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This paper studies subsets of one-sided shift spaces on a finite 
alphabet. Such subsets arise in symbolic dynamics, in fractal 
constructions, and in number theory. We study a family of 
decimation operations, which extract subsequences of symbol 
sequences in infinite arithmetic progressions, and show these 
operations are closed under composition. We also study a 
family of n-ary interleaving operations, one for each n ≥ 1. 
Given subsets X0, X1, ..., Xn−1 of such a shift space, the n-ary 
interleaving operation produces a set whose elements combine 
individual elements xi, one from each Xi, by interleaving 
their symbol sequences in arithmetic progressions ( modn). 
We determine algebraic relations between decimation and 
interleaving operations and the shift map. We study set-
theoretic n-fold closure operations X �→ X [n], which interleave 
decimations of X of modulus level n. A set is n-factorizable if 
X = X [n]. The n-fold interleaving operations are closed under 
composition and are idempotent. To each X we assign the set 
N (X) of all values n ≥ 1 for which X = X [n]. We characterize 
the possible sets N (X) as nonempty sets of positive integers 
that form a distributive lattice under the divisibility partial 
order and are downward closed under divisibility. We show 
that all sets of this type occur. We introduce a class of weakly 
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shift-stable sets and show that this class is closed under all 
decimation, interleaving, and shift operations. We study two 
notions of entropy for subsets of the full one-sided shift and 
show that they coincide for weakly shift-stable X, but can 
be different in general. We give a formula for entropy of 
interleavings of weakly shift-stable sets in terms of individual 
entropies.

© 2021 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let A be a finite alphabet of symbols, and suppose |A| ≥ 2. A basic object in one-sided 
symbolic dynamics is the full one-sided shift space AN , which is the space of all one-
sided infinite strings of symbols drawn from A. Here N = {0, 1, 2, . . .} denotes the natural 
numbers, and N+ = N � {0} denotes the positive integers. We view AN =

∏
j∈N A as a 

compact topological space carrying the product topology, with each copy of A carrying 
the discrete topology; we call this topology of AN the symbol topology. The dynamics in 
one-sided symbolic dynamics is the action of the (one-sided) shift map S : AN → AN on 
individual symbol sequences x = a0a1a2a3 · · · by

S(x) := a1a2a3a4 · · · . (1.1)

In contrast, two-sided symbolic dynamics (treated in Lind and Marcus [33]) uses the two-
sided shift operator S : AZ → AZ with S((ai)i∈Z) = (bi)i∈Z with bi = ai+1. It focuses on 
sets X ⊆ AZ that are invariant under the (two-sided) shift operator: SX = X. Such sets 
arise as discretizations of continuous dynamical systems such as geodesic flow, and led to 
the original formulation of symbolic dynamics by Morse and Hedlund [39]. In one-sided 
symbolic dynamics on subsets of AN the spaces X can encode initial conditions. Initial 
conditions can break shift-invariance, so it is natural to consider spaces that are stable 
under the shift: SX ⊆ X.

This paper studies the action of decimation and interleaving operations acting on sets 
X in the framework of symbolic dynamics and coding theory. Decimation operations 
are important in digital signal processing and coding theory, and interleaving operations 
form a kind of inverse operation to them, see (1.4).

(1) At the level of individual symbol sequences, the ith decimation operation at level n, 
for i ≥ 0 and n ≥ 1, denoted ψi,n : AN → AN , for an individual symbol sequence 
x = a0a1a2a3 · · · is

ψi,n(x) := aiai+nai+2nai+3n · · · . (1.2)

This operation extracts symbol subsequences having indices in an arithmetic pro-
gression given by i ( mod n), starting at initial index i.

http://creativecommons.org/licenses/by/4.0/
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(2) The n-fold interleaving operation �n : AN × AN × · · · × AN → AN is an n-ary 
operation whose action on n individual symbol sequences xi = ai,0ai,1ai,2 · · · for 
0 ≤ i ≤ n − 1 is defined by

(x0, x1, · · · , xn−1) �→ y := (�n)n−1
i=0 xi = x0�x1� · · ·�xn−1 = b0b1b2 · · · (1.3)

in which the output sequence y := b0b1b2 . . . interleaves the symbols in arithmetic 
progressions of symbol indices ( mod n), so that

bi+jn = ai,j for j ≥ 0, 0 ≤ i ≤ n − 1.

That is, the output y has in its symbol positions i ( mod n) the symbols of xi given 
in order.

Decimation and interleaving operations defined pointwise extend by set union to de-
fine set-valued operations acting on arbitrary subsets X of AN (resp. of (AN)n). For 
examples, see Sections 2.1 and 2.2.

All individual symbol sequences x are constructible as n-fold interleavings of suitable 
decimations:

x = (�n)n−1
i=0 ψi,n(x) for x ∈ AN , (1.4)

see Section 4.1.

1.1. Summary

This paper treats two topics.

1.1.1. The first topic of this paper is the study of algebraic properties of decima-
tion and interleaving operations under composition. The set of all decimation operations 
is closed under composition, and the decimation and shift actions are compatible in 
a sense we describe in Section 3. Decimation operations are closed under composi-
tion.

We define the n-fold interleaving closure X [n] of a set X in Section 2 as X [n] =
(�n)n−1

i=0 ψi,n(X), an operation that combines both decimations and interleavings. We 
show the operation sending X to X [n] is a set-valued closure operation in the Moore 
sense, in particular X ⊆ X [n]. A main result is that interleaving closure operations 
under composition satisfy

(X [m])[n] = (X [n])[m] = X [lcm(m,n)], (1.5)

where lcm(m, n) denotes the least common multiple of m and n. Thus these operations 
are closed under composition, commute under composition, and are idempotent.
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We show X is closed under n-fold interleaving closure, meaning X = X [n], if and 
only if X factorizes as X = (�n)n−1

j=0 Xj under the n-fold interleaving operation for some 
Xj . We study the allowable sets M ⊆ N+ for which there exists some set X that has 
X = X [n] if and only if n ∈ M . That is, letting N (X) = {n : X = X [n]}, we classify the 
sets M ⊆ N+ such that M = N (X) for some X ⊂ AN . We show that if finite, the set 
N (X) consists of the set of all divisors of an integer n0, and all such n0 may occur. A new 
phenomenon is the existence of infinitely factorizable X, which necessarily have X = X [n]

for all n in an infinite distributive sublattice of N+ under the divisibility partial order, 
downward closed under divisibility. We show all such infinite sublattices may occur for 
non-closed X, but if X is closed, we show the only allowed infinite sublattice is N+.

There is an additional algebraic structure consisting of the collection of all operations 
obtained from combining interleaving operations of different arities under composition. 
These form a nonsymmetric operad in the category of sets, and we term it the in-
terleaving nonsymmetric operad. We give a series of universal shuffle identities under 
composition satisfied by this operad. We discuss the operad formalism in Section 2.7
and in Appendix A.

1.1.2. The second topic of this paper is the study of symbolic dynamics aspects 
of decimation and interleaving operations. The shift operation acts compatibly with 
decimations and with n-fold interleaving, and we give commutation identities describing 
its action. The class of shift-invariant sets (those with SX = X) and the class of shift-
stable sets (those with SX ⊆ X) are not preserved under interleaving. We introduce an 
enlarged class of sets better adapted to these operations.

A set X ⊆ AN is said to be weakly shift-stable if there are integers k > j ≥ 0 such that 
SkX ⊆ SjX. The set X need not be a closed set in the symbol topology. We show the 
class of all weakly shift-stable sets, denoted W(A), is closed under the shift and under 
all decimation and interleaving operations, as is the subclass W(A) of all closed sets in 
W(A).

The complexity of a set X can be measured using various notions of the entropy of 
X, which provide invariants that distinguish dynamical systems. The paper [2] studied 
two concepts of entropy for X, the topological entropy Htop(X) and path topological 
entropy Hp(X), which we term here prefix topological entropy. For general X one has 
Hp(X) ≤ Htop(X), and strict inequality may occur. We obtain an inequality relating the 
prefix topological entropy of an n-fold interleaving X = (�n)n−1

i=0 Xi to that of its factors 
Xi:

Hp(X) ≤ 1
n

n−1∑
i=0

Hp(Xi), (1.6)

and strict inequality may occur. A main result is that the class of weakly shift-stable sets 
W(A) has good properties for both entropies; the two entropies are equal and equality 



W.C. Abram et al. / Advances in Applied Mathematics 126 (2021) 102160 5
holds in the interleaving inequality (1.6). In consequence, for weakly shift-stable sets 
X = (�n)n−1

i=0 Xi we obtain a formula for topological entropy under interleaving:

Htop(X) = 1
n

n−1∑
i=0

Htop(Xi).

1.1.3. Most results in this paper apply to general sets X, but for symbolic dynamics 
applications we are most interested in closed sets X in the product topology on AN . 
These satisfy:

(1) If X is a closed set, then all decimations ψi,n(X) are closed sets for i ≥ 0 and 
n ≥ 1.

(2) If X0, X1, · · · , Xn−1 are closed sets, then their n-fold interleaving X = (�n)n−1
i=0 Xi

is a closed set.
(3) Conversely, if X is a closed set and has an n-fold interleaving factorization 

X = (�n)n−1
i=0 Xi, then each Xi is a closed set.

The decimation, interleaving, and shift operations all commute with the topological 
closure operation X �→ X. In consequence all n-fold interleaving closure operations 
commute with topological closure.

Detailed statements of results are made in Section 2. The main results concerning 
properties of n-fold interleaving closure operations of a set X are Theorems 2.10, 2.12
and 2.13. The main results concerning weakly shift-stable sets X are Theorems 2.15 and 
2.20.

1.2. Background

This study was motivated by work on path sets initiated in [2]. Path sets are a class of 
closed sets in AN that forms a generalization of shifts of finite type and of sofic shifts in 
symbolic dynamics, and which also include sets not invariant under the shift map. Path 
sets are described by finite automata, and have an automata-theoretic characterization 
as the closed sets in AN that are the set of all infinite paths in some deterministic Büchi 
automaton. This class includes interesting sets arising in fractal constructions and in 
study of radix expansions in number theory (see [3], [4]) arising from a problem of Erdős 
([20], [31]). The paper [2] considered decimation operations on path sets and showed that 
decimations of path sets are also path sets. The p-adic integers with the p-adic topology 
form a shift space with p-symbols, and interleaving operations on path sets arose in this 
context in [1].

The authors recently studied the action of interleaving operations on path sets, in [5]. 
Interleaving operations already lead to the breaking of shift-invariance even if all sets Xi

used in the interleaving are shift-invariant. The paper [5] shows that the class C(A) of 
all path sets on a finite alphabet A is closed under all interleaving operations.
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This paper obtains results valid for general sets X ⊆ AN , which provide perspective on 
results on path sets proved in [5]. The concept of weakly shift-stable closed sets W(A)
supplies a good generalization of the class C(A) of path sets to more general closed 
sets. The paper [5] shows that all path sets are weakly shift-invariant, which implies 
they are weakly shift-stable. In consequence, the entropy equalities of the present paper 
under weak shift-stability apply to interleaving of path sets. The present paper includes 
examples showing that various finiteness results given in [5] for path sets are not valid 
for general closed sets X ⊆ AN ; see Remark 7.3.

1.3. Related work

Decimation operations play an important role in sampling and interpolation oper-
ations in digital signal processing (“downsampling”), and in multi-scale analysis and 
wavelets (e.g., [16], [29]). Interleaving constructions have been used in coding theory as 
a method for improving the burst error correction capability of a code (cf. [48, Section 
7.5]). They are also considered in formal language theory; see Krieger et al. ([30]). The 
analogue of n-fold interleaving for finite codes is referred to by coding theorists as block 
interleaving of depth n. Decimation and interleaving operators together have been con-
sidered both in cryptography and cryptanalysis (cf. Rueppel [45] and Cardell et al. [10]). 
Since methods of encoding and decoding can be viewed as dynamical processes, it is of 
interest to view these operations in a dynamical context.

1.3.1. There has been prior work on interleaving operations in the automata theory 
literature, typically for finite words. In 1974 Eilenberg [19, Chap. II.3, page 20] introduced 
a notion of internal shuffle product A 

∐
B of two recognizable sets (= regular languages) 

which corresponds to 2-fold interleaving. A more general notion is alphabetic shuffle. The 
shuffle product has been characterized in the context of finite automata by Duchamp et 
al. [18, Sect. 4]. In this paper we are considering such operations on infinite words, which 
differ in nature from the finite word case. For infinite words viewed in an automata-
theoretic context, see Perrin and Pin [40]. We are not aware of prior work studying the 
algebraic structure of interleaving operations in this context.

1.3.2. Regarding dynamics, one-sided shift-stable sets have their dynamics partially 
classified by C�-algebra invariants. The work of Cuntz and Krieger [15] and Cuntz [14]
was seminal in attaching such invariants to topological Markov chains (= two-sided shifts 
of finite type). Carlsen ([11], [12]) attached C∗-algebras to one-sided subshifts and studied 
their properties. Shift-stable sets are studied in the context of partial isometry actions 
and C� algebras attached to them by Dokuchaev and Exel [17]. See Exel [22] for related 
background. One may ask whether there are generalizations of these constructions to 
the class of weakly shift-stable sets introduced in this paper.

1.3.3. In the ongoing development of operad theory and n-categories, interleaving 
operations have recently played a role at a categorical level, see Leinster [32] and Cottrell 
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[13]. General references for operads are Markl, Shnider and Stasheff [35], and more 
recently Loday and Vallette [34] and Bremner and Dotsenko [9] for algebraic operads.

Acknowledgments. We thank the reviewers for helpful comments and references. We 
thank I. Kriz for a discussion on operads. Some work of W. Abram and D. Slonim was 
facilitated by the Hillsdale College LAUREATES program, done by D. Slonim under the 
supervision of W. Abram. Work of J. Lagarias was partially supported by NSF grants 
DMS-1401224 and DMS-1701576, and by a Simons Fellowship in Mathematics Award 
555520 in 2018.

2. Results

We give formal definitions with examples, and then state results.

2.1. Decimation operations

Definition 2.1 (Decimation operations). Let A be a finite alphabet of symbols.

(1) For individual sequences x ∈ AN the i-th decimation operation at level n, denoted 
ψi,n : AN → AN , for i ≥ 0 is defined for x = a0a1a2a3 · · · by

ψi,n(x) := aiai+nai+2nai+3n · · · .

This operation extracts symbol subsequences having indices in an arithmetic progres-
sion given by i (mod n), which starts at initial index i. The principal n-decimations
are those ψi,n with 0 ≤ i ≤ n − 1.

(2) For sets X ⊆ AN the i-th decimation at level n, denoted ψi,n(X), is the set union

ψi,n(X) := {ψi,n(x) : x ∈ X} . (2.1)

Example 2.2. For the alphabet A = {0, 1, 2, 3} consider the sets2

X = {x1 = (01)∞, x2 = (10)∞}, and Y = {y1 = (323)∞, y2 = (332)∞},

containing two periodic infinite words of period 2 and two periodic infinite words of 
period 3, respectively.

The principal 2-decimations of the elements of X are

ψ0,2((01)∞) = 0∞, ψ1,2((01)∞) = 1∞, and ψ0,2((10)∞) = 1∞, ψ1,2((10)∞) = 0∞.

Thus ψ0,2(X) := {0∞, 1∞} and ψ1,2(X) = {1∞, 0∞} = ψ0,2(X).

2 Here x1 = (01)∞ = 010101...
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The principal 2-decimations of the elements of Y are

ψ0,2((323)∞) = (332)∞, ψ1,2((323)∞) = (233)∞, and

ψ0,2((332)∞) = (323)∞, ψ1,2((332)∞) = (332)∞.

We obtain ψ0,2(Y ) := {(332)∞, (323)∞} = Y and ψ1,2(Y ) = {(233)∞, (332)∞} 	= Y .

In Section 3 we show:

(1) The set of all decimation operations are closed under composition. For X ⊆ AN ,

ψj,m ◦ ψi,n(X) = ψi+jn,mn(X).

This identity on subscripts matches an action of the (ax + b)-group on Z.
(2) The shift action is compatible with the decimation action: For X ⊆ AN ,

ψi,n(SX) = ψi+1,n(X)

and

Sψi,n(X) = ψi,n(SnX).

2.2. Interleaving operations

Interleaving operations comprise an infinite collection of n-ary operations (n ≥ 1), 
defined for arbitrary subsets X of the shift space AN .

Definition 2.3 (Interleaving operations). Let A be a finite alphabet of symbols.

(1) For individual sequences xi = ai,0ai,1ai,2 · · · ∈ AN , (0 ≤ i ≤ n − 1), the n-fold 
interleaving operation �n : AN × AN × · · · × AN → AN , denoted either (�n)n−1

i=0 xi

or x0�x1� · · ·�xn−1, combines these sequences by

(x0, x1, · · · , xn−1) �→ x0�x1 · · ·�xn = y

:= (a0,0 a1,0 · · · an−1,0) ◦ (a0,1 a1,1 · · · an−1,1) ◦ (a0,2 · · · ,

where ◦ denotes concatenation of sequences. That is, y = b0b1b2 · · · with

bi+jn = ai,j for 0 ≤ i ≤ n − 1, and j ≥ 0,

so that the symbols of y in symbol positions i ( mod n) are the symbols of xi, (0 ≤
i ≤ n − 1).
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(2) For sets Xi ⊆ AN , (0 ≤ i ≤ n − 1), their n-fold interleaving, denoted (�n)n−1
i=0 Xi or 

X0�X1�X2� · · ·�Xn−1, is defined by the set union:

(�n)n−1
i=0 Xi = {x0�x1� · · ·�xn−1 : xi ∈ Xi for all 0 ≤ i ≤ n − 1}.

