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Prime Running Functions

Jaeyoon Kim
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ABSTRACT
We study arithmetic functions �(x; d, a), called prime running functions, whose value at x sums the gaps
between primes pk ≡ a (mod d) below x and the next following prime pk+1, up to x. (The following prime
pk+1 may be in any residue class (mod d).) We empirically observe systematic biases of order x/ log x in
�(x; d, a) − �(x; d, b) for different a, b. We formulate modified Cramér models for primes and show that
the corresponding sum of prime gap statistics exhibits systematic biases of this order of magnitude. The
predictions of such modified Cramér models are compared with the experimental data.

KEYWORDS
Number theory; prime
number statistics; probability

1. Introduction

This article studies a new class of prime counting statistics based on the size of gaps between primes, where the smaller prime in the
gap is restricted to a fixed arithmetic progression. The prime running function�(x; d, a) counts the number of integers n ≤ x having
the property that the largest prime p ≤ n satisfies p ≡ a (mod d). Alternatively, these statistics may be thought of as counting the
primes in a fixed arithmetic progression, each weighted by the length of the gap from that prime to the next larger prime.We present
experimental evidence that

�(x; d, a) = 1
ϕ(d)

x + R(d; a)
x

log x
+ o

(
x

log x

)
, (1.1)

may hold as x → ∞ (Conjecture 2.3). In this formula, even the main term �(x, d, a) ∼ 1
ϕ(d)x is conjectural for d ≥ 3

(Conjecture 2.2). The main term is what one would expect from the mean of gap sizes not depending on the modulus a (mod d),
while the term R(d; a) x

log x quantifies a “bias term” which is the main focus of this article. We rigorously analyze a probabilistic model
(modified Cramér model having a preliminary sieving on a modulus Q) which predicts a functional form of shape (1.1), with a bias
term present. For small moduli d, we compare the model prediction for R(d, a), taking Q to be a large primorial, against empirical
estimates for R(d, a).

The bias phenomenon was discovered in study of “prime running races” �(x; d, a) − �(x; d, b), between two different residue
classes a, b (with (ab, d) = 1). Such races are analogous to “prime number races” π(x; d, a) − π(x; d, b), on which there has been
a large amount of work (see Section 1.3). We present evidence that prime running races have biases asymptotically equivalent to
Cx/ log x for some constant C = C(d; a, b). The conjectured formula (1.1) would give C(d; a, b) = R(d; a) − R(d; b). This bias
phenomenon was discovered experimentally for these statistics by plotting the simultaneous movements of two prime running races
as n increases on a single figure (Figure 2). We plotted a walk on the square lattice Z2 with X component of the walk given by one
prime running race and Y component of the walk given by a different prime running race. One can make similar plots for prime
number races π(x; d, a) − π(x; d, b). One sees a great difference in the appearance of the plots in the two cases. The plots for prime
number races resemble 2-dimensional simple random walks, while the plots for prime running races do not resemble random walks
at all, and exhibit systematic biases increasing with x. We illustrate this phenomenon with an example.

1.1. Primewalk

The following “prime walk” on the integer lattice Z2 takes steps according to the location of the two different prime number races
(mod 5) as the variable n increments. We begin the walk from the origin (0, 0) at time n = 1. From there, we repeatedly increment
n by 1. Whenever n = pk is a prime, we do the following:

• if pk ≡ 1 (mod 5), move down; add (0,−1)
• if pk ≡ 2 (mod 5), move left; add (−1, 0)
• if pk ≡ 3 (mod 5), move up; add (0, 1)
• if pk ≡ 4 (mod 5), move right; add (1, 0)

If n is not prime (or if n = 5), we do not move.
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Figure 1. Plot of prime walk for 1 ≤ n ≤ 108.

Figure 1 presents the plot of points of the “prime walk” for n ≤ 108. The nth point of the walk is located at position

(π(n; 5, 4) − π(n; 5, 2), π(n; 5, 3) − π(n; 5, 1)) 1 ≤ n ≤ 108.

