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shift-stable sets and show that this class is closed under all
decimation, interleaving, and shift operations. We study two
notions of entropy for subsets of the full one-sided shift and
show that they coincide for weakly shift-stable X, but can
be different in general. We give a formula for entropy of
interleavings of weakly shift-stable sets in terms of individual
entropies.
© 2021 The Authors. Published by Elsevier Inc. This is an
open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let A be a finite alphabet of symbols, and suppose |.4| > 2. A basic object in one-sided
symbolic dynamics is the full one-sided shift space AN, which is the space of all one-
sided infinite strings of symbols drawn from A. Here N = {0, 1, 2, ...} denotes the natural
numbers, and N* = N \ {0} denotes the positive integers. We view AN =[] jenAasa
compact topological space carrying the product topology, with each copy of A carrying
the discrete topology; we call this topology of AN the symbol topology. The dynamics in
one-sided symbolic dynamics is the action of the (one-sided) shift map S : AN — AN on
individual symbol sequences x = agaiazas - -+ by

S(x) := ajagaszay - - . (1.1)

In contrast, two-sided symbolic dynamics (treated in Lind and Marcus [33]) uses the two-
sided shift operator S : AZ — A% with S((a;)icz) = (bi)icz with b; = a;11. It focuses on
sets X C AZ that are invariant under the (two-sided) shift operator: SX = X. Such sets
arise as discretizations of continuous dynamical systems such as geodesic flow, and led to
the original formulation of symbolic dynamics by Morse and Hedlund [39]. In one-sided
symbolic dynamics on subsets of AN the spaces X can encode initial conditions. Initial
conditions can break shift-invariance, so it is natural to consider spaces that are stable
under the shift: SX C X.

This paper studies the action of decimation and interleaving operations acting on sets
X in the framework of symbolic dynamics and coding theory. Decimation operations
are important in digital signal processing and coding theory, and interleaving operations
form a kind of inverse operation to them, see (1.4).

(1) At the level of individual symbol sequences, the ith decimation operation at level n,
for i > 0 and n > 1, denoted ; ,, : AN — AN for an individual symbol sequence
X = apa1a2a3 - - - is

Vi n(X) = QiQi4nQitonQitsn - - (1.2)

This operation extracts symbol subsequences having indices in an arithmetic pro-
gression given by ¢ (mod n), starting at initial index i.
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(2) The n-fold interleaving operation ®, : AN x AN x ... x AN — AN is an n-ary
operation whose action on n individual symbol sequences x; = a;0a;1a;2 - for
0 <i<n—1Iis defined by

(X0, X1, ,Xp—1) Py = (@n)?:_olxi =X0®X1® - ®Xp—1 = bpb1bg - - (1.3)

in which the output sequence y := bgb1bs ... interleaves the symbols in arithmetic
progressions of symbol indices (mod n), so that

bi+]‘n=ai’j for jZO, OSZSn—l

That is, the output y has in its symbol positions i (mod n) the symbols of x; given
in order.

Decimation and interleaving operations defined pointwise extend by set union to de-
fine set-valued operations acting on arbitrary subsets X of AN (resp. of (AN)"). For
examples, see Sections 2.1 and 2.2.

All individual symbol sequences x are constructible as n-fold interleavings of suitable
decimations:

X = (@) G im(x) for xe AV, (1.4)
see Section 4.1.
1.1. Summary
This paper treats two topics.

1.1.1. 'The first topic of this paper is the study of algebraic properties of decima-
tion and interleaving operations under composition. The set of all decimation operations
is closed under composition, and the decimation and shift actions are compatible in
a sense we describe in Section 3. Decimation operations are closed under composi-
tion.

We define the n-fold interleaving closure X" of a set X in Section 2 as X[ =
(®n)72g¥i.n(X), an operation that combines both decimations and interleavings. We
show the operation sending X to X" is a set-valued closure operation in the Moore
sense, in particular X C X[ A main result is that interleaving closure operations
under composition satisfy

(X[m])[n] _ (X[”])[m] = X[lcm(m,n)]’ (15)

where lem(m,n) denotes the least common multiple of m and n. Thus these operations
are closed under composition, commute under composition, and are idempotent.
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We show X is closed under n-fold interleaving closure, meaning X = X", if and
only if X factorizes as X = (@n)?:_gX ; under the n-fold interleaving operation for some
X;. We study the allowable sets M C N for which there exists some set X that has
X = X" if and only if n € M. That is, letting N'(X) = {n: X = X[}, we classify the
sets M C N* such that M = N(X) for some X C AN. We show that if finite, the set
N (X) consists of the set of all divisors of an integer ng, and all such ng may occur. A new
phenomenon is the existence of infinitely factorizable X , which necessarily have X = X"
for all n in an infinite distributive sublattice of N* under the divisibility partial order,
downward closed under divisibility. We show all such infinite sublattices may occur for
non-closed X, but if X is closed, we show the only allowed infinite sublattice is NT.

There is an additional algebraic structure consisting of the collection of all operations
obtained from combining interleaving operations of different arities under composition.
These form a nonsymmetric operad in the category of sets, and we term it the in-
terleaving nonsymmetric operad. We give a series of universal shuffle identities under
composition satisfied by this operad. We discuss the operad formalism in Section 2.7
and in Appendix A.

1.1.2. The second topic of this paper is the study of symbolic dynamics aspects
of decimation and interleaving operations. The shift operation acts compatibly with
decimations and with n-fold interleaving, and we give commutation identities describing
its action. The class of shift-invariant sets (those with SX = X) and the class of shift-
stable sets (those with SX C X) are not preserved under interleaving. We introduce an
enlarged class of sets better adapted to these operations.

A set X C AN is said to be weakly shift-stable if there are integers k > j > 0 such that
SkX C S7X. The set X need not be a closed set in the symbol topology. We show the
class of all weakly shift-stable sets, denoted W(.A), is closed under the shift and under
all decimation and interleaving operations, as is the subclass W(A) of all closed sets in
W(A).

The complexity of a set X can be measured using various notions of the entropy of
X, which provide invariants that distinguish dynamical systems. The paper [2] studied
two concepts of entropy for X, the topological entropy Hiop(X) and path topological
entropy Hp(X), which we term here prefiz topological entropy. For general X one has
H,(X) < Hyop(X), and strict inequality may occur. We obtain an inequality relating the
prefix topological entropy of an n-fold interleaving X = (@n);:olXi to that of its factors
Xii

Hy(X) <

S|

3 Hy(X0), (16)

and strict inequality may occur. A main result is that the class of weakly shift-stable sets
W(A) has good properties for both entropies; the two entropies are equal and equality
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holds in the interleaving inequality (1.6). In consequence, for weakly shift-stable sets
X = (®n)?;01Xi we obtain a formula for topological entropy under interleaving:

n—1
1
Hiop(X) = - Z Hiop(Xi)-
=0

1.1.3. Most results in this paper apply to general sets X, but for symbolic dynamics
applications we are most interested in closed sets X in the product topology on AN.
These satisfy:

(1) If X is a closed set, then all decimations ; ,(X) are closed sets for ¢ > 0 and
n > 1.

(2) If Xo,X1, -+ ,Xn—1 are closed sets, then their n-fold interleaving X = (®n)?:_01Xi
is a closed set.

(3) Conversely, if X is a closed set and has an n-fold interleaving factorization
X = (@n)?;olXi, then each X; is a closed set.

The decimation, interleaving, and shift operations all commute with the topological
closure operation X — X. In consequence all n-fold interleaving closure operations
commute with topological closure.

Detailed statements of results are made in Section 2. The main results concerning
properties of n-fold interleaving closure operations of a set X are Theorems 2.10, 2.12
and 2.13. The main results concerning weakly shift-stable sets X are Theorems 2.15 and
2.20.

1.2. Background

This study was motivated by work on path sets initiated in [2]. Path sets are a class of
closed sets in AN that forms a generalization of shifts of finite type and of sofic shifts in
symbolic dynamics, and which also include sets not invariant under the shift map. Path
sets are described by finite automata, and have an automata-theoretic characterization
as the closed sets in AN that are the set of all infinite paths in some deterministic Biichi
automaton. This class includes interesting sets arising in fractal constructions and in
study of radix expansions in number theory (see [3], [4]) arising from a problem of Erdés
([20], [31]). The paper [2] considered decimation operations on path sets and showed that
decimations of path sets are also path sets. The p-adic integers with the p-adic topology
form a shift space with p-symbols, and interleaving operations on path sets arose in this
context in [1].

The authors recently studied the action of interleaving operations on path sets, in [5].
Interleaving operations already lead to the breaking of shift-invariance even if all sets X;
used in the interleaving are shift-invariant. The paper [5] shows that the class C(A) of
all path sets on a finite alphabet A is closed under all interleaving operations.
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This paper obtains results valid for general sets X C AN, which provide perspective on
results on path sets proved in [5]. The concept of weakly shift-stable closed sets W(.A)
supplies a good generalization of the class C(A) of path sets to more general closed
sets. The paper [5] shows that all path sets are weakly shift-invariant, which implies
they are weakly shift-stable. In consequence, the entropy equalities of the present paper
under weak shift-stability apply to interleaving of path sets. The present paper includes
examples showing that various finiteness results given in [5] for path sets are not valid
for general closed sets X C .AN; see Remark 7.3.

1.8. Related work

Decimation operations play an important role in sampling and interpolation oper-
ations in digital signal processing (“downsampling”), and in multi-scale analysis and
wavelets (e.g., [16], [29]). Interleaving constructions have been used in coding theory as
a method for improving the burst error correction capability of a code (cf. [48, Section
7.5]). They are also considered in formal language theory; see Krieger et al. ([30]). The
analogue of n-fold interleaving for finite codes is referred to by coding theorists as block
interleaving of depth n. Decimation and interleaving operators together have been con-
sidered both in cryptography and cryptanalysis (cf. Rueppel [45] and Cardell et al. [10]).
Since methods of encoding and decoding can be viewed as dynamical processes, it is of
interest to view these operations in a dynamical context.

1.3.1. There has been prior work on interleaving operations in the automata theory
literature, typically for finite words. In 1974 Eilenberg [19, Chap. I1.3, page 20] introduced
a notion of internal shuffle product A]] B of two recognizable sets (= regular languages)
which corresponds to 2-fold interleaving. A more general notion is alphabetic shuffle. The
shuffle product has been characterized in the context of finite automata by Duchamp et
al. [18, Sect. 4]. In this paper we are considering such operations on infinite words, which
differ in nature from the finite word case. For infinite words viewed in an automata-
theoretic context, see Perrin and Pin [40]. We are not aware of prior work studying the
algebraic structure of interleaving operations in this context.

1.3.2. Regarding dynamics, one-sided shift-stable sets have their dynamics partially
classified by C*-algebra invariants. The work of Cuntz and Krieger [15] and Cuntz [14]
was seminal in attaching such invariants to topological Markov chains (= two-sided shifts
of finite type). Carlsen ([11], [12]) attached C*-algebras to one-sided subshifts and studied
their properties. Shift-stable sets are studied in the context of partial isometry actions
and C* algebras attached to them by Dokuchaev and Exel [17]. See Exel [22] for related
background. One may ask whether there are generalizations of these constructions to
the class of weakly shift-stable sets introduced in this paper.

1.3.3. In the ongoing development of operad theory and n-categories, interleaving
operations have recently played a role at a categorical level, see Leinster [32] and Cottrell
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[13]. General references for operads are Markl, Shnider and Stasheff [35], and more
recently Loday and Vallette [34] and Bremner and Dotsenko [9] for algebraic operads.

Acknowledgments. We thank the reviewers for helpful comments and references. We
thank I. Kriz for a discussion on operads. Some work of W. Abram and D. Slonim was
facilitated by the Hillsdale College LAUREATES program, done by D. Slonim under the
supervision of W. Abram. Work of J. Lagarias was partially supported by NSF grants
DMS-1401224 and DMS-1701576, and by a Simons Fellowship in Mathematics Award
555520 in 2018.

2. Results
We give formal definitions with examples, and then state results.
2.1. Decimation operations
Definition 2.1 (Decimation operations). Let A be a finite alphabet of symbols.

(1) For individual sequences x € AN the i-th decimation operation at level n, denoted
Yim AN — AN for i > 0 is defined for x = agaiazas - -- by

Yin(X) = QiQitnGit2nGitsn -

This operation extracts symbol subsequences having indices in an arithmetic progres-
sion given by 7 (mod n), which starts at initial index i. The principal n-decimations
are those ¢; , with 0 <¢ <n —1.

(2) For sets X C AN the i-th decimation at level n, denoted 1; ,(X), is the set union

Yin(X) ={in(x) : x€ X}. (2.1)
Example 2.2. For the alphabet A = {0, 1,2,3} consider the sets”
X ={x1 =(01)*,%x3 = (10)>°}, and Y = {y1 = (323)°,y2 = (332)™},
containing two periodic infinite words of period 2 and two periodic infinite words of

period 3, respectively.
The principal 2-decimations of the elements of X are

$0,2((01)%) = 0%,912((01)>) = 1%, and  ¢9,2((10)>) = 17,11 2((10)>) = 0.

Thus ¥2(X) := {0°,1°} and 11 2(X) = {1°°,0%} = ¢ 2(X).

2 Here x; = (01)* = 010101...
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The principal 2-decimations of the elements of Y are

10,2((323)%°) = (332)°°, ¢1,2((323)°°) = (233)*°, and
0,2((332)) = (323)%,91,2((332)%) = (332)>.

We obtain 1 2(Y) := {(332)>, (323)>°} =Y and 91 2(Y) = {(233)>,(332)>°} # Y.
In Section 3 we show:
(1) The set of all decimation operations are closed under composition. For X € AN,
Vjm © Vin(X) = Vit jnmn(X).

This identity on subscripts matches an action of the (ax + b)-group on Z.
(2) The shift action is compatible with the decimation action: For X C AN,

Yin(9X) = Yit1,n(X)
and
SYin(X) = 1in(S"X).
2.2. Interleaving operations

Interleaving operations comprise an infinite collection of m-ary operations (n > 1),
defined for arbitrary subsets X of the shift space AN.

Definition 2.3 (Interleaving operations). Let A be a finite alphabet of symbols.
(1) For individual sequences x; = a;0ai 102+ € AN (0 < i < n— 1), the n-fold
interleaving operation ®, : AN x AN x ... x AN — AN denoted either (®n)?:_01xi

or Xg®x1® - - - ®X,,_1, combines these sequences by

(X0, X1, ,Xn—1) > Xo®X1 - ®X, =y

= (ao,o ai,o--- anfl,O) o (00,1 ay-- 'an71,1) © (00,2 Tty
where o denotes concatenation of sequences. That is, y = bgb1bs - - - with
bitjn =a;; for 0<i<n-—1, andj >0,

so that the symbols of y in symbol positions i (mod n) are the symbols of x;, (0 <
i<n-—1).
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(2) For sets X; C AN, (0 <i < n — 1), their n-fold interleaving, denoted (®,)/— X; or
Xo®X1®Xo® - - - ®X,,_1, is defined by the set union:

(@n)?z_olXi ={Xe®X1® - ®Xp—1 :X; € X; forall 0 <i<n-—1}.

Aset X = (@n)?;olXi is said to have an n-fold interleaving factorization. The sets X;
are called n-fold interleaving factors of X, or just interleaving factors. One can express
n-fold interleavings in terms of principal decimations of level n as: (®,)7-) X; = {x €
AN Y n(x) € X; for all 0 <4 < n — 1}; see Proposition 4.1.