A set X = (�n)n−1
i=0 Xi is said to have an n-fold interleaving factorization. The sets Xi

are called n-fold interleaving factors of X, or just interleaving factors. One can express 
n-fold interleavings in terms of principal decimations of level n as: (�n)n−1

i=0 Xi = {x ∈
AN : ψi,n(x) ∈ Xi for all 0 ≤ i ≤ n − 1}; see Proposition 4.1.

Example 2.4. Continuing Example 2.2, the 2-fold interleaving of X with itself is

X�X = {x1�x1, x1�x2, x2�x1, x2�x2}

= {(0011)∞, (0110)∞, (1001)∞, (1100)∞}.

It contains four periodic words of period 4.
The 2-fold interleaving of Y with itself is

Y �Y = {y1�y1, y1�y2, y2�y1, y2�y2}

= {(332233)∞, (332332)∞, (333223)∞, (333322)∞}.

It contains four periodic words of period 6. The 2-fold interleavings of X and Y are

X�Y := {x1�y1, x1�y2, x2�y1, x2�y2}

= {(031203130213)∞, (031302130312)∞, (130213031203)∞, (130312031302)∞.}

Y �X := {y1�x1, y1�x2, y2�x1, y2�x2}

= {(302130312031)∞, (312031302130)∞, (303120313021)∞, (313021303120)∞.},

Each of them contains four periodic words of period 12. We have X�Y 	= Y �X.

A basic relation between interleaving and decimation is an identity, valid at the point-
wise level, stating that ordered n-fold decimations post-composed with n-fold interleaving 
give the identity map:

(�n)n−1
i=0 ψi,n(x) = x for x ∈ AN . (2.2)

For this reason we call the decimations ψi,n for 0 ≤ i ≤ n − 1, the principal decimations. 
The remaining decimations i ≥ n may be obtained by applying the one-sided shift map 
to these decimation sets; see Proposition 3.2.
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2.3. Interleaving closure operations

The interleaving operations together with principal decimations define a family of 
set-theoretic closure operations on general subsets X ⊆ AN . These closure operations 
are a main focus of this paper.

Definition 2.5. The n-fold interleaving closure operation X �→ X [n] is defined for each 
X ⊆ AN by

X [n] := (�n)n−1
i=0 ψi,n(X). (2.3)

Example 2.6. For X = {(10)∞, (01)∞}, the 2-fold interleaving closure X [2] :=
ψ0,2(X)�ψ1,2(X) is

X [2] = {0∞, (01)∞, (10)∞, 1∞}.

We have X � X [2].

Example 2.7 (Interleaving and n-fold interleaving closure). Let A = {0, 1} and let X0 ⊂
AN be the one-sided Fibonacci shift consisting of all words that do not contain the 
pattern 11 in two consecutive digits. Let X1 = AN be the full shift. Then:

(1) X0�X1 ⊂ AN consists of all words that do not contain a 1 in digits i and i + 2 for 
any i even. That is, there can be no 1’s in consecutive even digits, but there are no 
other restrictions on the word. Here X0 and X1 are each invariant under the shift 
operator, i.e., S(Xi) = Xi, but X0�X1 is not shift-invariant.

(2) Interleaving any number of copies of X1 gives X1. That is, (�n)n−1
i=0 X1 = X1 for 

n ≥ 1.
(3) The n-fold interleaving closure of X0 is X1 for all n ≥ 2, that is, X [n]

0 = X1 = AN . 
This holds because ψi,n(X0) = X1 for all i ≥ 0 when n ≥ 2.

(4) Likewise, X [n]
1 = X1 for n ≥ 1. So X1 has n-fold interleavings for all n ≥ 1.

In Section 4.1 we show the existence of an n-fold interleaving factorization of a set 
X corresponds to its invariance under n-fold interleaving closure, and in that case its 
interleaving factors are its principal decimations.

Theorem 2.8 (Decimations and interleaving factorizations).
(1) A subset X of AN has an n-fold interleaving factorization X = X0�X1� · · ·�

Xn−1 if and only if X = X [n].
(2) If X = X0�X1� · · ·�Xn−1 has an n-fold interleaving factorization, then its or-

dered set of n-fold interleaving factors is unique, given by its principal decimations

Xi = ψi,n(X) for 0 ≤ i ≤ n − 1.



W.C. Abram et al. / Advances in Applied Mathematics 126 (2021) 102160 11
Regarding (2), there typically are many sets Y such that ψi,n(Y ) = ψi,n(X) for 
0 ≤ i ≤ n − 1, and we show X contains every such set Y in Theorem 4.2.

In Section 4.2 we justify the name n-fold interleaving closure by showing that X �→
X [n] is a set-theoretic closure operation, as formalized in Grätzer [26, Chap. I, Sect. 
3.12, Defn. 26], and X [n] is characterized as the maximal set Z having the property that 
ψi,n(Z) = ψi,n(X) for 0 ≤ i ≤ n − 1.

In Section 4.3 we establish universal algebraic identities relating certain compositions 
of n-fold interleavings for different n.

Proposition 2.9 (Interleaving shuffle identities). For each m, n ≥ 2 and arbitrary sets 
{Xi : 0 ≤ i ≤ mn − 1} contained in the one-sided shift AN , one has the identity of sets

(�n)n−1
i=0

(
(�m)m−1

j=0 Xi+jn

)
= (�mn)mn−1

k=0 Xk. (2.4)

These identities are termed shuffle identities because the n-fold interleaving operation 
acts like a shuffling of n decks of cards together, taking the top cards in a particular 
order from each of the n decks, where the cards correspond to positions of symbols in 
the expansion.

In Section 4.4 we establish a main result determining the action of composition of 
interleaving closure operations. The shuffle identities play a crucial role in proving this 
result.

Theorem 2.10 (Composition of interleaving closures). For all m, n ≥ 1, and all X ⊆ AN ,

(X [m])[n] = (X [n])[m] = X [lcm(m,n)], (2.5)

where lcm(m, n) denotes the least common multiple of m and n.

In Section 4.5 we show interleaving commutes with intersection:

m−1⋂
j=0

((�n)n−1
i=0 Xjn+i) = (�n)n−1

i=0 (
m−1⋂
j=0

Xjn+i).

In Section 4.6 we determine the action of the shift map on n-fold interleavings and 
interleaving closures. In particular we show that

SX [n] = (SX)[n].

In Section 4.7 we show that the topological closure operation commutes with both 
decimation and interleaving operations. In particular it commutes under composition 
with n-fold interleaving closure:

X
[n] = X [n].
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Thus if X is a closed then its n-fold interleaving closure X [n] is closed.

2.4. Structure of interleaving factorizations

We study the possible structure of the set of all interleaving factorizations of a fixed 
set X ⊆ AN .

Definition 2.11. Let X in AN be a fixed set, with A a finite alphabet.
(1) The interleaving closure set N (X) ⊆ N+ of X is the set of integers

N (X) := {n : n ≥ 1 and X = X [n]}.

(2) The interleaving factor set F(X) consists of all n-ary interleaving factors, Xi,n, 
for all n ∈ N (X), i.e.

F(X) = {ψi,n(X) : n ∈ N (X), 0 ≤ i ≤ n − 1}

(3) The (full) decimation set D(X) consists of all decimations of X.

D(X) = {ψi,n(X) : i ≥ 0, n ≥ 1}.

The principal decimation set Dprin(X) consists of all principal decimations

Dprin(X) := {ψi,n(X) : n ≥ 1, 0 ≤ i ≤ n − 1}.

The interleaving factor set is a subset of the set of all principal decimations: F(X) ⊆
Dprin(X) We always have X ∈ F(X) and 1 ∈ N (X).

An important feature of factorizations is that some X are infinitely factorizable in the 
sense that they have n-fold interleaving factorizations for infinitely many n, i.e. N (X) is 
infinite. The full one-sided shift X = AN on the alphabet A is an example; it has n-fold 
factorizations for all n ≥ 1, and N (AN) = N+, while its interleaving factor set F(AN) =
{AN} contains one element. We term all the remaining ones finitely factorizable. There 
exist closed sets X having infinite N (X) and having an infinite interleaving factor set 
F(X), see Example 6.5.

Theorem 2.12 (Structure of interleaving closure sets). Let N (X) = {n ≥ 1 : X = X [n]}. 
Then N (X) is nonempty and has the following properties.

(1) If n ∈ N (X) and d divides n, then d ∈ N (X).
(2) If m, n ∈ N (X) then their least common multiple lcm(m, n) ∈ N (X).
Conversely, if a subset N ⊆ N+ is nonempty and has properties (1) and (2), then 

there exists X ⊆ AN with N = N (X).
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This result is proved separately in the direct and converse directions as Theorem 5.1
and Theorem 5.3, respectively. A nonempty structure N having properties (1), (2) is 
abstractly characterized as any nonempty subset of N+ that is a sublattice under the 
divisibility partial order, which is also downward closed under divisibility, see 5.1 (3). 
The notion of lattice here is that of G. Birkhoff, see Grätzer [26].

In Section 5.3 we also treat self-interleaving factorizations, which are interleaving 
factorizations in which all factors are identical. For a general set X we define the self-
interleaving closure set

Nself(X) := {n ∈ N : X = (�n)n−1
i=0 Y for some Y ⊆ AN}

as the set of n such that X has an n-fold self-interleaving factorization. We show that the 
sets Nself(X) may have exactly the same allowed forms as the sets N (X) in Theorem 2.12; 
however for individual X the set of values Nself(X) can be strictly smaller than N (X).

In Section 6 we study infinitely factorizable sets X in the special case that X is a 
closed set.

Theorem 2.13 (Classification of infinitely factorizable closed X). For a closed set X ⊆
AN , where A is a finite alphabet, the following properties are equivalent.

(i) X is infinitely factorizable; i.e., N (X) is an infinite set.
(ii) X has an n-fold interleaving factorization for all n ≥ 1; i.e. N (X) = N+.

(iii) For each k ≥ 0 there are nonempty subsets Ak ⊆ A such that X =
∏∞

k=0 Ak is a 
countable product of finite sets with the product topology.

In view of Theorem 2.12, the assumption that X is closed is necessary for these three 
equivalences to hold. The important restriction for closed sets X is that if they are 
infinitely factorizable then N (X) = N+.

In Section 7 we study an iterated interleaving factorization process for a closed set X. 
If X is infinitely factorizable, we “freeze” it. If it is finitely factorizable, we decompose 
it to its maximal factorization, and then repeat the process on each of these factors. We 
show by example that this factorization process can go to infinite depth.

2.5. Shift-stability and weak shift-stability

We consider several classes of sets X having different transformation properties under 
the shift action.

Definition 2.14 (Shift-invariance, shift-stability, weak shift-stability).
(1) A set X ⊆ AN is shift-invariant if SX = X.
(2) A set X is shift-stable if SX ⊆ X.
(3) A set X is weakly shift-invariant if there are k > j ≥ 0 such that SkX = SjX.
(4) A set X is weakly shift-stable if there are k > j ≥ 0 such that SkX ⊆ SjX.
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These definitions do not require the set X to be closed in the symbol topology.
In Section 8 we show consequences of these properties. We show that for shift-invariant 

sets, all interleaving factorizations are self-interleaving factorizations; that is, if X is shift-
invariant, then N (X) = Nself(X). We show that closed shift-stable sets have a forbidden 
blocks characterization paralleling the two-sided shift case. Example 8.5 constructs a 
closed set X giving an infinite, strictly descending chain of sets under iteration of the 
shift map.

An important property introduced here is weak shift-stability. The usefulness of this 
property is that the class W(A) of all weakly shift-stable sets on a finite alphabet A is 
closed under all decimation, interleaving and shift operations. This is not the case for 
properties (1)-(3) above.

Theorem 2.15. Let A be finite alphabet and let X ⊆ AN be a general set.
(1) If X is weakly shift-stable, then all decimations ψj,n(X) for j ≥ 0, n ≥ 1 are 

weakly shift-stable.
(2) If X0, X1, · · · , Xn−1 are weakly shift-stable, then their n-fold interleaving Y :=

(�n)n−1
i=0 Xi is weakly shift-stable.

(3) If X is weakly shift-stable, then its n-fold interleaving closure X [n] is weakly shift-
stable for each n ≥ 1.

A parallel result holds for the class W(A) of all closed weakly shift-stable sets on the 
finite alphabet A. This latter class of sets includes the path sets studied in [2], as shown 
in [5].

2.6. Entropy of interleavings

In Section 9 we study two notions of entropy for general sets X, topological entropy 
and prefix entropy.

Definition 2.16 (Topological entropy). The topological entropy Htop(X) is given by

Htop(X) := lim sup
k→∞

1
k

log Nk(X)

where Nk(X) counts the number of distinct blocks of length k to be found across all 
words x ∈ X.

The topological entropy is defined here as a limsup, however the limit always exists, 
as a consequence of a submultiplicativity property of block counting functions Nk(X), 
which is Nk1+k2(X) ≤ Nk1(X)Nk2(X), see [6, Property 8]. Here log denotes the natural 
logarithm; in information theory log2 is used instead.

We next consider prefix entropy.
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Definition 2.17 (Prefix entropy and stable prefix entropy).
(1) The prefix entropy (or path topological entropy) Hp(X) of a general set X is defined 

by

Hp(X) := lim sup
k→∞

1
k

log N I
k (X), (2.6)

where N I
k (X) counts the number of distinct prefix blocks b0b1 · · · bk−1 of length k found 

across all words x ∈ X.
(2) The limit in (2.6) does not always exist, and we say that X has stable prefix 

entropy if the limit does exist:

Hp(X) := lim
k→∞

1
k

log N I
k (X), (2.7)

The prefix entropy was introduced in [2] under the name path topological entropy for 
a class of sets called path sets. In that paper symbol sequences were labels attached to 
paths of edges in a directed labeled graph. Prefix blocks were termed initial blocks (for 
path sets) because they represented the initial steps along a path in a directed labeled 
graph defining the path set. Since N I

k (X) ≤ Nk(X) we always have Hp(X) ≤ Htop(X), 
and strict inequality may hold.

In Section 9.2 we show the shift map preserves both entropies. Decimation operations 
need not preserve entropy, and Section 9.3 gives inequalities such entropies must satisfy. 
In Section 9.4 we establish an inequality for prefix entropy of interleavings of general 
sets.

Theorem 2.18 (Prefix entropy bound under interleaving). Let X0, X1, · · · , Xn−1 be arbi-
trary subsets of AN . The prefix entropy of the set X = X0�X1� · · ·�Xn−1 is bounded 
above by the arithmetic mean of the prefix entropies of X0, . . . , Xn−1. That is:

Hp(X) ≤ 1
n

n−1∑
i=0

Hp(Xi). (2.8)

Example 9.6 shows that strict inequality in (2.8) may occur.
In Section 9.5 we show that the assumption of stable prefix entropy for each of the 

sets X0, X1, ..., Xn−1 implies equality in this formula, and that the n-fold interleaving 
X = X0� · · ·�Xn−1 itself has stable prefix entropy.

Theorem 2.19 (Stable prefix entropy interleaving formula). If each of the sets X0, X1, ...,
Xn−1 has stable prefix entropy, then the n-fold interleaving X = X0�X1� · · ·�Xn−1
also has stable prefix entropy. In this case

Hp(X) = 1
n

n−1∑
Hp(Xi). (2.9)
i=0
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In contrast to this result for interleaving, decimations of a set X having stable prefix 
entropy need not have stable prefix entropy; see Remark 9.7.

We also deduce in Section 9.5 that all weakly shift-stable sets X have good entropy 
properties.

Theorem 2.20 (Weak shift-stability implies stable prefix entropy). If X is weakly shift-
stable, then X has stable prefix entropy, and in addition Hp(X) = Htop(X). Consequently 
the n-fold interleaving X = X0�X1� · · ·�Xn−1 of weakly-shift stable sets Xi has

Htop(X) = 1
n

n−1∑
i=0

Htop(Xi). (2.10)

Finally, we observe that since all decimations of weakly shift-stable sets are weakly 
shift-stable, they will have stable prefix entropy.

2.7. Composition of interleavings and operad structure

In Section 7 we consider factorizations of a set X under iterated composition of in-
terleavings. We give examples of sets X having iterated factorizations going to infinite 
depth. This behavior differs from interleaving restricted to the class of all path sets on 
the finite alphabet A, as we show in [5] that the iterated factorization of any path set 
terminates at some finite depth.

Abstractly, the family of operations obtained under iterated composition using inter-
leaving operations of all arities determines a non-symmetric operad (also called a non-Σ
operad) in the sense of May [38]; see also Markl et al. [35, Part I, Sect. 1.3] and Markl 
[36, Sect. 1]. Non-symmetric operads arise in many combinatorial constructions, see work 
of Giraudo [24], [25]. Iterated interleaving operations satisfy nontrivial universal iden-
tities under composition, examples being the shuffle identities given in Theorem 2.9. 
These identities show that certain nested compositions of interleaving operations give 
equivalent operations. However most nestings of compositions yield distinct operations. 
In particular, interleaving operations do not satisfy the associative law when acting on 
collections of subsets X of AN . For instance, the 3-ary operations X0�X1�X2 and 
X0�(X1�X2) and (X0�X1)�X2 are all distinct.

Operads in general are characterized as (universal) algebraic objects satisfying a given 
set of universal identities. We shall consider the interleaving non-symmetric operad to 
be the non-symmetric operad whose universal identities are all the identities satisfied on 
the collection of all sets X ⊆ AN with alphabet size |A| = 2. These universal identities 
include the shuffle identities in Theorem 2.9. This set of identities may be a generating 
set for all universal identities for this operad; we leave it as an open question to determine 
a generating set.