Using the terminology of Granville and Martin [10], Figure 1 exhibits the motion of two “prime number races” (mod 5); the Y-
component demonstrates the race between Team 3 and Team 1, while the X-component encodes the race between Team 4 and Team
2. The resulting walk exhibits a slight Northwest bias with a maximum magnitude of order 103. The Northwest bias is explained
by Chebyshev’s bias (mod 5) (see Section 1.3). Qualitatively, Figure 1 resembles a sample path of a simple random walk, in that its
maximum distance from the origin is approximately proportional to the square root of the number of steps.

1.2. Prime run

We change the rules of the “prime walk” (mod5) above to obtain “prime run.” Whenever n = pk is prime, we move in the same
direction as the prime walk. However, the prime run does not stop when n is composite, it continues taking steps in the same

Figure 2. Plot of prime run for 1 ≤ n ≤ 108.
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direction that we were moving at time n − 1. Each time n = pk is prime, we have an opportunity for changing directions. For the
composite values of n in between, we move in a straight line at unit speed, following the previous direction.

To obtain the position when n = pk+1 − 1, we can apply the following algorithm to the position when n = pk − 1.

• if pk ≡ 1 (mod 5), move down until the next prime; add (0,−(pk+1 − pk))
• if pk ≡ 2 (mod 5), move left until the next prime; add (−(pk+1 − pk), 0)
• if pk ≡ 3 (mod 5), move up until the next prime; add (0, pk+1 − pk)
• if pk ≡ 4 (mod 5), move right until the next prime; add (pk+1 − pk, 0)

If n = p3 = 5, we stop the walk until the next prime n = p4 = 7 is reached. Instead of moving one step, the prime run increments
by the magnitude of the gap between primes. Since the average gap size between the primes is x/π(x) ∼ log(x), one might expect
that the prime running plot will look approximately like the prime walk scaled up by a factor of log(x).

Figure 2 presents the plot of points of the prime run for n ≤ 108.
It looks like a line! Also, we observe that themaximum distance reached away from the origin is of order 106, which is much larger

than the 103 spread for the prime walk. We observe that the distance of order 106 from the origin reached is considerably smaller
than the 108 steps taken, indicating that the line in the plot has some thickness. Another observation is that the direction of drift in
Figure 2 is different from the direction of the “Chebyshev bias” in the prime walk shown in Figure 1. Experimentally, this plot of the
prime run exhibits a much larger and more sharply focused drift than the drift in the prime walk.

1.3. Relatedwork

The study of differences between the number of primes in different residue classes below a threshold x has a long history. In the paper
“Comparative Prime Number Theory” by Knapowski and Turan [15, Problem 8], the study of π(x; d, a) − π(x; d, b) was termed the
(Shanks–Renyi) “prime number race.” Let P = {p1 < p2 < · · · } denote the set of primes, with p1 = 2, p2 = 3, etc. We recall that
the counting function for primes in arithmetic progression a (mod d) is

π(x; d, a) =
∑
pk≤x

pk≡a (mod d)

1. (1.2)

We assume (a, d) = 1, so that there are infinitely many primes in the class by Dirichlet’s theorem.
The subject of prime number races trace back to an assertion of Chebyshev [3] in 1853 (without proof) that

lim
c→0+

∞∑
k=1

(−1)
pk+1
2 e−pkc = +∞, (1.3)

which gave a sense in which there are more primes of the form 4n + 3 than of the form 4n + 1. In 1916, Hardy and Littlewood [11,
pp. 141–148] proved Chebyshev’s assertion under the assumption that the Riemann hypothesis holds for L(s,χ−4).

