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ABSTRACT KEYWORDS
We study arithmetic functions @ (x; d, a), called prime running functions, whose value at x sums the gaps Number theory; prime

between primes py = a (mod d) below x and the next following prime py.1, up to x. (The following prime number statistics; probability
Pk+1 may be in any residue class (mod d).) We empirically observe systematic biases of order x/logx in

®(x;d,a) — ®(x;d, b) for different a, b. We formulate modified Cramér models for primes and show that

the corresponding sum of prime gap statistics exhibits systematic biases of this order of magnitude. The

predictions of such modified Cramér models are compared with the experimental data.

1. Introduction

This article studies a new class of prime counting statistics based on the size of gaps between primes, where the smaller prime in the
gap is restricted to a fixed arithmetic progression. The prime running function ® (x; d, a) counts the number of integers n < x having
the property that the largest prime p < n satisfies p = a (mod d). Alternatively, these statistics may be thought of as counting the
primes in a fixed arithmetic progression, each weighted by the length of the gap from that prime to the next larger prime. We present
experimental evidence that

1 x x
®(x;d,a) = ——x+R(dsa)—— +ol — ), (1.1)
o(d) logx <logx>
may hold as x — oo (Conjecture 2.3). In this formula, even the main term ®(x,d,a) ~ ﬁx is conjectural for d > 3
(Conjecture 2.2). The main term is what one would expect from the mean of gap sizes not depending on the modulus a (mod d),
while the term R(d; a) @ quantifies a “bias term” which is the main focus of this article. We rigorously analyze a probabilistic model
(modified Cramér model having a preliminary sieving on a modulus Q) which predicts a functional form of shape (1.1), with a bias
term present. For small moduli d, we compare the model prediction for R(d, a), taking Q to be a large primorial, against empirical
estimates for R(d, a).

The bias phenomenon was discovered in study of “prime running races” ®(x;d,a) — ®(x;d, b), between two different residue
classes a, b (with (ab,d) = 1). Such races are analogous to “prime number races” 7w (x; d, a) — 7w (x; d, b), on which there has been
a large amount of work (see Section 1.3). We present evidence that prime running races have biases asymptotically equivalent to
Cx/log x for some constant C = C(d;a, b). The conjectured formula (1.1) would give C(d;a,b) = R(d;a) — R(d;b). This bias
phenomenon was discovered experimentally for these statistics by plotting the simultaneous movements of two prime running races
as n increases on a single figure (Figure 2). We plotted a walk on the square lattice Z? with X component of the walk given by one
prime running race and Y component of the walk given by a different prime running race. One can make similar plots for prime
number races 7 (x; d, a) — 7 (x; d, b). One sees a great difference in the appearance of the plots in the two cases. The plots for prime
number races resemble 2-dimensional simple random walks, while the plots for prime running races do not resemble random walks
at all, and exhibit systematic biases increasing with x. We illustrate this phenomenon with an example.

1.1. Prime walk

The following “prime walk” on the integer lattice Z? takes steps according to the location of the two different prime number races
(mod 5) as the variable n increments. We begin the walk from the origin (0, 0) at time #n = 1. From there, we repeatedly increment
n by 1. Whenever n = py is a prime, we do the following:

o if pr =1 (mod 5), move down; add (0, —1)
o if py =2 (mod 5), move left; add (—1,0)

o if py = 3 (mod 5), move up; add (0, 1)

o if py = 4 (mod 5), move right; add (1,0)

If  is not prime (or if n = 5), we do not move.

CONTACT Jaeyoon Kim @jaeykim@umich.edu e Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA.

© 2020 The Author(s). Published with license by Taylor and Francis Group, LLC

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.


https://doi.org/10.1080/10586458.2020.1786863
https://crossmark.crossref.org/dialog/?doi=10.1080/10586458.2020.1786863&domain=pdf&date_stamp=2021-01-23
mailto:jaeykim@umich.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 &) LKM

600

-600

-600 -400 -200 0 200 400 600

X = m(n;5,4) - 7(n;5,2)

Figure 1. Plot of prime walkfor1 < n < 108.

Figure 1 presents the plot of points of the “prime walk” for n < 108. The nth point of the walk is located at position
(r(n35,4) — w(1;5,2), 7(n;5,3) —w(m35,1)) 1<n<108.

Using the terminology of Granville and Martin [10], Figure 1 exhibits the motion of two “prime number races” (mod 5); the Y-
component demonstrates the race between Team 3 and Team 1, while the X-component encodes the race between Team 4 and Team
2. The resulting walk exhibits a slight Northwest bias with a maximum magnitude of order 10°. The Northwest bias is explained
by Chebyshev’s bias (mod 5) (see Section 1.3). Qualitatively, Figure 1 resembles a sample path of a simple random walk, in that its
maximum distance from the origin is approximately proportional to the square root of the number of steps.

1.2. Primerun

We change the rules of the “prime walk” (mod 5) above to obtain “prime run” Whenever n = py is prime, we move in the same
direction as the prime walk. However, the prime run does not stop when #n is composite, it continues taking steps in the same

0.5

-0.5

®(n;5,3) - #(n;5,1)

2 . . . . . . )
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

X =®(n;5,4) -®(n;5,2) *°°

Figure 2. Plot of prime runfor 1 < n < 108.



EXPERIMENTAL MATHEMATICS (&) 3

direction that we were moving at time n — 1. Each time n = py is prime, we have an opportunity for changing directions. For the
composite values of n in between, we move in a straight line at unit speed, following the previous direction.
To obtain the position when n = pyy; — 1, we can apply the following algorithm to the position when n = p; — 1.

o if pr = 1 (mod 5), move down until the next prime; add (0, —(px+1 — px))
o if pp =2 (mod 5), move left until the next prime; add (—(px+1 — px),0)

o if pp = 3 (mod 5), move up until the next prime; add (0, px+1 — px)

o if pr =4 (mod 5), move right until the next prime; add (px+1 — px, 0)

If n = p3 = 5, we stop the walk until the next prime n = p4 = 7 is reached. Instead of moving one step, the prime run increments
by the magnitude of the gap between primes. Since the average gap size between the primes is x/m (x) ~ log(x), one might expect
that the prime running plot will look approximately like the prime walk scaled up by a factor of log(x).

Figure 2 presents the plot of points of the prime run for n < 10%.

It looks like a line! Also, we observe that the maximum distance reached away from the origin is of order 10°, which is much larger
than the 103 spread for the prime walk. We observe that the distance of order 10° from the origin reached is considerably smaller
than the 10® steps taken, indicating that the line in the plot has some thickness. Another observation is that the direction of drift in
Figure 2 is different from the direction of the “Chebyshev bias” in the prime walk shown in Figure 1. Experimentally, this plot of the
prime run exhibits a much larger and more sharply focused drift than the drift in the prime walk.

1.3. Related work

The study of differences between the number of primes in different residue classes below a threshold x has a long history. In the paper
“Comparative Prime Number Theory” by Knapowski and Turan [15, Problem 8], the study of 7w (x; d, a) — 7 (x; d, b) was termed the
(Shanks-Renyi) “prime number race” Let P = {p; < p» < ---} denote the set of primes, with p; = 2, p, = 3, etc. We recall that
the counting function for primes in arithmetic progression a (mod d) is

w(x;d,a) = Z 1. (1.2)

Pr=x
pr=a (mod d)

We assume (g, d) = 1, so that there are infinitely many primes in the class by Dirichlet’s theorem.
The subject of prime number races trace back to an assertion of Chebyshev [3] in 1853 (without proof) that

oo

pitl
tim Y ()™ P = oo, (13)
c—
k=1

which gave a sense in which there are more primes of the form 4n + 3 than of the form 4n + 1. In 1916, Hardy and Littlewood [11,
pp- 141-148] proved Chebyshev’s assertion under the assumption that the Riemann hypothesis holds for L(s, x—4).