In Appendix A we provide details checking the operad structure associated to inter-
leaving.
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2.8. Contents of paper

The contents of the remainder of the paper are as follows:
Section 3 relates decimation operations and shows these operations are closed under 

composition and under the shift operator.
Section 4 studies interleaving operations and the interleaving closure operation X →

X [n] for general sets X ⊆ AN , proving Theorem 2.8 and the shuffle identities.
Section 5 establishes divisibility properties of n-fold factorizations of a closed set X.
Section 6 classifies infinitely factorizable closed sets X. These sets have more restricted 

factorizations than non-closed sets.
Section 7 studies iterated interleaving factorizations of closed sets X. It shows by 

example that such iterated factorizations can continue to infinite depth.
Section 8 studies shift-stability and weak shift-stability of sets X ⊆ AN . It gives 

a forbidden-blocks characterization of shift-stable closed sets. It shows that the class 
of weakly shift-stable sets is closed under all decimation and interleaving opera-
tions.

Section 9 defines and discusses topological entropy and prefix (topological) entropy, 
proving Theorems 2.18 through 2.20.

Section 10 discusses further directions for research.
Appendix A studies an operad structure generated by interleaving operations.

3. Decimations of arbitrary subsets of AN

This section studies decimations and interleaving for subsets X ⊆ AN . All results in 
this section apply to arbitrary subsets X of AN .

3.1. Compositions of decimations

The set of all decimation operators is closed under composition of operators. This 
composition action is a representation of the discrete ax + b semigroup given by the 
nonnegative integer matrices 

[
a b
0 1

]
with a ≥ 1 and b ≥ 0.

Proposition 3.1 (Composition of decimations). Let X ⊆ AN be an arbitrary set. For all 
j, k ≥ 0 and m, n ≥ 1 we have

ψj,m ◦ ψk,n(X) := ψj,m(ψk,n(X)) = ψjn+k,mn(X). (3.1)

Proof. The result is verified separately for each element x = x0x1x2 · · · ∈ X. We set 
y := ψk,n(x) = xkxk+nxk+2nxk+3n · · · where y = y0y1y2 · · · has yj = xk+jn. Now

ψj,m ◦ ψk,n = ψj,m(y) = yjyj+myj+2myj+3m · · ·

giving
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yjyj+myj+2myj+3m · · · = xk+jnxk+jn+mnxk+jn+2mn = ψjn+k,mn(x),

as asserted. �
3.2. Decimations and the shift

The decimation operations also transform nicely under the one-sided shift
S(a0a1a2...) = a1a2a3 · · · .

Proposition 3.2 (Shift of decimations). Let X ⊆ AN be an arbitrary set.
(1) For all j ≥ 0 and m ≥ 1, the one-sided shift S acts as

ψj,m(SX) = ψj+1,m(X). (3.2)

(2) In addition

S(ψj,m(X)) = ψj+m,m(X) = ψj,m(SmX). (3.3)

Proof. (1) For a single element x ∈ X, (3.2) is equivalent to the assertion

ψj,m(Sx) = ψj,m(S(x0x1x2 · · · )) = ψj,m(x1x2x3 · · · )

= xj+1xm+(j+1)x2m+(j+1) · · · = ψj+1,m(x).

(2) For x ∈ X we have

S(ψj,m(x)) = S(xjxj+mxj+2m · · · ) = xj+mxj+2m · · · = ψj+m,m(x) = ψj,m(Smx),

where the last equality used (1) iterated m times. �
4. Interleaving for arbitrary subsets of AN

4.1. Interleaving and decimation

Interleaving operations can be characterized in terms of the principal decimations of 
their output. The criterion (2) below could be used as an alternate definition of n-fold 
interleaving of sets.

Proposition 4.1 (Decimation characterization of interleavings).
(1) Every x ∈ AN has an n-fold interleaving factorization x = (�n)n−1

i=0 xi for all 
n ≥ 1. This factorization is unique, with xi = ψi,n(x) (0 ≤ i ≤ n − 1), so that

x = ψ0,n(x)�ψ1,n(x)� · · ·�ψn−1,n(x) = (�n)n−1
i=0 ψi,n(x). (4.1)
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(2) If X ⊆ AN has an n-fold interleaving factorization X = (�n)n−1
i=0 Xi, then

X = {x ∈ AN : ψi,n(x) ∈ Xi for all 0 ≤ i ≤ n − 1}. (4.2)

This factorization is unique with Xi = ψi,n(X) (0 ≤ i ≤ n − 1), so that

X = ψ0,n(X)�ψ1,n(X)� · · ·�ψn−1,n(X) = (�n)n−1
i=0 ψi,n(X). (4.3)

Proof. The identity (4.1) is immediate from the definition of interleaving product, check-
ing it symbol by symbol. This n-fold interleaving factorization of x is unique because if 
x = (�n)n−1

i=0 xi, then the (i + kn)th symbol of x is by definition the kth symbol of xi, 
so that each symbol of xi is determined by a symbol of x.

(2) Let X = X0�X� · · ·�Xn−1. By definition

X = {x ∈ AN : x = (�n)n−1
i=0 xi, with xi ∈ Xi for all 0 ≤ i ≤ n − 1}

= {x ∈ AN : ψi,n(x) = xi, with xi ∈ Xi for all 0 ≤ i ≤ n − 1}
= {x ∈ AN : ψi,n(x) ∈ Xi for all 0 ≤ i ≤ n − 1},

which is (4.2); we used (1) to deduce the second equality.
To show (4.3), it suffices to show ψi,n(X) = Xi. We have ψi,n(X) ⊆ Xi by (4.2). To 

show the map is onto, for any xi we can pick arbitrary xj ∈ Xj for j 	= i and then (1) 
implies that x := (�n)n−1

j=0 xj ∈ Z has ψi,n(x) = xi, as required. �
We deduce Theorem 2.8 from the proposition.

Proof of Theorem 2.8. (1) We are to show X has an interleaving factorization if and 
only if X = X [n]. Suppose X = X [n]. By definition X [n] = ψ0,n(X)� · · ·�ψn−1,n(X)
has an interleaving factorization, so X does too. Conversely if X = X0�X1� · · ·�Xn−1
is an interleaving factorization then by Proposition 4.1 (2) Xi = ψi,n(X) whence X [n] =
X0�X1� · · ·�Xn−1 = X.

(2) This is Proposition 4.1 (2). �
4.2. n-fold interleaving closure operations

We show that the family of closure operations X → X [n] on sets X ⊆ AN commutes 
with topological closure, and the equality X = X [n] corresponds to X having an n-fold 
interleaving factorization.

The following result shows this operation is a closure operation in the set-theoretic 
sense.

Theorem 4.2 (Properties of n-fold interleaving closure). The n-fold interleaving closure 
operation X [n] of sets X ⊆ AN has the following properties:
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(1) (Projection property) The n-fold interleaving closure X [n] is characterized by the 
property that it is the maximal set Z such that its principal decimations at level n
satisfy

ψi,n(Z) = ψi,n(X) for 0 ≤ i ≤ n − 1. (4.4)

(2) (Extension property) Any set X ⊆ AN satisfies

X ⊆ X [n]. (4.5)

(3) (Idempotent property) The operation X �→ X [n] is idempotent; i.e., (X [n])[n] = X [n]

for all X.
(4) (Isotone property) If X ⊆ Y then X [n] ⊆ Y [n].

Remark 4.3 (Set theory closure property). Properties (2), (3), and (4) comprise the 
axioms of a Moore closure property (see Schechter [46, Sec. 4.1-4.12]). These axioms 
are known to be equivalent to the property of being closed under arbitrary intersec-
tions. The n-fold interleaving closure operation does not satisfy all of Kuratowski’s 
axioms defining the closed sets of a topology; it does not satisfy the set union prop-
erty (X ∪ Y )[n] = X [n] ∪ Y [n]. It does satisfy the inclusion

X [n] ∪ Y [n] ⊆
(
X ∪ Y

)[n]
. (4.6)

As an example showing the inclusion can be strict, take X = X [2] = {0∞}, Y = Y [2] =
{1∞}. Then X [2] ∪ Y [2] �

(
X ∪ Y

)[2] = {0∞, 1∞, (01)∞, (10)∞}. Relations between the 
interleaving closure operations and topological closure in AN are given in Section 4.7.

Proof. (1) If a collection of sets each have property (4.4) then so does their union, and 
X has property (4.4), so there exists a maximal set Z with property (4.4). By definition

X [n] := ψ0,n(X)�ψ1,n(X)� · · ·�ψn−1,n(X)

Then by Proposition 4.1(2),

X [n] = {z ∈ AN : ψi,n(z) ∈ ψi,n(X) for all 0 ≤ i ≤ n − 1} (4.7)

The statement ψi,n(Z) = ψi,n(X) means that ψi,n(z) ∈ ψi,n(X) for all z ∈ Z. From 
(4.7), one sees that Z = X [n] is precisely the maximal set such that (4.4) holds for all 
0 ≤ i ≤ n − 1.

(2) It follows from (1). Alternatively, by Proposition 4.1(1) given x ∈ X we have

x = ψ0,n(x)�ψ1,n(x)� · · ·�ψn−1,n(x) ∈ ψ0,n(X)�ψ1,n(X)� · · ·�ψn−1,n(X),

which certifies x ∈ X [n], proving (4.5).
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(3) Idempotence follows from (1) and (2): By (1) X [n] is the maximal set having 
ψi,n(X [n]) ⊆ ψi,n(X) holds for 0 ≤ i ≤ n − 1. Now by (2) (X [n])[n] contains X [n]. But 
ψi,n((X [n])[n]) ⊆ ψi,n((X [n]) ⊆ ψi,n(X) for 0 ≤ i ≤ n − 1, so it is also maximal, so 
(X [n])[n] = X [n].

(4) Suppose that X ⊆ Y . Using the projection property (2) for X and Y separately 
shows

ψi,n(Y [n] ∪ X [n]) = ψi,n(Y [n]) ∪ ψi,n(X [n]) = ψi,n(Y ) ∪ ψi,n(X)

= ψi,n(Y ) = ψi,n(Y [n]) 0 ≤ i ≤ n − 1.

The projection property now gives Y [n] ∪ X [n] ⊆ Y [n], whence X [n] ⊆ Y [n]. �
4.3. Shuffle identities for interleaving operators

The family of interleaving operations satisfy universal algebraic identities under par-
ticular compositions of operations, acting on general subsets of AN . We now prove 
Proposition 2.9, which asserts

(�n)n−1
i=0

(
(�m)m−1

j=0 Xi+jn

)
= (�mn)mn−1

k=0 Xk. (4.8)

One reads the interleaving of interleavings on the left side of (4.8) as

(X0�Xn� · · ·�X(m−1)n)�(X1�Xn+1� · · ·�X(m−1)n+1)� · · ·
· · ·�(Xn−1�X2n−1� · · ·�Xmn−1),

with parentheses indicating composition of m-fold interleavings given as input to an 
n-fold interleaving. The right side of (4.8) is an mn-fold interleaving,

X0�X1�X2� · · ·�Xn−1�Xn�Xn+1� · · ·� · · ·�X(m−1)n+n−2�X(m−1)n+n−1, (4.9)

with factors taken in linear order.

Proof of Proposition 2.9. Using Proposition 4.1(2) we obtain

(�n)n−1
i=0

(
(�m)m−1

j=0 Xi+jn

)
= {x ∈ AN : ψi,n(x) ∈ (�m)m−1

j=0 Xi+jn for all 0 ≤ i ≤ n − 1}
= {x ∈ AN : ψj,m (ψi,n(x)) ∈ Xi+jn for all 0 ≤ j ≤ n − 1, 0 ≤ i ≤ n − 1}
= {x ∈ AN : ψi+jn,mn(x) ∈ Xi+jn for all 0 ≤ j ≤ n − 1, 0 ≤ i ≤ n − 1}
= (�mn)mn−1

k=0 Xk.

Proposition 4.1(2) gives the first, second and fourth equality and Proposition 3.1 the 
third equality. �
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Shuffle identities are useful in studying self-interleavings of sets X.

Definition 4.4. Give X ⊆ AN let X(�n) denote the n-fold self-interleaving defined by

X(�n) := (�n)n−1
i=0 X = X�X� · · ·�X (n factors in product).

The special case of self-interleaving under composition satisfies identities similar to 
that of exponentiation, a consequence of the shuffle identities.

Proposition 4.5 (Composition of self-interleavings). For any natural numbers m, n ≥ 1, 
and any subset X of AN , the following set-theoretic identity holds for n-fold, m-fold and 
mn-fold self-interleaving:

(X(�n))(�m) = (X(�m))(�n) = X(�mn). (4.10)

Proof. In Theorem 2.9 choose all Xk = X for 0 ≤ k ≤ mn −1 and obtain (X(�m))(�n) =
X(�mn). Then interchange m and n. �
4.4. Composition identities for interleaving closure operations

We prove Proposition 2.10 determining the composition of self-interleaving closure 
operations: (X [m])[n] = (X [n])[m] = X [lcm(m,n)].

We first establish a preliminary result giving formulas and inclusions for compositions 
of interleaving closure operations.

Proposition 4.6 (Composition formulas). (1) For all m, n ≥ 1, and all X ⊆ AN ,

(X [m])[n] = (�n)n−1
i=0 ψi,n(X [m]). (4.11)

(2) For all m, n ≥ 1, and all X ⊆ AN ,

X [mn] = (�n)n−1
i=0 (ψi,n(X)[m]). (4.12)

(3) For all m, n ≥ 1

X [m] ⊆ X [mn]. (4.13)

(4) If gcd(m, n) = 1 then

(X [m])[n] = (X [n])[m] = X [mn]
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Proof. (1) This assertion is the definition of the n-fold interleaving closure of X [m].
(2) We set Xk := ψk,mn(X) for 0 ≤ k ≤ mn − 1 in the shuffle identity (2.4), obtaining

X [mn] = (�n)n−1
i=0
(
(�m)m−1

j=0 ψi+jn,mn(X)
)

The right side of this equation contains terms Zi := (�m)m−1
j=0 ψi+jn,mn(X), and we must 

show Zi = ψi,n(X)[m]. We have

ψi,n(X)[m] :=
(

ψ0,m ◦ ψi,n(X)
)
�
(

ψ1,m ◦ ψi,n(X)
)
� · · · �

(
ψm−1,m ◦ ψi,n(X)

)
= ψi,mn(X) � ψi+n,mn(X) � · · · � ψi+(m−1)n,mn(X) = Zi,

as required.
(3) We have X [m] ⊆ (X [m])[n] by the extension property of n-fold interleaving. We 

claim that

(X [m])[n] ⊆ X [mn]. (4.14)

To prove the claim, comparing the now proved (4.11) and (4.12), it suffices to show

ψi,n(X [m]) ⊆ ψi,n(X)[m] for 0 ≤ i ≤ n − 1. (4.15)

For fixed i, the right side of this inclusion is an m-fold interleaving

ψi,n(X)[m] =
(
ψ0,m ◦ ψi,n(X)

)
�
(
ψ1,m ◦ ψi,n(X)

)
� · · · �

(
ψm−1,m ◦ ψi,n(X)

)
The composition rule for decimations (Proposition 3.1) shows that

ψi,n(X)[m] = ψi,mn(X)�ψi+n,mn(X)� · · ·�ψi+(m−1)n,mn(X). (4.16)

To evaluate the left side of the inclusion (4.15), suppose x = ψi,n(z) ∈ ψi,n(X [m])
with z ∈ X [m]. Now by Proposition 4.1 (1), x has an m-fold interleaving factorization

x = (�m)m−1
j=0 wj = w0�w1� · · ·�wm−1,

where

wj = ψj,m(x) = ψj,m(ψi,n(z)) = ψi+jn,mn(z).

Therefore

x = ψi,n(z) = (�m)m−1
j=0 ψi+jn,mn(z) = ψi,mn(z)�ψi+n,mn(z)� · · ·�ψi+(m−1)n,mn(z).

(4.17)
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We are to show x ∈ ψi,n(X)[m]. It suffices to show

ψi+jn,mn(z) ∈ ψi+jn,mn(X) for 0 ≤ j ≤ m − 1, (4.18)

since (4.17) then asserts x ∈ (�m)m−1
j=0 ψi+jn,mn(X) whence (4.16) shows x ∈ ψi,n(X)[m].