However, already in 1914, Littlewood [18] proved thatπ(x; 4, 3)−π(x; 4, 1) has infinitelymany sign changes. In 1995, by assuming
the generalized Riemann hypothesis, Kaczorowski [13] extended Littlewood’s result to races between all pairs of distinct nonzero
residue classes (mod 5). It is now known that the lead of many prime races π(x; d, a) − π(x; d, b) changes infinitely many times
for many particular pairs of distinct reduced residue classes a, b for many moduli d. For a survey on the case of prime moduli d,
see Granville and Martin [10]. For a general discussion of the distribution of the primes over different arithmetic progressions, see
Kaczorowoski [14].

In 1994, Rubinstein and Sarnak [21] introduced another variant of prime number races which quantifies the degree to which one
race is ahead of another. Their framework is to measure the set of values of x in which one member of a prime number race is ahead
of another using logarithmic density. A set S of positive integers has a well-defined logarithmic density d(S) if the following limit
exists:

d(S) := lim
x→∞

1
log x

⎛
⎝ ∑

{n∈S:n≤x}

1
n

⎞
⎠ .

Rubinstein and Sarnak showed, assuming strong conjectures on the distribution of zeros of L-functions, that a logarithmic density
exists for the set of x such that π(x; d, a) > π(x; d, b), where a and b are residues (mod d) having (ab, d) = 1. Their analysis
predicted that the logarithmic density of x for which π(x; 4, 3) > π(x; 4, 1) is approximately 0.9959. Rubinstein and Sarnak termed
this phenomenon “Chebyshev’s bias.” See Feuerverger and Martin [7] and Fiorilli [8] for other examples of large biases in this
sense.
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The quantitative sizes of how far one member of a prime number race can be ahead of another (of such “Chebyshev biases”) is
always small compared to the average value of these functions separately, which is about 1

ϕ(d)
x

log x . The prime number theorem for
arithmetic progressions ([19, Corollary 11.21] and [6]) with (a, d) = 1 states

π(x; d, a) = 1
ϕ(d)

Li(x) + O
(
xe−cd

√
log x
)
, (1.4)

where Li(x) denotes the logarithmic integral Li(x) = ∫ x
2

dt
log t and cd is some positive constant depending on d. Then each prime

number race (mod d) with gcd(ab, d) = 1 satisfies

|π(x; d, a) − π(x; d, b)| = O
(
xe−cd

√
log x
)
.

Assuming the generalized Riemann hypothesis, this bound can be improved to

|π(x; d, a) − π(x; d, b)| = O
(
x

1
2+ε
)

for any ε > 0.

In 2016, Lemke Oliver and Soundararajan [17] introduced new prime statistics having “unexpected biases” which are quantita-
tively very large as a function of x. These statistics concerned the counts up to x for r-tuples of r consecutive primes whose residue
classes (mod d) are specified. Restricting to r = 2, let π(x; d, (a, b)) count the number of primes pk ≤ x such that pk ≡ a (mod d) and
pk+1 ≡ b mod d. Here, we follow the standard notation that pk denotes the kth smallest prime. We call such functions “consecutive
prime counting functions in arithmetic progressions.” Here, one expects equidistribution of these counts as x → ∞ in the sense
that

π(x; d, (a, b)) ∼ 1
ϕ(d)2

x
log x

as x → ∞,

although such results remain conjectural. LemkeOliver and Soundararajan formulated precise conjectures on the asymptotic growth
ofπ(x; d, (a, b))which predicts that the size of the bias terms can be as large as x log log x

(log x)2 . Theirmain conjecture implies that differences
of such functions

π(x; d, (a1, b1)) − π(x; d, (a2, b2)),

which we may call “consecutive prime number races,” sometimes observe biases of order x log log x
(log x)2 . Such a large systematic bias of the

consecutive prime number races lead to a fixed sign for all sufficiently large x, which implies that one function wins the race for all
sufficiently large x.

As an example, their main conjecture predicts1

π(x; 5, (1, 2)) − π(x; 5, (1, 1)) = 1
8
x
log log x
(log x)2

+ O
(

x
(log x)2

)
,

an assertion implying that this bias will be positive for all large x. This bias term is smaller than the growth rate of π(x; d, a) by a
multiplicative factor log log x

log x .
Unlike the functions studied by Lemke Oliver and Soundararajan which require two or more arithmetic progression conditions

to exhibit bias, the prime running functions can exhibit a large bias even if we only restrict to a single arithmetic progression, as in
(1.1).

