subsection, except the point source function is now chosen as
δ(x − xs, y − ys)Ĝ(f, t0, α̃) for t0 = 0.3, α̃ = 200 (see, the equation (2.4)). The original signal
of this problem is also obtained by the D’Alembert formula. The maximum frequency for the first
order derivative of the Gaussian function is approximately 15Hz. In addition, we set h := 10m
and T := 2s, and choose N := 129, fmin := 0.5Hz, ∆f := 0.5Hz and L := 4 in this experiment.
Moreover, all results by the IDFT in this experiment is obtained with frequency sampled from
[0.5Hz, 15Hz].

Figure 12 shows the original signal and synthetic seismograms obtained by the IDFT, Algorithms
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Table 3: A summary of the SNR results of Algorithm 1 and Algorithm 2 for recovering time-domain
data from noisy data sampled from intervals [0.5Hz, fmax] with ∆f = 0.5Hz and σ = 0.1, 0.3, 0.5.

`````````̀Algorithm
fmax 7.5Hz 6Hz 4.5Hz 3Hz

σ = 0.1
Algorithm 1 18.8278 13.4524 13.3601 13.0725
Algorithm 2 19.6462 13.4857 13.3537 13.2617

σ = 0.3
Algorithm 1 15.6276 12.5826 12.1345 10.7584
Algorithm 2 15.2982 12.6605 11.8586 11.7015

σ = 0.5
Algorithm 1 11.5818 11.4273 10.3744 6.7984
Algorithm 2 12.1898 11.1381 11.0302 9.1298

Table 4: A summary of the SNR results of Algorithm 1 and Algorithm 2 for recovering time-domain
data from noisy data sampled from intervals [0.5Hz, fmax] with ∆f = 1.5Hz and σ = 0.1, 0.3.

`````````̀Algorithm
fmax 8Hz 6.5Hz 5Hz 3.5Hz

σ = 0.1
Algorithm 1 15.1852 12.2777 11.6868 9.3177
Algorithm 2 14.4361 12.8019 11.8733 10.8679

σ = 0.3
Algorithm 1 9.5592 10.7386 10.9311 9.2843
Algorithm 2 12.2044 10.0740 9.1445 7.6307

1 and 2, with the frequency sampled from [0.5Hz, 15Hz]. From these pictures, we find that the
results obtained by both Algorithms 1 and 2 are much better than that by the IDFT, as the IDFT
creates many spurious oscillations in the recovered signals.

Figures 13 (a)-(d) show the original signal and the synthetic seismograms by Algorithm 1 with
frequency sampled from [0.5Hz, fmax], where fmax are 9Hz, 7.5Hz, 6Hz, and 4.5Hz, respectively.
The corresponding results for Algorithm 2 are presented in Figure 14. From Figures 13 and 14, we
find that both Algorithms 1 and 2, even though only a few low frequencies are used, yield better
synthetic seismograms than that by the IDFT.

We summarize in Table 6 the parameters used in the IDFT and Algorithm 1 to generate the
numerical results demonstrated in Figures 13 (a)-(d). The notations listed in Table 6 have the
same meaning as that in Table 5. As shown in Table 6, corresponding to Figures 13 (a)-(d), the
largest dimensionless wave number k we need to compute by Algorithm 1 are 75.398, 62.832, 50.266
and 37.699, respectively, while the largest dimensionless wave number associated with the IDFT is
125.66. Moreover, the IDFT needs to solve the Helmholtz equation 30 times to obtain the synthetic
seismogram, while Algorithm 1 only needs to solve this equation with low frequencies for as low as

Table 5: The parameter values used in the IDFT and Algorithm 1 that generate Figure 10 (a)-(d)

IDFT Algo.1 in (a) Algo.1 in (b) Algo.1 in (c) Algo.1 in (d)
fmax 60 Hz 54 Hz 48 Hz 42 Hz 36 Hz
kmax 502.65 452.39 402.12 351.86 301.59
NH 81 73 65 56 48
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Figure 8: Velocity model: (a) The homogenous model; (b) The layered model.
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Figure 9: fmax = 60Hz (a) Algorithm 1: γ = 0.5, (b) Algorithm 2: γ = 0.8, τ = 0.6.