Example 2.4. Continuing Example 2.2, the 2-fold interleaving of X with itself is

X®X = {x1®X1, X1 ®X2, Xo®X1, Xo®X3 |
= {(0011)*°,(0110)*°, (1001)*°, (1100)>°}.

It contains four periodic words of period 4.
The 2-fold interleaving of Y with itself is

Y®Y = {y1®y1,y1®y2, y2®y1,y2®y2}
— {(332233), (332332)°, (333223), (333322)}.

It contains four periodic words of period 6. The 2-fold interleavings of X and Y are
X®Y = {x1®y1,X1®y2, X2®y1,X2®Yy2}
= {(031203130213)°°, (031302130312)°, (130213031203)°°, (130312031302)*°.}
Y®X = {y1®x1,y1®8X2, y2®X1, y2®Xo }
= {(302130312031)°°, (312031302130)>°, (303120313021)°°, (313021303120)*°.},

Each of them contains four periodic words of period 12. We have X®Y # Y®X.

A basic relation between interleaving and decimation is an identity, valid at the point-
wise level, stating that ordered n-fold decimations post-composed with n-fold interleaving
give the identity map:

(@) in(x) =x for x e AN, (2.2)
For this reason we call the decimations ; ,, for 0 < i < n —1, the principal decimations.

The remaining decimations ¢ > n may be obtained by applying the one-sided shift map
to these decimation sets; see Proposition 3.2.
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2.3. Interleaving closure operations

The interleaving operations together with principal decimations define a family of
set-theoretic closure operations on general subsets X C AN. These closure operations
are a main focus of this paper.

Definition 2.5. The n-fold interleaving closure operation X — X[ is defined for each
X C AN by

XU = (@)1 Wi (X)- (2.3)

Example 2.6. For X = {(10)>,(01)>}, the 2-fold interleaving closure X[ :=
Y0,2(X)®Y1,2(X) is

XPT = {0, (01)>, (10)>,1}.
We have X ¢ X[,

Example 2.7 (Interleaving and n-fold interleaving closure). Let A = {0,1} and let Xy C
AN be the one-sided Fibonacci shift consisting of all words that do not contain the
pattern 11 in two consecutive digits. Let X7 = AN be the full shift. Then:

(1) Xo®X; C AN consists of all words that do not contain a 1 in digits i and i + 2 for
any ¢ even. That is, there can be no 1’s in consecutive even digits, but there are no
other restrictions on the word. Here Xy and X; are each invariant under the shift
operator, i.e., S(X;) = X;, but Xo®X is not shift-invariant.

(2) Interleaving any number of copies of X; gives X;. That is, (®,)"y X; = X for
n > 1.

(3) The n-fold interleaving closure of X, is X for all n > 2, that is, X([)n] = X, = AN,
This holds because 9; ,,(Xo) = X; for all ¢ > 0 when n > 2.

(4) Likewise, X}"] = X; for n > 1. So X1 has n-fold interleavings for all n > 1.

In Section 4.1 we show the existence of an n-fold interleaving factorization of a set
X corresponds to its invariance under n-fold interleaving closure, and in that case its
interleaving factors are its principal decimations.

Theorem 2.8 (Decimations and interleaving factorizations).

(1) A subset X of AN has an n-fold interleaving factorization X = Xo®X1® - ®
X,_1 if and only if X = X,

(2) If X = Xo®X1® - - ®X,,_1 has an n-fold interleaving factorization, then its or-
dered set of n-fold interleaving factors is unique, given by its principal decimations

Xi =Yin(X) for 0<i<n-—1L
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Regarding (2), there typically are many sets Y such that ¢; ,(Y) = 1 ,(X) for
0 <i<n—1, and we show X contains every such set Y in Theorem 4.2.

In Section 4.2 we justify the name n-fold interleaving closure by showing that X —
X[ is a set-theoretic closure operation, as formalized in Gritzer [26, Chap. I, Sect.
3.12, Defn. 26], and X ["] is characterized as the maximal set Z having the property that
YVin(Z) =in(X) for 0 <i<n-—1.

In Section 4.3 we establish universal algebraic identities relating certain compositions
of n-fold interleavings for different n.

Proposition 2.9 (Interleaving shuffle identities). For each m,n > 2 and arbitrary sets
{X;:0<i<mn— 1} contained in the one-sided shift AN, one has the identity of sets

(®n)?:_01 ((®m);n:_01Xz+jn) = (®mn)2n:no_l Xk- (24)

These identities are termed shuffle identities because the n-fold interleaving operation
acts like a shuffling of n decks of cards together, taking the top cards in a particular
order from each of the n decks, where the cards correspond to positions of symbols in
the expansion.

In Section 4.4 we establish a main result determining the action of composition of
interleaving closure operations. The shuffle identities play a crucial role in proving this
result.

Theorem 2.10 (Composition of interleaving closures). For allm,n > 1, and all X C AV,
(X[m])[n] — (X[n])[m] _ X[lcm(m,n)]7 (2'5)
where lem(m,n) denotes the least common multiple of m and n.

In Section 4.5 we show interleaving commutes with intersection:

m—1 m—1
() (@)1 Xjnti) = (@n)720 ([) Xjnpi)-
3=0 3=0

In Section 4.6 we determine the action of the shift map on n-fold interleavings and
interleaving closures. In particular we show that

sxl = (sx)l,

In Section 4.7 we show that the topological closure operation commutes with both
decimation and interleaving operations. In particular it commutes under composition
with n-fold interleaving closure:

< _ X,
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Thus if X is a closed then its n-fold interleaving closure X is closed.
2.4. Structure of interleaving factorizations

We study the possible structure of the set of all interleaving factorizations of a fixed
set X C AN,

Definition 2.11. Let X in AN be a fixed set, with A a finite alphabet.
(1) The interleaving closure set N'(X) C N4 of X is the set of integers

N(X):={n:n>1 and X = XM},

(2) The interleaving factor set F(X) consists of all n-ary interleaving factors, X ,,
for all n € N(X), i.e.

$(X) ={¢in(X) :n e N(X),0<i<n—1}
(3) The (full) decimation set ©(X) consists of all decimations of X.
D(X) = {¢in(X): 120, n>1}.
The principal decimation set D, (X) consists of all principal decimations
Dprin(X) ={tin(X): n>1, 0<i<n-—1}

The interleaving factor set is a subset of the set of all principal decimations: F(X) C
D prin(X) We always have X € F(X) and 1 € N(X).

An important feature of factorizations is that some X are infinitely factorizable in the
sense that they have n-fold interleaving factorizations for infinitely many n, i.e. N'(X) is
infinite. The full one-sided shift X = AN on the alphabet A is an example; it has n-fold
factorizations for all n > 1, and N (AN) = N+, while its interleaving factor set F(AN) =
{AN} contains one element. We term all the remaining ones finitely factorizable. There
exist closed sets X having infinite M (X) and having an infinite interleaving factor set
§(X), see Example 6.5.

Theorem 2.12 (Structure of interleaving closure sets). Let N(X) = {n >1: X = X"}
Then N (X) is nonempty and has the following properties.

(1) If n € N(X) and d divides n, then d € N(X).

(2) If m,n € N(X) then their least common multiple lem(m,n) € N'(X).

Conversely, if a subset N C N7T is nonempty and has properties (1) and (2), then
there exists X C AN with N = N'(X).
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This result is proved separately in the direct and converse directions as Theorem 5.1
and Theorem 5.3, respectively. A nonempty structure N having properties (1), (2) is
abstractly characterized as any nonempty subset of NT that is a sublattice under the
divisibility partial order, which is also downward closed under divisibility, see 5.1 (3).
The notion of lattice here is that of G. Birkhoff, see Gréatzer [26].

In Section 5.3 we also treat self-interleaving factorizations, which are interleaving
factorizations in which all factors are identical. For a general set X we define the self-
interleaving closure set

Neatt(X) = {n e N : X = (®,)"5,Y for some Y C AN}

as the set of n such that X has an n-fold self-interleaving factorization. We show that the
sets Mg (X)) may have exactly the same allowed forms as the sets A'(X) in Theorem 2.12;
however for individual X the set of values N r(X) can be strictly smaller than N (X).

In Section 6 we study infinitely factorizable sets X in the special case that X is a
closed set.

Theorem 2.13 (Classification of infinitely factorizable closed X ). For a closed set X C
AN where A is a finite alphabet, the following properties are equivalent.

(i) X is infinitely factorizable; i.e., N(X) is an infinite set.
(i) X has an n-fold interleaving factorization for alln > 1; i.e. N(X) = NT.
(iii) For each k > 0 there are nonempty subsets A C A such that X = H,?;O A is a
countable product of finite sets with the product topology.

In view of Theorem 2.12, the assumption that X is closed is necessary for these three
equivalences to hold. The important restriction for closed sets X is that if they are
infinitely factorizable then N (X) = N*.

In Section 7 we study an iterated interleaving factorization process for a closed set X.
If X is infinitely factorizable, we “freeze” it. If it is finitely factorizable, we decompose
it to its maximal factorization, and then repeat the process on each of these factors. We
show by example that this factorization process can go to infinite depth.

2.5. Shift-stability and weak shift-stability

We consider several classes of sets X having different transformation properties under
the shift action.

Definition 2.14 (Shift-invariance, shift-stability, weak shift-stability).
(1) A set X C AN is shift-invariant if SX = X.
(2) A set X is shift-stable if SX C X.
(3) A set X is weakly shift-invariant if there are k > j > 0 such that S*X = S7X.
(4) A set X is weakly shift-stable if there are k > j > 0 such that S¥X C S7X.
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These definitions do not require the set X to be closed in the symbol topology.

In Section 8 we show consequences of these properties. We show that for shift-invariant
sets, all interleaving factorizations are self-interleaving factorizations; that is, if X is shift-
invariant, then N (X) = Neit(X). We show that closed shift-stable sets have a forbidden
blocks characterization paralleling the two-sided shift case. Example 8.5 constructs a
closed set X giving an infinite, strictly descending chain of sets under iteration of the
shift map.

An important property introduced here is weak shift-stability. The usefulness of this
property is that the class W(A) of all weakly shift-stable sets on a finite alphabet A is
closed under all decimation, interleaving and shift operations. This is not the case for
properties (1)-(3) above.

Theorem 2.15. Let A be finite alphabet and let X C AN be a general set.

(1) If X is weakly shift-stable, then all decimations 1;,(X) for j > 0, n > 1 are
weakly shift-stable.

(2) If Xo,X1, -+ ,Xn-1 are weakly shift-stable, then their n-fold interleaving Y :=
(@n)?;olXi is weakly shift-stable.

(3) If X is weakly shift-stable, then its n-fold interleaving closure X™ is weakly shift-
stable for each n > 1.

A parallel result holds for the class W(A) of all closed weakly shift-stable sets on the
finite alphabet A. This latter class of sets includes the path sets studied in [2], as shown
in [5].

2.6. Entropy of interleavings

In Section 9 we study two notions of entropy for general sets X, topological entropy
and prefix entropy.

Definition 2.16 (Topological entropy). The topological entropy Hyop(X) is given by

1
Hiop(X) := limsup % log Ni(X)

k—o0

where N (X) counts the number of distinct blocks of length & to be found across all
words x € X.

The topological entropy is defined here as a limsup, however the limit always exists,
as a consequence of a submultiplicativity property of block counting functions Ny (X),
which is Ny, 41, (X) < N, (X) N, (X), see [6, Property 8]. Here log denotes the natural
logarithm; in information theory log, is used instead.

We next consider prefix entropy.
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Definition 2.17 (Prefiz entropy and stable prefiz entropy).
(1) The prefiz entropy (or path topological entropy) H,(X) of a general set X is defined
by

H,(X) = h;r;s;l}p v log N (X), (2.6)
where N ,g (X) counts the number of distinct prefix blocks bgby - - - br—1 of length k found
across all words x € X.

(2) The limit in (2.6) does not always exist, and we say that X has stable prefix
entropy if the limit does exist:

H,(X) = lirgo—logNk (X), (2.7)

The prefix entropy was introduced in [2] under the name path topological entropy for
a class of sets called path sets. In that paper symbol sequences were labels attached to
paths of edges in a directed labeled graph. Prefix blocks were termed initial blocks (for
path sets) because they represented the initial steps along a path in a directed labeled
graph defining the path set. Since N} (X) < Nj(X) we always have H,(X) < Hyop(X),
and strict inequality may hold.

In Section 9.2 we show the shift map preserves both entropies. Decimation operations
need not preserve entropy, and Section 9.3 gives inequalities such entropies must satisfy.
In Section 9.4 we establish an inequality for prefix entropy of interleavings of general
sets.

Theorem 2.18 (Prefiz entropy bound under interleaving). Let Xo, X1, -+ , X,—1 be arbi-
trary subsets of AN. The prefiz entropy of the set X = Xo®X,®---®X,,_1 is bounded
above by the arithmetic mean of the prefix entropies of Xo, ..., X,_1. That is:

St s

=0

) <

3|'—‘

Example 9.6 shows that strict inequality in (2.8) may occur.

In Section 9.5 we show that the assumption of stable prefix entropy for each of the
sets Xo, X1, ..., X;,—1 implies equality in this formula, and that the n-fold interleaving
X = Xo® - ®X,,_1 itself has stable prefix entropy.

Theorem 2.19 (Stable prefix entropy interleaving formula). If each of the sets Xy, X1, ...,

X, _1 has stable prefiz entropy, then the n-fold interleaving X = Xog®X1® - - ®X,,_1
also has stable prefiz entropy. In this case

Hy(X) = % Z Hy(X;). (2.9)
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In contrast to this result for interleaving, decimations of a set X having stable prefix
entropy need not have stable prefix entropy; see Remark 9.7.

We also deduce in Section 9.5 that all weakly shift-stable sets X have good entropy
properties.

Theorem 2.20 (Weak shift-stability implies stable prefiz entropy). If X is weakly shift-
stable, then X has stable prefix entropy, and in addition Hy(X) = Hyop(X). Consequently
the n-fold interleaving X = Xo®X1®--- ®X,,_1 of weakly-shift stable sets X; has

n—1
Hiop(X) = % > Hiop(Xi). (2.10)

=0

Finally, we observe that since all decimations of weakly shift-stable sets are weakly
shift-stable, they will have stable prefix entropy.

2.7. Composition of interleavings and operad structure

In Section 7 we consider factorizations of a set X under iterated composition of in-
terleavings. We give examples of sets X having iterated factorizations going to infinite
depth. This behavior differs from interleaving restricted to the class of all path sets on
the finite alphabet A, as we show in [5] that the iterated factorization of any path set
terminates at some finite depth.

Abstractly, the family of operations obtained under iterated composition using inter-
leaving operations of all arities determines a non-symmetric operad (also called a non-X
operad) in the sense of May [38]; see also Markl et al. [35, Part I, Sect. 1.3] and Markl
[36, Sect. 1]. Non-symmetric operads arise in many combinatorial constructions, see work
of Giraudo [24], [25]. Iterated interleaving operations satisfy nontrivial universal iden-
tities under composition, examples being the shuffle identities given in Theorem 2.9.
These identities show that certain nested compositions of interleaving operations give
equivalent operations. However most nestings of compositions yield distinct operations.
In particular, interleaving operations do not satisfy the associative law when acting on
collections of subsets X of AN. For instance, the 3-ary operations Xo®X;®Xs and
Xo®(X1®X>3) and (Xo®X1)®Xo are all distinct.