1.4. Contents

Section 2 defines prime running functions and formulates conjectures regarding the asymptotic behavior of the prime running
function. In Section 3, we present empirical evidence for d = 3, 4, 5, 7, and 25 which provided the original basis for some of the
conjectures formulated in Section 2. In Section 4, we formulate probabilistic models for the primes which may explain the large bias
terms. These probabilistic models are versions of the Cramér model of random primes, modified by first making initial sieving to
remove any integers not co-prime to sieve modulus Q. These models predict that the prime running functions observe a bias of
order x/ log x (Theorems 4.3 and 4.5) and other behaviors (Theorems 4.6 and 4.8). These models provide heuristic justification for
the conjectures made in Section 2. The proof of Theorem 4.3 is found in Section 4.2. Section 5 provides an efficient method for
computing the predicted bias computation by the model. The predictions of the Cramér model is compared with empirical data.
Section 6 makes concluding remarks on analyzing probabilistic models for prime running functions.

1We take r = 2 and 1
8 = 1

2ϕ(5) in their main conjecture, p. E4447.
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2. Prime running functions: definitions and conjectures

2.1. Prime running functions

Now we introduce the prime running function.

Definition 2.1. For a (mod d), we define the prime running function as

�(x; d, a) =
∑

1≤n≤x

n�P≡a (mod d)

1.

Here the P-floor function 
n�P gives the largest prime less than or equal to n. We define 
1�P = 0.

The prime running function is similar to the prime counting function “weighted” by the magnitude of the prime gaps.

�(x; d, a) =
∑

pk+1≤x
pk≡a (mod d)

(
pk+1 − pk

)+ e(x; d, a), (2.1)

where

e(x; d, a) =
{

−pk+1 + 
x� + 1 if 
x�P = pk, pk ≡ a (mod d),
0 otherwise.

The additional error term e(x; d, a) is bounded by

|e(x; d, a)| = O
(
x7/12+ε

)
(see Huxley [12, Chap. 28]).

The plot of the prime run given in Figure 2 is a plot of two differences of prime running functions(
xn, yn

) = (�(n; 5, 4) − �(n; 5, 2),�(n; 5, 3) − �(n; 5, 1))

for 1 ≤ n ≤ 108.

2.2. Conjectures for prime running functions

It is natural to expect that the values of the prime running function are equidistributed among residue classes with gcd(a, d) = 1.

Conjecture 2.2 (Prime running function main term). For any integer d ≥ 2 and any reduced residue a (mod d),

�(x; d, a) ∼ 1
ϕ(d)

x as x → ∞.

Aside from the trivial exception d = 2, there seem to be no results known to give unconditional asymptotic formulas for functions
of this type. Furthermore, there does not even seem to be any lower bounds of the form �(x; d, a) > cx with c > 0.

Since the average spacing between primes is of order log x, Conjecture 2.2 is equivalent to the statement that the average value of
pk+1 − pk is independent of the congruent class of pk (mod d) to an error o(log x) as x → ∞.

The main empirical observation of this article is the (apparent) existence of large biases in the prime running function away from
the expected main term.We formulate a conjecture characterizing the bias of the prime running function between different residues.

Conjecture 2.3 (Prime running bias conjecture). For any integer d ≥ 2 and integer a with gcd(a, d) = 1, there exists a constant R(d; a)
such that

�(x; d, a) = 1
ϕ(d)

x + R(d; a)
x

log x
+ o

(
x

log x

)
.

The order of magnitude x/ log x for the bias term in Conjecture 2.3 is predicted by a probabilistic model in Section 4.
Assuming Conjecture 2.3, by taking the differences of two prime running functions, we can directly observe the bias term:

�(x; d, a1) − �(x; d, a2) = (R(d; a1) − R(d; a2))
x

log x
+ o

(
x

log x

)
.