To show (4.18), any z ∈ X [m] has, for 0 ≤ k ≤ m − 1,

ψk,m(z) ∈ ψk,m(X [m]) = ψk,m(X),

where the equality of sets holds by definition of m-fold interleaving. Thus there exists 
some z̃k ∈ X with ψk,m(z) = ψk,m(z̃k). Now for 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1, there 
exist unique (k, �) satisfying

i + jn = k + �m, (4.19)

with 0 ≤ k ≤ m −1, 0 ≤ � ≤ n −1. Here k = k(i, j) is determined by k ≡ i +jn ( mod m). 
We have

ψi+jn,mn(z) = ψk+�m,mn(z) = ψ�,n(ψk,m(z))

= ψ�,n(ψk,m(z̃k)) = ψk+�m,mn(z̃k)

= ψi+jn,mn(z̃k) ∈ ψi+jn,mn(X),

showing (4.18).
(4) It suffices to show (X [m])[n] = X [mn] if gcd(m, n) = 1; interchanging m and n

then gives the other case. The proof of (3) showed that (X [m])[n] ⊆ X [mn] holds (with 
no gcd restriction), so it suffices to show the reverse inclusion X [mn] ⊆ (X [m])[n]. By the 
already proved (4.11) and (4.12) this assertion is

X [mn] = (�n)n−1
i=0 (ψi,n(X)[m]) ⊆ (�n)n−1

i=0 (ψi,n(X [m])) = (X [m])[n]. (4.20)

It therefore suffices to prove the individual set inclusions

ψi,n(X)[m] ⊆ ψi,n(X [m]) for 0 ≤ i ≤ n − 1, (4.21)

hold when gcd(m, n) = 1.
Now suppose we are given an arbitrary x ∈ ψi,n(X)[m]. We wish to show x ∈

ψi,n(X [m]). To begin, x has an m-fold interleaving factorization

x = (�m)m−1
j=0 ψj,m(xj),

in which each xj = ψi,n(zj) ∈ ψi,n(X) with zj ∈ X. Thus we have

ψj,m(xj) = ψj,m(ψi,n(zj)) = ψi+jn,mn(zj). (4.22)
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As in (3) there are (k, �) with

ψi+jn,mn(zj) = ψk+�m,mn(zj) = ψ�,n(ψk,m(zj)).

Here, for fixed i, the value k = k(i, j) is given by k ≡ i + jn ( mod m). The values 
k(i, j) are all distinct as j ranges from 0 to m − 1 with i fixed, because gcd(m, n) = 1. It 
follows that the inverse map j = j(i, k) is well defined. By definition of m-fold interleaving 
closure, there will exist a value z ∈ X [m] having

ψk,m(z) = ψk,m(zj) for 0 ≤ k ≤ m − 1, (4.23)

with zj ∈ X and j = j(i, k) runs over all 0 ≤ j ≤ m − 1 as k varies.
We claim that ψi,n(z) = x. We have

ψi,n(z) = (�m)m−1
j=0 ψi+jn,mn(z) by (4.17)

= (�m)m−1
j=0 ψk(i,j)+�(i,j)m,mn(z) by (4.19)

= (�m)m−1
j=0 ψ�(i,j),n(ψk(i,j),m(z))

= (�m)m−1
j=0 ψ�(i,j),n(ψk(i,j),m(zj)), by (4.23).

Now we simplify and obtain

ψi,n(z) = (�m)m−1
j=0 ψk(i,j)+�(i,j)m,mn(zj))

= (�m)m−1
j=0 ψi+jn,mn(zj) = (�m)m−1

j=0 ψj,m(xj) by (4.22)

= x,

so x ∈ ψi,n(X [m]). �
We now prove the Theorem 2.10 formulas for composition of interleaving closures.

Proof of Theorem 2.10. It suffices to prove (X [m])[n] = X [lcm(m,n)], because its right 
side is symmetric in m and n; we may then exchange m and n to establish (X [n])[m] =
X [lcm(m,n)]. We have already proven (X [m])[n] = X [mn] for the case gcd(m, n) = 1 in 
Proposition 4.6.

For general n, m we let d = gcd(m, n), the greatest common divisor. One can always 
find e, f with d = ef such that e|m and f |n and gcd(m

e , nf ) = 1. To see this, let d =∏
p pe(p,d) denote the prime factorization of d; then the choice e =

∏
pe(p,d)||m pe(p,d) and 

f =
∏

pe(p,d)+1|m pe(p,d) will work. Note that if pe(p,d)+1|m, then necessarily pe(p,d)||n, so 
that f |n. By construction, e|m, ef = d, and gcd(m

e , nf ) = 1.
We then have

X [lcm(m,n)] = X [mn/ef ] = (X [m/e])[n/f ] ⊆ (X [m/e])[n] ⊆ (X [m])[n].
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Reading from left to right the second equality comes from Proposition 4.6 (4), the first 
inclusion follows from Proposition 4.6(3), and the final inclusion follows from the isotone 
property (4) in Theorem 4.2.

It remains to show that

(X [m])[n] ⊆ X [lcm(m,n)].

Now let d = gcd(m, n), so that � = lcm(m, n) = mn
d . By Proposition 4.6(1) we have 

(X [m])[n] = (�n)n−1
i=0 ψi,n(X [m]) (without any gcd restriction).

Now consider x = x0�x1� · · ·�xn−1 ∈ (X [m])[n], and write x = b0b1b2 · · · . Here for 
0 ≤ i ≤ n − 1,

xi := ψi,n(x) = bibi+nbi+2nbi+3n · · · .

We are to show that x ∈ X [lcm(m,n)]. To begin, we have

xi = ψi,n(zi,0�zi,1� · · ·�zi,m−1) ∈ ψi,n(X [m]),

where each zi,j ∈ ψj,m(X) for 0 ≤ j ≤ m − 1, so that

zi,j = ψj,m(wi,j) with wi,j ∈ X.

Because gcd(m, n) = d, the application of ψi,n(·) to zi = (�m)m−1
j=0 zi,j ∈ X [m] only 

hits those words zi,j having subscripts j falling in m
d different residue classes ( mod m), 

and it visits each such class exactly d times, as j varies over 0 ≤ j ≤ m − 1. These m
d

classes ( mod m) comprise distinct residue classes ( mod m
d ), again because gcd(m, n) =

d. These classes are exactly i + jn ( mod m
d ) for 0 ≤ j ≤ m

d − 1. We can therefore 
rewrite xi = yi,0�yi,1� · · ·�yi, m

d −1 with yi,j = bi+jnbi+jn+mn/dbi+jn+2mn/d · · · for 
0 ≤ j ≤ m

d − 1. We have lcm(m, n) = mn
d different elements yi,j ∈ ψk, m

d
(X). The key 

point is that for k = i + jn we have

yi,j = ψi+jn ( mod m/d),m/d(wi+jn) ∈ ψk, m
d

(X) for 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m

d
− 1.

Here k = i + jn varies over the interval 0 ≤ k ≤ mn
d − 1. Consequently,

x = (�n)n−1
i=0 xi = (�n)n−1

i=0

(
(�m/d)m/d−1

j=0 yi,j

)
= (�mn

d
)mn/d−1
k=0 ψk, mn

d
(wk)

)
,

where the last equality uses the shuffle identity (2.4). We also find that k = i + jn

runs through the residue classes ( modmn/d) in the correct order. We conclude that 
x ∈ X [mn/d] = X [lcm(m,n)], establishing the desired inclusion. �
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4.5. Interleaving commutes with set intersection

Interleaving also behaves well with respect to intersection.

Proposition 4.7 (Interleaving commutes with intersection). For m, n ≥ 2 and subsets 
X0, X1, · · · , Xmn−1 of AN , the following set-theoretic identity holds:

m−1⋂
j=0

((�n)n−1
i=0 Xjn+i) = (�n)n−1

i=0 (
m−1⋂
j=0

Xjn+i). (4.24)

Proof. By Proposition 4.1 (2), we have x ∈ Zj := (�n)n−1
i=0 Xjn+i if and only if ψi(x) ∈

Xjn+i for 0 ≤ i ≤ n − 1. Consequently:

x ∈
m−1⋂
j=0

((�n)n−1
i=0 Xjn+i) ⇔ ψi(x) ∈ Xjn+i for 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1

⇔ ψi(x) ∈
m−1⋂
j=0

Xjn+i for 0 ≤ i ≤ n − 1

⇔ x ∈ (�n)n−1
i=0 (

m−1⋂
j=0

Xjn+i),

verifying (4.24). �
Corollary 4.8. Let X, Y ⊆ AN . Then their n-fold interleaving closures satisfy

X [n] ∩ Y [n] = Z [n] (4.25)

where Z := (�n)n−1
i=0
(
ψi,n(X) ∩ ψi,n(Y )

)
= Z [n].

Proof. In Proposition 4.7 take m = 2 and n ≥ 2 and choose Xi = ψi,n(X) and Xn+i =
ψi,n(Y ) for 0 ≤ i ≤ n − 1. The left side of (4.24) is X [n] ∩ Y [n] and the right side is 
Z. Here Z = Z [n] holds because Z is defined as an n-fold interleaving of ψi,n(Z) :=
ψi,n(X) ∩ ψi,n(Y ) by construction. (In general ψi,n(X ∩ Y ) ⊆ ψi,n(X) ∩ ψi,n(Y ), so that 
(X ∩ Y )[n] ⊆ Z [n], and strict inequality can hold.) �
Remark 4.9 (Intersection of general interleaving closures). For intersection of two inter-
leaving closures of different arities of a single set X we have, for all m, n ≥ 1,

X [gcd(m,n)] ⊆ X [m] ∩ X [n]. (4.26)

Equality always holds trivially when m = n, but need not hold when m 	= n. As an 
example, for m = 2, n = 3 take X = {x1, x2, x3} = {(010100)∞, (111111)∞, (110111)∞}. 
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Then (01)∞ is contained in both X [2] via the 2-fold interleaving ψ0,2(x1)�ψ1,2(x2), and 
X [3] via the 3-fold interleaving ψ0,3(x1)�ψ1,3(x1)�ψ2,3(x3). We conclude X � X [2] ∩
X [3]. Note this example is closed and weakly shift-stable, having S6X = X.

4.6. Shift action on interleavings

The one-sided shift map acts as

S(a0a1a2a3 · · · ) = a1a2a3a4 · · · .

We show the one-sided shift S action preserves the property of having an n-fold inter-
leaving factorization.

Proposition 4.10 (Interleaving and the shift map). Suppose that X has an n-fold inter-
leaving factorization X = X0�X1� · · ·�Xn−2�Xn−1.

(1) The one-sided shift map S acts by

S(X) = X1�X2� · · ·�Xn−1�S(X0). (4.27)

Consequently

Sn(X) = S(X0)�S(X1)� · · ·�S(Xn−2)�S(Xn−1). (4.28)

(2) All iterates Sk(X) possess n-fold interleaving factorizations

Sk(X) = ψk,n(X)�ψk+1,n(X)� · · ·�ψk+n−1,n(X).

Proof. (1), (2). It suffices to prove (4.27). The other assertion in (1) and assertion (2) 
then follow easily by induction on k ≥ 1.

To begin, for all infinite words x ∈ AN we have

ψj,n(Sx) = ψj+1,n(x) for all j ≥ 0. (4.29)

By Theorem 2.8(2) we have Xi = ψi,n(X) for 0 ≤ i ≤ n − 1. We set Xn = ψn,n(X). By 
Proposition 3.2 (2),

ψn,n(X) = ψ0,n(SnX) = Sψ0,n(X) = S(X0). (4.30)

We assert S(X) = X1�X2� · · ·�Xn−1�S(X0). We have the inclusion

S(X) ⊆ (�n)n−1
i=0 ψi,n(S(X)) = (�n)n−1

i=0 ψi+1,n(X) = (�n)n
i=1Xi.

To show the opposite inclusion

X1�X2� · · ·�Xn−1�S(X0) ⊆ SX,
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let y = y1�y2� · · ·�yn ∈ X1�X2� · · ·�Xn; then yi ∈ Xi for 1 ≤ i ≤ n. For yn ∈ Xn

by definition there exists x ∈ X such that ψ0,n(x) = x0 ◦ yn ∈ X0, for some x0, where 
x0 ◦yn denotes the concatenation of the letter x0 and the infinite word yn. By the n-fold 
factorization hypothesis on X one may choose this x so that also ψi,n(x) = yi holds for 
1 ≤ i ≤ n − 1. Now one checks using (4.29) that

ψi,n(S(x)) = yi+1 for 0 ≤ i ≤ n − 1. �
Proposition 4.11 (Shift map and n-fold interleaving closure). The shift map commutes 
with n-fold interleaving closure. For each n ≥ 1, and a general set X ⊆ AN , there holds

S(X [n]) = (SX)[n]. (4.31)

Proof. By definition the n-fold interleaving closure X [n] has an n-fold interleaving fac-
torization. We have

S(X [n]) = S (ψ0,n(X)�ψ1,n(X)� · · ·�ψn−2,n(X)�ψn−1,n(X))

= ψ1,n(X)�ψ2,n(X)� · · ·�ψn−1,n(X)�Sψ0,n(X)

= ψ1,n(X)�ψ2,n(X)� · · ·�ψn−1,n(X)�ψn,n(X) = (SX)[n].

Here the second equality comes from Proposition 4.10 (1), the third comes from (4.30), 
and the fourth comes from the definition of interleaving closure and the fact that by 
Proposition 3.2 (1), ψi,n(X) = ψi−1,n(SX), i = 1, . . . , n. �
4.7. Topological closure

Decimation and interleaving operations and the shift operation all commute with 
topological closure in AN .

Theorem 4.12. Given a subset X of AN , let X denote its topological closure in the shift 
topology (product topology) in AN.

(1) For each n ≥ 1 and j ≥ 1,

ψj,n(X) = ψj,n(X).

In particular if X is a closed set in AN then each decimation Xj,n = ψj,n(X) is a closed 
set.

(2) For X0, X1, . . . , Xn−1 ⊆ AN , there holds

(�n)n−1
j=0 Xj = (�n)n−1

j=0 Xj .

In particular the n-fold interleaving of closed sets is a closed set.
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(3) The n-fold interleaving closure operation commutes with the closure operation on 
the product topology on AN,

(X)[n] = X [n].

(4) The shift operator commutes with topological closure,

SX = SX.

Proof. (1) Given y ∈ ψj,n(X), there is a symbol sequence x = x0x1x2 · · · ∈ X such 
that ψj,n(x) = y. Then there is a sequence (of symbol sequences) (xk)k≥1, with each 
xk = x0,kx1,kx2,k · · · ∈ X, converging to x (Convergence is defined by eventual stability 
of each symbol x�,k as k → ∞, with x�,k = x� for all sufficiently large k). It is easy 
to see that if xk → x, then necessarily ψj,n(xk) → ψj,n(x) = y, with each ψj,n(xk)
in ψj,n(X), so that y ∈ ψj,n(X). Thus, ψj,n(X) ⊆ ψj,n(X). On the other hand, let 
y ∈ ψj,n(X). Then there is a sequence (yk)k≥1 in ψj,n(X) converging to y. So there 
is a sequence (xk)k≥1 in X, with each ψj,n(xk) = yk. Since closed sets are compact 
in AN , there exists a convergent subsequence (xki

)i≥1 of the xk, having limit x ∈ X. 
Then ψj,n(xki

) → ψj,n(x) as r → ∞, but we also have ψj,n(xki
) = yki

→ y. Hence 
y = ψj,n(x) ∈ ψj,n(X). Thus ψj,n(X) ⊆ ψj,n(X), so equality holds.

(2) Let x ∈ (�n)n−1
j=0 Xj . Then for each 1 ≤ j ≤ n, ψi,n(x) ∈ Xj , and so there 

is a sequence (xj,k)k≥1 in Xj converging to each ψj,n(x). Since there are only n of 
these sequences, the convergence is uniform across all of them, and so ((�n)n−1

j=0 xj,k)k≥1

converges to (�n)n−1
j=0 ψj,n(x) = x. But each of the (�n)n−1

j=0 xj,k is in (�n)n−1
j=0 Xj . Hence 

x ∈ (�n)n−1
j=0 Xj . This gives us (�n)n−1

j=0 Xj ⊆ (�n)n−1
j=0 Xj . For the opposite inclusion, 

let x ∈ (�n)n−1
j=0 Xj . Then there is a sequence (xk)k≥1 in (�n)n−1

j=0 Xj converging to x. 
Each xk therefore has ψj,n(xk) ∈ Xj for 0 ≤ j ≤ n − 1. By compactness of X0, there 
must be a subsequence of the k along which ψ0,n(xk) converges to some y0 ∈ X0, 
a subsequence of this subsequence along which ψ1,n(xk) converges to some y1 ∈ X1, 
and so on. We ultimately obtain a subsequence along which ψj,n(xk) converges to some 
yj ∈ Xj for all 0 ≤ j ≤ n − 1. Along this subsequence, xk = (�n)n−1

j=0 ψj,n(xk) converges 
to (�n)n−1

j=0 yj . Since xk converges to x, we have x = (�n)n−1
j=0 yj ∈ (�n)n−1

j=0 Xj . Hence 

(�n)n−1
j=0 Xj ⊆ (�n)n−1

j=0 Xj , and equality holds.
(3) This follows from the first two parts and the definition of the n-fold interleaving 

closure operation.
(4) Given y ∈ SX, we have y = Sx for some x ∈ X, and there is a sequence (xk)k≥1

in X converging to x. Then the sequence yk := Sxk ∈ SX converges to y, so y ∈ SX, 
and we have SX ⊆ SX. Take now y ∈ SX, and yk ∈ SX converging to y. By definition 
of SX there exists xk ∈ X with Sxk = yk. Since the alphabet A is finite, infinitely many 
of the xk have a fixed letter a0 as initial symbol. These define a subsequence (xki

)i≥1

that converges to a limit word x ∈ X, and necessarily Sx = y. Thus SX ⊆ SX. �
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5. Interleaving factorizations and divisibility

We classify the possible values of n in n-fold interleaving factorizations for different n
of arbitrary subsets X ⊆ AN .

5.1. Divisibility for interleaving factorizations

Theorem 5.1 (Divisibility structure for interleaving factorizations). For a set X let 
N (X) = {n : X = X [n]}.

(1) If n ∈ N (X) and d divides n, then d ∈ N (X).
(2) If m, n ∈ N (X) then their least common multiple lcm(m, n) ∈ N (X).
(3) The interleaving closure set N (X) of X has the structure of a distributive lattice 

with respect to the divisibility partial order, being closed under the join operation (least 
common multiple lcm), and the meet operation (greatest common divisor (gcd)). It is 
downward closed under divisibility, and contains the minimal element 1.