However, already in 1914, Littlewood [18] proved that 7 (x; 4, 3) —m (x; 4, 1) has infinitely many sign changes. In 1995, by assuming
the generalized Riemann hypothesis, Kaczorowski [13] extended Littlewood’s result to races between all pairs of distinct nonzero
residue classes (mod 5). It is now known that the lead of many prime races 7 (x;d, a) — w(x;d, b) changes infinitely many times
for many particular pairs of distinct reduced residue classes a, b for many moduli d. For a survey on the case of prime moduli d,
see Granville and Martin [10]. For a general discussion of the distribution of the primes over different arithmetic progressions, see
Kaczorowoski [14].

In 1994, Rubinstein and Sarnak [21] introduced another variant of prime number races which quantifies the degree to which one
race is ahead of another. Their framework is to measure the set of values of x in which one member of a prime number race is ahead
of another using logarithmic density. A set S of positive integers has a well-defined logarithmic density d(S) if the following limit
exists:

d(S) := lim 1 Z 1

ree lOg x {neS:in<x}

Rubinstein and Sarnak showed, assuming strong conjectures on the distribution of zeros of L-functions, that a logarithmic density
exists for the set of x such that 7w (x;d,a) > 7 (x;d,b), where a and b are residues (mod d) having (ab,d) = 1. Their analysis
predicted that the logarithmic density of x for which 7 (x;4,3) > 7 (x;4, 1) is approximately 0.9959. Rubinstein and Sarnak termed
this phenomenon “Chebyshev’s bias” See Feuerverger and Martin [7] and Fiorilli [8] for other examples of large biases in this
sense.
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The quantitative sizes of how far one member of a prime number race can be ahead of another (of such “Chebyshev biases”) is
always small compared to the average value of these functions separately, which is about ﬁ @. The prime number theorem for

arithmetic progressions ([19, Corollary 11.21] and [6]) with (a, d) = 1 states

w(xd,a) = ﬁLi(x) + 0O <xe_cd\/ Ing) , (1.4)

where Li(x) denotes the logarithmic integral Li(x) = [, 10% and ¢, is some positive constant depending on d. Then each prime

number race (mod d) with gcd(ab, d) = 1 satisfies
T (x;d,a) — w(xd, b)| = O (xe_cd\/@) .
Assuming the generalized Riemann hypothesis, this bound can be improved to
| (x;d,a) — m(x;d,b)] = O (ﬁ“) for any € > 0.

In 2016, Lemke Oliver and Soundararajan [17] introduced new prime statistics having “unexpected biases” which are quantita-
tively very large as a function of x. These statistics concerned the counts up to x for r-tuples of r consecutive primes whose residue
classes (mod d) are specified. Restricting to r = 2, let w (x; d, (4, b)) count the number of primes py < x such that px = a (mod d) and
pri1 = b mod d. Here, we follow the standard notation that py denotes the k' smallest prime. We call such functions “consecutive
prime counting functions in arithmetic progressions.” Here, one expects equidistribution of these counts as x — oo in the sense
that

w(x; d, (a,b)) ~

X — 00,

X
@(d)? logx

although such results remain conjectural. Lemke Oliver and Soundararajan formulated precise conjectures on the asymptotic growth
loglog x
(log x)?

of 7 (x; d, (a, b)) which predicts that the size of the bias terms can be as large as x . Their main conjecture implies that differences

of such functions

7 (x;d, (a1, b1)) — w(x; d, (a2, b)),
loglog x
(logx)?
consecutive prime number races lead to a fixed sign for all sufficiently large x, which implies that one function wins the race for all
sufficiently large x.

As an example, their main conjecture predicts!

which we may call “consecutive prime number races,” sometimes observe biases of order x Such a large systematic bias of the

logl
7(x;5,(1,2)) — w(x5,(1,1)) = %x gig(lg)f +0 ((lo;x)2> )

an assertion implying that this bias will be positive for all large x. This bias term is smaller than the growth rate of 7 (x; d, a) by a
loglog x
logx *

Unlike the functions studied by Lemke Oliver and Soundararajan which require two or more arithmetic progression conditions

to exhibit bias, the prime running functions can exhibit a large bias even if we only restrict to a single arithmetic progression, as in

(1.1).

multiplicative factor

1.4. Contents

Section 2 defines prime running functions and formulates conjectures regarding the asymptotic behavior of the prime running
function. In Section 3, we present empirical evidence for d = 3,4,5,7, and 25 which provided the original basis for some of the
conjectures formulated in Section 2. In Section 4, we formulate probabilistic models for the primes which may explain the large bias
terms. These probabilistic models are versions of the Cramér model of random primes, modified by first making initial sieving to
remove any integers not co-prime to sieve modulus Q. These models predict that the prime running functions observe a bias of
order x/ log x (Theorems 4.3 and 4.5) and other behaviors (Theorems 4.6 and 4.8). These models provide heuristic justification for
the conjectures made in Section 2. The proof of Theorem 4.3 is found in Section 4.2. Section 5 provides an efficient method for
computing the predicted bias computation by the model. The predictions of the Cramér model is compared with empirical data.
Section 6 makes concluding remarks on analyzing probabilistic models for prime running functions.

"We take r = 2 and % = ﬁ in their main conjecture, p. E4447.
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2. Prime running functions: definitions and conjectures
2.1. Prime running functions

Now we introduce the prime running function.

Definition 2.1. For a (mod d), we define the prime running function as

O(x;d,a) = Z 1.
1<n<x

ln)p=a (mod d)

Here the P-floor function |n]p gives the largest prime less than or equal to n. We define |1|p = 0.

The prime running function is similar to the prime counting function “weighted” by the magnitude of the prime gaps.

Psda)= Y (prs1—px) +e(xda), (2.1)

Prr1=x
pr=a (mod d)

where

e(x;d,a) =
( ) otherwise.

—pk+1+ Lx] +1 if [x]p = pk, px = a (mod d),
0

The additional error term e(x; d, a) is bounded by

le(x;d,a)| = O (x7/12+6)

(see Huxley [12, Chap. 28]).
The plot of the prime run given in Figure 2 is a plot of two differences of prime running functions

(xn,yn) =(®(n;5,4) — (n;5,2),P(n;5,3) — (n;5,1))

for1 <n < 108.

2.2. Conjectures for prime running functions

It is natural to expect that the values of the prime running function are equidistributed among residue classes with gcd(a, d) = 1.

Conjecture 2.2 (Prime running function main term). For any integer d > 2 and any reduced residue a (mod d),

®(x;d,a) ~ Lx as x — oo.
¢(d)
Aside from the trivial exception d = 2, there seem to be no results known to give unconditional asymptotic formulas for functions
of this type. Furthermore, there does not even seem to be any lower bounds of the form ®(x;d, a) > cx with ¢ > 0.
Since the average spacing between primes is of order log x, Conjecture 2.2 is equivalent to the statement that the average value of
Pk+1 — Pk is independent of the congruent class of px (mod d) to an error o(logx) as x — oo.
The main empirical observation of this article is the (apparent) existence of large biases in the prime running function away from
the expected main term. We formulate a conjecture characterizing the bias of the prime running function between different residues.