In Section 3, we present empirical estimates of the constants R(d; a) for d = 3, 5, and 7. We call the constants R(d; a), bias constants.
The empirical data and a probability model (see Theorem 4.6) suggest that the following anti-symmetry property of the bias

constants may hold.
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Conjecture 2.4 (Bias constant anti-symmetry conjecture). The bias constants for prime running function for modulus d satisfy

R(d;−a) = −R(d; a),

when (a, d) = 1.

In addition, Conjecture 2.3 for d = 3 implies anti-symmetry R(3; 1) = −R(3; 2) since �(x; 3, 1) + �(x; 3, 2) = x + O (1).
Limited empirical data and a probabilisticmodel (see Theorem 4.8) support the conjecture that the bias constants (mod d) depend

only on the square-free part dsf of d, also called the radical of d, see [1].

dsf = rad(d) :=
∏
p|d

p (2.2)

Conjecture 2.5 (Radical equivalence conjecture). For all d ≥ 2, with (a, d) = 1,

R(d; a) = ϕ(dsf )
ϕ(d)

R(dsf ; a), (2.3)

where dsf = rad(d) is the square-free part of d.

In particular, R(d; a) = R(d; a′) if a ≡ a′ (mod dsf ). For special case d = 2, we know unconditionally that R(2; 1) = 0. Thus
Conjecture 2.5 predicts that

R(2j; a) = 0 (2.4)

for all j ≥ 1 and a ≡ 1 (mod 2).

3. Experimental results

In this section, we present numerical data on the prime running function for a few small modulus d over their residue classes. In
Section 3.1, we provide data for d = 3, 5, and 7. In Section 3.2, we provide data for d = 4 and 25.

3.1. Prime running function data for primemodulus

We first present data on the prime running functions for prime values of d and compare them to the predicted values from the main
term Conjecture 2.2. Tables 1 and 2 give numerical data for d = 3 and d = 5 at x = 108, 1010, 1012.

This numerical data suggests that the main term is 1
ϕ(d)x and that systematic bias error terms are present.

The size of the bias appears to be growing more slowly than the main term 1
ϕ(d)x as x increases in powers of 10.

To fit the data to Conjecture 2.3, we introduce a new function.

Table 1. Value of the prime running function �(x; 3, a) at
different values of x and a (mod 3). Last row gives the main
term from Conjecture 2.2.

�(x; 3, a)

a
x x = 108 x = 1010 x = 1012

a = 1 51209542 5091131912 507317304782
a = 2 48790455 4908868085 492682695215

2.2 50000000 5000000000 500000000000

Table 2. Value of the prime running function �(x; 5, a) at
different values of x and a (mod 5). Last row gives the main
term from Conjecture 2.2.

�(x; 5, a)

a
x x = 108 x = 1010 x = 1012

a = 1 24644198 2470292440 247456175258
a = 2 23714857 2401583475 241999191675
a = 3 26085716 2588759228 257451209200
a = 4 25555226 2539364854 253093423864

2.2 25000000 2500000000 250000000000
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Definition 3.1. For integer d ≥ 2 and reduced residue a (mod d), we define the rescaled bias function R(x; d, a) by

R(x; d, a) :=
(

�(x; d, a) − 1
ϕ(d)

x
)
log x
x

. (3.1)

Conjecture 2.3 can now be rewritten in the following form.

Conjecture 3.2. For all d ≥ 2, with gcd(a, d) = 1 the following limit exists.

R(d; a) = lim
x→∞R(x; d, a).

Figures 3 and 4 plot the rescaled bias functions for d = 3 and d = 5 for x ≤ 1010. The resulting curves appear approximately flat,
which supports the conjecture that the prime running functions approach 1

ϕ(d)x + R(d; a) x
log x , where R(d; a) is the bias constant.