Proof of Theorem 5.1. (1) If n ∈ N (X) then X = X [n]. Suppose d divides n, so n = de. 
Now X ⊆ X [d] by the extension property of Theorem 4.2. However X [d] ⊆ X [de] = X [n]

by Proposition 4.6 (3). Since X [n] = X we conclude X [d] = X, so d ∈ N (X).
(2) Suppose m, n ∈ N (X), so that X = X [m] and X = X [n]. Then

X = X [n] = (X [m])[n] = X [lcm(m,n)]

where, reading from the left, the second equality substituted X [m] for X and the last 
equality is Theorem 2.10. Thus lcm(m, n) ∈ N (X).

(3) The set N (X) is downward closed under divisibility by (1). If m, n ∈ N (X) then 
gcd(m, n) ∈ N (X) since it divides m. It is closed under the join operation lcm by (2). 
Thus N (X) is a sublattice of the distributive lattice of integers N+ under divisibility. It 
always has minimal element 1. �

A corollary of part (2) says that interleaving factors of infinitely factorizable sets are 
infinitely factorizable.

Corollary 5.2. Let X be infinitely factorizable. Then every interleaving factor of X is 
also infinitely factorizable.

Proof. Suppose X is infinitely factorizable, and X = (�n)n−1
i=0 Xi. We show that Xi is 

infinitely factorizable for each 0 ≤ i ≤ n − 1. Since X has an m-fold interleaving factor-
ization for infinitely many m, Theorem 2.12 (2) implies that X has an lcm(m, n)-fold 
interleaving factorization for infinitely many m. Thus, X has an ne-fold interleav-
ing factorization for infinitely many e. Moreover, for each such e, if X = (�ne)ne−1

k=0 , 
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then the shuffle identities of Theorem 2.9, combined with uniqueness of n-fold in-
terleaving factorizations, imply that each Xi has the e-fold interleaving factorization 
Xi = (�e)e−1

j=0Yi+jn. �
5.2. Structure of interleaving factorizations

Theorem 5.3 (Converse divisibility structure for interleaving factorizations). Let N ⊆
N+ be a nonempty set with the following properties:

(1) If n ∈ N and d divides n, then d ∈ N .
(2) If m, n ∈ N , then lcm(m, n) ∈ N .

If the alphabet A has at least two letters, then N = N (X) for some X ⊆ AN .

Proof. Given a set N satisfying (1), (2) we construct a set X̃ on A = {0, 1} with 
N (X̃) = N . Enumerate the elements of N as n1, n2, . . .. Let �1 = n1, and for i > 1, let 
�i = lcm(n1, . . . , ni). Notice for i ≤ j, that �j = lcm(�i, �j), hence for any set X ⊆ AN

we have X [�i] ⊆
(
X [�i])[�j ] = X [lcm(�i,�j)] = X [�j ], using Theorem 2.10. Thus, 

(
X [�j ])

j
is 

an increasing sequence of sets.
Choose X = {0∞, 1∞}. Notice that for any n ∈ N, X [n] is precisely the set of all 

sequences in A that are periodic with period dividing n. Now set X̃ := limj→∞ X [�j ] =⋃∞
j=1 X [�j ], so that X̃ is the set of sequences in A that are periodic and have a period 

p ∈ N (since N is precisely the set {n : n|�j for some j ≥ 1}).
Claim. N = N (X̃).
(1) We show that if n ∈ N , then X̃ [n] = X̃. We already know X̃ ⊆ X̃ [n]. Let x ∈ X̃ [n]. 

Then x = (�n)n−1
i=0 xi for x1, . . . , xn ∈ X̃. Since there are finitely many of these xi, there 

is an �j large enough that x1, . . . , xn ∈ X [�j ]. Choose �j with j large enough that n|�j . 
Then lcm(n, �j) = �j , so X [�j ] is closed under n-fold interleaving, and thus x ∈ X [�j ] ⊆ X̃. 
Hence X̃ [n] = X̃, and so n ∈ N (X̃).

(2) We show that if n /∈ N , then X̃ [n] 	= X̃. Since X ⊆ X̃, we have X [n] ⊆ X̃ [n] by 
the extension property in Theorem 4.2. Let x be any sequence in A that is periodic with 
period n. Then x ∈ X [n], and so x ∈ X̃n. However, for any �j we have �j ∈ N by the 
structure of N , and since M is closed under divisibility, n /∈ N implies n does not divide 
�j ; hence x /∈ X [�j ]. Since this is the case for all �j , x /∈ X̃, and so n /∈ N (X̃). �
Remark 5.4. The sets X̃ constructed in the proof of Theorem 5.3 are all shift-invariant: 
SX̃ = X̃. To show this, we note that a word x on alphabet A = {0, 1} is in X̃ if and 
only if it is fully periodic with a minimal period p belonging to N ⊆ N+, since N is 
downward closed under divisibility. The word Sx is also periodic with the same period, 
so Sx ∈ X̃, hence SX̃ ⊆ X̃. Since Spx = x, we have y = Sp−1x is periodic with the 
same period, so y ∈ X̃, and Sy = Spx = x ∈ SX̃. It follows that SX̃ = X̃.
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5.3. Divisibility for self-interleaving factorizations

Definition 5.5. An n-fold interleaving factorization X = (�n)n−1
i=0 Xi,n is self-interleaving

(or n-fold self-interleaving), if all factors are identical, i.e. Xi,n = X0,n holds for 1 ≤ i ≤
n − 1. We sometimes write Zn := X0,n for the unique factor in this case.

There exist many sets X for which every interleaving factorization is a self-
interleaving. We will show later, in Proposition 8.2, that if X is shift-invariant, then 
X = X [n] implies, letting Xi,n := ψi,n(X), that X0,n = Xi,n holds for all i ≥ 1. In addi-
tion there exist examples with X having an n-fold self-interleaving, so that X0,n = Xi,n

for 0 ≤ i ≤ n − 1, but with X0,n 	= Xi,n for all i ≥ n; see Example 5.7. The latter 
sets X can have a mixture of self-interleaving factorizations and non-self interleaving 
factorizations.

We show that the set of values of n for which a given X has an n-self-interleaving has 
divisibility properties parallel to those described in Theorem 2.12.

Theorem 5.6 (Structure of self-interleaving closure sets). Let Nself(X) = {n ≥ 1 : X =
(�n)n−1

i=0 Zn for some Zn ⊆ AN}. Then Nself(X) is nonempty and has the following prop-
erties.

(1) If n ∈ Nself(X) and d divides n, then d ∈ Nself(X).
(2) If m, n ∈ Nself(X) then their least common multiple lcm(m, n) ∈ Nself(X).
Conversely, if a subset N ⊆ N+ is nonempty and has properties (1) and (2), then 

there exists X ⊆ AN with N = N (X).

Proof. (1) If d divides n we have n = de and now X = (�n)de−1
k=0 Zn and Zn = ψk,de(X)

for 0 ≤ k ≤ de − 1. By the shuffle product identities in Theorem 2.9,

X = (�d)d−1
i=0 ((�e)e−1

j=0(Xjd+i)) = (�d)d−1
i=0

(
(�e)e−1

j=0Zn

)
.

We deduce X = (�d)d−1
i=0 Zd where Zd = (�e)e−1

j=0Zn, so X has a d-fold self-interleaving.
(2) Suppose that X has both an n-fold and an m-fold self-interleaving factoriza-

tion. We wish to show it has an lcm(m, n)-fold self-interleaving factorization. Let d =
gcd(m, n), and recall that there exist e, f with e|m, f |n having d = ef and gcd(m

e , nf ) = 1
(shown in the proof of Theorem 2.10). By (1) the set of self-interleaving factorizations 
is downward closed under divisibility, so that it has an m

e -fold self-interleaving factor-
ization and an n

f -fold self-interleaving factorization, and now lcm( m
e , nf ) = mn

ef = mn
d =

lcm(m, n). We have therefore reduced proving (2) to proving it in the special case where 
gcd(m, n) = 1, with lcm(m, n) = mn.

In this case we are given that X has an m-fold and an n-fold self-interleaving factor-
ization. We now have gcd(m, n) = 1 so by Theorem 2.12 we have an mn-fold interleaving 
factorization X = (�mn)mn−1

k=0 Xk,mn. We wish to show it is self-interleaving, i.e. that

Xk1,mn = Xk2,mn for 0 ≤ k1 < k2 ≤ mn − 1. (5.1)
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We assert that for each 0 ≤ i ≤ n − 1,

Xj1+im,mn = Xj2+im,mn for 0 ≤ j1 < j2 ≤ m − 1. (5.2)

To see this, note that by the shuffle identities in Theorem 2.9,

(�mn)mn−1
k=0 Xk,mn = (�m)m−1

j=0

(
(�n)n−1

i=0 Xj+im,mn

)
.

Since m-fold factorizations are unique, the right-hand side is a self-interleaving factor-
ization, so for all 0 ≤ j1 < j2 ≤ m − 1, (�n)n−1

i=0 Xj1+im,mn = (�n)n−1
i=0 Xj2+im,mn. This 

implies, again by uniqueness, that Xj1+im,mn = Xj2+im,mn for all 0 ≤ i ≤ n − 1.
Similarly, using the shuffle identity with the n-fold interleaving on the outside and 

the m-fold interleaving on the inside, we obtain for 0 ≤ i1 < i2 ≤ n − 1 that for each 
0 ≤ j ≤ m − 1,

Xi1+jn,mn = Xi2+jn,mn for 0 ≤ i1 < i2 ≤ n − 1. (5.3)

Now we assert that when gcd(m, n) = 1 that (5.2) and (5.3) imply (5.1). For each 
0 ≤ i ≤ n − 1, (5.2) implies the equality of all Xk,mn for k within blocks Bi = {j + im :
0 ≤ j ≤ m − 1}, but (5.2) says nothing about equalities across different blocks Bi. On 
the other hand, for fixed 0 ≤ j ≤ m − 1, (5.3) implies the equality of all Xk,mn for k
within blocks Cj = {k = i + jn : 0 ≤ i ≤ n − 1}. Now let 0 ≤ k ≤ mn − 2. If k and k + 1
are not in the same block Bi, then k + 1 ≡ 0 ( mod m). Similarly, if k and k + 1 are not 
in the same block Cj , then k +1 ≡ 0 ( mod m). Now the condition gcd(m, n) = 1 implies 
that, since 0 ≤ k ≤ mn −2, k+1 cannot be equal to 0 modulo m and n at the same time. 
Therefore, k and k + 1 are both in one of the blocks Bi or Cj , and Xk,mn = Xk+1,mn. It 
follows that all the Xk,mn are equal as k ranges from 0 to mn − 1, so the factorization 
X = (�mn)mn−1

k=0 is a self-interleaving.
For the converse, it remains to show that if a subset N ⊆ N+ is nonempty and has 

properties (1) and (2), then there exists X ⊆ AN with N = Nself (X). For this, we use the 
fact that the sequences X̃ constructed in Theorem 5.3, that achieve N = N (X̃) are shift-
invariant, see Remark 5.4. Now Proposition 8.2 (which will be proved in Section 8) asserts 
that any shift-invariant X has the property that all of its interleaving factorizations will 
be self-interleaving factorizations. Thus, N (X̃) = Nself (X̃). We have already shown in 
the proof of Theorem 5.3 that N (X̃) = N . �
Example 5.7. For a general set X, the set of n giving a self-interleaving factorization 
can be a strict subset of all interleaving factorizations of X. Let A = {0, 1}, and take 
X = {00{0, 1}N} (i.e., all infinite words beginning with 00). Set Xj,n = ψj,n(X).

We show X has an n-fold interleaving factorization for all n ≥ 1, so N (X) = N+. 
In contrast we show Nself = {1, 2} is finite. For n = 1 and n = 2 the factorization is 
self-interleaving with X0,2 = X1,2 = {0{0, 1}N}. (Note that for j ≥ 2 one has Xj,2 =
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{0, 1}N .) For n ≥ 3 it has the interleaving factorization X0,n = X1,n = {0{0, 1}N}, while 
Xj,n = {0, 1}N is the full shift for all j ≥ 2, so that it is not self-interleaving.

6. Infinitely factorizable closed subsets of AN

Definition 6.1. A subset X ⊆ AN is infinitely factorizable (under interleaving) if it has 
an n-fold interleaving factorization

X = X [n] = ψ0,n(X)�ψ1,n(X)� · · ·�ψn−1,n(X)

for infinitely many n ≥ 1.

6.1. Characterization of infinitely factorizable closed sets

We now characterize infinitely factorizable closed sets X by the properties given in 
Theorem 2.13. Property (iii) shows there are uncountably many different infinitely fac-
torizable closed sets when the alphabet size |A| ≥ 2.

Proof of Theorem 2.13. We prove (iii) ⇒ (ii) ⇒ (i) ⇒ (iii).
(iii) ⇒ (ii). Suppose property (iii) holds, and let n ≥ 1. Then, using Proposi-

tion 4.1(2), we have, writing x = x0x1x2 · · · ,

X = {x ∈ AN : xk ∈ Ak for all k ≥ 0}
= {x ∈ AN : xj+kn ∈ Aj+kn for all k ≥ 0, 0 ≤ j ≤ n − 1}

= {x ∈ AN : ψj,n(x) ∈
∞∏

k=0

Aj+kn for all 0 ≤ j ≤ n − 1}

= (�n)n−1
j=0

∞∏
k=0

Aj+kn,

which is an n-fold interleaving factorization.
(ii) ⇒ (i). Immediate.
(i) ⇒ (iii). We prove the contrapositive. Suppose property (iii) does not hold for 

X, we are to show property (i) does not hold. Let Ak denote the letters that occur 
in the kth position of some word in X; it is a finite nonempty subset of the (finite) 
alphabet A. If for each k ≥ 0, � ≥ 1 all letter patterns in positions k through k + � in 
Ak ×Ak+1 · · ·×Ak+� may occur in X, then by the assumption X is closed, we would have 
X =

∏∞
k=0 Ak which has property (iii), contradicting our assumption. Therefore there 

must exist some finite k ≥ 0, � ≥ 1 and a finite set of consecutive Ak, Ak+1, Ak+2, ...Ak+�

such that there is a block akak+1 · · · ak+� with each ak+i ∈ Ak+i for 0 ≤ i ≤ � that does 
not occur in positions k through k + � in any element of X. We call this situation a 
(k, �)-missing-configuration.
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If property (i) were to hold for X, then there would exist some n ≥ k + � + 1 such 
that X has an n-fold interleaving factorization

X = ψ0,n(X)�ψ1,n(X)� · · ·�ψn−1,n(X).

Each word x ∈ X has symbol xk+i in position k + i lying as the first symbol in a word 
in the n-decimation set ψk+i,n(X). We can find an infinite word, call it w(k + i) ∈ X

that has the symbol ai ∈ A in position k + i for each 0 ≤ i ≤ � (by definition of Ak+i). 
For all remaining positions, 0 ≤ j ≤ n − 1, with j /∈ {k, k + 1, · · · , k + �} we pick a word 
w(j) ∈ X arbitrarily.

Now the symbol sequence w := �n−1
j=0 ψj,n(w(j)) ∈ ψ0,n(X)�ψ1,n(X)� · · ·�ψn−1,n(X)

belongs to X, but it contains the forbidden block akak+1 · · · ak+� in positions k through 
k + �, showing that w /∈ X, the desired contradiction. �
Remark 6.2. An important finiteness feature of the proof of Theorem 2.13 is that it 
shows that the existence of a (k, �)-missing-configuration certifies that X has no n-fold 
interleaving factorization with n ≥ k + � + 1 when X is closed.

The following example shows the hypothesis of X being a closed set is necessary in 
the statement of Theorem 2.13.

Example 6.3 (Non-closed infinitely factorizable sets). Let X be the countable subset of 
AN consisting of all infinite sequences having a finite number of 1’s. Then X is infinitely 
factorizable, and all decimations ψj,n(X) = X are copies of itself. It is not a closed set; its 
closure in AN is the full one-sided shift. It satisfies properties (i) and (ii) of Theorem 2.13
but fails to satisfy property (iii). (The set X can be viewed as the set of terminating
binary expansions of all nonnegative dyadic rationals k

2m .)
The construction of Theorem 5.3 produces infinitely factorizable X having N (X) �

N+. Such sets satisfy property (i), and do not satisfy properties (ii), (iii) of Theorem 2.13.

6.2. Consequences of infinite factorizability

Corollary 6.4. Let X be an infinitely factorizable closed subset of AN. Then its factor set 
F(X) consists of all decimations ψj,n(X) for n ≥ 1 and 0 ≤ j ≤ n − 1. Each decimated 
set ψj,n(X) is also infinitely factorizable.

Proof. By property (ii) of Theorem 2.13 X is factorizable for each n ≥ 1, and its n-
fold factors are ψj,n(X) for 0 ≤ j ≤ n − 1. Now the property (iii) is preserved under 
decimations of all orders, hence all ψj,n(X) must be infinitely factorizable. �
Example 6.5 (Infinitely factorizable closed subsets X of AN having all decimations 
ψj,n(X) distinct). For A = {0, 1} define Ak ⊂ A for 0 ≤ k < ∞ as follows. Let Ak = {0}
for all indices k ∈ A with
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A := {k ≥ 0 : 0 ≤ {k
√

2} <
1
2} where {x} = x − �x�.