Conjecture 2.3 (Prime running bias conjecture). For any integer d > 2 and integer a with gcd(a, d) = 1, there exists a constant R(d; a)
such that

®(x;d,a) = ——x + R(d; a)

1 X
@(d) <10gx>

The order of magnitude x/ log x for the bias term in Conjecture 2.3 is predicted by a probabilistic model in Section 4.
Assuming Conjecture 2.3, by taking the differences of two prime running functions, we can directly observe the bias term:

®(x5d,a1) = ®(xda2) = (R(ds a1) — R(ds 02));~— (lon)

In Section 3, we present empirical estimates of the constants R(d; a) for d = 3,5, and 7. We call the constants R(d; a), bias constants.
The empirical data and a probability model (see Theorem 4.6) suggest that the following anti-symmetry property of the bias
constants may hold.
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Conjecture 2.4 (Bias constant anti-symmetry conjecture). The bias constants for prime running function for modulus d satisfy
R(d; —a) = —R(d; a),
when (a,d) = 1.

In addition, Conjecture 2.3 for d = 3 implies anti-symmetry R(3;1) = —R(3;2) since ®(x;3,1) + ®(x;3,2) = x4+ O (1).
Limited empirical data and a probabilistic model (see Theorem 4.8) support the conjecture that the bias constants (mod d) depend
only on the square-free part ds of d, also called the radical of d, see [1].

dg =rad(d) = [ [p (22)
pld

Conjecture 2.5 (Radical equivalence conjecture). Forall d > 2, with (a,d) = 1,

d
R a) = 290 Rdys ), 23)
@(d)
where dg = rad(d) is the square-free part of d.
In particular, R(d;a) = R(d;a’) if a = a’ (mod d). For special case d = 2, we know unconditionally that R(2;1) = 0. Thus
Conjecture 2.5 predicts that

R(25a) =0 (2.4)

forallj > 1and a =1 (mod 2).

3. Experimental results

In this section, we present numerical data on the prime running function for a few small modulus d over their residue classes. In
Section 3.1, we provide data for d = 3,5, and 7. In Section 3.2, we provide data for d = 4 and 25.

3.1. Prime running function data for prime modulus

We first present data on the prime running functions for prime values of d and compare them to the predicted values from the main
term Conjecture 2.2. Tables 1 and 2 give numerical data ford = 3 and d = 5 at x = 108,10, 10'2.

This numerical data suggests that the main term is ﬁx and that systematic bias error terms are present.

The size of the bias appears to be growing more slowly than the main term ﬁx as x increases in powers of 10.

To fit the data to Conjecture 2.3, we introduce a new function.

Table 1. Value of the prime running function ®(x; 3,a) at
different values of x and a (mod 3). Last row gives the main
term from Conjecture 2.2.

d(x;3,0a)

x =108 x=10"0 x=10"2

a=1 51209542 5091131912 507317304782
a=2 48790455 4908868085 492682695215

2.2 50000000 5000000000 500000000000

Table 2. Value of the prime running function ®(x;5, a) at
different values of x and a (mod 5). Last row gives the main
term from Conjecture 2.2.

o (x;5,a)

X x=108  x=10" x = 1012

a=1 24644198 2470292440 247456175258
a=2 23714857 2401583475 241999191675
a= 26085716 2588759228 257451209200
a=4 25555226 2539364854 253093423864

2.2 25000000 2500000000 250000000000
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Definition 3.1. For integer d > 2 and reduced residue a (mod d), we define the rescaled bias function R(x; d, a) by

R(x;d,a) := (CD(x; d,a) — ﬁx) lo%c' (3.1)

Conjecture 2.3 can now be rewritten in the following form.
Conjecture 3.2. For all d > 2, with gcd(a, d) = 1 the following limit exists.
R(d;a) = lim R(x;d,a).
X—>00

Figures 3 and 4 plot the rescaled bias functions for d = 3 and d = 5 for x < 10'°. The resulting curves appear approximately flat,
which supports the conjecture that the prime running functions approach ﬁx + R(d; a) @, where R(d; a) is the bias constant.

Tables 3-5 numerically computes the values of R(x;d, a) for modulid = 3,d = 5,andd = 7 atx = 108,100, 1012,
In Tables 3-5, slow trends are visible, but their directions (increase of decrease in magnitude) seems to vary with a. Furthermore,
the data are consistent with the anti-symmetry Conjecture 2.4.

L R(z;3,1)

Figure 3. Plot of R(x; 3, a) for all reduced residues a (mod 3) and x < 1010, The liney = 0is marked with a dashed line.

0.3
0 R(z;5,3)
%: 0.1 Prmsniim R(az; 9, 4)
10
G
g | R(x;5,1)
| 0.1
p=
0.2 R(x;5,2)
—
0.3 .
0 1 2 3 4 5 6 T 8 9 10
x 109

xr

Figure 4. Plot of R(x; 5, a) for all reduced residues a (mod 5) and x < 1019, The liney = 0is marked with a dashed line.

Table 3. Values of R(x; 3, a) for various values of x

and a.
R(x;3,a)
¥ x=108 x=101" x=107
a=1 02228 02098 02022

a=2 —0.2228  —0.2098 —0.2022
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Table 4. Values of R(x; 5, a) for various values of x

and a.
R(x;5,a)
¥ x=108 x=10"0 x=10"
a=1 —00655 —00684 —0.0703
a=2 02367 —02266 —0.2211
a=3 02000  0.2044 0.2059
a=4 01023 0.0906 0.0855

Table 5. Values of R(x; 7, a) for various values of x
and a.

R(x;7,a)

¥ x=10% x=1010 x=10"

a=1 0.1530 0.1501 0.1461
a=2 —00780 —0.0709 —0.0680
a=3 0.0588 0.0527 0.0506
a=4 —0.0681 —0.0601 —0.0571
a=>5 0.0583 0.0590 0.0626
a=6 —01240 —0.1308 —0.1343

3.2. Prime running function data for prime power modulus

Figure 5 plots R(x; 4, a) for x < 10'°. There appears to be a smaller bias for the prime running functions for 1 (mod 4) and 3 (mod
4). This is consistent with Conjecture 2.5 which would imply that R(4; 1) = R(4;3) = 0.

0.3

1 2 3 4 5 6 7 8 9 10
(b) T x10°

Figure 5. (a) Plot of R(x; 4, a) for all reduced residues a (mod 4) and x < 10'0. The liney = 0is marked with a dashed line. The axis is set to the same scale as Figures 3 and
4. (b) Y-axis is zoomed in by a scale of 100.
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x x10°

Figure 6. Plotof ®(x;4,1) — ®(x;4,3) against x forx < 1010, The liney = 0is marked with a dashed line.

2000
-
i 0
8
N’
e
| -2000
—~~
—
< -4000
N
N—r
& -6000
[l
= 8000 '
2 3 4 5 6 7 8 9 10
T x10°

Figure 7. Plotof w(x;4,1) — 7 (x; 4,3) against x forx < 1010, The liney = 0is marked with a dashed line.

Table 6. Values of R(x; 4, a) for various values of x

anda.
R(x;4,a)
a X x =108 x=10"0 x=10"
1 —0.0041 0.0004 0.0002
3 0.0041 —0.0004 —0.0002

Table 7. Values of R(x; 25, a) for various values of
xanda = 1 (mod 5).