Operads in general are characterized as (universal) algebraic objects satisfying a given
set of universal identities. We shall consider the interleaving non-symmetric operad to
be the non-symmetric operad whose universal identities are all the identities satisfied on
the collection of all sets X C AN with alphabet size |A| = 2. These universal identities
include the shuffle identities in Theorem 2.9. This set of identities may be a generating
set for all universal identities for this operad; we leave it as an open question to determine
a generating set.

In Appendix A we provide details checking the operad structure associated to inter-
leaving.
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2.8. Contents of paper

The contents of the remainder of the paper are as follows:

Section 3 relates decimation operations and shows these operations are closed under
composition and under the shift operator.

Section 4 studies interleaving operations and the interleaving closure operation X —
X[ for general sets X C AN, proving Theorem 2.8 and the shuffle identities.

Section 5 establishes divisibility properties of n-fold factorizations of a closed set X.

Section 6 classifies infinitely factorizable closed sets X. These sets have more restricted
factorizations than non-closed sets.

Section 7 studies iterated interleaving factorizations of closed sets X. It shows by
example that such iterated factorizations can continue to infinite depth.

Section 8 studies shift-stability and weak shift-stability of sets X C AN. It gives
a forbidden-blocks characterization of shift-stable closed sets. It shows that the class
of weakly shift-stable sets is closed under all decimation and interleaving opera-
tions.

Section 9 defines and discusses topological entropy and prefix (topological) entropy,
proving Theorems 2.18 through 2.20.

Section 10 discusses further directions for research.

Appendix A studies an operad structure generated by interleaving operations.

3. Decimations of arbitrary subsets of AN

This section studies decimations and interleaving for subsets X C AN. All results in
this section apply to arbitrary subsets X of AN.

3.1. Compositions of decimations

The set of all decimation operators is closed under composition of operators. This
composition action is a representation of the discrete ax + b semigroup given by the

nonnegative integer matrices [g 11’] with ¢ > 1 and b > 0.

Proposition 3.1 (Composition of decimations). Let X C AN be an arbitrary set. For all
4,k >0 and m,n > 1 we have

'(/}j,m o wk;ﬂ(X) = ’(/)J,m(wkm(x)) = wjn-‘rk:,mn(X)- (31)

Proof. The result is verified separately for each element x = zgrizs - € X. We set
Y = Yk (X) = TpTpqnThi2nThisn - - Where y = yoyiyz -+ has y; = Tpqjn. Now

Vim © Ve = Vjm(Y) = Yi¥jrm¥YjromYitsm -

giving
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YiYj+m¥Yj+2m¥Yj+3m = = T4+ jnTk+jin+mnLk+jn+2mn = ql)jnJrk,mn(x)a

as asserted. O
3.2. Decimations and the shift

The decimation operations also transform nicely under the one-sided shift
S’(aoalaz...) = ajaszas - - -.

Proposition 3.2 (Shift of decimations). Let X C AN be an arbitrary set.
(1) For all 5 > 0 and m > 1, the one-sided shift S acts as

Vjm(SX) = Yjt1,m(X). (3.2)
(2) In addition
S(’ij,m(X)) = '(/)j-l-m,m(X) = wjﬂn(SmX)' (33)

Proof. (1) For a single element x € X, (3.2) is equivalent to the assertion

%‘,m(SX) = ¢j,m(5($0$1$2 ) = ij,m(xliﬂzxs. )

= T 1Tm (G) Tamt (1) 0 = Yir1m (X)-
(2) For x € X we have
S(Wjm(x)) = S(TjTjtmTiram ) = TjgmTitam = Vjpmm(X) = ¥jm(5"%),
where the last equality used (1) iterated m times. O
4. Interleaving for arbitrary subsets of AN
4.1. Interleaving and decimation

Interleaving operations can be characterized in terms of the principal decimations of
their output. The criterion (2) below could be used as an alternate definition of n-fold
interleaving of sets.

Proposition 4.1 (Decimation characterization of interleavings).
(1) Bvery x € AN has an n-fold interleaving factorization x = (®,)1=3x; for all

n > 1. This factorization is unique, with x; = ¥; »(x) (0 <i<n—1), so that

X = wO,n(X)®w1,n(X)® T ®wn—1,n(x) = (®n)?:_01 i,n(x)' (4'1)
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(2) If X C AN has an n-fold interleaving factorization X = (®n);’;01XZ-, then
X={xeAV ¢ (x)e X, forall 0<i<n-—1}. (4.2)
This factorization is unique with X; = ; »(X) (0 <i <n —1), so that

X = Y0n(X)@P1n(X)® - @Yn_1,0(X) = (®n)i5 Yin(X)- (4.3)

Proof. The identity (4.1) is immediate from the definition of interleaving product, check-
ing it symbol by symbol. This n-fold interleaving factorization of x is unique because if
X = (®,)725 xi, then the (i + kn)th symbol of x is by definition the kth symbol of x;,
so that each symbol of x; is determined by a symbol of x.

(2) Let X = Xo®Xg -+ ®X,,_1. By definition

X ={x¢ AN x = (@n)?z_olxi, with x; € X; forall 0 <i<n—1}
:{XEAN D i (x) =%, withx; € X; forall0<i<n-—1}
={xc AV : ¢, (x) e X; forall 0<i<n-—1},

which is (4.2); we used (1) to deduce the second equality.

To show (4.3), it suffices to show v; ,(X) = X;. We have 1, ,(X) C X; by (4.2). To
show the map is onto, for any x; we can pick arbitrary x; € X, for j # ¢ and then (1)
implies that x := (@n)?;olxj € Z has v; p(x) = x;, as required. O

We deduce Theorem 2.8 from the proposition.

Proof of Theorem 2.8. (1) We are to show X has an interleaving factorization if and
only if X = X[, Suppose X = X" By definition XM = 1 ,(X)® - ®,_1.,(X)
has an interleaving factorization, so X does too. Conversely if X = Xqg®X;® - - ®X,,_1
is an interleaving factorization then by Proposition 4.1 (2) X; = v, ,(X) whence X =
Xo®X1® - ®X,—1 = X.

(2) This is Proposition 4.1 (2). O

4.2. n-fold interleaving closure operations

We show that the family of closure operations X — X (] on sets X € AN commutes
with topological closure, and the equality X = X[ corresponds to X having an n-fold
interleaving factorization.

The following result shows this operation is a closure operation in the set-theoretic
sense.

Theorem 4.2 (Properties of n-fold interleaving closure). The n-fold interleaving closure
operation X" of sets X C AN has the following properties:
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(1) (Projection property) The n-fold interleaving closure X[ s characterized by the
property that it is the maximal set Z such that its principal decimations at level n
satisfy

Vin(Z) = Yin(X) for 0<i<n-—-1 (4.4)
(2) (Extension property) Any set X C AN satisfies
X c xt, (4.5)

(3) (Idempotent property) The operation X — X" is idempotent; i.e., (X)) = X
for all X.
(4) (Isotone property) If X CY then XM C Y,

Remark 4.3 (Set theory closure property). Properties (2), (3), and (4) comprise the
axioms of a Moore closure property (see Schechter [46, Sec. 4.1-4.12]). These axioms
are known to be equivalent to the property of being closed under arbitrary intersec-
tions. The n-fold interleaving closure operation does not satisfy all of Kuratowski’s
axioms defining the closed sets of a topology; it does not satisfy the set union prop-
erty (X UY)[M = X[l Uy Tt does satisfy the inclusion

xuytl c (xuy)™. (4.6)

As an example showing the inclusion can be strict, take X = X[l = {0°}, v = VI =
{1°¢}. Then XPIUYP C (X UY) 2 _ {0°°,1°°,(01)°°, (10)>°}. Relations between the
interleaving closure operations and topological closure in AN are given in Section 4.7.

Proof. (1) If a collection of sets each have property (4.4) then so does their union, and
X has property (4.4), so there exists a maximal set Z with property (4.4). By definition

X = 4o (X) @Y1 (X)® - - @1, (X)
Then by Proposition 4.1(2),
X =z e AN : ¢, (2) € Yy (X) forall 0 <i <n—1} (4.7)

The statement ; ,(Z) = 1;,(X) means that ¢; ,(z) € ; ,(X) for all z € Z. From
(4.7), one sees that Z = X[ is precisely the maximal set such that (4.4) holds for all
0<i1<n—1.

(2) It follows from (1). Alternatively, by Proposition 4.1(1) given x € X we have

X = ¢0,n(X)®¢1,n(X)® e ®wn71,n(x) S ’(/)O,n(X>®'(/}1,n(X)® e ®'L/}nfl7n(X)7

which certifies x € X[, proving (4.5).
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(3) Idempotence follows from (1) and (2): By (1) X" is the maximal set having
Vi, n(X[") C ;n(X) holds for 0 < i < n — 1. Now by (2) (X")I" contains X", But
i (X )") C '(/Ji,n((X[n]) C Y p(X) for 0 < i < mn—1, so it is also maximal, so
(X))l = x(nl,

(4) Suppose that X C Y. Using the projection property (2) for X and Y separately
shows

¢i,n(Y[n] U X[n]) — wi,n(y[n]) U T/Ji,n(X[n]) = Gin(Y) Uhin(X)
=i (V) =i (YI) 0<i<n—1.

The projection property now gives Yy u XM C vy whence XM Cc Yl o
4.3. Shuffle identities for interleaving operators

The family of interleaving operations satisfy universal algebraic identities under par-
ticular compositions of operations, acting on general subsets of AN. We now prove
Proposition 2.9, which asserts

(®n)iZo (®m)f' Xitjn) = (@mn)iy " X (48)
One reads the interleaving of interleavings on the left side of (4.8) as

(Xo®X,® - ®X (1)) B(X1® X 1@ B X (i 1)ng1)® - -
te ®(Xn—l®X2n—1® e ®an—l)7

with parentheses indicating composition of m-fold interleavings given as input to an
n-fold interleaving. The right side of (4.8) is an mn-fold interleaving,

Xo®X1®Xo® - ®X, 1®X,®X;1® - ® - ®X (i 1)nsn—28X (m—1)ntn-1, (4.9)
with factors taken in linear order.

Proof of Proposition 2.9. Using Proposition 4.1(2) we obtain

(@n)iZ0 ((®m)]0' Xisjn)
=[x € AN (%) € (®) 5 Xy Torall 0 i < 1 — 1}
={x e AN : i m (Win(x)) € Xipjn forall 0<j<n—1,0<i<n—1}
={xeAN S Yitinmn(X) € Xipjn forall 0<j<n—-1,0<i<n-1}
= (®mn)ily ' X

Proposition 4.1(2) gives the first, second and fourth equality and Proposition 3.1 the
third equality. O
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Shuffle identities are useful in studying self-interleavings of sets X.
Definition 4.4. Give X C AN let X(®") denote the n-fold self-interleaving defined by
X" = (®,)" 0 X = X®X®---®X (n factors in product).

The special case of self-interleaving under composition satisfies identities similar to
that of exponentiation, a consequence of the shuffle identities.

Proposition 4.5 (Composition of self-interleavings). For any natural numbers m,n > 1,
and any subset X of AN, the following set-theoretic identity holds for n-fold, m-fold and
mn-fold self-interleaving:

(X(®n))(®m) _ (X(®m))(®n) _ X(®m”), (4'10)

Proof. In Theorem 2.9 choose all X}, = X for 0 < k < mn—1 and obtain (X (®m))(®n) —
X (@mn) Then interchange m and n. O

4.4. Composition identities for interleaving closure operations
We prove Proposition 2.10 determining the composition of self-interleaving closure
operations: (X[ = (x[])lml = xllem(m.n)],

We first establish a preliminary result giving formulas and inclusions for compositions
of interleaving closure operations.

Proposition 4.6 (Composition formulas). (1) For all m,n > 1, and all X C AN,
(XD = (@)1 in (XT). (4.11)
(2) For all m,n > 1, and all X C AV,
X = (®,)120 (Wi, ()IM). (4.12)
(3) For allm,n > 1
xtml ¢ xlmnl, (4.13)
(4) If ged(m,n) = 1 then

(X[m])[n] - (X[n])[m] — x[mn]
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Proof. (1) This assertion is the definition of the n-fold interleaving closure of X ™.
(2) We set Xi 1= ¢p mn(X) for 0 < k < mn—1 in the shuffle identity (2.4), obtaining

XU = (@)1 (®m) 7 Wi jmmn (X))

The right side of this equation contains terms Z; := (@m);”zfolwiﬂn,mn(X), and we must
show Z; = 1; »(X)[™. We have

wi,n(x)[m] = (1/)O,m © wz,n(X)) ® (q/Jl,m © d)z,n(X)) @ ® (wm—l,m © %,n(X))
- 1l)z,m,n()() ® 1/]'L+n,mn(X) ®- - ® wi+(m—1)n,mn(X) - Zz
as required.
(3) We have XI™ C (XI™)["] by the extension property of n-fold interleaving. We
claim that
(xmhlnl ¢ xlmnl, (4.14)
To prove the claim, comparing the now proved (4.11) and (4.12), it suffices to show
V(XY Cahy (XM for 0<i<n-—1. (4.15)
For fixed 14, the right side of this inclusion is an m-fold interleaving
wi,n(X)[m] = (wO,m © djz,n(X)) ® (’lpl,m © wz,n(X)) ®---® (’l/]mfl,m © %,n(X))
The composition rule for decimations (Proposition 3.1) shows that
wz,n(X)[m] = wi,mn(X)®wi+n,mn (X)® o ®wi+(m—1)n,mn(X)' (416)

To evaluate the left side of the inclusion (4.15), suppose X = v; ,(z) € ;o (X™)
with z € X[™. Now by Proposition 4.1 (1), x has an m-fold interleaving factorization

X= (®m);n:51Wj = WoAWI® - ®Wp,_1,
where
Wi = Vjm(%X) = Vjm(Yin(2)) = Vit jn,mn(2).

Therefore

X = wi,n(z) - (®m)§n:701¢i+jn,mn (Z) = ¢i,mn(z)®wi+n,mn (Z)® e ®¢i+(m—1)n,mn(z)‘
(4.17)
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We are to show x € 1; ,,(X)I"™. It suffices to show
'(/}iJrjn’mn(z) S wi+jn,mn(X) for 0< i<m-—1, (418)

since (4.17) then asserts x € (@m);_n:—olwﬂn’mn(X) whence (4.16) shows x € 9; , (X)[™].
To show (4.18), any z € X" has, for 0 < k <m — 1,

wk,M(Z) € ¢k,m(X[m]) = 1//k,m(X)7

where the equality of sets holds by definition of m-fold interleaving. Thus there exists
some Z; € X with ¥ m(2) = Yg,m(2r). Now for 0 < i <n—-1,0 < j < m— 1, there
exist unique (k, ¢) satisfying

i+jn=k+I{m, (4.19)

with0 <k <m—1,0</¢<n—1.Here k = k(i,j) is determined by k = i+ jn (mod m).
We have

1piJrjn,Tan(Z) = wk:Jrém,mn(Z) = w@,n<wk,m(z))
= Yo (Vk,m(Zk)) = Vkrom,mn(Zk)
= 1Z)H»jn,mn(zk) S wH»jn,mn(X)a

showing (4.18).