(No special properties other than irrationality of 
√

2 are used.) This set of indices is 
aperiodic (and has natural density 1

2 , using Weyl’s equidistribution theorem). Set Ak =
{0, 1} for all other integers k /∈ A, which is also an aperiodic set of natural density 1

2 .
Set X =

∏∞
k=0 Ak. By Theorem 2.13, property (iii), it is a closed set and is infinitely 

factorizable, i.e., N (X) = N+. Each decimation ψj,n(X) is also an infinite product space 
of the same kind whose set of indices k that have reduced alphabet {0} is exactly

A(j, n) := {k ≥ 0 : 0 ≤
{

(nk + j)
√

2
}

<
1
2}.

Each ψj,n(X) is closed and infinitely factorizable. Consider now two distinct decimations 
ψj,n(X) and ψ�,m(X), where we may suppose 1 ≤ n ≤ m and 0 ≤ j, � < ∞, with j 	= �

if n = m. To show distinctness we must show A(j, n) 	= A(�, m). We use the well known 
fact that for each n ≥ 1 the sequence of fractional parts xk =

{
k(n

√
2)
}

(k ≥ 1) is dense 
modulo 1. (In fact, since n

√
2 is irrational, Weyl’s theorem implies that the sequence xk

is uniformly distributed modulo 1.) The argument has two cases.
Case 1. n = m. We write xk := {(kn + j)

√
2}, and yk := {(kn + �)

√
2}, where j 	= �. 

Now yk = {xk + θ} for all k, where θ = {(� − j)
√

2}. Because 
√

2 is irrational, θ ∈ (0, 1); 
hence there must be an open interval (a, b) ⊂ [0, 12 ) such that (a + θ, b + θ) ⊂ (1

2 , 1]. 
Since xk takes values dense in (0, 1), we will have infinitely many k with xk ∈ (a, b), 
and thus with yk ∈ (a + θ, b + θ). Therefore, there are infinitely many k with xk ∈ [0, 12 )
and yk ∈ ( 1

2 , 1]. For these k, Akn+j = {0}, while Akn+� = {0, 1}, so all sequences in 
ψj,n(X) must have kth symbol 0, while ψn,�(X) has sequences with kth symbol taking 
both values 0 or 1 (i.e., k ∈ A(j, n) but k /∈ A(�, n) for these k). Thus ψj,n(X) 	= ψ�,n(X).

Case 2. n < m. We write xk := {(nk + j)
√

2} and yk := {(mk + �)
√

2}. A calculation 
shows that yk = {m

n xk +θ}, where θ = {(� − jm
n )

√
2}. Again, θ ∈ (0, 1). There is an open 

interval (c, d) ⊂ (1
2 , 1] such that (c − θ, d − θ) ⊂ (0, 12 ). Letting (a, b) = n

m (c − θ, d − θ), 
we see that if xk ∈ (a, b), then yk ∈ (c, d). Again, by positive density of xk, this happens 
infinitely often, and so there are infinitely many k with xk ∈ [0, 12 ) and yk ∈ ( 1

2 , 1]. We 
conclude as in Case 1 that ψj,n(X) 	= ψ�,m(X).

We conclude that the interleaving factor set F(X) consists of all principal decimations, 
and they are all distinct. Therefore F(X) is infinite.

Example 6.6. (A closed X with an infinite factor set F(X)) The set X constructed in 
Example 6.5 has infinitely many distinct decimations so its decimation set D(X) and its 
principal decimation set Dprin(X) are infinite. In addition all principal decimations are 
interleaving factors, so that its factor set F(X) is also infinite.

Corollary 6.7. The set Y(A) of all infinitely factorizable closed subsets X ⊆ AN is closed 
under n-fold interleaving operations of all n ≥ 1. That is, if X0, X1, · · · , Xn−1 ∈ Y(A), 
then (�n)n−1

i=0 Xi = X0�X1� · · ·�Xn−1 ∈ Y(A).
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Proof. The corollary follows using the characterization of membership in Y(A) by prop-
erty (iii) of Theorem 2.13. Property (iii) is inherited under n-fold interleaving of sets Xi

that have it. �

7. Iterated interleaving factorizations of general closed subsets of AN

We consider iterated interleaving factorizations for general sets X ⊆ AN . If a set 
X factors as X = X0� · · ·�Xn−1, it is possible that one or more of the factors Xj

can itself be factored. However, unlike with factorizations of positive integers, for ex-
ample, the further factors that appear at lower levels may not be interleaving factors 
of the original set X. We therefore name them iterated interleaving factors. We define 
an iterated interleaving factorization as follows: The iterated interleaving factorization 
of depth 0 of a set X is the equation X = X (or the right hand side of such an equa-
tion). An iterated interleaving factorization of depth 1 is a single n-fold factorization 
X = (Y0�Y1� · · ·�Yn−1) (with parentheses). The Yi are iterated interleaving factors of 
depth 1. An iterated interleaving factorization of depth k is obtained recursively from an 
iterated interleaving factorization of depth k − 1, with one or more finitely factorizable 
sets Y on the right hand side of depth k being replaced by interleaving factorizations 
Y = (Y0�Y1� · · ·�Yn−1) (with parentheses), for n ≥ 2 (allowing different n for different 
Y ). The new added internal factors on the right are assigned depth k +1; they are inside 
a nested set of k + 1 parentheses.

7.1. Iterated interleaving factorization trees

An iterated interleaving factorization can be visually represented by a rooted tree, as 
pictured in Fig. 7.1 below. It has root node X, leaf nodes corresponding to the factors in 
the iterated interleaving factorization, and internal nodes corresponding to intermediate 
factors.

In our definition of iterated interleaving factorizations, each step is a finite factoriza-
tion. If an iterated interleaving factor Y at level k has n-fold interleaving factorizations 
for multiple values of n, it is natural to choose the n-fold factorization with the largest 
n because this factorization refines all the other possible factorizations of Y , by the 
divisibility properties of N (X) from Theorem 2.12.

How should one treat infinitely factorizable factors? We will adopt the convention in 
this factorization process that we “freeze” any infinitely factorizable factors encountered, 
and do not further factorize them. We do this for two reasons. First, for infinitely factor-
izable Y , no natural choice of n exists for a n-factorization at the next level. Secondly, 
all interleaving factors of infinitely factorizable sets are also infinitely factorizable by 
Corollary 5.2, so the factorization process would necessarily proceed forever if we did 
not freeze any infinitely factorizable factors.
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X

X0,4 X1,4

Y0,2

Z0,3 Z1,3 Z2,3

Y1,2

X2,4 X3,4

Fig. 7.1. Iterated interleaving tree for X = (X0,4�((Z0,3�Z1,3�Z2,3)�Y1,2)�X2,4�X3,4), an iterated in-
terleaving factorization of depth 3.

This raises the question: If one factorizes only finitely factorizable sets, will the iterated 
interleaving factorization process always terminate at a finite depth? We show below that 
the answer is: there are closed X where the iteration process can go on forever.

7.2. Arbitrary depth factorizations

We show, by construction, that there exist closed sets X having iterated interleaving 
factorizations of all depths k ≥ 1, with all factors at all depths being finitely factorizable. 
(Thus the “freezing” property is never needed.)

Theorem 7.1 (Infinite depth interleaving factorizations). There exist uncountably many 
closed sets ZI ⊆ AN with A = {0, 1}, indexed by I ∈ AN , that possess iterated interleav-
ing factorizations of every depth k ≥ 1. They each have a unique iterated interleaving 
factorization of depth k, for all k ≥ 1. Each ZI has an interleaving factor set F(ZI)
containing at most three elements. There exist such I for which the principal decimation 
set Dprin(ZI) is infinite.

Proof. Let X0 and X1 be two distinct closed sets in AN having trivial interleaving 
set N (X0) = N (X1) = {1}. For definiteness consider X0 = XF the Fibonacci shift, 
consisting of all words which do not have two consecutive 1’s, and X2 = XAF the anti-
Fibonacci shift, which consists of all one-sided infinite words which do not contain two 
consecutive 0’s. Example 2.7 showed XF has no n-fold interleaving factorizations for 
n ≥ 2, and the proof applies to XAF. Given an index set I = i0i1i2 · · · ∈ AN , we define 
a set

ZI = {z ∈ AN : ψ2r−1,2r+1(z) ∈ Xir
for r ≥ 0}. (7.1)

Let z = z0z1z2 · · · . The decimations determine the values of zi for subscripts in arithmetic 
progressions. We represent an arithmetic progression as AP(a; d) = {n ≥ 0 : n ≡
a ( mod d)}. Then the values zi for i ∈ AP(2r − 1; 2r+1) are restricted by ψ2r−1,2r+1(z) ∈
Xir

. We first show that ZI is well-defined.
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Claim 1. The set of arithmetic progressions AP(2r − 1; 2r+1) for r ≥ 0 form a partition 
of N.

We show by induction on r ≥ 0 that Nm := �m
r=0AP(2r − 1; 2r+1) = N � AP(2r+1 −

1; 2r+1), a disjoint union. The base case r = 0 asserts AP (0; 2) = N � AP (1; 2). The 
induction step uses AP (2m+1 − 1; 2m+1) = AP (2m+1 − 1; 2m+2) � AP(2m+2 − 1; 2m+2). 
Finally, the set Nm contains the interval [0, 2m − 2], so the infinite set union covers N, 
proving Claim 1.

Claim 2. If I 	= J then ZI 	= ZJ .

If I 	= J then some ir 	= jr. Then ψ2r−1,2r+1(ZI) = Xir
and ψ2r−1,2r+1(ZJ ) = Xjr

which are distinct since X1 	= X2. Thus ZI 	= ZJ , proving Claim 2.

Claim 3. Each ZI is a closed set in AN .

It suffices to show each convergent subsequence of elements of ZI has a limit in ZI . 
Convergence is AN is pointwise on each index separately. Suppose xk → y in AN (k ∈ N)
as k → ∞ with each xk ∈ ZI . We then have ψ2r−1,2r+1(xk) → ψ2r−1,2r+1(y) in AN . For 
each r ≥ 0 we have ψ2r−1,2r+1(xk) ∈ Xir

, hence ψ2r−1,2r+1(xk) → ψ2r−1,2r+1(y) ∈ Xir
, 

since Xir
is a closed set. The property ψ2r−1,2r+1(y) ∈ Xir

for all r ≥ 0 certifies that 
y ∈ ZI , proving Claim 3.

Claim 4. Each ZI has a 2-fold interleaving factorization

ZI = Xi0�ZSI ,

where SI = i1i2i3 · · · denotes the one-sided shift of I ∈ AN .

Using Proposition 3.1 we find

ψ2r−1,2r+1(z) = ψ0,2 ◦ ψ1,2 ◦ · · · ◦ ψ1,2︸ ︷︷ ︸
r times

(z),

and one proves it by induction on r ≥ 0. Letting w = ψ1,2(z), we have for r ≥ 1

ψ2r−1,2r+1(z) = ψ0,2 ◦ ψ1,2 ◦ · · · ◦ ψ1,2︸ ︷︷ ︸
r − 1 times

(w) = ψ2r−1−1,2r (w). (7.2)

By definition

ZSI = {w ∈ AN : ψ2r−1,2r+1(w) ∈ Xir+1 for r ≥ 0}.

Now we have, using (7.2),



W.C. Abram et al. / Advances in Applied Mathematics 126 (2021) 102160 41
Z0

Xi0 Z1

Xi1 Z2

Xi2 Z3

Xi3 Z4

Fig. 7.2. Iterated interleaving tree for Z0 = (Xi,0�(Xi1�(Xi2�(Xi3�Z4)))).

ZI = {z ∈ AN ; ψ0,2(z) ∈ Xi0 and w = ψ1,2(z) has ψ2r−1,2r+1(w) ∈ Xir+1 for r ≥ 1}
= {z ∈ AN : ψ0,2(z) ∈ Xi0 and ψ1,2(z) ∈ ZSI} = Xi0�ZSI ,

proving Claim 4.

At this point we obtain an iterated interleaving factorization for ZI to arbitrary depth 
k ≥ 1, by iterating the factorization given in Claim 4. This can be done since one factor 
is again of the form ZI (with a different I). Given I, using the notation Z0 := ZI and 
Zk := ZSkI we have the depth k factorization

Z0 = Xi0�
(
Xi1�

(
· · ·
(
Xik−2�

(
Xik−1�Zk

))
· · ·
))

.

Fig. 7.2 shows a tree corresponding to such an iterated factorization after the fourth 
level of factoring.

The remaining part of the proof will show this factorization tree is unique at every 
level k. Finally a suitable choice of I will lead to ZI having infinitely many different 
principal decimations.

Claim 5. The interleaving closure set N (ZI) = {1, 2} with associated factor set F(ZI) =
{ZI , Xi0 , ZSI}.

It suffices to show that ZI has no n-fold interleavings with n ≥ 3, in view of Claim 4. 
We argue by contradiction. Given an n-fold interleaving for n ≥ 3, by Theorem 2.12(2), 
it would also have an lcm(2, n)-fold interleaving, and we set 2m := lcm(2, n) with m ≥ 2. 
A shuffle identity from Proposition 2.9 gives

ZI = (�2m)2m−1
j=0 Xi,2m =

(
(�m)m−1

i=0 X2i,2m

)
�
(

(�m)m−1
i=0 X2i+1,2m

)
.

Since 2-fold interleaving factorizations are unique, and ZI = Xi0�ZSI , we must have

Xi0 = (�m)m−1
i=0 X2i,2m.

This contradicts the fact that X0 and X1 have no nontrivial interleaving factorizations, 
proving Claim 5.
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Claim 6. For k ≥ 1, each ZI has a unique iterated interleaving factorization of depth k, 
whose iterated interleaving factors are XIr

for 0 ≤ r ≤ k − 1 and ZSk (I).

This claim follows by induction on k ≥ 1, the base case being the factorization in 
Claim 4. For the induction step from k to k + 1, all but one of the leaves of the tree 
(iterated interleaving factors) are of form Xi, which have no non-trivial interleaving 
factors, and the remaining factor ZJ , with J = SkI, which has only a 2-fold interleaving 
factorization ZSkI = Xik

�ZSk+1(I). By updating the list of iterated interleaving factors 
we complete the induction step. This proves Claim 6.

Claim 7. If I is strongly aperiodic, meaning that all its shifts SkI for k ≥ 0 are distinct, 
then all the decimations of ZI of form ψ2r−1,2r+1(ZI) for r ≥ 0 are distinct. In particular, 
the principal decimation set Dprin(ZI) of ZI is an infinite set.

We have ψ2r−1,2r+1(ZI) = ZSrI . By Claim 2 distinct SI give distinct ZSrI . The 
strongly aperiodic assumption then makes all ψ2r−1,2r+1(ZI) distinct. They are principal 
decimations, so Dprin(ZI) is infinite. This proves Claim 7. �
Example 7.2 (A closed set with an infinite principal decimation set but a finite factor 
set). Theorem 7.1 exhibited ZI that have infinitely many distinct principal decimations; 
Dprin(ZI) ⊆ D(ZI). However Claim 5 showed the factor set F(ZI) is always finite.

Remark 7.3. The sets ZI in Example 7.2 exhibit the failure of two finiteness properties 
possessed by all path sets studied in [5]. First, interleaving factorizations of path sets P
always halt at finite depth (under the freezing convention), while ZI never does. Second, 
path sets P always have finitely many different decimations, i.e. D(P) is finite, while this 
example does not. Example 6.6 gave another example having infinitely many different 
decimations.

8. Shift-stable and weakly shift-stable sets

Classical symbolic dynamics is concerned with properties of sets X ⊆ AN invariant 
under the shift operator. The class of such sets is not preserved under decimation or 
interleaving operations. We study two weaker notions of sets X compatible with the 
shift operation—shift-stable sets and weakly shift-stable sets—with better properties. 
Shift-stable sets naturally arise in one-sided dynamics that encode initial conditions, 
and we show they are closed under all decimations, but not closed under interleaving 
operations. The wider class of weakly shift-stable sets is closed under all decimation and 
interleaving operations.
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8.1. Shift-stable sets

Recall from Definition 2.14 that a general set X ⊆ AN is shift-stable if SX ⊆ X, and 
it is shift-invariant if SX = X. These definitions allow non-closed sets. Shift-stability is 
a strictly weaker condition than shift-invariance; see Example 8.5 below.

Shift-stable and shift-invariant sets satisfy the following closure properties under dec-
imation and interleaving closure operations:

Theorem 8.1. Let A be finite alphabet and let X ⊆ AN be a general set (not necessarily 
closed).

(1) If X is shift-stable (resp. shift-invariant), then all decimations ψj,n(X) for j ≥ 0, 
n ≥ 1 are shift stable (resp. shift-invariant).

(2) If X is shift-stable (resp. shift-invariant) then all n-fold interleaving closures X [n]

with n ≥ 1 are shift-stable (resp. shift-invariant).

Proof. (1) Shift-stability of X implies SmX ⊆ Sm−1X whence SmX ⊆ X for all m ≥ 0. 
Now Proposition 3.2 gives

Sψj,n(X) = ψj,n(SnX) ⊆ ψj,n(X).

If X is shift invariant, then SmX = X for all m ≥ 0 and equality holds.
(2) If X is shift stable, then we have, by Proposition 4.10, Proposition 3.2, and (1):

SX [n] = S
(
ψ0,n(X)�ψ1,n(X)� · · ·�ψn−1,n(X)

)
= ψ1,n(X)�ψ2,n(X)� · · ·�ψn,n(X)

= ψ0,n(SX)�ψ1,n(SX)� · · ·�ψn−1,n(SX)

⊆ ψ0,n(X)�ψ1,n(X)� · · ·�ψn−1,n(X) = X [n].

If X is shift invariant, then all steps hold with equality, as required. �
The shift-invariant property restricts the form of interleaving factorizations.