Tables 3–5 numerically computes the values of R(x; d, a) for moduli d = 3, d = 5, and d = 7 at x = 108, 1010, 1012.
In Tables 3–5, slow trends are visible, but their directions (increase of decrease in magnitude) seems to vary with a. Furthermore,

the data are consistent with the anti-symmetry Conjecture 2.4.

Figure 3. Plot of R(x; 3, a) for all reduced residues a (mod 3) and x ≤ 1010. The line y = 0 is marked with a dashed line.

Figure 4. Plot of R(x; 5, a) for all reduced residues a (mod 5) and x ≤ 1010. The line y = 0 is marked with a dashed line.

Table 3. Values of R(x; 3, a) for various values of x
and a.

R(x; 3, a)

a
x x = 108 x = 1010 x = 1012

a = 1 0.2228 0.2098 0.2022
a = 2 −0.2228 −0.2098 −0.2022
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Table 4. Values of R(x; 5, a) for various values of x
and a.

R(x; 5, a)

a
x x = 108 x = 1010 x = 1012

a = 1 −0.0655 −0.0684 −0.0703
a = 2 −0.2367 −0.2266 −0.2211
a = 3 0.2000 0.2044 0.2059
a = 4 0.1023 0.0906 0.0855

Table 5. Values of R(x; 7, a) for various values of x
and a.

R(x; 7, a)

a
x x = 108 x = 1010 x = 1012

a = 1 0.1530 0.1501 0.1461
a = 2 −0.0780 −0.0709 −0.0680
a = 3 0.0588 0.0527 0.0506
a = 4 −0.0681 −0.0601 −0.0571
a = 5 0.0583 0.0590 0.0626
a = 6 −0.1240 −0.1308 −0.1343

3.2. Prime running function data for prime powermodulus

Figure 5 plots R(x; 4, a) for x ≤ 1010. There appears to be a smaller bias for the prime running functions for 1 (mod 4) and 3 (mod
4). This is consistent with Conjecture 2.5 which would imply that R(4; 1) = R(4; 3) = 0.

Figure 5. (a) Plot of R(x; 4, a) for all reduced residues a (mod 4) and x ≤ 1010. The line y = 0 is marked with a dashed line. The axis is set to the same scale as Figures 3 and
4. (b) Y-axis is zoomed in by a scale of 100.
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Figure 6. Plot of�(x; 4, 1) − �(x; 4, 3) against x for x ≤ 1010. The line y = 0 is marked with a dashed line.

Figure 7. Plot of π(x; 4, 1) − π(x; 4, 3) against x for x ≤ 1010. The line y = 0 is marked with a dashed line.

Table 6. Values of R(x; 4, a) for various values of x
and a.

R(x; 4, a)

a
x x = 108 x = 1010 x = 1012

1 −0.0041 0.0004 0.0002
3 0.0041 −0.0004 −0.0002

Table 7. Values of R(x; 25, a) for various values of
x and a ≡ 1 (mod 5).

R(x; 25, a)

a
x x = 108 x = 1010 x = 1012

a = 1 −0.0129 −0.0139 −0.0140
a = 6 −0.0131 −0.0136 −0.0141
a = 11 −0.0144 −0.0139 −0.0141
a = 16 −0.0127 −0.0137 −0.0141
a = 21 −0.0125 −0.0134 −0.0140

Figure 6 presents the unscaled prime running race between 1 (mod 4) and 3 (mod 4). Chebyshev’s bias for (mod 4) is illustrated
in Figure 7. In the depicted domain, the sign of �(x; 4, 1) − �(x; 4, 1) is predominantly positive, which is the opposite sign from
Chebyshev’s bias π(x; 4, 1) − π(x; 4, 3).

We see that unlike prime running races between primemoduli, the bias for d = 4 is of much smaller order (roughly of order
√
x).