R(x; 25, a)

; ¥ x=108 x=10"0 x=10"
a=1 —00129 —00139 —0.0140
a=6  —00131 —00136 —0.0141
a=11  —00144 —00139 —0.0141

a=16  —0.0127 —0.0137 —0.0141
a=21 —0.0125 —0.0134 —0.0140

Figure 6 presents the unscaled prime running race between 1 (mod 4) and 3 (mod 4). Chebyshev’s bias for (mod 4) is illustrated
in Figure 7. In the depicted domain, the sign of ®(x;4,1) — ®(x;4,1) is predominantly positive, which is the opposite sign from
Chebyshev’s bias 7w (x; 4, 1) — 7w (x; 4, 3).

We see that unlike prime running races between prime moduli, the bias for d = 4 is of much smaller order (roughly of order /).
We observe that for large values of x in the plot, ®(x;4,1) — ®(x;4,3) > 0.

Figure 8 plots R(x; 25, a) for x < 10'°. Figure 8 follows a strong numerical agreement with Conjecture 2.5.

Table 6 numerically computes the values of R(x; 4, a). Table 6 suggests that R(4, 1) = R(4, 3) = 0 as predicted by Conjecture 2.4.

From Table 7, it seems that values of R(x;25; 1 + 5k) for k = 0, 1, 2, 3,4 become closer as the value of x increases. This behavior
is consistent with Conjecture 2.5.
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0.06
R(z;25,3 + 5k)
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Figure 8. Plot of R(x; 25, a) for all reduced residues a (mod 25) and x < 10'0. The line y = 0 is marked with a dashed line. In the figure, one can see four “solid lines.”
However, each “line” is overlap of plots of R(x; 25, a) for five different values of a. The top “line” is composed of plots of R(x; 25, 3), R(x; 25, 8), R(x; 25, 13), R(x; 25, 18), and
R(x; 25,23). The figure is scaled down by a factor of 5 compared to Figures 3 and 4.

4. Probabilistic models for bias terms in prime running functions

We study probabilistic models for “random primes” which can model prime gaps and prime running functions (mod d). We show that
modified Cramér models (defined in Section 4.1) produce bias terms of order x/ log x associated with the prime running functions.

4.1. Modified Cramér models

The original probabilistic model of Cramér [4, 5] picks independently for each integer n > 3 to be “C-prime” with probability loén.

The Cramér model seems to accurately predict many statistics on primes. For example, the Cramér model predicts that |7 (x) —Li(x)|
lies within the predicted range by the Riemann hypothesis. However, it does not account for arithmetic restrictions on prime gaps
and primes in arithmetic progressions. For example, almost all sample sequences of €-primes contain infinitely many gaps of size 1
between consecutive €-primes and contain infinitely many even numbers as €-primes.

We study a modified version of the Cramér model for the distribution of primes, that imposes initial sieving by an integers Q > 2
called the sieve modulus, followed by a probability model imposed on the unsieved elements. The initial sieving builds in arithmetic

restrictions. In this model, we let integer n with gcd(n, Q) = 1 be a “C-prime” with probability l(ngn where cq is the prefactor
s =110 5=)
co = = 1+ . (4.1)
T @ Q p—1

The prefactor cq quantifies the increased chance to be prime after the initial sieving. Modifications of Cramér models that make such
an initial sieving were suggested in 1995 by Granville [9]. They were later studied by Pintz [20].
Formally, for fixed integer Q > 2, we define a sequence of independent Bernoulli random variables Z, o by

Q —
Pr{Zng = 1] = {logn ged(m Q) =1, (4.2)
0 ged(n, Q) # L.

If 1o£§n from (4.2) exceeds 1, then we replace it by 1, a change that affects only finitely many values of n. If Z,, o = 1 then we say that
nisa Cq- prime.

In the modified Cramér model, we can define a random variable version of the prime running functions for these moduli d that
divide the sieve modulus Q.

Definition 4.1. The conditional gap W, q is a random variable defined as a function of random variables Z,, g, Z,4+1,; - - -

m—n ifZ,g=1andZ,41Q=Znt20=""=2Zm-1,=0and Z,, o =1,
nQ = (4.3)

0 otherwise.

We call W), q the conditional gap because if n is a €o-prime, then the value of W, o will equal the difference between # and the next
Cq-prime.



EXPERIMENTAL MATHEMATICS (&) 11

Definition 4.2 (Random prime running function). Let Q > 2 be an integer divisible by d. For fixed x > 0, we define the random
prime running function ®q(x; d, a) with Q as a sieve modulus to be a random variable

dosdia) = Y W (4.4)

1<n<x

n=a (mod d)

Definition 4.2 parallels the definition of prime running function in (2.1) in that they both sum over prime gaps (resp. € prime
gaps) with smaller prime restricted to an arithmetic progression.
The function ®q(x; d, a) is of interest when d divides Q and ged(a, d) = 1.

4.2. Modified Cramér model: expected value of the random prime running function

We demonstrate that the modified Cramér model, on average, predicts that prime running functions have a bias of the order @.
In what follows,

[nlo=n(modQ), 1 <[n]g <Q (4.5)

So [n]q is least positive residue (mod Q).

Theorem 4.3. Fix an integer d > 2 and integer a such that (a,d) = 1. For the modified Cramér model with a fixed sieve modulus Q
divisible by d, one has

- x x X
E[®q(x;d,a)] = m + Rq(d; a)logx + O ((logx)2> asx — 00
The bias constant Ro(d; a) is given by
Rq(d; a) = R&y(d; a) — Ro(d), (4.6)
where
1 Q
b(dia) = —— t —slo 4.7
o) = s tZ:l [t —slo (4.7)
(st,Q)=1
s=a (mod d)
and
= Q ¢(Q+1
Ro(d) = . 4.8
D=L@e@ 2 49

Proof. First, we recall the definition of the prime running function for a sample of the modified Cramér model, as a function of its
random variables Z; . It is

dosda)= Y W (4.9)
n<x
n=a (mod d)

By linearity of expected values, it is sufficient to analyze the behavior of expected value of the conditional gaps W,, o (Definition 4.1).
By definition of expected value over a discrete space,

E[Wnql =) vPriW,q = vl. (4.10)

The values v in (4.10) range over values of W}, g, which are the differences between two consecutive €q-primes. Since only positive
integers co-prime to Q have a non-zero probability of being €-prime, it is helpful to introduce a notation for the unsieved integers.
Let Uq be the set of the unsieved positive integers, i.e.

Ug={l=u <uy <us,...}:={ueN]| gcdu,Q) =1}

Since the random variables {Zy o} 72, are independent, for u;y; > u; we recover that

¢ ¢ c
Pr[Wy, Q= uiyi — ] = Q _Q <1 R ) , (4.11)
log u; log uj; 0<jet log uj;

where cg = % as defined in (4.1).
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By substituting (4.11) into right hand side of (4.10), we conclude that

E[W, o] = SR (1— Q > . (4.12)
1

10 U; log u; log u;;
g Ui >0 E Uit 0<j< 8 i+

While (4.12) gives us the exact value, it is difficult to work with. We proceed to approximating the expected value of Wy, g to a more
convenient form.

Lemma 4.4. Fix an integer Q > 2 and constant ¢ > 0. Let m be a non-negative integer. Let u; denote the i smallest positive integer
co-prime to Q. Define

(un+k - un)m [+ k=1
M) — -
fim = Z logu, (1 log un> ’

k>0
(s — )"
oy =y (Lot ()
k>0 log Untk O0<j<k log Untj

Then

m--e
T2 (n) = T"(n) + O (bg%)

for any fixed ¢ > 0 as n tends to infinity.