Proposition 8.2 (Shift invariance implies self-interleaving). If a general set X ⊆ AN is 
shift-invariant, then all of its interleaving factorizations will be self-interleaving factor-
izations.

Proof. We have for each n ≥ 1, that for j ≥ 0

ψj+1,n(X) = ψj,n(SX) = ψj,n(X)

with the leftmost equality generally true by Proposition 3.1 (2) and the second equality 
from shift invariance. We now have
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ψj,n(X) = ψ0,n(X) for j ≥ 0.

But by Theorem 2.8 any n-fold interleaving X = (�n)n−1
i=0 Xi,n has Xi,n = ψi,n(X), hence 

it is a self-interleaving with Zn = ψ0,n(X). �
8.2. Closed shift-stable sets

An important feature of closed shift-stable sets is that they are characterized by 
forbidden blocks, paralleling the definition of two-sided shift spaces in [33, Sec. 1.2]. 
Let A∗ denote the set of all finite words in the alphabet A, including the empty word. 
A block in an infinite word x = a0a1a2 · · · is a finite sequence of consecutive symbols 
akak+1 · · · ak+�.

Proposition 8.3 (Forbidden block characterization of shift-stability). The following state-
ments about a set X ⊆ AN are equivalent:

(1) X is closed and shift-stable, i.e. X is closed and SX ⊆ X.
(2) X is the set of all infinite words avoiding a (finite or infinite) set B⊥ ⊆ A∗ of 

forbidden blocks.

Remark 8.4. An analogous result holds in two-sided symbolic dynamics for subsets of 
AZ, ([33, Theorem 6.1.21]), where shift-stability is replaced by shift invariance, proved 
with a similar argument. The difference between shift-stability and shift-invariance is 
discussed in Example 8.7.

Proof. (2) ⇒ (1). The set X is closed, since any limit word in the sequence topology 
will not contain any forbidden block. Now SX is a closed set of infinite words, which do 
not contain any of the forbidden blocks. It follows that SX ⊆ X.

(1) ⇒ (2). The hypothesis SX ⊆ X implies SkX ⊆ Sk−1X ⊆ X for all k ≥ 1 by 
induction on k. We let B⊥(X) ⊆ A∗ denote all the finite words that do not appear 
anywhere in any word in X. Let Y denote the set of all infinite words that avoid any 
block in B⊥(X). By definition X ⊆ Y . To complete the proof we show the reverse 
inclusion Y ⊆ X. Let y = b0b1b2 · · · ∈ Y . By hypothesis the initial word b0b1 · · · bk ∈ Y

does not contain any element of B⊥(X), so it must occur as a block inside some word 
x = a0a1a2 · · · ∈ X, for if it did not this would contradict maximality of B⊥(X). Say it is 
positions ajaj+1 · · · aj+k = b0b1 · · · bk. Now yk := Sjx = .b0b1 · · · bkak+1 · · · ∈ SkX ⊆ X. 
We now have a sequence {yk : k ≥ 0} with yk ∈ X that converges in the sequence 
topology to y ∈ Y . Since X is closed, we deduce y ∈ X as required. �

We give examples of allowed behavior and of non-behavior of closed shift-stable sets.

Example 8.5. There exists a shift-stable closed set X which yields an infinite strictly 
descending chain of inclusions under application of the shift; i.e.:
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X � SX � S2X � S3X � · · · .

To construct X, define for each k ≥ 4 the set Xk := (0k1)k{000, 111}N . That is, Xk has 
a fixed finite prefix (0k1)k of length k(k + 1) followed by a full 2-block shift

Y = {000, 111}N .

Note that S3Y = Y . We now set

X :=
∞⋃

k=4

( ∞⋃
n=0

SnXk

)
.

The set X is shift-stable, since

SX =
∞⋃

k=4

( ∞⋃
n=1

SnXk

)
⊆ X.

Every element of X is an (eroded) finite prefix followed by a member of Y , SY , or S2Y . 
The set X is closed because the only limit point obtainable in AN from repeated shifts 
of blocks in the finite prefixes alone is the vector 0∞, which already belongs to Y .

To show all inclusions are strict, we note for 0 ≤ j ≤ 3 the set SjX contains the 
word 04−j1(041)3(000)∞, which is not contained in any SmX for m ≥ j + 1. For j ≥ 4
each set SjX contains the word 1(0j1)j−1(000)∞, which is not contained in any SmX

for m ≥ j + 1.

Example 8.6 (Shift-stability is not always preserved under interleavings). The one-sided 
Fibonacci shift XF having 11 as a forbidden block and the one-sided anti-Fibonacci 
shift XAF having 00 as a forbidden block are both closed, shift-invariant sets. We show 
their 2-fold interleaving Y = XAF�XF is not shift-stable. Indeed XAF allows the initial 
block 0110, and XF allows the initial block 010, whence XAF�XF allows the initial 
block 0011100, so SY contains the initial block 011100. If SY ⊆ Y , then there is a 
y = y1�y2 ∈ Y with initial block 011100. But this means y2 ∈ XF has initial block 110, 
which is a forbidden block of the Fibonacci shift, a contradiction showing that SY � Y . 
(We do have S2Y = Y .)

Example 8.7 (One-sided shifts). The notion of one-sided shift X defined by Lind and 
Marcus [33, Sect. 12.8] consists of those sets X ⊆ AN that are the restriction to positions 
k ≥ 0 of all sequences in a two-sided shift X± described by forbidden blocks. One-sided 
shifts X are necessarily closed and shift-invariant: SX = X, so they form a strict subclass 
of closed shift-stable X.

The difference between one-sided shifts and closed shift-stable sets is visible at the level 
of minimal forbidden blocks, which are forbidden blocks that do not contain any other 
forbidden block as a strict sub-block. For a one-sided shift-stable set X we let B⊥

min(X)
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denote its minimal forbidden block set. For a two-sided shift X± we let B⊥
min,±(X±)

denote its minimal forbidden block set. Now consider the closed set Y = {001∞, 01∞, 1∞}
which has SY = {01∞, 1∞} ⊂ X, so is shift-stable but not shift-invariant. Here S2Y =
{1∞} is shift-invariant. It is easy to check that B⊥

min(Y ) = {1001, 101, 000}. The two-sided 
shift Y ± determined by this set of forbidden blocks is Y ± = {1Z} ∈ AZ, because any 
bi-infinite word that contains a 0 must also contain one of the patterns 101, 1001, 000
and so is excluded. However Y± has minimal forbidden block set B⊥

min,±(Y±) = {0}
viewed as a two-sided shift. The one-sided shift Ỹ determined from Y±, using the Lind 
and Marcus prescription has Ỹ = S2Y = {1∞}. The shift-stable sets Y and SY cannot 
be obtained by the Lind and Marcus prescription; their minimal forbidden block sets are 
not minimal forbidden block sets of any two-sided shift.

8.3. Weakly shift-stable sets

The notion of weak shift-stability provides a large class of sets X ⊆ AN which respect 
the shift operator and are closed under all decimation and interleaving operations. This 
class of sets includes all path sets studied in [2]; see [5].

Definition 8.8. A general set X ⊆ AN is weakly shift-stable if there are � > k ≥ 0 such 
that S�X ⊆ SkX. We call p = � − k an eventual period for this shift semi-stable set.

The notion of eventual period of X reflects the inclusion

S�+jX = S(k+j)+pX ⊆ Sk+jX for all j ≥ 0.

Theorem 2.15 shows that the class W(A) of all weakly shift-stable sets is closed under 
all decimation and interleaving operations:

Proof of Theorem 2.15. (1) Weak shift-stability S�X ⊆ SkX gives S�+jX ⊆ Sk+jX for 
all j ≥ 0. Setting p = � − k, we deduce for m ≥ k that

Sm+jp(X) ⊆ SmX whenever j ≥ 1. (8.1)

By Proposition 3.2 we have, for j ≥ 0, n ≥ 1,

S�pψj,n(X) = ψj+�pn,n(X) = ψj,n(S�pnX) ⊆ ψj,n(SkpnX) = Skpψj,n(X),

the inclusion holding because S�pn(X) ⊆ Skpn(X) by (8.1), since the difference of itera-
tions is a multiple of p and kpn ≥ k.

(2) Let Xj be weakly shift-stable with parameters (�j , kj), for 0 ≤ j ≤ n − 1, and 
pj = �j − kj . We assert that Y = (�n)n−1

i=0 Xi is weakly shift-stable with an eventual 
period p = p0p1 · · · pj . Indeed, setting k = maxj(kj) and � = k + 1, we have, using 
Proposition 4.10:
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S�pnY = S�pn(X0�X1� · · ·�Xn−1)

= (S�pX0)�(S�pX1)� · · ·�(S�pXn−1)

⊆ (SkpX0)�(SkpX1)� · · ·�(SkpXn−1) = SkpnY.

The third line above used the inclusions S�pXi ⊆ SkpXi for 0 ≤ i ≤ n − 1, which follow 
from (8.1), since k ≥ ki, and pi divides p.

(3) It follows from (1) and (2) using the definition X [n] = (�n)n−1
i=0 ψi,n(X). �

Remark 8.9. Path sets, studied in [2], are closed subsets of AN describable as infinite 
paths in graphs of finite automata. Such sets are not always shift-stable. In [5] it is shown 
they are always weakly shift-invariant, so they are weakly shift-stable.

9. Entropy of interleavings for general sets

We study two notions of entropy for general sets X ⊆ AN , topological entropy H(X)
and prefix entropy Hp(X), defined for all sets X, and we also study a notion of stable 
prefix entropy which only certain sets X possess.

9.1. Topological entropy and prefix entropy

We recall two notions of topological entropy for general sets X ⊆ AN , following the 
paper [2], given in Definition 2.16 and Definition 2.17(1).

(1) The topological entropy of X is

Htop(X) := lim sup
k→∞

1
k

log Nk(X),

where Nk(X) counts the number of distinct blocks of length k to be found across all 
words x ∈ X. It is defined as a limsup, but the limit always exists.

(2) The prefix entropy (or path topological entropy) of X is

Hp(X) := lim sup
k→∞

1
k

log N I
k (X),

where N I
k (X) counts the number of distinct prefix blocks b0b1 · · · bk−1 of length k found 

across all words x ∈ X.
As remarked in Section 2.6, for Htop(X) the lim sup is always a limit. However the 

limsup is needed in the definition of prefix entropy, as shown by the next example.

Example 9.1 (The limit of 1
k log N I

k (X) may not exist). Take X0 =
∏∞

j=0 Aj where 
Aj = {0} for 0 ≤ j ≤ 3, and for m ≥ 1,

(i) Aj = {0} for 22m ≤ j ≤ 22m+1 − 1
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(ii) Aj = {0, 1} for 22m+1 ≤ j ≤ 22m+2 − 1.

Then X0 is a closed subset of AN having values 1
k log N I

k (X0) that oscillate between 
1
3 log 2 and 2

3 log 2 infinitely often as k → ∞, with minima at k = 22m+1 and maxima 
at k = 22m+2. Here the lim sup gives Hp(X) = 2

3 log 2. On the other hand, property (ii) 
implies Nk(X0) = 2k so Htop(X0) = log 2.

Example 9.1 shows, first, that Hp(X) cannot in general be defined as a limit, and 
second, that Hp(X) and Htop(X) need not be equal.

Proposition 9.2. For general sets X ⊆ AN , the following hold.
(1) Let X denote the closure of X in the symbol topology on AN . One has Htop(X) =

Htop(X) and Hp(X) = Hp(X).
(2) One has

Hp(X) ≤ Htop(X) ≤ log |A|.

Proof. (1) The definitions of Htop(X) and Hp(X) depend only on finite symbol sequences 
(resp. finite initial symbol sequences) that occur in X. However all infinite words in X�X

have all finite symbol sequences (resp. finite initial symbol sequences) occurring for some 
word in X.

(2) The bounds follow from N I
k (X) ≤ Nk(X) ≤ |A|k. �

Example 9.3 (Strict inequality Hp(X) < Htop(X) may occur for general X). Let A =
{0, 1}, and let the closed set X consist of all words which, for m ≥ 1,

(i) have symbol 0 in each position 2m ≤ k ≤ 2m+1 − m,
(ii) allow arbitrary symbols {0, 1} in positions 2m+1 − (m − 1) ≤ k ≤ 2m+1 − 1.

Then Nk = 2k for all k ≥ 1, because (ii) gives arbitrarily long blocks of the full shift, 
whence Htop(X) = log 2.

On the other hand, for a given symbol position k there are at most (log2 k)2 symbol 
positions of type (ii), so we obtain N I

k (X) ≤ 2(log2 k)2 . It follows that Hp(X) = 0.

9.2. Entropy and the shift operator

The shift operator preserves both entropies Htop(X) and Hp(X).

Proposition 9.4. For general sets X ⊆ AN on a finite alphabet A the following hold.
(1) The shift operator S preserves topological entropy:

Htop(SX) = Htop(X).
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.
(2) The shift operator S preserves prefix entropy:

Hp(SX) = Hp(X).

Proof. (1) We have, for a finite alphabet,

Nk(X) ≥ Nk(SX) ≥ 1
|A|Nk+1(X),

since there are at most |A| choices for a letter that is dropped. Using a limsup definition 
for Htop(X) (although the limit always exists) we have

Htop(SX) = lim sup
k→∞

1
k

log Nk(SX) ≤ lim sup
k→∞

1
k

log Nk(X) = Htop(X).

On the other hand,

Htop(SX) = lim sup
k→∞

1
k

log Nk(SX)

≥ lim sup
k→∞

(
1
k

log Nk+1(X) − 1
k

log |A|
)

= lim sup
k→∞

1
k + 1 log Nk+1(X) = Htop(X).

(2) For a finite alphabet A we have

N I
k+1(X) ≥ N I

k (SX) ≥ 1
|A|N

I
k+1(X). (9.1)

The result Hp(SX) = Hp(X) is proved similarly to (1). �
9.3. Entropy and decimations

Entropies may change under decimation, subject to the following inequalities.

Proposition 9.5. For general sets X ⊆ AN on a finite alphabet A the following hold for 
all n ≥ 1 and all i ≥ 0:

0 ≤ Htop(ψi,n(X)) ≤ min(nHtop(X), log |A|)

and

0 ≤ Hp(ψi,n(X)) ≤ min(nHp(X), log |A|).

All equalities can be attained.
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Proof. The lower bounds are trivial, and the upper bounds log |A| are trivial. For the 
upper bounds, the symbols of any block of size k of ψi,n(X) are contained (in successive 
positions with index i ( mod n)) inside a block of length nk of X, with the first symbol 
aligned; hence Nk(ψi,n(X)) ≤ Nnk(X). We have

Htop(ψi,n(X)) = lim sup
k→∞

1
k

log Nk(ψi,n(X))

≤ lim sup
k→∞

1
k

log Nnk(X) ≤ n

(
lim sup

k→∞

1
k

log Nk(X)
)

= nHtop(X).

For the corresponding prefix entropy upper bound we use the bound N I
k(ψi,n(X)) ≤

|A|iN I
nk(X), obtained by containment of a prefix of length k in ψi,n(X) inside a prefix 

of X of length nk + i.
To show the bounds are attained, take the interleaved set X = (�n)n−1

i=0 Xi where 
X0 = AN and each Xi = {0∞} for 1 ≤ i ≤ n −1. We have Htop(X) = Hp(X) = 1

n log |A|
(by counting blocks). For the upper bound we have Htop(ψ0,n(X)) = Hp(ψ0,n(X) =
log |A|. For the lower bound Htop(ψ1,n(X)) = Hp(ψ1,n(X)) = 0. �
9.4. Prefix entropy upper bound for interleaving

We prove Theorem 2.18, which is a general upper bound for the prefix entropy of an 
n-fold interleaving in terms of the prefix entropies of its factors.

Proof of Theorem 2.18. By definition for X = X0� · · ·�Xn−1,

Hp(X) = lim sup
k→∞

1
k

log
(

N I
k (X0� · · ·�Xn−1)

)
, (9.2)

where N I
k (X) is the number of distinct initial blocks of length k occurring in the symbol 

sequences of X. Now we partition into subsequences {nk + j : k ≥ 0} for 0 ≤ j ≤ n − 1
to obtain:

Hp(X0� · · ·�Xn−1) = max
0≤j≤n−1

lim sup
k→∞

1
nk + j

log
(

N I
nk+j(X0� · · ·�Xn−1)

)
.

Call the terms on the right side

Hp,j(X) := lim sup
k→∞

1
nk + j

log
(

N I
nk+j(X0� · · ·�Xn−1)

)
for 0 ≤ j ≤ n −1. The number of distinct initial (nk+j)-blocks in X0� · · ·�Xn−1 is sim-
ply the product of the number of distinct initial (k+1)-blocks in each of X0, X1, . . . , Xj−1
and of the distinct initial k-blocks in Xj , Xj+1, · · · Xn−1. Thus we obtain, for a fixed j, 
0 ≤ j ≤ n − 1,
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Hp,j(X) = lim sup
k→∞

1
nk + j

log
(

N I
nk+j(X0� · · ·�Xn−1)

)

= lim sup
k→∞

1
nk + j

log
( j−1∏

i=0
N I

k+1(Xi) ·
n−1∏
i=j

N I
k (Xi)

)

= lim sup
k→∞

1
nk + j

⎛⎝j−1∑
i=1

log N I
k+1(Xi) +

n−1∑
i=j

log N I
k (Xi)

⎞⎠
By (9.1), which applies to general sets X ⊆ AN , each log N I

k+1(Xi) differs from 
log N I

k (Xi) by no more than log |A|. Since the entire sum is divided by nk + j, this 
difference does not affect the limsup, so:

Hp,j(X) = lim sup
k→∞

1
nk + j

n−1∑
i=0

log N I
k (Xi) = 1

n
lim sup

k→∞

1
k

n−1∑
i=0

log N I
k (Xi)

≤ 1
n

n−1∑
i=0

lim sup
k→∞

1
k

log N I
k (Xi) = 1

n

n−1∑
i=0

Hp(Xi).