9 times. Similar conclusion can be drawn for Algorithm 2 based on Figure 14 (a)-(d). According
to Figures 13-14 and Table 6, to obtain a reliable synthetic seismogram, we need not to compute
the wave number which is larger than 50.266. Hence, solving the Helmholtz equation with large
wave numbers is avoided.

4.5 A three layered velocity model
We consider generating common-shot-point records (shot profiles) based on the 2D Helmholtz
equation in a heterogenous medium, and its seismic model is shown in Figure 8 (b). Our interested
domain is [0, 2000m] × [0, 2000m]. There are three velocities (from the top to the bottom) in this
velocity model: v = 2000m/s, 2500m/s, 4000m/s. The source is located at the point (0m, 1000m).
As in Subsection 4.3, Ricker wavelet with domain frequency 25Hz is used as the source. In addition,
the receivers are located on the top ground, that is, they are in the line of z = 0. The grid size is
taken as ∆x = ∆z := 10m and the interval of time increment ∆t := 8ms. Here we only present
the results obtained by Algorithm 2, as Algorithm 1 performs similar to Algorithm 2 in efficiency.

Figure 15 (a)-(b) show the common-shot-point records obtained by the IDFT, in which frequency
is sampled from intervals [1Hz, 60Hz] and [1Hz, 42Hz], respectively. The step size of the frequency
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Figure 10: Algorithm 1: (a)fmax = 54Hz, γ = 0.5, (b) fmax = 48Hz, γ = 0.51, (c) fmax = 42Hz,
γ = 0.51, (d) fmax = 36Hz, γ = 0.5.

∆f is 0.4464Hz. Figure 16 (a)-(f) show some results obtained by Algorithm 2. From Figure 15
(b), we find that some nonphysical oscillations appear in the seismic wavefields obtained by the
IDFT, as the Nyquist-Shannon criterion may not be satisfied. However, as shown in Figure 16 (a)-
(e), the direct waves of the source, the reflected waves of the top side of the second layer and the
reflected waves of the bottom side of the second layer are displayed clearly in the seismic wavefields
obtained by Algorithm 2. It is easy to find that, Figure 16 (b)-(e) are almost as clear as Figure
15 (a). Nonphysical oscillations appear only in Figure 16 (f). Therefore, frequencies sampled from
[1Hz, 24Hz] with ∆f = 0.4464Hz are enough to restore the seismic wavefield by Algorithm 2,
which confirms the efficiency of our proposed algorithms.

Table 6: The parameter values used in the IDFT and Algorithm 1 that generate Figure 13(a)-(d)

IDFT Algo.1 in (a) Algo.1 in (b) Algo.1 in (c) Algo.1 in (d)
fmax 15 Hz 9 Hz 7.5 Hz 6 Hz 4.5 Hz
kmax 125.66 75.398 62.832 50.266 37.699
NH 30 18 15 12 9
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Figure 11: Algorithm 2, γ = 0.8, τ = 0.6: (a)fmax = 54Hz, (b) fmax = 48Hz, (c) fmax = 42Hz,
(d) fmax = 36Hz.

5 Conclusion
In this article, we use fixed-point proximity algorithms to solve the incomplete Fourier transform
arising in seismic wavefield modeling in the frequency domain. The piecewise linear tight framelet
is used as the sparse transform, and a new sampling is introduced to avoid solving the Helmholtz
equation with large wave numbers. Based on the proximity operator, two algorithms are proposed.
Numerical results show that this sampling method is practical, and our proposed algorithms are
efficient and robust.
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Figure 16: The common-shot-point records via Algorithm 2 with the frequency samples taken from
: (a) [1Hz,60Hz]; (b) [1Hz,42Hz]; (c) [1Hz,36Hz]; (d) [1Hz,30Hz]; (e) [1Hz,24Hz]; (f) [1Hz,18Hz].
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