The proof of Lemma 4.4 is postponed to Appendix A.
We continue the proof of Theorem 4.3. By substituting ¢ = cg and m = 1 into Lemma 4.4, we obtain

2 -1
il — Ui 1 )€
E’[ W Mi,Q] l:):Q . |:u1+l .ul (1 1 - ) :| + (@) <—( o8 ul) >
g Ui =0 0og U; og U Uj

for any fixed ¢ > 0 as u; tends to infinity.
To further simplify Lemma 4.4, we separate u;1 into individual residue classes (mod Q).

@ 9 o(Ql+h—1 e
cQ (log u;)
E[W,, ; — - .
[(Wu,Q (logu)2 § : 2 (Wigp(Qlth u)( logu,-) + (9< "

h=1 1>0
Nowleto; =1 — logu and obtain
@ W h-1 o(Q!I (log u;)*®
E[Wy,ol = (logu ¥ Z ;ww —ui+Qha! "+ O <T> . (4.13)
We utilize moments of a geometric distributed random variable Y, with parameter p € (0, 1].
o0
E[Ypl=) pa—p"'=1, (4.14)
h=1
= 1
E[Yp] =) hp(1—p)" ' =, (4.15)
h=1 p
ElY;l=) Kpl—-p' = - (4.16)
h=1

More specifically consider Y, 4. Substituting the definition of moments to (4.13), we obtain

2 »(Q »(Q) €

e 0 Qo (log u;)

E[Wu,ql = (log ul)z Z < w(Q)E |:Y1 w(@] T o I:Yl—a;p(@]) +0 ( w ) ®17)
1
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By substituting (4.14) and (4.15) into right hand side of (4.17), we obtain that

2 »(Q »(Q &
Uirh — Ui Quo; (log u;)
E[W.,.q h-1 ) 7 + i +0 (—> : (4.18)
o (log uz)2 Z oz;p(Q) (1 _ a;ﬂ(Q))z u;
We further simplify (4.18) using the following series expansions.
logui — cq'\* k k(k — 1)co?
ok = (M) _ 1 Re | MEZ DT g 1oguy ), (4.19)
log u; log u; 2(log u;)?
1 log u; —1 1 - logu -
- og u; <1 ~ (@@ —Deq (9( )) _ logui »(Q O ((logup™). (4.20)
1—af ) Q 2log u; (log u;)? Q 20(Q)
»(Q 2
; 1 1 log u; log u;
o _ _ _ (ogu”  logui )y (4.21)

(1 _ ;,;AQ))Z (1 _ a;p(Q))z 1—af@ Q@ Q@

By substituting the series expansions (4.19)—-(4.21) into the right-hand side of (4.18), we obtain the following equation.?

2 9@
_ €Q _ (h— I)CQ 1
E[Wu.ol = (log ;)2 ; |: (1 log u; +O ((log u;)? ))

(log u;)? (ui+l — u; 1 ) ) i| ( (log u;)® )
- logu; + O (1 o—"2). 422
X < o + ) ) ogui+O ) ) |+ ” (4.22)
(4.22) simplifies to the following.
(Q
CQ2 % (”H—h — Uj h ) ( 1 )
E[W,. 0] = — ol———). 4.23
Wuol =co+ log u; ; Q Q) * (log u;)? (423

Note that the projection of {uj1p : h =1,2,...,¢0(Q)} to (Z/QZ)* is a bijection. Also note that 1 < u;, — u; < Qfor1 < h <
¢(Q). Thus if u; = s (mod Q), then

»(Q

Uiph — Ui h ) p(Q+1 1
> - =————+— > lt—sl (4.24)
P ( Q ?(Q) 2 Q L oaot

Summing these contributions in (4.23) yields

x Q (P(Q) + 1 x < x )
>, ElWiql= + t— — 40— 4.25
B (W] p(Q  ¢(Q? 120[ slo log x (log x)? (425)
ui=s (mod Q) Q)=

Finally, summing (4.25) over all s = a (mod d) for s = 1,2,. .. Q that are co-prime to Q, we get

) = % (e 1 Q p@QF1Y x x
Blowaal= ) E[W“"’Q]_w(d)+<Q(d’“) oo 2 >1ogx+0<(1ogx)z>' .

Ui<x

uij=a (mod d)

4.3. Modified Cramér model: variance of the random prime running function

The next theorem shows that the probability distribution is centered around the mean value with a standard deviation of scale at
most /xlogx. Note that the standard deviation is significantly smaller than the order of bias @

Theorem 4.5. Fix an integer d > 2 and an integer a such that (a,d) = 1. Then

Var(CIDQ(x; d,a)) =0 (xlog x) . (4.26)

2For fixed Q, we only sum over finite number of terms in (4.18). Thus the constants for the Big-O type bounds are bounded.
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Proof. As with Theorem 4.3, let Ug be the set of the unsieved integers and let cq be the prefactor, i.e.
Ug={1l=u <uy <us,...}:={ueN]|gcduQ) =1}

_ _Q
and cq = 575
We first utilize the variance of sum of random variables formula.

Var(Pos g @) = Y Var(Wu +2 D> Cov(Wyo Wy
Ui<x u,-<uj§x
uj=a (mod d) uj=uj=a (mod d)

We will bound the variance and the co-variance of W, ¢ separately.
By definition of variance,

Var(W,q) = E[Wj, o] — E[Wy,q)” < E[W; ol.

It follows from (4.11) that

2 AT
E[W2 o] = Q M 1_[ (1 «Q ) . (4.27)

log u; log u;  log Uiy
08 10 OBUiL i OB Uitj

By Lemma 4.4 and the inequality u;1; — u; < QI, (4.27) simplifies to

22 2 I-1 1 N1+e
Var(Wi, o) < 29 3 (1 S > +0 (M) . (4.28)
log u; — log u; log u; Uu;
Letting Y, be a geometrically distributed random variable with parameter p = lngQu,- . By substituting equation for E[Y;] into (4.28),
we obtain that
2 1 N1+e
Var(Wa o) < 2% Y21+ O <M> . (4.29)
log u; U;
By second moment of geometric distribution (4.16), we obtain that
Var(W,,q) = O (log u;) . (4.30)
Thus there exists a constant C > 0 such that Var(W,, o) < Clog(u;) for sufficiently large ;. We obtain that
Z Var(W,,q) < Cxlogx+ O (1). (4.31)
Uu<x
uij=a (mod d)

We now bound the covariance terms. Suppose that i < j. We will split the covariance into parts by conditioning on different
events.