(4) Tt suffices to show (X" = X"l if ged(m,n) = 1; interchanging m and n
then gives the other case. The proof of (3) showed that (X)) C X[mn] holds (with
no ged restriction), so it suffices to show the reverse inclusion X[ C (X" By the
already proved (4.11) and (4.12) this assertion is

XU = (@)1 (e (X)) € (@070 (e (X)) = (X)W (4.20)
It therefore suffices to prove the individual set inclusions
Din (X)) C i (X)) for 0<i<n-—1, (4.21)
hold when ged(m,n) = 1.

Now suppose we are given an arbitrary x € ; ,(X )[m]. We wish to show x €
Vi (XM, To begin, x has an m-fold interleaving factorization

X = (@m) 0" 5m (%5),
in which each x; = 1; (2z;) € ¥; »(X) with z; € X. Thus we have

Vjm(X5) = Vjom (Vin(25)) = Vigjnmn(2;). (4.22)
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As in (3) there are (k, () with

Vit jnmn(25) = Vrttmmn(2j) = Yon(Vrm(25))-

Here, for fixed i, the value k = k(4,j) is given by k = i + jn (modm). The values
k(i,7) are all distinct as j ranges from 0 to m — 1 with 4 fixed, because ged(m,n) = 1. It
follows that the inverse map j = j(¢, k) is well defined. By definition of m-fold interleaving
closure, there will exist a value z € X" having

Viem(2) = Ypm(z;) for 0<k<m-—1, (4.23)

with z; € X and j = j(i,k) runs over all 0 < j < m — 1 as k varies.
We claim that v; ,(z) = x. We have

Yin(z) = <®m);n:f)l¢i+jn,mn(z) by (4.17)
= (®m)T:BI"/}k(i,j)+£(z‘,j)m,mn(Z) by (4.19)
= (®m) 720 Yeti.g)n (Vi g)m (2))
= (®m) 120" Veti gy (Cr(igym (25)), by (4.23).

Now we simplify and obtain
Vin(2) 1) 720 Vk(s,5) 4601, ym,mn (Z5))

= (@7
= (®m) 10 Vit jnmn(25) = (®m) T Vjm(x;) by (4.22)
= X,

sox € (XM, O
We now prove the Theorem 2.10 formulas for composition of interleaving closures.

Proof of Theorem 2.10. It suffices to prove (X[m])["] = Xlem(mn)] pecause its right
side is symmetric in m and n; we may then exchange m and n to establish (X [”])[m] =
Xllem(mn)] We have already proven (X[™)M = XImn] for the case ged(m,n) = 1 in
Proposition 4.6.

For general n, m we let d = gcd(m,n), the greatest common divisor. One can always
find e, f with d = ef such that elm and fln and ged(*?, %) = 1. To see this, let d =
Hp (@ denote the prime factorization of d; then the choice e = Hpe(p,d)llmpe(f”d) and
f= Hpe(p,d)ﬂlmpe(p’d) will work. Note that if p¢®®+1m, then necessarily p¢®®||n, so
that f|n. By construction, e|m, ef = d, and ged(7, ) = 1.

We then have

xlemmm] _ xlmn/ef] _ (xlm/el\in/f] ¢ (xlm/enl  (xlml)in]
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Reading from left to right the second equality comes from Proposition 4.6 (4), the first
inclusion follows from Proposition 4.6(3), and the final inclusion follows from the isotone
property (4) in Theorem 4.2.

It remains to show that

(xtmhln) ¢ xllem(mon)]
Now let d = ged(m,n), so that £ = lem(m,n) = “3*. By Proposition 4.6(1) we have
(XIhM = (®,,) 72 i (XIM]) (without any ged restriction).

Now consider x = Xg®X1® -+ - ®X,,_1 € (X[m])[”], and write x = bgb1bs - - -. Here for
0<i<n—1,

X 1= Yin(X) = bbitnbivonbitan - .

We are to show that x € XIem(mm)] To begin, we have
Xi = Vi (2i,0®2i1®  + ®Zj 1) € Yy (X M),
where each z; ; € 9., (X) for 0 < j <m — 1, so that
z,; = Yjm(W;;) with w;; € X.

Because ged(m,n) = d, the application of ¢; ,(+) to z; = (@m);-’solzi,j e X[ only

hits those words z; ; having subscripts j falling in % different residue classes (mod m),

and it visits each such class exactly d times, as j varies over 0 < j < m — 1. These 7
classes (modm) comprise distinct residue classes (mod %), again because ged(m,n) =
d. These classes are exactly i + jn(mod?%) for 0 < j < % — 1. We can therefore
rewrite X; = y;0®y;,1® - ®y; m_1 with y; ; = bitjnbitjntmn/abitint2mnyda - for
0 <j <% —1 We have lem(m,n) = “* different elements y; ; € ¢, = (X). The key

point is that for k = ¢ + jn we have

. . m
Yij = Yitjn(mod m/d),m/d(Witjn) € Yp,m(X) for 0<i<n—-1,0<;5< q 1.

Here k =i + jn varies over the interval 0 < k < *7* — 1. Consequently,

n— n— m/d—1 mn/d—1
x = (@)1 % = (@)1 (©m/a)7Ls ¥ ) = (@) b (W),

where the last equality uses the shuffle identity (2.4). We also find that k = i + jn
runs through the residue classes (modmn/d) in the correct order. We conclude that
x € X[mn/d — xllem(m.n)] "egtablishing the desired inclusion. O
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4.5. Interleaving commutes with set intersection

Interleaving also behaves well with respect to intersection.

Proposition 4.7 (Interleaving commutes with intersection). For m,n > 2 and subsets
Xo, X1, s Xonn—1 of AN, the following set-theoretic identity holds:

m—1 m—1
() (@072 Xjnsi) = (@0)720 ([) Xjnsi)- (4.24)
7=0 j=0

Proof. By Proposition 4.1 (2), we have x € Z; := (®,)/5 X;n+: if and only if ¥;(x) €
Xjnyi for 0 <7 <n — 1. Consequently:

m—1
x € () (®n)iZ) Xjnri) € ¥i(x) € Xjnyi for 0<i<n-1,0<j<m—1
7=0

m—1
@zﬂi(x)e ﬂ Xjn-i—i for 0<i<n-1
=0

m—1
©x € (@)1 ([ Xjnti),
j=0
verifying (4.24). O
Corollary 4.8. Let X, Y C AN. Then their n-fold interleaving closures satisfy
X nyll =z (4.25)
where Z := (®,)1" ' (¥i,n(X) N1y (V) = 2.

Proof. In Proposition 4.7 take m = 2 and n > 2 and choose X; = 9; ,(X) and X,,y; =
Yin(Y) for 0 < i < n — 1. The left side of (4.24) is X"l N Y™ and the right side is
Z. Here Z = ZI"l holds because Z is defined as an n-fold interleaving of ¢; ,(Z) =
Yin(X) N1 »(Y) by construction. (In general 1; (X NY) C ¢ n(X) N1 o (Y), so that
(X nY)ll € ZI" | and strict inequality can hold.) O

Remark 4.9 (Intersection of general interleaving closures). For intersection of two inter-
leaving closures of different arities of a single set X we have, for all m,n > 1,

X[gcd(m,n)] C X[m] N X["] (426)

Equality always holds trivially when m = n, but need not hold when m # n. As an
example, for m = 2,n = 3 take X = {x1, X2, x3} = {(010100)>°, (111111)°°,(110111)>°}.
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Then (01)* is contained in both X2 via the 2-fold interleaving 1o 2(x1)®; 2(X2), and
X Bl via the 3-fold interleaving 0,3 (x1) B 3(x1) B2 3(x3). We conclude X C X2 n
X Bl Note this example is closed and weakly shift-stable, having S°X = X.

4.6. Shift action on interleavings
The one-sided shift map acts as
S(a0a1a2a3 e ) = a10a20a3a4 * - - .

We show the one-sided shift S action preserves the property of having an n-fold inter-
leaving factorization.

Proposition 4.10 (Interleaving and the shift map). Suppose that X has an n-fold inter-
leaving factorization X = Xg®X1® - ®X,,_o®X,,_1.
(1) The one-sided shift map S acts by

S(X) = X1®Xo® - ®X,,_1®S(X). (4.27)
Consequently
S™(X) = 85(Xo)®S(X1)® - ®S(Xp—2)®S (Xp—1). (4.28)
(2) All iterates S*(X) possess n-fold interleaving factorizations
SMX) = Y (X) @Ykt 1,0(X)® - @Pppn—1,n(X)-

Proof. (1), (2). It suffices to prove (4.27). The other assertion in (1) and assertion (2)
then follow easily by induction on k& > 1.
To begin, for all infinite words x € AN we have

wj,n(SX) = wj-i-l,n(x) for all ] > 0. (429)

By Theorem 2.8(2) we have X; = 9; ,(X) for 0 <i <n —1. We set X,, = 9, ,(X). By
Proposition 3.2 (2),

Y (X) = o (S"X) = Sthg n(X) = S(Xo). (4.30)
We assert S(X) = X1®Xo® - -- ®X,,_1®S5(Xp). We have the inclusion
S(X) € (®n)iZp Yin(S(X)) = (@n)iZg Yir1,n(X) = (®n)f1 X
To show the opposite inclusion

X1®Xo® - ®X, 1®5(Xo) C SX,
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let y =y1®y2® - ®y, € X1®Xo®---®X,; theny;, € X; for 1 <i <n. Fory, € X,
by definition there exists x € X such that 1o ,(x) = z¢ 0y, € Xo, for some zg, where
ooy, denotes the concatenation of the letter xy and the infinite word y,,. By the n-fold
factorization hypothesis on X one may choose this x so that also v; ,(x) = y; holds for
1 < i< n—1. Now one checks using (4.29) that

Yin(S(x)) =yip1 for 0<i<n-1. O

Proposition 4.11 (Shift map and n-fold interleaving closure). The shift map commutes
with n-fold interleaving closure. For each n > 1, and a general set X C AN, there holds

S(xny = (sx)rl, (4.31)

Proof. By definition the n-fold interleaving closure X" has an n-fold interleaving fac-
torization. We have

S(X[n]) =S (wO,n(X)C@wl,n(X)@ te ®¢n72,n(X)®1/’nfl,n(X>)
= V1 (X)®Yo n (X)® - @Y1, (X) @S0, (X)

Here the second equality comes from Proposition 4.10 (1), the third comes from (4.30),
and the fourth comes from the definition of interleaving closure and the fact that by
Proposition 3.2 (1), ¥; n(X) = ¢i—1,(SX), i =1,...,n. O

4.7. Topological closure

Decimation and interleaving operations and the shift operation all commute with
topological closure in AN.

Theorem 4.12. Given a subset X of AN, let X denote its topological closure in the shift
topology (product topology) in AN.
(1) For eachm >1 and j > 1,

wj,n(y> = wj,n (X)

In particular if X is a closed set in AN then each decimation X; ., = 1;.(X) is a closed
set.
(2) For Xo,X1,...,X,_1 C AN, there holds

(®n)20 X5 = (®n) 120 X;.

In particular the n-fold interleaving of closed sets is a closed set.
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(8) The n-fold interleaving closure operation commutes with the closure operation on
the product topology on AN,

(7)[71] — Xl
(4) The shift operator commutes with topological closure,
SX =SX.

Proof. (1) Given y € 9;,(X), there is a symbol sequence x = zox122--+ € X such
that 1, ,,(x) = y. Then there is a sequence (of symbol sequences) (x)r>1, with each
Xk = T0,kT1,kT2,k - € X, converging to x (Convergence is defined by eventual stability
of each symbol z;; as k — oo, with z, 5 = x, for all sufficiently large k). It is easy
to see that if x; — x, then necessarily ¥ ,(xx) — ¥jn(x) =y, with each v ,(xx)

in 1;,(X), so that y € 1;,(X). Thus, ¥;,(X) C 1;,(X). On the other hand, let
Yy € ¢ (X). Then there is a sequence (yx)r>1 in 9 ,(X) converging to y. So there
is a sequence (xi)r>1 in X, with each 1;,(x;) = yi. Since closed sets are compact
in AN, there exists a convergent subsequence (Xk, )i>1 of the xj, having limit x € X.

Then ¥, (Xk,) = ¥jn(x) as 7 — oo, but we also have ¥, ,(xx,) = yx, — y. Hence

Y =Ujn(x) € Y;n(X). Thus ¢}, (X) C 1;,(X), so equality holds.

(2) Let x € (®n)?:_olyj. Then for each 1 < j < n, 9;,(x) € X, and so there
is a sequence (x;)k>1 in X; converging to each v, ,(x). Since there are only n of
these sequences, the convergence is uniform across all of them, and so ((@n);’;&xj, k)k>1
converges to (@n);";olzﬁj,n(x) = x. But each of the (@@?;&xxk is in (@n)?:_OlXj. Hence
x € (®n)?:_01Xj. This gives us (®;)]_, X; C (®n);’:—01Xj. For the opposite inclusion,
let x € (@n)?;olXj. Then there is a sequence (Xj)r>1 in (@n)?;olXj converging to x.
Each x;, therefore has ; ,(xx) € X; for 0 < j < n — 1. By compactness of X, there
must be a subsequence of the k along which g, (%)) converges to some yy € Xo,
a subsequence of this subsequence along which 1 ,,(xx) converges to some y; € Xy,
and so on. We ultimately obtain a subsequence along which ; ,(xx) converges to some
y; € X, for all 0 < j < n — 1. Along this subsequence, x;, = (@n);};oll/}j,n(xk) converges
to (@n)?:_olyj. Since xj, converges to x, we have x = (@n)?:_olyj € (®n)?:—017j_ Hence

(®n)720X; C (®4)7=) X, and equality holds.

(3) This follows from the first two parts and the definition of the n-fold interleaving
closure operation.

(4) Given y € SX, we have y = Sx for some x € X, and there is a sequence (X)>1
in X converging to x. Then the sequence y; := Sx; € SX converges toy, soy € SX,
and we have SX C SX. Take now y € SX, and y, € SX converging to y. By definition
of SX there exists x;, € X with Sxj = yy. Since the alphabet A is finite, infinitely many
of the x; have a fixed letter a¢ as initial symbol. These define a subsequence (X, )i>1

that converges to a limit word x € X, and necessarily Sx =y. Thus SX C SX. O
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5. Interleaving factorizations and divisibility

We classify the possible values of n in n-fold interleaving factorizations for different n
of arbitrary subsets X C AN,

5.1. Divisibility for interleaving factorizations

Theorem 5.1 (Divisibility structure for interleaving factorizations). For a set X let
N(X)={n: X =XM},

(1) If n € N(X) and d divides n, then d € N (X).

(2) If m,n € N(X) then their least common multiple lem(m,n) € N (X).

(3) The interleaving closure set N'(X) of X has the structure of a distributive lattice
with respect to the divisibility partial order, being closed under the join operation (least
common multiple lem ), and the meet operation (greatest common divisor (ged)). It is
downward closed under divisibility, and contains the minimal element 1.

Proof of Theorem 5.1. (1) If n € N(X) then X = X[". Suppose d divides n, so n = de.
Now X C X4 by the extension property of Theorem 4.2. However X4 C Xldel = X[l
by Proposition 4.6 (3). Since X"l = X we conclude Xl = X so d € N (X).

(2) Suppose m,n € N(X), so that X = X[™ and X = X[, Then

X = x = (X[m])[n] — xllem(m,n)]

where, reading from the left, the second equality substituted X for X and the last
equality is Theorem 2.10. Thus lem(m,n) € N (X).