Thus, all the Hp,j(X) are bounded above by 1
n

∑n−1
i=0 Hp(Xi). It follows that Hp(X) =

max0≤j≤n−1 Hp,j(X) obeys the same bound. �
Example 9.6 (Strict inequality may hold in Theorem 2.18). We start with the closed set 
X0 with alphabet A = {0, 1} defined in Example 9.1. Let a second closed set X1 consist 
of all words that allow {0} in index positions where X0 allows {0, 1}, and allow {0, 1} in 
all index positions where X0 allows only {0}; i.e., X1 =

∏∞
j=0 A′

j where A′
j = {0, 1} for 

0 ≤ j ≤ 3, and for m ≥ 1,

(i) A′
j = {0, 1} for 22m ≤ j ≤ 22m+1 − 1

(ii) A′
j = {0} for 22m+1 ≤ j ≤ 22m+2 − 1.

Then Bk(X1) = {0, 1}k for all k ≥ 1, since (ii) has arbitrarily long blocks of the full shift, 
whence Htop(X) = log 2. We have Hp(X0) = Hp(X1) = 2

3 log 2, by the same calculation 
as in Example 9.1. We assert that the interleaved set X := X0�X1 has

Hp(X) = 1
2 log 2 <

1
2
(
Hp(X0) + Hp(X1)

)
= 2

3 log 2.

To compute Hp(X), note that in each pair of consecutive symbol positions (2j, 2j + 1), 
the words in X have one symbol frozen to be 0 and the other symbol free to be chosen 
in {0, 1}, where the frozen symbol is the symbol in position 2j for 22m ≤ j < 22m+1 and 
is the symbol in position 2j + 1 for 22m+1 ≤ j < 22m+2. Thus 2k/2−1 ≤ N I

k (X) ≤ 2k/2+1

for all k ≥ 0, whence Hp(X) = limk→∞
1 log N I

k (X) = 1 log 2.
k 2
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9.5. Stable prefix entropy and interleaving entropy equality

We study the concept of stable prefix entropy and show its consequences for the 
behavior of entropy under interleaving. Recall from Definition 2.17 (2) that a set X ⊆ AN

has stable prefix entropy, if the prefix entropy can be defined as a limit. That is, the 
following limit exists:

Hp(X) := lim
k→∞

1
k

log N I
k (X).

Recall that Theorem 2.19 asserts that stable prefix entropy is preserved under inter-
leaving, and that stable prefix entropy of all the interleaving factors implies equality in 
the prefix entropy formula of Theorem 2.18.

Proof of Theorem 2.19. Let X = (�n)n−1
i=0 Xi. The inequality Hp(X) ≤ 1

n

∑n−1
i=0 Hp(Xi)

in Theorem 2.18 arose in interchanging a finite sum with a lim sup. Using the stable 
prefix hypothesis for each Xi, we obtain a matching lower bound.

By definition Hp(X) := lim supk→∞
1
k log N I

k (X). Let H ′
p(X) := lim infk→∞

1
k Nk(X). 

It suffices to show that H ′
p(X) ≥ 1

n

∑n−1
i=0 Hp(Xi) to conclude that H ′

p(X) = Hp(X) has 
a limit which is the desired value 1

n

∑n−1
i=0 Hp(Xi).

Partitioning into subsequences {nk + j : k ≥ 0} for 0 ≤ j ≤ n − 1 as in the proof of 
Theorem 2.18, we get:

H ′
p(X) = min

0≤j≤n−1

(
lim inf
k→∞

1
nk + j

log
(

N I
nk+j(X0� · · ·�Xn−1)

))
.

Call the right side values H ′
p,j(X). We have

H ′
p,j(X) ≥ 1

n
lim inf
k→∞

(
n−1∑
i=0

1
k

log N I
k (Xi)

)

≥ 1
n

n−1∑
i=0

lim inf
k→∞

1
k

log N I
k (Xi)

= 1
n

n−1∑
i=0

lim
k→∞

1
k

log N I
k (Xi) = 1

n

n−1∑
i=0

Hp(Xi),

where stable prefix entropy was used in the last line. We conclude H ′
p(X) ≥

1
n

∑n−1
i=0 Hp(Xi). �

Example 9.7 (Stable prefix entropy is not always preserved under decimation). The set 
X = X0�X1 of Example 9.6 has stable prefix entropy, but X0 = ψ0,2(X) does not, as 
shown in Example 9.1. The set X1 = ψ1,2(X) does not have stable prefix entropy by a 
similar analysis.
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Recall that Theorem 2.20 asserts weak shift-stability of X implies both stable prefix 
entropy of X and equality of the two notions of entropy, Hp(X) and Htop(X).

Proof of Theorem 2.20. For any set X we have N I
m(X) ≤ Nm(X). By hypothesis, S�X ⊆

SkX for some � ≥ k ≥ 0. Since X ⊆ Y implies S(X) ⊆ S(Y ), an easy induction 
argument shows that S�+jX ⊆ Sk+jX holds for all j ≥ 0. Since any block of length m
in X, starting in any position n, is an initial block of Sn(X), we may conclude that it 
is an initial block of S�′(X), for some �′ ≤ �. Consequently all such blocks are counted 
among the initial blocks of X, SX, · · · S�−1(X) of length m. To each such block one can 
associate an initial block of length m +� of X which contains the given block in positions 
�′ through �′ + m − 1. Any initial block of length m + � can be counted this way at most 
� + 1 times, one for each prefix �′ ≤ �, so we obtain the upper bound

Nm(X) ≤ (� + 1)N I
m+�(X).

We then obtain the bounds

N I
m(X) ≤ Nm(X) ≤ (� + 1)|A|�N I

m(X),

since N I
m+�(X) ≤ |A|�N I

m(X). It follows that

log N I
m(X) ≤ log Nm(X) ≤ log N I

m(X) + C,

for an absolute constant C. Thus

lim
m→∞

1
m

(
log N I

m(X) − log Nm(X)
)

= 0.

Since the limit limm→∞
1
m log Nm(X) exists for topological entropy, it must also exist 

for prefix entropy, showing stability. Moreover, since the limits are the same, Hp(X) =
Htop(X). Finally, since weak shift-stability is preserved under n-fold interleaving, the 
entropy equation (2.10) for topological entropy follows from Theorem 2.19. �
10. Concluding remarks

10.1. General interleaving operations

Iterated interleaving factorizations are a special case of factorizations of closed sets 
X ⊆ AN into a product of closed sets obtained by projections onto subsets of indices 
Ij ⊆ N, where the index sets {Ij : 0 ≤ j ≤ n − 1} form a partition of N. Iterated 
interleaving factorizations project onto a partition of N in which each Ij is a complete 
arithmetic progression in N.

Exact covering systems are partitions of N into finite sets of disjoint complete arith-
metic progressions (of various moduli). They have been extensively studied; see [21], 
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[42] and [43] for surveys. There are interesting necessary and sufficient conditions for a 
finite set of complete arithmetic progressions to be an exact cover of N, starting with 
Fraenkel [23]; see also Beebee [7] and Porubský and Schónheim [44]. The exact covers de-
termined by iterated interleaving are the set of natural exact covering systems introduced 
by Porubský [41], who credits the construction to an unpublished paper of Znam. It is 
known that not all exact covers can be obtained by iterated interleaving constructions. 
An example due to Znam (cf. Guy [28, Problem F14]) is:

{0 (mod 6); 1 (mod 10); 2 (mod 15);

3, 4, 5, 7 − 10, 13 − 16, 19, 20, 22, 23, 25 − 29 (mod 30)}.

This set of arithmetic progressions has gcd(6, 10, 15) = 1, while any iterated interleaving 
factorization with an initial n-fold interleaving necessarily has all arithmetic progressions 
in any refinement having periods divisible by n. The natural exact covering systems play 
a special role in the reversion (inversion under composition) of the Möbius function power 
series, see Goulden et al. [27].

One can introduce more general interleaving operations, which might include arbitrary 
exact covering systems. For a set X ⊆ AN , one can ask which decimations ψj,n(X) have 
the property that X can be written as a topological product ψj,n(X) × Y , where Y

is the projection of X onto the set I of all indices having i 	= j ( mod n)? Call such a 
decimation ψj,n(X) with this property a generalized factor of X. Can one characterize 
the possible sets of all generalized factors of X, as X varies?

10.2. Iterated interleaving closure operations

One may ask for a given set X, what are the set of all interleaving closures of it: 
{X [n] : n ≥ 1}. We can define a filtered limit as n → ∞ as follows. Letting pk denote 
the kth prime in increasing order, we can define

X [∞] := lim
nk=(p1p2···pk)k→∞

X [nk],

where the limit exists since X [nk] ⊆ X [nk+1] by Proposition 4.6(3), and for each n one 
has n divides nk for all sufficiently large k. The set X [∞] will be infinitely factorizable. 
What can one say about the possible forms of X [∞]?

10.3. Characterizing closed weakly shift-stable sets

Is there a characterization of closed weakly shift-stable sets X ⊆ AN having a par-
allel with the characterization by forbidden blocks of closed shift-stable sets given in 
Proposition 8.3?
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Appendix A. Interleaving operad

Operads were systematically developed by Boardman and Vogt [8] and May [37] and 
as a vehicle to study iterated loop spaces in stable homotopy theory. More recently, op-
erads have been used by researchers in homological algebra, category theory, algebraic 
geometry, and mathematical physics; see [47] for a brief introduction. Interleaving oper-
ations determine a certain kind of operad, giving an application of the operad concept to 
symbolic dynamics. In this Appendix we only define operads over the category of sets, 
although they can be defined over any symmetric monoidal category.

Non-symmetric operads (as in [34], [25]) are a weak version of operads which do 
not require equivariance under actions of symmetric groups on factors. They provide a 
convenient framework to keep track of properties of an infinite family of n-ary operations 
under iterated composition.

Definition A.1. A non-symmetric operad (or plain operad) O consists of a set O(n) for 
each natural number n satisfying the following conditions:

(a) (composition) for all positive integers n, k1, . . . , kn, there is a composition function

◦ : O(n) × O(k1) × · · · × O(kn) → O(k1 + · · · + kn),

written as (f, f1, . . . , fn) �→ f ◦ (f1, . . . , fn) for elements f ∈ O(n) and fi ∈ O(ki);
(b) (identity) there is an element 1 ∈ O(1), called the identity, such that

f ◦ (1, . . . , 1) = f = 1 ◦ f

for all f ;
(c) (associativity) there holds

f ◦ (f1◦(f1,1, . . . , f1,k1), fn ◦ (fn,1, . . . , fn,kn
)) =

= (f ◦ (f1, . . . , fn)) ◦ (f1,1, . . . , f1,k1 , . . . , fn,1, . . . , fn,kn
)

for all f ∈ O(n), fi ∈ O(ki) and fi,j .

For a non-symmetric operad O, we think of the elements of O(n) as n-ary operations. 
An operad is a non-symmetric operad that also possesses a right-action of the symmetric 
group Σn on the set of operations of arity n for each n, satisfying an equivariance 
condition, as described in the definition below.

Following [35], we use an underline to denote non-symmetric operads O and remove 
the underline for (symmetric) operads O.

Definition A.2. An operad (or symmetric operad) O is a non-symmetric operad together 
with a right action of the symmetric group Σn on each O(n) satisfying the following 
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equivariance conditions for each σ ∈ Σn, τi ∈ Σki
, f ∈ O(n), and fi ∈ O(ki) for 

1 ≤ i ≤ n:

(A) (f · σ) ◦ (f1, . . . , fn) = (f ◦ (f1, . . . , fn)) · σ;
(B) f ◦ (f1 · τ1, . . . , fn · τn) = (f ◦ (f1, . . . , fn) · (τ1, . . . , τn).

Here the action of σ on the right-half of (A) is defined as the action of the permutation σ̃ ∈
σk1+···+kn

that permutes consecutive blocks of length k1, . . . , kn, respectively, according 
to the permutation σ.

We let S(A) denote any class of subsets of AN that is closed under all decimation and 
interleaving operations, combining n sets in S(A) in any order in any n-fold interleaving. 
Examples of such classes include the collection W(A) of all weakly shift-stable sets 
(Theorem 2.15), the sub-collection W(A) of all closed weakly shift-stable sets (since the 
property of being closed is preserved under all decimation and interleaving operations), 
and the class C(A) of path sets studied in [2], which is shown to satisfy weak shift-stability 
in [5].

We first construct a non-symmetric operad I such that each element of I(n) is an n-
ary operation acting on S(A) ×S(A) ×· · ·×S(A) (n times). Although the non-symmetric 
operad I will be built up from the n-fold interleaving operations, the resulting set I(n)
of operations at level n will contain many more operations. For notational convenience, 
let �n denote the n-fold interleaving operation on S(A). We let I(1) = {�1}, where of 
course �1 = idS(A) is the trivial “1-fold interleaving”. Also let I(2) = {�2}. However, it 
will not be sufficient for I(3) to be a singleton set. Rather,

I(3) = {�3,�2 ◦ (�1,�2),�2 ◦ (�2,�1)},

where, for instance,

[�2 ◦ (�1,�2)](X1, X2, X3) = X1�(X2�X3)

for general sets X1, X2, X3 ∈ S(A). I(n) for n > 3 is defined analogously, so as to satisfy 
the composition condition of Definition A.1. It is easy to see that �1 serves as an identity 
for I with respect to the various compositions, as in (b). Since the compositions of I are 
genuine function composition, associativity in I follows from the associativity of function 
composition. Therefore, I is a non-symmetric operad. We call I the interleaving non-
symmetric operad, and refer to operations from I as compound interleaving operations.

The non-symmetric operad I can be upgraded to a symmetric operad by adding a 
right action of the symmetric group permuting the interleaving factors. This requires 
adding additional n-ary operations for each n. In particular, for σ ∈ Σn and an op-
eration f ∈ I(n), we need to admit the operation f · σ where (f · σ)(X1, . . . , Xn) =
f(Xσ(1), . . . , Xσ(n)). Note that, like the interleaving operations themselves, this is also a 
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function S(A) ×· · ·×S(A) → S(A), given by a (possibly compound) interleaving of some 
permutation of the input sets. Denote by I(n) the set of n-ary operations expanded to 
include the operations f · σ defined above, which permute the inputs prior to any (com-
pound) interleaving. Note that we can think of an element f ∈ I(n) as corresponding to 
f · ε ∈ I(n), where ε ∈ Σn is the identity element. We can then extend the compositions 
for the I(k) to

◦ : I(n) × I(k1) × · · · × I(kn) → I(k1 + · · · + kn),

by genuine function composition. Then it is natural to define a right action of Σn on I(n)
by (f ·σ) · τ = f · (στ) for f ·σ ∈ I(n) and τ ∈ Σn. Note that the equivariance conditions 
(A) and (B) of Definition A.2 apply generally to an action permuting the inputs of gen-
uine functions with respect to genuine composition. Thus, since the n-ary operations in 
I(n) are genuine functions on sets and the compositions are function composition, these 
conditions hold. We call the resulting (symmetric) operad the interleaving symmetric 
operad and denote it by I.

Proposition A.3. Let I be the interleaving symmetric operad acting on a collection of sets 
S(A) closed under all decimation and interleaving operations. Then for any f ∈ I(n)
and any sets X0, . . . , Xn−1 ∈ S(A), we have also f(X0, . . . , Xn−1) ∈ S(A).

Proof. Every f ∈ I(n) is just a composition of interleavings of various n-arities, where 
possibly the input sets have their order permuted. Since S(A) is closed under the in-
terleaving operations, it follows that it is closed under all composition operations from 
I. �

Generally, we recall below the notion of an algebra over an operad. We will see that 
the descriptions given above for the nonsymmetric operad I and the (symmetric) operad 
I were really given in terms of certain algebras over those operads. This approach has 
helped to keep the exposition concretely rooted in the examples of interest, but differs 
from the more typical, categorical exposition.

The following definition matches [35, Definition 1.20], restricted to operads in the 
category of sets. For a set X, let EndX(n) denote the set of all functions Xn → X, and 
let EndX =

⋃∞
n=1 EndX(n). Then EndX has the structure of an operad, and is called the 

Endomorphism Operad (of sets); see [35, Definition 1.7].

Definition A.4. Let O be an operad in the category of sets, and let X be a set. An 
O-algebra structure on X is a morphism of operads αX : O → EndX , that is, a family 
of Σn-equivariant morphisms αX(n) : O(n) → EndX(n), n ≥ 1, compatible with the 
identity, composition, and equivariance structures of O and EndX .

If we omit the equivariance structure from the above definition, then we get the notion 
of an algebra over a nonsymmetric operad.
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Example A.5 (Algebras over interleaving nonsymmetric operad I). The sets W(A) of all 
weakly shift-stable sets on the finite alphabet A, W(A) of all closed weakly shift-stable 
sets on A, and C(A) of path sets on A are all algebras over the interleaving nonsymmetric 
operad I. If the set S(A) is any of these sets, and for any n ∈ N, the maps αS(A) of 
Definition A.4 are built up from

αS(A)(n)(�n)[(X0, . . . , Xn−1)] := (�n)n−1
j=0 Xj = X0�X1� · · ·�Xn−1

by function composition, where (X0, . . . , Xn−1) ∈ S(A)n.
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