3
Cov(Wu @ Wiy0) = Y EIW,, Wiy QI EXIP(Ex) — EIW,, QI Wy ), (4.32)
k=1

where Ey, E, E5 are events Wy, q = uj — uj, Wy, @ < uj — uj, Wy, > uj — u;, respectively. Suppose Wy, @ > uj — u; (E3).
Then u; cannot be €g-prime. Such event implies that Wy, q = 0. Thus E[W,,,oWy;q|E3] = 0. Now suppose that Wy,q < uj — u;
(E2). Such event implies that W,,, o and W, are (conditionally) independent. Thus E[W,, o WuQlE2] = E[Wy, Q| E2JE[Wy,ql <
E[Wui,Q]E[WuJ.,Q]. By combining these two observations, we conclude that

COV(Wui)Q, Wuj,Q) < P(Wu,-,Q =uj— ui)E(Wu,-,QWuj,Q|Wu,-,Q =uj— u;),

which simplifies to

log uj
Cov(Wi00 WiQ) < P(Wiyq = w5 — up) (1 — ui)?]E[Wu,-,Q]-

Jj—i .
By (4.23), E[Wuj,Q] =0 (1) andby (4.11), P(Wy, @ = uj—u;) = O (m (1 Q ) ) Thus there exists a constant A > 0

~ logy
such that if WQM,- < 1, then
Cov(Wo g Wa o) < A—28% y(1- 2 & (4.33)
ov u;, Q> uj,Q = (1 +10g ui)z u] Ui log uj . .
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Note that instead of (log u;)? as the denominator in equation (4.33), we have (1 + log u)2. Thls allows us to avoid dividing by 0
when u; = 1. This inconvenience occurs because the probability that u; is € prime is equal to only if u; is sufficiently large. By

10 u
summing equation (4.33) over different values of u;, uj, we obtain

log u; c@ V7
> Cov(Wyo Wy <A > ——I —u—w) (1-——] +0®. (4.34)
! (1 + logu;) log u;
uj<uj<x uj<uj<x
ui=uj=a (mod d) ui=uj=a (mod d)

By utilizing (A.8), log 4; < logx, and adding additional non-negative terms, (4.34) simplifies to

1 h
Y. CovlWue Wi <4Q)° o ngu s Z ( - I—Q) +0). (435)

ui<uj§x Ui<x
ui=uj=a (mod d)

By setting Y < to be a geometric random variable with parameter p = and substituting the definition of E |: Q ] into (4.35),

- lo X
logx log x
we obtain that
log x log x
Y CovWi W) <AQY . ——or 87 [Y . } +O). (4.36)
wi<mex = (I+logui)? cq Togx
ui=uj=a (mod d)
By (4.15) and the fact ) |, _, m =0 (W), we obtain
Z Cov(Wy,q WiQ) = @) (x logx) . (4.37)

ui<uj§x
uj=uj=a (mod d)

O
4.4. Modified Cramér model: anti-symmetry properties
Theorem 4.6 suggests that the bias constant anti-symmetry Conjecture 2.4 should be true.
Theorem 4.6. For any integer d > 2 and integer Q divisible by d, the following anti-symmetry holds.
Rq(d; —a) = —Rq(d; a).
Proof. Fix an integer a co-prime to Q. By definition of bias constants,
1 Q
RY(d; —a) = —— [t — slo.
¢ ¢(Q? ; ¢
s=—a (mod d)
(st,Q)=1
Because t — —t is a permutation of (Z/QZ)*, we can sum over —t. Furthermore, s = a (mod d) implies —s = —a (mod d). Thus
1 Q
3
(d;—a) = —— [s — tlo.
9(Q? t2=1 :
s=a )(mod d)
(st:Q)=1
It follows that
1 Q
oda) + Ry(ds—a) = ——= > ([t=slg+Is—1lo). (4.38)
vQ
s=a (mod d)

(st,Q)=1
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Note that [t — s]q + [s — t]lg = 0 (mod Q) and [t — s]g + [s — t]q € [2,2Q]. Thus

Q t#s(modQ),
t— —tlg = 4.39
[t =slo+ls—to !2() t= s (mod Q). (4.39)
By counting the number of times s = t in (4.38) and utilizing (4.39), we obtain that
1 9(Q)? Q) =
R}(d;a) + R (d; —a) = (Q +Q = 2Rq(d). (4.40)
@ ¢ e \" @ T e@ ¢
O
As an immediate corollary, we obtain that the bias constants add up to 0.
Corollary 4.7. For d > 2 and Q divisible by d,
d
Z Ro(d;a) =0 (4.41)
a=1
(a,d)=1
and
1 d
Ro(d) = — R: (d; a). (4.42)
T @ ; Q
(a,d)=1
4.5. Modified Cramér model: radical equivalence property
Theorem 4.8. For alld > 2 with (a,d) = 1 and d|Q,
@ (dsf)
Rqo(d;a) = Rq(dst, a), (4.43)
¢ o) 4
where dgs = rad(d) is the maximal square-free divisor of d. Equivalently,
Rq(d;a) = Rq(dsa') (4.44)
ifa=da (mod d).
Proof. Note that for any fixed sample sequence of €q primes,
d
dodpa) = Y Dolda). (4.45)
a=1
a'=a (mod dys)
By linearity of expected value and inspecting the @ order term from Theorem 4.3, we obtain that
d
Rodgsa)= Y Rodd). (4.46)
a=1

a'=a (mod dg)

Thus (4.43) and (4.44) are equivalent. Fix a and @’ such that a = a’ (mod dsf). Let Qsf = rad(Q) denote the square-free part of Q.
Because dg divides Qsf and Qsf/dsf is co-prime to d, there exists some integer k such that a + kQg¢ = a’ (mod d). Thus it suffices to
show that Rq(d; a) = Rq(d; a + Q) for any fixed a. By definition of bias constants given in Theorem 4.3,

Q

- 1
Ro(dsa+ Qi) = —Ro(d) + —— t — slo.
o(dsa+ Q) oD + s tZ:1 [t —slo

(st,Q)=1
s=a+Qsf (mod d)

Since [t — s]q only depends on value of t — s (mod Q), we can sum over s = a (mod d) and then add Qyf to s.

Q
- 1
R d, + s = —R d+— t— + S >
o(dia+ Qi) = —Ra(d) + gl [t — (s + QDo
(st,Q)=1

s=a (mod d)
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Q
> t—Q —slo

s,t=1
(st,Q)=1
s=a (mod d)
Q

1
Ro(dia+ Q) = —Rod +—— > [t—sl
Q) o’
$(t+Q.Q=1
s=a (mod d)

Ro(d; ) = —Ro(d
Q(dsa+ Qsf) Q()—l-(p(Q)2

Well, for any integer ¢, and any prime factor p of Q, t = t + Q¢ (mod p). Thus ¢ is co-prime to Q if and only if t + Qg is co-prime to
Q. It follows that

Q
1
Ro(dsa+ Qi) = —Ro(d) + —— QP > It=sle (4.47)
(5222:)1:1
s=a (mod d)
We are done because (4.47) is the definition of Rq(d; a). O

5. Computation for modified Cramér model

In this section, we compute the bias constants Rq(d; a) for the modified Cramér model for various values of Q and d.

5.1. Recursive formula for bias constants

Brute force computation of bias constant Rq(d; a) has runtime complexity that is polynomial in Q, which is exponential in input bit
size O(log Q). The following result gives a recursive formula yielding an improved method for computing the bias constants R (d; a)
for fixed d and all a (mod d) with (a,d) = 1.