(3) The set N'(X) is downward closed under divisibility by (1). If m,n € N'(X) then
ged(m,n) € N(X) since it divides m. It is closed under the join operation lem by (2).
Thus M(X) is a sublattice of the distributive lattice of integers N under divisibility. It
always has minimal element 1. O

A corollary of part (2) says that interleaving factors of infinitely factorizable sets are
infinitely factorizable.

Corollary 5.2. Let X be infinitely factorizable. Then every interleaving factor of X is
also infinitely factorizable.

Proof. Suppose X is infinitely factorizable, and X = (®n)?;01Xi. We show that X; is
infinitely factorizable for each 0 <4 < n — 1. Since X has an m-fold interleaving factor-
ization for infinitely many m, Theorem 2.12 (2) implies that X has an lem(m,n)-fold
interleaving factorization for infinitely many m. Thus, X has an ne-fold interleav-

ing factorization for infinitely many e. Moreover, for each such e, if X = (®,)1,",
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then the shuffle identities of Theorem 2.9, combined with uniqueness of n-fold in-
terleaving factorizations, imply that each X; has the e-fold interleaving factorization
Xi = (®)5¢Yitjn. O

5.2. Structure of interleaving factorizations

Theorem 5.3 (Converse divisibility structure for interleaving factorizations). Let N C
N be a nonempty set with the following properties:

(1) If n € N and d divides n, then d € N.
(2) If m,n € N, then lcm(m,n) € N.

If the alphabet A has at least two letters, then N = N'(X) for some X C AN.

Proof. Given a set N satisfying (1), (2) we construct a set X on A = {0,1} with
J\/()~() = N. Enumerate the elements of N as n{,na,.... Let £; = nq, and for ¢ > 1, let
¢; = lem(ny, ..., n;). Notice for i < j, that ¢; = lem(¢;,¢;), hence for any set X C AN
we have X1 C (X[ei])[ej] = Xlem(i.65)] — X1 ysing Theorem 2.10. Thus, (XVJ'})J_ is
an increasing sequence of sets.

Choose X = {0°,1°}. Notice that for any n € N, X[ is precisely the set of all
sequences in A that are periodic with period dividing n. Now set X = limj o0 X (6] =
U;il X651 so that X is the set of sequences in A that are periodic and have a period
p € N (since N is precisely the set {n : n|¢; for some j > 1}).

Claim. N = N(X).

(1) We show that if n € N, then XMl = X, We already know X C X"l Let x € X[,
Then x = (®n)?;01xi for x1,...,x, € X. Since there are finitely many of these x;, there
is an ¢; large enough that xi,...,x, € X451 Choose ¢; with j large enough that n|€
Then lem(n, ¢; ) = (;,s0 X0l is closed under n-fold interleaving, and thus x € X1 C X.
Hence X" = X, and so n € N(X).

(2) We show that if n ¢ N, then X" # X. Since X C X, we have X"l C X"l by
the extension property in Theorem 4.2. Let x be any sequence in A that is periodic with
period n. Then x € X[, and so x € X", However, for any ¢; we have {; € N by the
structure of N, and since M is closed under divisibility, n ¢ N implies n does not divide
¢;; hence x ¢ X1%1. Since this is the case for all £;, x ¢ X, and son ¢ N(X). O

Remark 5.4. The sets X constructed in the proof of Theorem 5.3 are all shift-invariant:
SX = X. To show this, we note that a word x on alphabet A = {0,1} is in X if and
only if it is fully periodic with a minimal period p belonging to N C N7, since N is
downward closed under divisibility The word Sx is also periodic with the same period,
so Sx € X hence SX C X. Since §Px = x, we have y = SP71x is perlodlc with the
same period, soy € X and Sy = SPx=x € SX. It follows that SX = X.
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5.8. Divisibility for self-interleaving factorizations

Definition 5.5. An n-fold interleaving factorization X = (®n)?;01Xi,n is self-interleaving
(or n-fold self-interleaving), if all factors are identical, i.e. X;,, = X¢, holds for 1 <4 <
n — 1. We sometimes write Z,, := Xy, for the unique factor in this case.

There exist many sets X for which every interleaving factorization is a self-
interleaving. We will show later, in Proposition 8.2, that if X is shift-invariant, then
X = X[ implies, letting Xin = n(X), that Xy, = X, ,, holds for all i > 1. In addi-
tion there exist examples with X having an n-fold self-interleaving, so that Xo, = X;
for 0 < i < n—1, but with Xo,, # X, for all i > n; see Example 5.7. The latter
sets X can have a mixture of self-interleaving factorizations and non-self interleaving
factorizations.

We show that the set of values of n for which a given X has an n-self-interleaving has
divisibility properties parallel to those described in Theorem 2.12.

Theorem 5.6 (Structure of self-interleaving closure sets). Let Nys(X) ={n>1: X =
(@n)?z_olZn for some Z, C AN}. Then Nyt (X) is nonempty and has the following prop-
erties.

(1) If n € Nyei(X) and d divides n, then d € Nyeir(X).

(2) If m,n € Ngae(X) then their least common multiple lem(m,n) € Ngae(X).

Conversely, if a subset N C NT is nonempty and has properties (1) and (2), then
there exists X C AN with N = N(X).

Proof. (1) If d divides n we have n = de and now X = (@n)gfolZn and Z,, = g ge(X)
for 0 < k < de — 1. By the shuffle product identities in Theorem 2.9,

X = (®2) 0 (®e) =6 (Xjari) = (®a)=g (®e)5Z0Zn) -

We deduce X = (®d)§l:_01 Z4 where Zy = (®e);;éZn, so X has a d-fold self-interleaving.

(2) Suppose that X has both an n-fold and an m-fold self-interleaving factoriza-
tion. We wish to show it has an lem(m,n)-fold self-interleaving factorization. Let d =
ged(m, n), and recall that there exist e, f with e|m, f|n having d = ef and ged(™2, %) =1
(shown in the proof of Theorem 2.10). By (1) the set of self-interleaving factorizations
is downward closed under divisibility, so that it has an “*-fold self-interleaving factor-

m n\ _ mn _ mn

m _) — mn _ —
e’ ef d
lem(m, n). We have therefore reduced proving (2) to proving it in the special case where

ization and an Z-fold self-interleaving factorization, and now lem(

ged(m,n) = 1, with lem(m,n) = mn.
In this case we are given that X has an m-fold and an n-fold self-interleaving factor-
ization. We now have ged(m,n) = 1 so by Theorem 2.12 we have an mn-fold interleaving

factorization X = (®mn)?£071Xk,mn' We wish to show it is self-interleaving, i.e. that

Xkl,mn = sz,mn for 0<ky <ky<mn-—1 (51)
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We assert that for each 0 <i<n—1,
Xj1+im,mn = Xj2+im,mn for 0< J1<j2<m-—1. (52)
To see this, note that by the shuffle identities in Theorem 2.9,

(@mn )iy X n = (@ )75 (@)1 Xy immn )

Since m-fold factorizations are unique, the right-hand side is a self-interleaving factor-
ization, so for all 0 < j; < jo < m — 1, (@)n)?;OlleHmmn = (®n)?;01Xj2+im7mn. This
implies, again by uniqueness, that X, +im.mn = Xj,+im,mn forall 0 <i <mn —1.

Similarly, using the shuffle identity with the n-fold interleaving on the outside and
the m-fold interleaving on the inside, we obtain for 0 < i; < is < m — 1 that for each
0<j<m-—-1,

Xi1+jn,mn = Xiy+jn,mn for 0<i; <ig<n-—1. (53)

Now we assert that when ged(m,n) = 1 that (5.2) and (5.3) imply (5.1). For each
0<i<n-—1,(5.2) implies the equality of all X}, ,,,,, for k within blocks B; = {j +im :
0 < j <m— 1}, but (5.2) says nothing about equalities across different blocks B;. On
the other hand, for fixed 0 < j < m — 1, (5.3) implies the equality of all Xy, for k
within blocks C; ={k =i+ jn:0<i<n—-1}. Nowlet 0 <k <mn-—-2. If kand k+1
are not in the same block By, then k + 1 =0 (mod m). Similarly, if £ and k 4+ 1 are not
in the same block Cj, then k+1 = 0 (mod m). Now the condition ged(m,n) = 1 implies
that, since 0 < k < mn—2, k41 cannot be equal to 0 modulo m and n at the same time.
Therefore, k and k + 1 are both in one of the blocks B; or Cj, and Xj mn = Xit1,mn- It
follows that all the X .., are equal as k ranges from 0 to mn — 1, so the factorization
X = (®pmn)" " is a self-interleaving.

For the converse, it remains to show that if a subset N C N¥ is nonempty and has
properties (1) and (2), then there exists X C AN with N = Nye;7(X). For this, we use the
fact that the sequences X constructed in Theorem 5. 3, that achieve N = N (X ) are shift-
invariant, see Remark 5.4. Now Proposition 8.2 (which will be proved in Section 8) asserts
that any shift-invariant X has the property that all of its interleaving factorizations will
be self-interleaving factorizations. Thus, A ()~( ) = Nser f()~( ). We have already shown in
the proof of Theorem 5.3 that N(X) = N. O

Example 5.7. For a general set X, the set of n giving a self-interleaving factorization
can be a strict subset of all interleaving factorizations of X. Let A = {0,1}, and take
X = {00{0, 1}N} (i.e., all infinite words beginning with 00). Set X;,, = 1, ,(X).

We show X has an n-fold interleaving factorization for all n > 1, so N(X) = N,.
In contrast we show Ny p = {1,2} is finite. For n = 1 and n = 2 the factorization is
self-interleaving with Xoo = X;2 = {0{0,1}N}. (Note that for j > 2 one has X
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{0,1}N.) For n > 3 it has the interleaving factorization Xg, = X1, = {0{0,1}N}, while
X ={0,1}N is the full shift for all j > 2, so that it is not self-interleaving.

6. Infinitely factorizable closed subsets of AN

Definition 6.1. A subset X C AN is infinitely factorizable (under interleaving) if it has
an n-fold interleaving factorization

X = X = 0, (X) @Y1, (X)® - - @11, (X)
for infinitely many n > 1.
6.1. Characterization of infinitely factorizable closed sets

We now characterize infinitely factorizable closed sets X by the properties given in
Theorem 2.13. Property (iii) shows there are uncountably many different infinitely fac-
torizable closed sets when the alphabet size |A| > 2.

Proof of Theorem 2.13. We prove (iii) = (i) = (i) = (41).
(#i1) = (i1). Suppose property (7ii) holds, and let n > 1. Then, using Proposi-
tion 4.1(2), we have, writing x = xox1z2 - - -,

X ={xec AV : 2}, € A, for all k >0}

:{XEAN:xj+[€n€./4j+knforallkj207 0<j<n-1}

={xe AV : g n(x) € [] Ajsrn forall 0<j <n—1}
k=0

%)
= <®n);l;ol H Aj+k:n7

k=0

which is an n-fold interleaving factorization.

(#9) = (4). Immediate.

(i) = (vi1). We prove the contrapositive. Suppose property (ii) does not hold for
X, we are to show property (i) does not hold. Let A; denote the letters that occur
in the kth position of some word in X; it is a finite nonempty subset of the (finite)
alphabet A. If for each k£ > 0,¢ > 1 all letter patterns in positions k through & 4 ¢ in
Ap X Ag41 -+ - X A4 may occur in X, then by the assumption X is closed, we would have
X =[5y Ar which has property (iii), contradicting our assumption. Therefore there
must exist some finite k¥ > 0,¢ > 1 and a finite set of consecutive Ay, Ax+1, Ak+2, .. Apte
such that there is a block apag+1 - - - agye with each agy; € A4 for 0 < i < ¢ that does
not occur in positions k£ through k + ¢ in any element of X. We call this situation a
(k, £)-missing-configuration.
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If property (i) were to hold for X, then there would exist some n > k 4 £ 4+ 1 such
that X has an n-fold interleaving factorization

X = wO,n(X>®w1n(X>® te ®wn71,n<X)~

Each word x € X has symbol xy4; in position k + ¢ lying as the first symbol in a word
in the n-decimation set ¥4 n(X). We can find an infinite word, call it w(k + i) € X
that has the symbol a; € A in position k + ¢ for each 0 <4 < ¢ (by definition of Ay;).
For all remaining positions, 0 < j <n—1, with j ¢ {k,k+1,--- ,k+ £} we pick a word
w(j) € X arbitrarily.

Now the symbol sequence w := ®?;Ole,n(w(j)) € Yo n(X)@Y1 n(X)® - - - ®Ur—1,5(X)
belongs to X, but it contains the forbidden block agag41 - - - axt¢ in positions k through
k + ¢, showing that w ¢ X, the desired contradiction. O

Remark 6.2. An important finiteness feature of the proof of Theorem 2.13 is that it
shows that the existence of a (k, ¢)-missing-configuration certifies that X has no n-fold
interleaving factorization with n > k + ¢+ 1 when X is closed.

The following example shows the hypothesis of X being a closed set is necessary in
the statement of Theorem 2.13.

Example 6.3 (Non-closed infinitely factorizable sets). Let X be the countable subset of
AN consisting of all infinite sequences having a finite number of 1’s. Then X is infinitely
factorizable, and all decimations 1} ,,(X) = X are copies of itself. It is not a closed set; its
closure in AN is the full one-sided shift. It satisfies properties (i) and (ii) of Theorem 2.13
but fails to satisfy property (iii). (The set X can be viewed as the set of terminating
binary expansions of all nonnegative dyadic rationals zim)

The construction of Theorem 5.3 produces infinitely factorizable X having N(X) C
N™T. Such sets satisfy property (i), and do not satisfy properties (ii), (iii) of Theorem 2.13.

6.2. Consequences of infinite factorizability

Corollary 6.4. Let X be an infinitely factorizable closed subset of AN. Then its factor set
F(X) consists of all decimations 1, (X) forn >1 and 0 < j <n — 1. Fach decimated
set ¥, (X) is also infinitely factorizable.

Proof. By property (ii) of Theorem 2.13 X is factorizable for each n > 1, and its n-
fold factors are v, (X) for 0 < j < n — 1. Now the property (iii) is preserved under
decimations of all orders, hence all ¥, ,(X) must be infinitely factorizable. O

Example 6.5 (Infinitely factorizable closed subsets X of AN having all decimations
¥ n(X) distinct). For A = {0,1} define A, C A for 0 < k < oo as follows. Let A, = {0}
for all indices k € A with
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A={k>0:0<{kV2} < 5} where {z} =z — |z].

(No special properties other than irrationality of v/2 are used.) This set of indices is
aperiodic (and has natural density %, using Weyl’s equidistribution theorem). Set A; =
{0,1} for all other integers k ¢ A, which is also an aperiodic set of natural density %

Set X = [[p—, Ak. By Theorem 2.13, property (iii), it is a closed set and is infinitely
factorizable, i.e., N'(X) = N. Each decimation 1; ,,(X) is also an infinite product space
of the same kind whose set of indices k that have reduced alphabet {0} is exactly

A(G,n) = {k>0:0< {(nk+j)\/§} < %}.

Each v, ,,(X) is closed and infinitely factorizable. Consider now two distinct decimations
Y n(X) and 9y, (X), where we may suppose 1 <n < m and 0 < j,¢ < oo, with j # ¢
if n = m. To show distinctness we must show A(j,n) # A(¢,m). We use the well known
fact that for each n > 1 the sequence of fractional parts zj, = {k(nv/2)} (k > 1) is dense
modulo 1. (In fact, since nv/2 is irrational, Weyl’s theorem implies that the sequence xy,
is uniformly distributed modulo 1.) The argument has two cases.