We observe that for large values of x in the plot, �(x; 4, 1) − �(x; 4, 3) > 0.
Figure 8 plots R(x; 25, a) for x ≤ 1010. Figure 8 follows a strong numerical agreement with Conjecture 2.5.
Table 6 numerically computes the values of R(x; 4, a). Table 6 suggests that R(4, 1) = R(4, 3) = 0 as predicted by Conjecture 2.4.
From Table 7, it seems that values of R(x; 25; 1 + 5k) for k = 0, 1, 2, 3, 4 become closer as the value of x increases. This behavior

is consistent with Conjecture 2.5.
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Figure 8. Plot of R(x; 25, a) for all reduced residues a (mod 25) and x ≤ 1010. The line y = 0 is marked with a dashed line. In the figure, one can see four “solid lines.”
However, each “line” is overlap of plots of R(x; 25, a) for five different values of a. The top “line” is composed of plots of R(x; 25, 3), R(x; 25, 8), R(x; 25, 13), R(x; 25, 18), and
R(x; 25, 23). The figure is scaled down by a factor of 5 compared to Figures 3 and 4.

4. Probabilistic models for bias terms in prime running functions

Westudy probabilisticmodels for “randomprimes”which canmodel prime gaps and prime running functions (modd).We show that
modified Cramér models (defined in Section 4.1) produce bias terms of order x/ log x associated with the prime running functions.

4.1. Modified Cramérmodels

The original probabilistic model of Cramér [4, 5] picks independently for each integer n ≥ 3 to be “C-prime” with probability 1
log n .

The Cramérmodel seems to accurately predict many statistics on primes. For example, the Cramérmodel predicts that |π(x)−Li(x)|
lies within the predicted range by the Riemann hypothesis. However, it does not account for arithmetic restrictions on prime gaps
and primes in arithmetic progressions. For example, almost all sample sequences of C-primes contain infinitely many gaps of size 1
between consecutive C-primes and contain infinitely many even numbers as C-primes.

We study a modified version of the Cramér model for the distribution of primes, that imposes initial sieving by an integersQ ≥ 2
called the sieve modulus, followed by a probability model imposed on the unsieved elements. The initial sieving builds in arithmetic
restrictions. In this model, we let integer n with gcd(n,Q) = 1 be a “CQ-prime” with probability cQ

log n where cQ is the prefactor

cQ := Q
ϕ(Q)

=
∏
p|Q

(
1 + 1

p − 1

)
. (4.1)

The prefactor cQ quantifies the increased chance to be prime after the initial sieving. Modifications of Cramérmodels that make such
an initial sieving were suggested in 1995 by Granville [9]. They were later studied by Pintz [20].

Formally, for fixed integer Q ≥ 2, we define a sequence of independent Bernoulli random variables Zn,Q by

Pr[Zn,Q = 1] =
{ cQ

log n gcd(n,Q) = 1,
0 gcd(n,Q) 
= 1.

(4.2)

If cQ
log n from (4.2) exceeds 1, then we replace it by 1, a change that affects only finitely many values of n. If Zn,Q = 1 then we say that

n is a CQ- prime.
In the modified Cramér model, we can define a random variable version of the prime running functions for these moduli d that

divide the sieve modulus Q.

Definition 4.1. The conditional gap Wn,Q is a random variable defined as a function of random variables Zn,Q,Zn+1,Q, . . .

Wn,Q :=
{
m − n if Zn,Q = 1 andZn+1,Q = Zn+2,Q = · · · = Zm−1,Q = 0 and Zm,Q = 1,
0 otherwise.

(4.3)

We callWn,Q the conditional gap because if n is a CQ-prime, then the value ofWn,Q will equal the difference between n and the next
CQ-prime.
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Definition 4.2 (Random prime running function). Let Q ≥ 2 be an integer divisible by d. For fixed x > 0, we define the random
prime running function �̃Q(x; d, a) with Q as a sieve modulus to be a random variable

�̃Q(x; d, a) :=
∑

1≤n≤x
n≡a (mod d)

Wn,Q. (4.4)

Definition 4.2 parallels the definition of prime running function in (2.1) in that they both sum over prime gaps (resp. CQ prime
gaps) with smaller prime restricted to an arithmetic progression.