Theorem 5.1. Suppose d, p, Qo > 2 are pairwise co-prime and p is a prime. Let Q = dQq. Then

p(p)* —1
Ryq(d; pa) = —————Rq(d; pa) + ——=Rq(d; a). (5.1)
paiep P R ()2 @
Definition 5.2. Given Qi, . . ., Qk pairwise co-prime, we define [n, . . ., nk]q,,...,Q, to be the unique element in [1, Q1 Q; . . . Qk] such

that
[n1,.. 51kl = ni (mod Qp), i=1,... .,k

Note that the definition is consistent with the definition of least positive residue [n]q. Because [n]q,q,..q, is congruent to
n (mod Q;) fori =1,...,k, we obtain

[n]Qle..AQk = [1’[, e n]Ql ..... Q-+ (52)
Proof of Theorem 5.1. By Corollary 4.7,
1 rQ
Ry,o(d;pa) = ——— [t —s] [t —s] (5.3)
PASPD = Q2 tZ:l e w(pQ)zw(d) Z re
(st,pQ)=1 (st pQ) 1
s=a (mod d)
By substituting (5.2) into (5.3), we obtain that
1 1 pQ
Ryq(d; pa) = [t—s,t 4= [t —st—5lpqed | - (5.4)
s=pa (mod d) (¢ pQ) 1 (sth) 1
(s,pQ)=1

For each integer s co-prime to pQ, there are eaxactly ¢ (d) many integers 1 < s’ < pQ that are co-prime to pQ and congruent to
s (mod pQyp). Furthermore, if s = pa (mod d), then for each s’ that satisfies the conditions above, [t —s, t—s, 1pQod = [t—s, t—palpqQq.d-
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Thus we can remove the restriction s = pa (mod d) from first sum in (5.4) by replacing [t — s, t

and accounting for multiplicity.
By substituting (5.5) into (5.4),

- S]PQo,d with [t — s, t — palpQo, d

rQ
Ryo(d;pa) = — [t —s,t — palyQed — [t — st — slpq,, (5.5)
pQ(d; p 0 Q %0 (d) S; ( PalpQo.d pQo d)
(st,pQ)=1
and similarly,
1 Q
Ro(d;a) = ——— [t—s,t—a] —[t—st—5s] . 5.6
AED = Q@ ; ( i a) 50
Q=1
We now decompose (5.5) by the decomposition (Z/pQoZ) ™ = (Z/pZ)™ x (Z/QoZ)*.
p—1
1
Ryo(d;pa) = ——— [t —s,t—pat —5] —[t=st—st —5] 5.7
aldipa) = o s tzl Py ( part = laup Quitp)- (57)
(st.Q)=1

Note that for any r1, 12,13 € Z, [r1,72,731Qp.dp —
remainder theorem, for any fixed r,r; € Z,
1
r3 > 6([71,7’2>T3]Q0,d,p = [r1,72]Qp4)

is a permutation on {0, 1,2, . ..

[71,72]1Qy,4 is congruent to 0 (mod Q) and r3 —

,p — 1}. By further fixing ré € Z and summing over the set {0, 1,. ..

[71,72]1Qy,d (mod p). By Chinese

,p — 1}, we conclude that

p—1
> (tr1s 2 r3ludp — (1175 731 Qedp) = P r2lgnd — 11 75]Q0d)- (5.8)
1’3=0
We apply (5.8) to (5.7) as we sum over s'.
Rpa(d; t—s, —[t—st—
pq(d; pa) = w(pQ)zw( 3 tZI ﬂij([ st = palgua — [t = 5.t = slgu.d)
(st,Q)=1
t— N —[t—st—st .
0@ tzl ;([ ~ P Hlandp == st s Handy)
(st,Q)=1
We apply (5.8) once more by summing over ¢’
_pp—=1
Ry0(d; t— —[t—s,
pQ(dipa) = o ( d) tZI (a — palgpa — [t — st — slgy.a)
(st,Q=1
I — —lt—s
WQ)Z @ tZI p(lt =5t = palgya = [t = 5,1 = sl
(stQ) 1
<p(pQ)2 @ Z( st —pa,0]qudp — [t — st —5,0]lqudp)-
(StQ) 1
This simplifies to
Q
pp—2) 1
Rpq(d; pa) = t—st— —lt—st—
o) =S @ 2 (0TS ol It st = slow
(st,Q=1
+ n Q)2¢( 3 Z (It — pa, 0]Qydp — [t — 5.t — 5,0]Qp.dp)- (5.9)

s,t=1
(st,Q=1
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By (5.6) the first term of (5.9) is <p(p() & RQ(d pa).

<p(p)2 -1

Rq(d; pa)

<P(PQ)2<p(d) Z ([t = 5.t = pa,Olquap — [t = 5,1 = 5, 0lq.dp)- (5.10)

s,t=1
(st,Q)=1

Note that multiplication by p is a permutation of (Z/QyZ)* and (Z/dZ)* . Thus one could sum over ps and pt instead of s and ¢.

p(p)* -1
Ryo(d; = ————Ro(d;
pQ(d; pa) o) Q(d; pa)
Q
+ t — ps,pt — pa,0 — [pt — ps,pt — ps,0 . 5.11
2GO%e@ ; (pt = ps. pt = pa Olau.ap = [pt = pspt = s, 0lqdp) (5.11)
(st,Q)=1
By the Chinese remainder theorem,

[pr1, pr2,01Qp.dp = plri>2lgpds 71,72 € Z. (5.12)

21

Ryq(dspa) = %RQW;P‘I)

1
_— t— - —t—st— . 5.13
TP 0@ tZl ( algud — [t — st — slgp.a) (5.13)

(st,Q)=1
On substituting (5.6), we conclude that
()’ —1 p

Ryo(d; = ———Ro(d; 5.14
paldipd) = =y Raldpar+ G149
O

5.2. Computation of modified Cramér bias constants

We compute bias constants Ro(d; a) utilizing the recursive algorithm in Theorem 5.1. For modulus d = p a prime, the simplest case
is Q = d, and the bias constant is given by

Rd(d;a)=$(g—%>, l<a<d-1, (5.15)
These constants R;(d; a) are increasing as a function of afor 1 < a < d — 1. For d = 3,5,7 R;(d; a) significantly differ from the
empirical data on bias constants R(x; d, a) given in Tables 3-5 in Section 3. The empirical data also disagrees in sign for d = 3 and
the constants oscillate in a ford = 5and d = 7.

We now study the effect of larger sieve modulus Q on the modified Cramér bias constants, which seems to improve our numerical
result. In particular, we consider the case of a modified Cramér model with an initial sieve over all the prime numbers less than or
equal to T. We let our sieve modulus Q = T#, where the primorial at T, is defined by

T# .= Hp (5.16)

p=T

The notation T# for primorials follows Caldwell and Gallot [2]. Thus & 14 (x; d, a) isarandom prime running function corresponding
to the modified Cramér model with initial sieving by all primes less than or equal to 7.

Tables 8-10 give values of Cramér bias constants at various primorials.

The bias constant for the expected values in these modified Cramér models with sieve modulus of Q = 1000# exhibit numerical
resemblance with the empirical data for d = 5 and 7. However, for the case d = 3, there are significant deviations from the empirical
data.

Note that as T varies in these tables, the values of the constants Rr#(d; a) may be showing oscillations as T increases.



20 JKIM

Table 8. The bias constant R (3; a) for various sieve moduli Q.

Cramér model bias constants rescaled bias function
a 9 Q-3 Q=3% Q=10# Q=100 Q= 10004 R(10'%;3,a)
a=1 —0.125 0.25 0.1823 0.1599 0.1569 0.2022
a=2 0.125 —0.25 —0.1823 —0.1599 —0.1569 —0.2022

The right most column is the empirical data R(1012; 3,0).

Table 9. The bias constant Ry (5; a) for various sieve moduli Q.

Cramér model bias constants rescaled bias function
a 9 Q—s5 Q=st Q=106 Q=100 Q= 10004 R(10'2;5,a)
a=1 —0.09375 —0.0938 —0.0547 —0.0699 —0.0685 —0.0703
a=2 —0.03125 —0.1875 —0.2005 —0.2027 —0.2043 —0.2211
a=3 0.03125 0.1875 0.2005 0.2027 0.2043 0.2059
a=4 0.09375 0.0938 0.0547 0.0699 0.0685 0.0855

The right most column is the empirical data R(1 012; 5,0).