Case 1. n = m. We write x;, := {(kn + j)v/2}, and y;, := {(kn + £)v/2}, where j # (.
Now y = {xx + 0} for all k, where 6 = {(¢ — j)\/2}. Because /2 is irrational, 6 € (0,1);
hence there must be an open interval (a,b) C [0,1) such that (a + 6,b+6) C (3,1].
Since zy takes values dense in (0,1), we will have infinitely many k& with z; € (a,b),
and thus with y; € (a4 6,b+ ). Therefore, there are infinitely many k with z;, € [0, %)
and yj, € (3,1]. For these k, Agny; = {0}, while Ag,4e = {0,1}, so all sequences in
1 »(X) must have kth symbol 0, while ¢, ((X) has sequences with kth symbol taking
both values 0 or 1 (i.e., k € A(j,n) but k ¢ A(¢,n) for these k). Thus ; ,,(X) # ¢ n(X).

Case 2. n < m. We write x, := {(nk + j)v/2} and y;, := {(mk + £)v/2}. A calculation
shows that yx = {2, +0}, where 6 = {(£—22)/2}. Again, 6 € (0,1). There is an open
interval (c,d) C (%,1] such that (c —6,d — 6) C (0, 3). Letting (a,b) = Z(c—6,d — 0),
we see that if x € (a,b), then y; € (¢,d). Again, by positive density of xj, this happens
infinitely often, and so there are infinitely many k with z; € [0, 3) and yi, € (5,1]. We
conclude as in Case 1 that 1) ,(X) # g m(X).

We conclude that the interleaving factor set §(X') consists of all principal decimations,
and they are all distinct. Therefore F(X) is infinite.

Example 6.6. (A closed X with an infinite factor set (X)) The set X constructed in
Example 6.5 has infinitely many distinct decimations so its decimation set ©(X) and its
principal decimation set ©,,.;,(X) are infinite. In addition all principal decimations are
interleaving factors, so that its factor set F(X) is also infinite.

Corollary 6.7. The set Y(A) of all infinitely factorizable closed subsets X C AN is closed
under n-fold interleaving operations of all n > 1. That is, if Xo, X1, -, Xn—1 € Y(A),
then (®,)10X; = Xo®X1® - ®X,_1 € V(A).
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Proof. The corollary follows using the characterization of membership in J(.A) by prop-
erty (iii) of Theorem 2.13. Property (iii) is inherited under n-fold interleaving of sets X;
that have it. O

7. Tterated interleaving factorizations of general closed subsets of AN

We consider iterated interleaving factorizations for general sets X C AN. If a set
X factors as X = Xo®---®X,,_1, it is possible that one or more of the factors X;
can itself be factored. However, unlike with factorizations of positive integers, for ex-
ample, the further factors that appear at lower levels may not be interleaving factors
of the original set X. We therefore name them iterated interleaving factors. We define
an iterated interleaving factorization as follows: The iterated interleaving factorization
of depth 0 of a set X is the equation X = X (or the right hand side of such an equa-
tion). An iterated interleaving factorization of depth 1 is a single n-fold factorization
X = (Yo®Y1®---®Y,,_1) (with parentheses). The Y; are iterated interleaving factors of
depth 1. An iterated interleaving factorization of depth k is obtained recursively from an
iterated interleaving factorization of depth k — 1, with one or more finitely factorizable
sets Y on the right hand side of depth k being replaced by interleaving factorizations
Y = (Yo®Y1®--- ®Y,,_1) (with parentheses), for n > 2 (allowing different n for different
Y’). The new added internal factors on the right are assigned depth k+ 1; they are inside
a nested set of k 4+ 1 parentheses.

7.1. Iterated interleaving factorization trees

An iterated interleaving factorization can be visually represented by a rooted tree, as
pictured in Fig. 7.1 below. It has root node X, leaf nodes corresponding to the factors in
the iterated interleaving factorization, and internal nodes corresponding to intermediate
factors.

In our definition of iterated interleaving factorizations, each step is a finite factoriza-
tion. If an iterated interleaving factor Y at level k has n-fold interleaving factorizations
for multiple values of n, it is natural to choose the n-fold factorization with the largest
n because this factorization refines all the other possible factorizations of Y, by the
divisibility properties of N'(X) from Theorem 2.12.

How should one treat infinitely factorizable factors? We will adopt the convention in
this factorization process that we “freeze” any infinitely factorizable factors encountered,
and do not further factorize them. We do this for two reasons. First, for infinitely factor-
izable Y, no natural choice of n exists for a n-factorization at the next level. Secondly,
all interleaving factors of infinitely factorizable sets are also infinitely factorizable by
Corollary 5.2, so the factorization process would necessarily proceed forever if we did
not freeze any infinitely factorizable factors.
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X

Xo,4 X1,4 X2,4 X3,4

Zos  Zi,3  Z23

Fig. 7.1. Iterated interleaving tree for X = (X0 4®((Z0,3®Z1,30Z2,3)®Y1,2)®X2 4®X3,4), an iterated in-
terleaving factorization of depth 3.

This raises the question: If one factorizes only finitely factorizable sets, will the iterated
interleaving factorization process always terminate at a finite depth? We show below that
the answer is: there are closed X where the iteration process can go on forever.

7.2. Arbitrary depth factorizations

We show, by construction, that there exist closed sets X having iterated interleaving
factorizations of all depths k > 1, with all factors at all depths being finitely factorizable.
(Thus the “freezing” property is never needed.)

Theorem 7.1 (Infinite depth interleaving factorizations). There exist uncountably many
closed sets Zy C AN with A = {0,1}, indexed by I € AN, that possess iterated interleav-
ing factorizations of every depth k > 1. They each have a unique iterated interleaving
factorization of depth k, for oll k > 1. Each Z; has an interleaving factor set F(Zr)
containing at most three elements. There exist such I for which the principal decimation
set Dprin(Z1) is infinite.

Proof. Let X, and X; be two distinct closed sets in AN having trivial interleaving
set N(Xo) = N(X;1) = {1}. For definiteness consider Xg = X the Fibonacci shift,
consisting of all words which do not have two consecutive 1’s, and Xo = Xap the anti-
Fibonacci shift, which consists of all one-sided infinite words which do not contain two
consecutive 0’s. Example 2.7 showed Xpr has no n-fold interleaving factorizations for
n > 2, and the proof applies to X ap. Given an index set I = igiqis--- € AN, we define

a set

Zy={zc AN : Yo 1 9rn1(z) € X;, for 7>0}. (7.1)
Let z = 292122 - - - . The decimations determine the values of z; for subscripts in arithmetic
progressions. We represent an arithmetic progression as AP(a;d) = {n > 0 : n =

a(mod d)}. Then the values z; for i € AP(2" —1;2""!) are restricted by ¢or_; 9r+1(z) €
X;,. We first show that Z; is well-defined.
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Claim 1. The set of arithmetic progressions AP(2" — 1;2"+Y) for r > 0 form a partition
of N.

We show by induction on 7 > 0 that N, := U jAP(2" — 1;2"1) = N N AP(27 ! —
1;2"t1), a disjoint union. The base case r = 0 asserts AP(0;2) = N \ AP(1;2). The
induction step uses AP(2m+1 — 1;2mF1) = AP(2m+! — 1;2m+2) | AP(2m T2 — 1;27m+2),
Finally, the set N,, contains the interval [0,2™ — 2], so the infinite set union covers N,
proving Claim 1.

Claim 2. If [ # J then Z; # Z;.

If I # J then some i, # j,. Then tor_q or+1(Z1) = X;, and Yor_1 0r+1(Zy) = X
which are distinct since X7 # Xo. Thus Z; # Z;, proving Claim 2.

Claim 3. Fach Z; is a closed set in AN.

It suffices to show each convergent subsequence of elements of Z; has a limit in Z;.
Convergence is AN is pointwise on each index separately. Suppose x;, — y in AN (k € N)
as k — oo with each x; € Z;. We then have or_1 or+1(Xg) = or_1 2r+1(y) in AN For
each r > 0 we have ¥gr_; or+1(x) € X;,, hence tor_q or41(X) = Yor_1 2r41(y) € X,
since X is a closed set. The property or_1 2r+1(y) € X;, for all r > 0 certifies that
y € Zy, proving Claim 3.

Claim 4. Fach Z; has a 2-fold interleaving factorization
Zr = Xi,®Zsr,
where ST = iyigis--- denotes the one-sided shift of I € AV.

Using Proposition 3.1 we find

or_1 9r+1(2) = Yo2 0912001y 2(2),
—_—

r times

and one proves it by induction on r > 0. Letting w = 1)1 2(2z), we have for r > 1

Por 1 0r+1(2) = P2 09120 - 01 2(W) = Par—1_1 2 (W). (7.2)
—_—

r — 1 times

By definition
Zsr = {w e AN : g grii(w) € X, for r >0}

Now we have, using (7.2),
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Zo
Xiﬂ Z
Xi, Zo
X7, A
/\
Xis Zy

Fig. 7.2. Iterated interleaving tree for Zy = (X; 0®(X;, ®(X;, ®(X;,®Z4)))).

Zy ={z € AN; 9po(z) € X, and w = 1y o(z) has gr 1 941 (W) € X
={zc AN : g2(2) € X;, and 91 2(z) € Zs1} = X;,®Zs1,

for r > 1}

Gl

proving Claim 4.

At this point we obtain an iterated interleaving factorization for Z; to arbitrary depth
k > 1, by iterating the factorization given in Claim 4. This can be done since one factor
is again of the form Z; (with a different I'). Given I, using the notation Zy := Z; and
Zy = Zgr1 we have the depth k factorization

Zo=X;,® (Xi1® ( .. (Xik_2® (Xik_1®Zk)) .. )) .

Fig. 7.2 shows a tree corresponding to such an iterated factorization after the fourth
level of factoring.

The remaining part of the proof will show this factorization tree is unique at every
level k. Finally a suitable choice of I will lead to Z; having infinitely many different
principal decimations.

Claim 5. The interleaving closure set N(Z1) = {1, 2} with associated factor set F(Z1) =
{21, Xiy, Zs1}

It suffices to show that Z; has no n-fold interleavings with n > 3, in view of Claim 4.
We argue by contradiction. Given an n-fold interleaving for n > 3, by Theorem 2.12(2),
it would also have an lem(2, n)-fold interleaving, and we set 2m := lem(2, n) with m > 2.
A shuffle identity from Proposition 2.9 gives

21 = (@202 Ko = (@)1 K ) © (@) X ).
Since 2-fold interleaving factorizations are unique, and Z; = X;,®Zgy, we must have
Xio = (®m)10" X2i 2m-

This contradicts the fact that Xy and X; have no nontrivial interleaving factorizations,
proving Claim 5.
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Claim 6. For k > 1, each Z; has a unique iterated interleaving factorization of depth k,
whose iterated interleaving factors are Xy, for 0 <r <k —1 and Zg:(I).

This claim follows by induction on k£ > 1, the base case being the factorization in
Claim 4. For the induction step from k to k& + 1, all but one of the leaves of the tree
(iterated interleaving factors) are of form X, which have no non-trivial interleaving
factors, and the remaining factor Z;, with J = S*I, which has only a 2-fold interleaving
factorization Zgky = X;, ® Zgr+1(1y. By updating the list of iterated interleaving factors
we complete the induction step. This proves Claim 6.

Claim 7. If I is strongly aperiodic, meaning that all its shifts S*I for k > 0 are distinct,
then all the decimations of Zr of form waor_q or+1(Z1) forr > 0 are distinct. In particular,
the principal decimation set Dpvin(Z1) of Z1 is an infinite set.

We have tor_1 or+1(Z7) = Zgr;. By Claim 2 distinct ST give distinct Zgr;. The
strongly aperiodic assumption then makes all 13- _; or+1(Z7) distinct. They are principal
decimations, so ®prn(Z7) is infinite. This proves Claim 7. O

Example 7.2 (A closed set with an infinite principal decimation set but a finite factor
set). Theorem 7.1 exhibited Z; that have infinitely many distinct principal decimations;
Dprin(Z1) € D(Zy). However Claim 5 showed the factor set F(Z;) is always finite.

Remark 7.3. The sets Z; in Example 7.2 exhibit the failure of two finiteness properties
possessed by all path sets studied in [5]. First, interleaving factorizations of path sets P
always halt at finite depth (under the freezing convention), while Z; never does. Second,
path sets P always have finitely many different decimations, i.e. ©(P) is finite, while this
example does not. Example 6.6 gave another example having infinitely many different
decimations.

8. Shift-stable and weakly shift-stable sets

Classical symbolic dynamics is concerned with properties of sets X C AN invariant
under the shift operator. The class of such sets is not preserved under decimation or
interleaving operations. We study two weaker notions of sets X compatible with the
shift operation—shift-stable sets and weakly shift-stable sets—with better properties.
Shift-stable sets naturally arise in one-sided dynamics that encode initial conditions,
and we show they are closed under all decimations, but not closed under interleaving
operations. The wider class of weakly shift-stable sets is closed under all decimation and

interleaving operations.
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8.1. Shift-stable sets

Recall from Definition 2.14 that a general set X C AN is shift-stable if SX C X, and
it is shift-invariant if SX = X. These definitions allow non-closed sets. Shift-stability is
a strictly weaker condition than shift-invariance; see Example 8.5 below.

Shift-stable and shift-invariant sets satisfy the following closure properties under dec-
imation and interleaving closure operations:

Theorem 8.1. Let A be finite alphabet and let X C AN be a general set (not necessarily
closed).

(1) If X is shift-stable (resp. shift-invariant), then all decimations 1; (X) for j >0,
n > 1 are shift stable (resp. shift-invariant).

(2) If X is shift-stable (resp. shift-invariant) then all n-fold interleaving closures X"
with n > 1 are shift-stable (resp. shift-invariant).

Proof. (1) Shift-stability of X implies S™X C S™~ !X whence S™X C X for all m > 0.
Now Proposition 3.2 gives

Sjn(X) =1jn(S"X) C Yy n(X).

If X is shift invariant, then S™X = X for all m > 0 and equality holds.
(2) Iff X is shift stable, then we have, by Proposition 4.10, Proposition 3.2, and (1):

SXIM = S (g (X))@ (X)® - - @p_1.0(X))
= 1. (X) @2 (X)® - - - D1y (X)
= o0 (SX)®UP1 0 (SX)® - Bp_1.0(SX)
C Yo (X) DY (X)® - @1 (X)) = X,

If X is shift invariant, then all steps hold with equality, as required. O

The shift-invariant property restricts the form of interleaving factorizations.
Proposition 8.2 (Shift invariance implies self-interleaving). If a general set X C AN is
shift-invariant, then all of its interleaving factorizations will be self-interleaving factor-
tzations.
Proof. We have for each n > 1, that for j > 0

Yjt1,0(X) = n(SX) = ¢ n(X)

with the leftmost equality generally true by Proposition 3.1 (2) and the second equality
from shift invariance. We now have
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Yjn(X) =1 n(X) for j>0.

But by Theorem 2.8 any n-fold interleaving X = (@n)?;olXi,n has X; , = ;. »(X), hence
it is a self-interleaving with Z,, = 1 »(X). O

8.2. Closed shift-stable sets

An important feature of closed shift-stable sets is that they are characterized by
forbidden blocks, paralleling the definition of two-sided shift spaces in [33, Sec. 1.2].
Let A* denote the set of all finite words in the alphabet A, including the empty word.
A block in an infinite word x = agajas--- is a finite sequence of consecutive symbols

ApQg+1 " Qk+L-

Proposition 8.3 (Forbidden block characterization of shift-stability). The following state-
ments about a set X C AN are equivalent:

(1) X is closed and shift-stable, i.e. X is closed and SX C X.

(2) X is the set of all infinite words avoiding a (finite or infinite) set B+ C A* of
forbidden blocks.

Remark 8.4. An analogous result holds in two-sided symbolic dynamics for subsets of
AZ | ([33, Theorem 6.1.21]), where shift-stability is replaced by shift invariance, proved
with a similar argument. The difference between shift-stability and shift-invariance is
discussed in Example 8.7.

Proof. (2) = (1). The set X is closed, since any limit word in the sequence topology
will not contain any forbidden block. Now SX is a closed set of infinite words, which do
not contain any of the forbidden blocks. It follows that SX C X.

(1) = (2). The hypothesis SX C X implies S¥*X C S¥71X C X for all k > 1 by
induction on k. We let B+(X) C A* denote all the finite words that do not appear
anywhere in any word in X. Let Y denote the set of all infinite words that avoid any
block in B+(X). By definition X C Y. To complete the proof we show the reverse
inclusion Y C X. Let y = bgb1bs - -- € Y. By hypothesis the initial word bgby --- b € Y
does not contain any element of B(X), so it must occur as a block inside some word
X = qgaias - - - € X, for if it did not this would contradict maximality of BL(X). Say it is
positions a;a;y1 -+ - aj1x = boby - - - by. Now yp, 1= Six = .boby -+ - bpapy, - € SFX C X,
We now have a sequence {yx : k > 0} with yx € X that converges in the sequence
topology to y € Y. Since X is closed, we deduce y € X as required. O

We give examples of allowed behavior and of non-behavior of closed shift-stable sets.

Example 8.5. There exists a shift-stable closed set X which yields an infinite strictly
descending chain of inclusions under application of the shift; i.e.:
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2 3
X28X 282X 25X 2.

To construct X, define for each k > 4 the set X}, := (0¥1)%{000, 111}N. That is, X} has
a fixed finite prefix (0%1)* of length k(k + 1) followed by a full 2-block shift

Y = {000,111},

Note that S?Y =Y. We now set

o0

X = D ( L_JOS"Xk).

k=4

The set X is shift-stable, since
sx=J(lJs"x) cx.
k=4 n=1

Every element of X is an (eroded) finite prefix followed by a member of Y, SY, or S?Y.
The set X is closed because the only limit point obtainable in AN from repeated shifts
of blocks in the finite prefixes alone is the vector 0°°, which already belongs to Y.

To show all inclusions are strict, we note for 0 < j < 3 the set SIX contains the
word 04771(0%1)3(000)°°, which is not contained in any S™X for m > j + 1. For j > 4
each set S7X contains the word 1(01)7~1(000)°°, which is not contained in any S™X
form>j+1.

Example 8.6 (Shift-stability is not always preserved under interleavings). The one-sided
Fibonacci shift Xz having 11 as a forbidden block and the one-sided anti-Fibonacci
shift Xar having 00 as a forbidden block are both closed, shift-invariant sets. We show
their 2-fold interleaving Y = XaAp®X is not shift-stable. Indeed X ar allows the initial
block 0110, and X allows the initial block 010, whence X r®Xp allows the initial
block 0011100, so SY contains the initial block 011100. If SY C Y, then there is a
Yy = y1®y2 € Y with initial block 011100. But this means y; € X has initial block 110,
which is a forbidden block of the Fibonacci shift, a contradiction showing that SY ¢ Y.
(We do have S?Y =Y.)

Example 8.7 (One-sided shifts). The notion of one-sided shift X defined by Lind and
Marcus [33, Sect. 12.8] consists of those sets X C AN that are the restriction to positions
k > 0 of all sequences in a two-sided shift X, described by forbidden blocks. One-sided
shifts X are necessarily closed and shift-invariant: SX = X so they form a strict subclass
of closed shift-stable X.

The difference between one-sided shifts and closed shift-stable sets is visible at the level
of minimal forbidden blocks, which are forbidden blocks that do not contain any other
forbidden block as a strict sub-block. For a one-sided shift-stable set X we let B, (X)

min
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denote its minimal forbidden block set. For a two-sided shift X; we let B$in7i(Xi)
denote its minimal forbidden block set. Now consider the closed set Y = {001°°,01°°,1°°}
which has SY = {01°°,1°°} C X, so is shift-stable but not shift-invariant. Here S?Y =
{1°°} is shift-invariant. It is easy to check that B, (Y") = {1001, 101,000}. The two-sided
shift Y+ determined by this set of forbidden blocks is Y+ = {1Z} € AZ, because any
bi-infinite word that contains a 0 must also contain one of the patterns 101, 1001, 000
and so is excluded. However Y. has minimal forbidden block set Bi;, (Y+) = {0}
viewed as a two-sided shift. The one-sided shift ¥ determined from Y, using the Lind
and Marcus prescription has Y = S?Y = {1>°}. The shift-stable sets ¥ and SY cannot
be obtained by the Lind and Marcus prescription; their minimal forbidden block sets are

not minimal forbidden block sets of any two-sided shift.
8.3. Weakly shift-stable sets

The notion of weak shift-stability provides a large class of sets X C AN which respect
the shift operator and are closed under all decimation and interleaving operations. This
class of sets includes all path sets studied in [2]; see [5].

Definition 8.8. A general set X C AN is weakly shift-stable if there are £ > k > 0 such
that S‘X C S*X. We call p = ¢ — k an eventual period for this shift semi-stable set.

The notion of eventual period of X reflects the inclusion
SiHix = §ktitrx C §HIX  forall j > 0.

Theorem 2.15 shows that the class W(A) of all weakly shift-stable sets is closed under
all decimation and interleaving operations:

Proof of Theorem 2.15. (1) Weak shift-stability S¢*X C S*X gives St/ X C Skt X for
all j > 0. Setting p = ¢ — k, we deduce for m > k that

SmHIP(X) C S™X  whenever j > 1. (8.1)
By Proposition 3.2 we have, for j >0, n > 1,

S 0 (X) = Vistpnn(X) = i (SPMX) C ahj o (S X)) = SFPep; (X)),

the inclusion holding because S%"(X) C S*P"(X) by (8.1), since the difference of itera-
tions is a multiple of p and kpn > k.

(2) Let X; be weakly shift-stable with parameters (¢;,%;), for 0 < j < n —1, and
pj = £; — k;. We assert that Y = (®,)"; X; is weakly shift-stable with an eventual
period p = pop1 - - - p;. Indeed, setting k& = max;(k;) and £ = k + 1, we have, using
Proposition 4.10:
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sy = S (X 0@ X 1@ ®X,_1)
= (SPX0)®(SPX)® - ®(SPX,1)
C (S"Xo)@(S"™X1)® - - ®(S" X, 1) = SF"Y.

The third line above used the inclusions S X; C S*¥?X; for 0 < i < n — 1, which follow
from (8.1), since k > k;, and p; divides p.
(3) Tt follows from (1) and (2) using the definition X = (®,)7 ;v (X). O

Remark 8.9. Path sets, studied in [2], are closed subsets of AN describable as infinite
paths in graphs of finite automata. Such sets are not always shift-stable. In [5] it is shown
they are always weakly shift-invariant, so they are weakly shift-stable.

9. Entropy of interleavings for general sets

We study two notions of entropy for general sets X C AN, topological entropy H (X)
and prefix entropy H,(X), defined for all sets X, and we also study a notion of stable
prefix entropy which only certain sets X possess.

9.1. Topological entropy and prefiz entropy

We recall two notions of topological entropy for general sets X C AN, following the
paper [2], given in Definition 2.16 and Definition 2.17(1).
(1) The topological entropy of X is

1
Hiop(X) := limsup — log Ni(X),
k— o0 k
where Ni(X) counts the number of distinct blocks of length k& to be found across all
words x € X. It is defined as a limsup, but the limit always exists.
(2) The prefix entropy (or path topological entropy) of X is

H,(X) :=limsup 1 log N (X),
k—o00 k
where N ,ﬁ (X) counts the number of distinct prefix blocks boby - - - br—1 of length k found
across all words x € X.
As remarked in Section 2.6, for Hyop(X) the limsup is always a limit. However the
limsup is needed in the definition of prefix entropy, as shown by the next example.

Example 9.1 (The limit of 1 log N}(X) may not ewist). Take Xo = H;io A; where
A; = {0} for 0 < j <3, and for m > 1,

(i) A; = {0} for 22m < j < 22m+l



48 W.C. Abram et al. / Advances in Applied Mathematics 126 (2021) 102160

(i) A; = {0, 1} for 22m+l < j o< 92mH2 ]

Then X is a closed subset of AN having values +log NI (Xo) that oscillate between
1log2 and £log?2 infinitely often as k — oo, with minima at k = 2?"*! and maxima
at k = 22"%2, Here the limsup gives H,(X) = %log 2. On the other hand, property (ii)
implies Ny (Xo) = 2% so Hyop(Xo) = log 2.

Example 9.1 shows, first, that H,(X) cannot in general be defined as a limit, and
second, that H,(X) and Hiop(X) need not be equal.

Proposition 9.2. For general sets X C AN, the following hold.

(1) Let X denote the closure of X in the symbol topology on AN. One has Hyop(X) =
Hiop(X) and Hy(X) = H,y(X).

(2) One has

Hy(X) < Hiop(X) < log|Al.

Proof. (1) The definitions of Hop(X) and Hy(X) depend only on finite symbol sequences
(resp. finite initial symbol sequences) that occur in X . However all infinite words in X ~ X
have all finite symbol sequences (resp. finite initial symbol sequences) occurring for some

word in X.
(2) The bounds follow from N} (X) < N(X) < |A|*. O

Example 9.3 (Strict inequality H,(X) < Hyop(X) may occur for general X ). Let A =
{0,1}, and let the closed set X consist of all words which, for m > 1,

(i) have symbol 0 in each position 2™ < k < 2™+ —
(ii) allow arbitrary symbols {0, 1} in positions 27+! — (m — 1) < k < 2m+! — 1.

Then Ny = 2F for all k > 1, because (ii) gives arbitrarily long blocks of the full shift,
whence Hiop(X) = log 2.

On the other hand, for a given symbol position k there are at most (logy k)? symbol
positions of type (ii), so we obtain N/ (X) < 2(lez k) Tt follows that H,(X)=0.
9.2. Entropy and the shift operator

The shift operator preserves both entropies Hyop(X) and H,(X).

Proposition 9.4. For general sets X C AN on a finite alphabet A the following hold.
(1) The shift operator S preserves topological entropy:

Hiop(SX) = Hyop(X).
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(2) The shift operator S preserves prefiz entropy:
H,(SX)=H,(X).

Proof. (1) We have, for a finite alphabet,

Np(X) > Np(SX) > ﬁNkH(X),

since there are at most |.A| choices for a letter that is dropped. Using a limsup definition
for Hyop(X) (although the limit always exists) we have

1 1
Hiop(SX) = limsup Z log N;(SX) < limsup Z log Ni,(X) = Hyop(X).

k—o0 k—o0

On the other hand,

Hiop(SX) = limsup 1 log N (SX)
k—o0 k

1 1
> lim sup <E log Nj41(X) — % log |A|>

k—o0

1
=i e log Npy i (X) = Higy(X).
imsup ;= log k+1(X) top (X)

(2) For a finite alphabet A we have

1

Niip1(X) > N{(SX) > Al

NEy (), (9.1)
The result H,(SX) = Hp(X) is proved similarly to (1). O
9.3. Entropy and decimations

Entropies may change under decimation, subject to the following inequalities.

Proposition 9.5. For general sets X C AN on a finite alphabet A the following hold for
alln>1 and all i > 0:

0 < Hugp(ths.0(X)) < min(nHyp(X), log | A]
and
0< Hp(¢i,n(X)) < min(an(X),log |-A|)

All equalities can be attained.
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Proof. The lower bounds are trivial, and the upper bounds log|.A| are trivial. For the
upper bounds, the symbols of any block of size k of 1); ,,(X) are contained (in successive
positions with index i (mod n)) inside a block of length nk of X, with the first symbol
aligned; hence Ni ()i n(X)) < Npur(X). We have

Htop ('(/)i,n(X)) = lim sup % 1Og Nk ('(/)i,n(X))

k—o0

1 1
< lim sup % log Npi(X) <n <limsup z log Nk(X)) = nHyop(X).

k—o0 k—o0

For the corresponding prefix entropy upper bound we use the bound Né(wi’n(X)) <
|A|*NI, (X), obtained by containment of a prefix of length & in 1; ,,(X) inside a prefix
of X of length nk + 1.

To show the bounds are attained, take the interleaved set X = (®,)7_) X; where
Xo = AN and each X; = {0} for 1 <4 < n—1. We have Hiop(X) = Hp(X) = %log |A|
(by counting blocks). For the upper bound we have Hiop(100.n(X)) = Hp(¢on(X) =
log | A|. For the lower bound Hiop(¢1,n (X)) = Hp(¢1,,(X)) =0. O

9.4. Prefiz entropy upper bound for interleaving

We prove Theorem 2.18, which is a general upper bound for the prefix entropy of an
n-fold interleaving in terms of the prefix entropies of its factors.

Proof of Theorem 2.18. By definition for X = Xq®--- ®X,,_1,

1
H,(X) = limsup z log (N,g(X()@ e ®Xn_1)), (9.2)

k—o0

where N ,g (X) is the number of distinct initial blocks of length &k occurring in the symbol
sequences of X. Now we partition into subsequences {nk+j:k >0} for 0<j<n-—1
to obtain:

Hy(Xo® - ®Xp_1) = li
P Xo® @ Xnmt) = B NP

log (NékJrj(Xo@ e ®Xn1)>.
Call the terms on the right side

H, ;(X) :=limsup

log (Nr{kﬂ' (Xo®--- ®Xn—1)>

for 0 < j < n—1. The number of distinct initial (nk+ j)-blocks in Xo® - - - ®X,,_1 is sim-
ply the product of the number of distinct initial (k+1)-blocks in each of Xy, X3,...,X,_1
and of the distinct initial k-blocks in X, X411, X,—1. Thus we obtain, for a fixed j,
0<j<n-1,
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H, ;(X) = limsup

k—oo N

1 I
ny log (Nnk_H (Xo®--- @Xn—l))

1 7j—1 n—1
= limsu 1o NL (X)) - T NV Xi)
msnp et o (T Vo () [ i)
n—1
= limsu log N i)+ log NI X;
}HOOPnk Z g Nip11(Xi) ; g N, (X5)

By (9.1), which applies to general sets X C AN, each log N/, (X;) differs from
log N (X;) by no more than log|A|. Since the entire sum is divided by nk + j, this
difference does not affect the limsup, so:

n—1

1 1
H, ;(X) = limsu - log NL(X; :—hmsu log N[ (X;
m( ) kﬂoopn T ; g k( ) n k%mp lz% g k )
n—1 1n—1
lim su log N, (X; — H,(X;).
Z Hmpk g N (X;) = n; p(Xi)

Thus, all the H,, ;(X) are bounded above by 1 "~ 'H »(X;). It follows that H,(X) =
maxo<j<n—1 Hp ;(X) obeys the same bound. O

Example 9.6 (Strict inequality may hold in Theorem 2.18). We start with the closed set
Xo with alphabet A = {0,1} defined in Example 9.1. Let a second closed set X; consist
of all words that allow {0} in index positions where Xy allows {0, 1}, and allow {0, 1} in
all index positions where X allows only {0}; i.e., X1 = [[72 A} where A} = {0, 1} for
0<j<3, and for m > 1,

(i) A; ={0,1} for 22m < j < 22mHl —q
(i) Aj = {0} for 22m+1 < j < 22m+2 1,

Then By,(X;) = {0,1}* for all k > 1, since (ii) has arbitrarily long blocks of the full shift,
whence Hyop(X) = log2. We have H,(Xo) = H,(X1) = 2 log2, by the same calculation
as in Example 9.1. We assert that the interleaved set X := Xo®X; has

1 1 2
H,(X)= §log2 < §(HP(X0) + Hp(X1)) = glogZ.