Table 10. The bias constant Ry(7; a) for various sieve moduli Q.

Cramér model bias constants rescaled bias function
Q g9—7 o=10# Q=100# Q= 1000 R(10'%;7;a)
a=1 —0.0964 0.1432 0.1303 0.1310 0.1461
a=2 -—0.0417 —-0.0781 —0.0749 —0.0753 —0.0680
a= —0.0139 0.0651 0.0554 0.0557 0.0506
a= 0.0139 —0.0651 —0.0554 —0.0557 —0.0571
a=>5 0.0417 0.0781 0.0749 0.0753 0.0626
a==6 0.0964 —0.1432 —0.1303 —0.1310 —0.1343

The right most column is the empirical data R(10'%7,a).

6. Concluding remarks

Section 4 presents a modified Cramér model which exhibits a mechanism that can lead to biases of order x/logx. Our data in
Section 5 computes bias constants for this model for primorials T# that roughly agree with the empirical data in Section 3 ford = 5
andd =7.

The choice of taking the sieve modulus Q to run through primorials T# in the modified Cramér model is significant. Based on
the choice of the sequence of integers {S;}7°, with S;|S;;1, Rs;(d; a) could diverge or converge to a value that depends on the choice
of {§;}32,. For example, fix d > 2 prime and choose a with (a,d) = 1. Define

Qr=d l_[ p.
p<T
p=1 (mod d)

By Theorem 5.1,

P*+p—1

Ry =| [ 22 rao=| [ -2 |rdo. (6.1)
o () [ AR
p=1 (mod d) Pp=1 (mod d)

It is known that

1_[ P I ~ c(log(x))1/¢(d)

psr P

p=1 (mod d)

for some constant ¢ > 0 (see [16], [22]). In particular, by taking Qr as the sieve factor, the constants R, (d; a) diverge as T grows to
infinity.

We do not address the question of whether the bias constants Rp(d; a) produced by this model (letting Q — oo through the
primorials) will necessarily agree with the bias constants R(d; a) asserted to exist in Conjecture 2.3.

We defined the prime running functions ® (x;d, a) as summing gaps between primes py = a (mod d) below x and the next
following prime py 1, up to x. However, one also consider the reversed prime running functions ®R(x; d, a) which puts instead a
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congruence condition on the upper endpoint of the interval pyy; = a (mod d) and putting no congruence condition on pi. By an
analysis similar to that made in Section 4, the modified Cramér model predicts

R, _ 1 _ ] X X
) (x,d,a)——¢(d)x R(d,a)—logx+o _logx ,

with the bias term having the opposite sign as for the prime running function.
A more refined analysis of the biases of prime running function and its generalizations can be done based on the Hardy-Littlewood
k-tuple conjecture, following ideas in the paper of Lemke-Oliver and Soundararajan [17]. We leave this topic for future work.
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Appendix A: Proof of Lemma 4.4
Proof. We begin by decomposing |T1 (1) — T2(n)| into two parts using the triangle inequality.
|T{" () — T3 (n)| < H{"(n) + HY' (n),

where

m{ 1 1 ¢ \F!
Hi'(n) :== Z (uptk — un) <7 7> (1 — logun> , (A1)

= loguy,  logu, i

(Upak — un)" ol c ¢ k=1
HY'(n) := Z ik U ]_[ (1 ) - (1 ) ) (A.2)

e loguy, 4k Pl log 4 (log un)

Thus it suffices to show the following inequalities.

1 m
H(n) = O (M) , (A3)
n
1 m+e
H'(n) = O (%> . (A4)
n
We first prove (A.3). Note that % @ =— m is decreasing in magnitude. Thus by mean value theorem,
1 1 t
— - < ; (A.5)
logx log(x+1t) ~ x(logx)?
By substituting (A.5) into (A.1), we establish that
_ m-+1 k—1
Hi”(n) < Z (Mn+k1 Un) - (1 - c > ‘ (A.6)
o uy (log uy) og un
Note that for any positive integer a, there exists some integer u € [a,a + Q) co-prime to Q. Thus the following holds
n<up < Qn, (A7)
k<uyip—u, <Qk, k=0,1,2,.... (A.8)
By substituting (A.7) and (A.8) into (A.6), we obtain that
m+1 fm+1 k—1
HP'(ny < 2 (1 S ) . (A.9)
up loguy P loguy logun
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Let Y}, be a geometric random variable with parameter p = Togiiy ~. By substituting the definition for the m + 1th moment, we obtain that

Qm—H
H™(n) < 715[1/;;1“].
cuy loguy

We will use the moment generating function M(t) = E[exp(tYp)] to bound the growth of E [Y”’H]. By direct computation, M(t) =

M(t)lt 0= E[Ym'H] we conclude that

1
EY"t1 =0 (7) )
p pm+1 pe0,1]

, we obtain that

H’lﬂ(n) =0 (M) .

Un

By utilizing the fact that 2 T +1

By substituting (A.11) into (A.10) and p =

- logu

Now all we have left is to prove (A.4). Note that for any k > 0,

k=1 k-1 k—1
() =00 ) =0 )
logun 1 logupyj log uy, 4k

j=1
Thus
. m k—1 k—1
G < 3 Ltk — )" (o) -(-5) |
=0 log uy, 4k log uy, 4k log uy
d ¢ k ck c k—1 . . . [
Note that - (1 — @) = Xlog? (1 — @) . Thus the derivative of the function (1 - logx) is bounded above by - (log aoga? (1 —

over the interval x € [a, b]. By mean value theorem, we establish that for ¢ < a < b,

( ¢ )k ( ¢ )k ck(b—a)( ¢ )k—l
1-— ) —(1- <——(1- .
logb loga a(log a)? logb

By substituting (A.14) into (A.13), we establish that for suﬁ’iciently large n,

- k—1 k=2
HZ (n) < CZ Untk ”n ( ) 1— c .
log(uy, k) un(log uy)? log uy, 4

By substituting (A.7) and (A.8) into (A.15), we obtaln that
Qm—H

k=2
m &K mEl e — -——
M = gy kgk M <1 10g(Q(n+k))> '

-2
. c . .
By noting that ( 1-— W) < 2 for sufficiently large n, we obtain that

m Q! m+2 c ¢
H <2— E Kk 1,
20 = 2 dogny : ( log(Q(n + k)))
>0
for sufficiently large n.

Because 1 — x < e * for all x € R, we know that

cQmtl _
Hﬁn(n) <2 (1Og n)3 ka+2 ck/ log(Q(n+k))

for sufficiently large n. Let P = Since P < 1, there exists a constant Cp > 0 such that for all sufficiently large n,

k - kP
log(Q(n+k)) ~ Cplogn’

m+3+e

k=12,....

Thus for sufficiently large #,

m Qm+1 E : m+2 —CC,logn i
H <2 Ca logn
2(m =< n(log n)3

m—+1 00 P
< / (t+ 1M H2e “Crlosn gy,

HT <2—
2 = n(logn)3 Jo

By substituting u = ¢, we obtain that

00 L
f (t+ 1)™2¢ “Cplogn gt = © ((log n)m+3+e> .
0

By substituting (A.20) into (A.19), we conclude (A.4).

(A.10)

pe!
T—ef(1-p)°

(A.11)

(A.12)

(A.13)

k-1
c
log h)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)
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