To compute H,(X), note that in each pair of consecutive symbol positions (24,25 + 1),
the words in X have one symbol frozen to be 0 and the other symbol free to be chosen
in {0, 1}, where the frozen symbol is the symbol in position 2j for 22™ < j < 22"+ and
is the symbol in position 2j + 1 for 227+ < j < 22m+2 Thys 2¢/271 < NJ(X) < 2k/2+1
for all k > 0, whence H,(X) = limj—,o0 7 log N} (X) = £ log 2.
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9.5. Stable prefix entropy and interleaving entropy equality

We study the concept of stable prefix entropy and show its consequences for the
behavior of entropy under interleaving. Recall from Definition 2.17 (2) that a set X C AN
has stable prefiz entropy, if the prefix entropy can be defined as a limit. That is, the
following limit exists:

k—o0

H,(X):= lim ElogNk(X)

Recall that Theorem 2.19 asserts that stable prefix entropy is preserved under inter-
leaving, and that stable prefix entropy of all the interleaving factors implies equality in
the prefix entropy formula of Theorem 2.18.

Proof of Theorem 2.19. Let X = (®,)"; X;. The inequality H,(X) < % L 'H »(X5)
in Theorem 2.18 arose in interchanging a finite sum with a limsup. Using the stable
prefix hypothesis for each X;, we obtain a matching lower bound.

By definition H,(X) := limsupk_mo log N} (X). Let H)(X) := liminfy TNR(X).
It suffices to show that H(X) > D Y Hy(X;) to conclude that H(X) = Hy(X) has
a limit which is the desired value 1 "7/ 1 Hy(X;).

Partitioning into subsequences {nk +7:k>0}for 0 <j<n-—1asin the proof of
Theorem 2.18, we get:

H,(X)= min <liminf

0<j<n—1 \ k—ooo T

10g< nk-l,-J(XO@ ®Xn 1)))

Call the right side values H,, ;(X). We have

—_

!
H, (X) > Ehgr_l:gf (ZO ElogNk )

n—1

1
E—thmleogNk(X)
1n—1
= — li l N, — H,(X;
Z e 0g k:( i) = n; p(Xi),

where stable prefix entropy was used in the last line. We conclude H,(X) >

T Yo Hy(Xa). O

Example 9.7 (Stable prefiz entropy is not always preserved under decimation). The set
X = Xo®X; of Example 9.6 has stable prefix entropy, but Xo = 1 ,2(X) does not, as
shown in Example 9.1. The set X7 = 41 2(X) does not have stable prefix entropy by a
similar analysis.
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Recall that Theorem 2.20 asserts weak shift-stability of X implies both stable prefix
entropy of X and equality of the two notions of entropy, H,(X) and Hiop(X).

Proof of Theorem 2.20. For any set X we have N/, (X) < N,,(X). By hypothesis, S*X C
SkX for some £ > k > 0. Since X C Y implies S(X) C S(Y), an easy induction
argument shows that ST X C §**J X holds for all j > 0. Since any block of length m
in X, starting in any position n, is an initial block of S™(X), we may conclude that it
is an initial block of ¢ (X), for some ¢ < . Consequently all such blocks are counted
among the initial blocks of X, SX,---S*~1(X) of length m. To each such block one can
associate an initial block of length m + ¢ of X which contains the given block in positions
¢ through ¢/ +m — 1. Any initial block of length m + ¢ can be counted this way at most
¢+ 1 times, one for each prefix ¢/ < ¢, so we obtain the upper bound
Ny (X) < (€4 )N o(X).

7

We then obtain the bounds
NL(X) < Np(X) < (04 DIAI'NL(X),

since NI ,(X) < |JA[*NL(X). Tt follows that

m-+£
log N\, (X) < log Ny (X) < log N (X) + C,
for an absolute constant C. Thus

. 1 I
n}gnoo - (log N, (X) —log Npp (X)) = 0.
Since the limit lim,, % log N,,(X) exists for topological entropy, it must also exist
for prefix entropy, showing stability. Moreover, since the limits are the same, H,(X) =
Hiop(X). Finally, since weak shift-stability is preserved under n-fold interleaving, the
entropy equation (2.10) for topological entropy follows from Theorem 2.19. O

10. Concluding remarks
10.1. General interleaving operations

Iterated interleaving factorizations are a special case of factorizations of closed sets
X C AN into a product of closed sets obtained by projections onto subsets of indices
I; € N, where the index sets {I; : 0 < j < n — 1} form a partition of N. Iterated
interleaving factorizations project onto a partition of N in which each I; is a complete
arithmetic progression in N.

Ezact covering systems are partitions of N into finite sets of disjoint complete arith-
metic progressions (of various moduli). They have been extensively studied; see [21],
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[42] and [43] for surveys. There are interesting necessary and sufficient conditions for a
finite set of complete arithmetic progressions to be an exact cover of N, starting with
Fraenkel [23]; see also Beebee [7] and Porubsky and Schénheim [44]. The exact covers de-
termined by iterated interleaving are the set of natural exzact covering systems introduced
by Porubsky [41], who credits the construction to an unpublished paper of Znam. It is
known that not all exact covers can be obtained by iterated interleaving constructions.
An example due to Znam (cf. Guy [28, Problem F14]) is:

{0 (mod 6); 1 (mod 10); 2 (mod 15);
3,4,5,7 — 10,13 — 16, 19,20, 22, 23,25 — 29 (mod 30)}.

This set of arithmetic progressions has ged(6, 10, 15) = 1, while any iterated interleaving
factorization with an initial n-fold interleaving necessarily has all arithmetic progressions
in any refinement having periods divisible by n. The natural exact covering systems play
a special role in the reversion (inversion under composition) of the M6bius function power
series, see Goulden et al. [27].

One can introduce more general interleaving operations, which might include arbitrary
exact covering systems. For a set X C AN, one can ask which decimations ;. (X) have
the property that X can be written as a topological product 1;,(X) x Y, where Y
is the projection of X onto the set I of all indices having i # j (modn)? Call such a
decimation 1; ,(X) with this property a generalized factor of X. Can one characterize
the possible sets of all generalized factors of X, as X varies?

10.2. Iterated interleaving closure operations

One may ask for a given set X, what are the set of all interleaving closures of it:
{XI" . n > 1}. We can define a filtered limit as n — oo as follows. Letting py denote
the kth prime in increasing order, we can define

xloel = lim X[,

np=(p1p2--pr)*—o0

where the limit exists since X[ C X["++1] by Proposition 4.6(3), and for each n one
has n divides ny, for all sufficiently large k. The set X[°! will be infinitely factorizable.
What can one say about the possible forms of X[%1?

10.3. Characterizing closed weakly shift-stable sets

Is there a characterization of closed weakly shift-stable sets X C AN having a par-
allel with the characterization by forbidden blocks of closed shift-stable sets given in
Proposition 8.37
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Appendix A. Interleaving operad

Operads were systematically developed by Boardman and Vogt [8] and May [37] and
as a vehicle to study iterated loop spaces in stable homotopy theory. More recently, op-
erads have been used by researchers in homological algebra, category theory, algebraic
geometry, and mathematical physics; see [47] for a brief introduction. Interleaving oper-
ations determine a certain kind of operad, giving an application of the operad concept to
symbolic dynamics. In this Appendix we only define operads over the category of sets,
although they can be defined over any symmetric monoidal category.

Non-symmetric operads (as in [34], [25]) are a weak version of operads which do
not require equivariance under actions of symmetric groups on factors. They provide a
convenient framework to keep track of properties of an infinite family of n-ary operations
under iterated composition.

Definition A.1. A non-symmetric operad (or plain operad) O consists of a set O(n) for
each natural number n satisfying the following conditions:

(a) (composition) for all positive integers n, k1, ..., ky, there is a composition function
0:0(n) X O(ky) X -+ x O(ky) = O(ky + - + kn),

written as (f, f1,..., fn) — fo(f1,..., fn) for elements f € O(n) and f; € O(k;);
(b) (identity) there is an element 1 € O(1), called the identity, such that

for all f;
(c¢) (associativity) there holds

fO (flo(fl,la' .. 7f1,7€1)?f’ﬂ © (f’mlv" "fn7kn>) =
= (fo(fl,,fn)) ] (.f171’""f17k17"'7f7l717"'7fn7kn)

for all f € O(n), f; € O(k;) and f; ;.

For a non-symmetric operad O, we think of the elements of O(n) as n-ary operations.
An operad is a non-symmetric operad that also possesses a right-action of the symmetric
group Y, on the set of operations of arity n for each n, satisfying an equivariance
condition, as described in the definition below.

Following [35], we use an underline to denote non-symmetric operads @ and remove
the underline for (symmetric) operads O.

Definition A.2. An operad (or symmetric operad) O is a non-symmetric operad together
with a right action of the symmetric group %, on each O(n) satisfying the following
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equivariance conditions for each o € ¥, 7, € Xy, f € O(n), and f; € O(k;) for
1< <n:

(A) (fro)o(fiseosfn)=(folfi,.. . fn)) 03
B) fo(fi-m,eeoyfn-m)=(o(fryeoosfn) (71, .y Tn).

Here the action of o on the right-half of (A) is defined as the action of the permutation ¢ €
Oky+-+k, that permutes consecutive blocks of length ki, ..., k,, respectively, according
to the permutation o.

We let S(A) denote any class of subsets of AN that is closed under all decimation and
interleaving operations, combining n sets in S(A) in any order in any n-fold interleaving.
Examples of such classes include the collection W(A) of all weakly shift-stable sets
(Theorem 2.15), the sub-collection W(A) of all closed weakly shift-stable sets (since the
property of being closed is preserved under all decimation and interleaving operations),
and the class C(.A) of path sets studied in [2], which is shown to satisfy weak shift-stability
in [5].

We first construct a non-symmetric operad Z such that each element of Z(n) is an n-
ary operation acting on S(A) xS(A) x---xS(A) (n times). Although the non-symmetric
operad Z will be built up from the n-fold interleaving operations, the resulting set Z(n)
of operations at level n will contain many more operations. For notational convenience,
let ®,, denote the n-fold interleaving operation on S(A). We let Z(1) = {®1}, where of
course ®; = idg(4) is the trivial “1-fold interleaving”. Also let Z(2) = {®2}. However, it
will not be sufficient for Z(3) to be a singleton set. Rather,

Z(3) = {®3,®2 0 (®1,®2), ®2 0 (B2, ®1)},

where, for instance,
[®2 0 (®1, ®2)](X1, X2, X3) = X1®(X2®X3)

for general sets X1, Xo, X3 € S(A). Z(n) for n > 3 is defined analogously, so as to satisfy
the composition condition of Definition A.1. It is easy to see that ®; serves as an identity
for Z with respect to the various compositions, as in (b). Since the compositions of Z are
genuine function composition, associativity in Z follows from the associativity of function
composition. Therefore, Z is a non-symmetric operad. We call Z the interleaving non-
symmetric operad, and refer to operations from Z as compound interleaving operations.

The non-symmetric operad Z can be upgraded to a symmetric operad by adding a
right action of the symmetric group permuting the interleaving factors. This requires
adding additional n-ary operations for each n. In particular, for ¢ € ¥,, and an op-
eration f € Z(n), we need to admit the operation f - o where (f - 0)(X1,...,X,) =
[(Xs(1) -+ Xo(n)). Note that, like the interleaving operations themselves, this is also a
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function S(A) x - - - x S(A) — S(A), given by a (possibly compound) interleaving of some
permutation of the input sets. Denote by Z(n) the set of n-ary operations expanded to
include the operations f - o defined above, which permute the inputs prior to any (com-
pound) interleaving. Note that we can think of an element f € Z(n) as corresponding to
f-e€Z(n), where € € ¥, is the identity element. We can then extend the compositions
for the Z(k) to

0:Z(n) xZ(ky)x -+ xZ(kn) = Z(k1+ - +kn),

by genuine function composition. Then it is natural to define a right action of X,, on Z(n)
by (f-o)-7=f-(o7) for f-0 € Z(n) and 7 € ¥,,. Note that the equivariance conditions
(A) and (B) of Definition A.2 apply generally to an action permuting the inputs of gen-
uine functions with respect to genuine composition. Thus, since the n-ary operations in
Z(n) are genuine functions on sets and the compositions are function composition, these
conditions hold. We call the resulting (symmetric) operad the interleaving symmetric
operad and denote it by Z.

Proposition A.3. Let T be the interleaving symmetric operad acting on a collection of sets
S(A) closed under all decimation and interleaving operations. Then for any f € Z(n)
and any sets Xo, ..., Xn_1 € S(A), we have also f(Xo,...,Xn_1) € S(A).

Proof. Every f € Z(n) is just a composition of interleavings of various n-arities, where
possibly the input sets have their order permuted. Since S(A) is closed under the in-
terleaving operations, it follows that it is closed under all composition operations from
Z. O

Generally, we recall below the notion of an algebra over an operad. We will see that
the descriptions given above for the nonsymmetric operad Z and the (symmetric) operad
T were really given in terms of certain algebras over those operads. This approach has
helped to keep the exposition concretely rooted in the examples of interest, but differs
from the more typical, categorical exposition.

The following definition matches [35, Definition 1.20], restricted to operads in the
category of sets. For a set X, let Endx(n) denote the set of all functions X™ — X, and
let Endx = U, —, Endx (n). Then Endx has the structure of an operad, and is called the
Endomorphism Operad (of sets); see [35, Definition 1.7].

Definition A.4. Let O be an operad in the category of sets, and let X be a set. An
O-algebra structure on X is a morphism of operads ax : O — Endx, that is, a family
of ¥,-equivariant morphisms ax(n) : O(n) — Endx(n), n > 1, compatible with the
identity, composition, and equivariance structures of O and Endy.

If we omit the equivariance structure from the above definition, then we get the notion
of an algebra over a nonsymmetric operad.
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Example A.5 (Algebras over interleaving nonsymmetric operad Z). The sets W(A) of all
weakly shift-stable sets on the finite alphabet A, W(A) of all closed weakly shift-stable
sets on A, and C(A) of path sets on A are all algebras over the interleaving nonsymmetric
operad Z. If the set S(A) is any of these sets, and for any n € N, the maps ag(4) of
Definition A.4 are built up from

O[S(.A) (n)(®n)[(X07 o 7Xn—1)] = (@n)?:_()lXJ = XO®X1® ce @Xn—l
by function composition, where (X, ..., X,—1) € S(A)™.
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