The function �̃Q(x; d, a) is of interest when d divides Q and gcd(a, d) = 1.

4.2. Modified Cramérmodel: expected value of the randomprime running function

We demonstrate that the modified Cramér model, on average, predicts that prime running functions have a bias of the order x
log x .

In what follows,

[n]Q ≡ n (mod Q), 1 ≤ [n]Q ≤ Q. (4.5)

So [n]Q is least positive residue (mod Q).

Theorem 4.3. Fix an integer d ≥ 2 and integer a such that (a, d) = 1. For the modified Cramér model with a fixed sieve modulus Q
divisible by d, one has

E[�̃Q(x; d, a)] = x
ϕ(d)

+ RQ(d; a)
x

log x
+ O

(
x

(log x)2

)
as x → ∞

The bias constant RQ(d; a) is given by

RQ(d; a) = R∗
Q(d; a) − R̄Q(d), (4.6)

where

R∗
Q(d; a) := 1

ϕ(Q)2

Q∑
s,t=1

(st,Q)=1
s≡a (mod d)

[t − s]Q, (4.7)

and

R̄Q(d) = 1
ϕ(d)

Q
ϕ(Q)

ϕ(Q) + 1
2

. (4.8)

Proof. First, we recall the definition of the prime running function for a sample of the modified Cramér model, as a function of its
random variables Zi,Q. It is

�̃Q(x; d, a) =
∑
n≤x

n≡a (mod d)

Wn,Q. (4.9)

By linearity of expected values, it is sufficient to analyze the behavior of expected value of the conditional gapsWn,Q (Definition 4.1).
By definition of expected value over a discrete space,

E[Wn,Q] =
∑
v

v Pr[Wn,Q = v]. (4.10)

The values v in (4.10) range over values ofWn,Q, which are the differences between two consecutiveCQ-primes. Since only positive
integers co-prime to Q have a non-zero probability of being CQ-prime, it is helpful to introduce a notation for the unsieved integers.
Let UQ be the set of the unsieved positive integers, i.e.

UQ = {1 = u1 < u2 < u3, . . .} := {u ∈ N | gcd(u,Q) = 1}.
Since the random variables {Zk,Q}∞k=1 are independent, for ui+l > ui we recover that

Pr[Wui,Q = ui+l − ui] = cQ
log ui

cQ
log ui+l

∏
0<j<l

(
1 − cQ

log ui+j

)
, (4.11)

where cQ = Q
ϕ(Q)

as defined in (4.1).



12 J. KIM

By substituting (4.11) into right hand side of (4.10), we conclude that

E[Wui,Q] = cQ2

log ui

∑
l>0

⎡
⎣ui+l − ui

log ui+l

∏
0<j<l

(
1 − cQ

log ui+j

)⎤⎦ . (4.12)

While (4.12) gives us the exact value, it is difficult to work with. We proceed to approximating the expected value ofWui,Q to a more
convenient form.

Lemma 4.4. Fix an integer Q ≥ 2 and constant c > 0. Let m be a non-negative integer. Let ui denote the ith smallest positive integer
co-prime to Q. Define

Tm
1 (n) =

∑
k>0

(
un+k − un

)m
log un

(
1 − c

log un

)k−1
,

Tm
2 (n) =

∑
k>0

⎛
⎝(un+k − un

)m
log un+k

∏
0<j<k

(
1 − c

log un+j

)⎞⎠ .

Then

Tm
2 (n) = Tm

1 (n) + O
(
log(n)m+ε

n

)

for any fixed ε > 0 as n tends to infinity.

The proof of Lemma 4.4 is postponed to Appendix A.
We continue the proof of Theorem 4.3. By substituting c = cQ andm = 1 into Lemma 4.4, we obtain

E[Wui,Q] = cQ2

log ui

∑
l>0

[
ui+l − ui
log ui

(
1 − cQ

log ui

)l−1
]

+ O
(

(log ui)ε

ui

)

for any fixed ε > 0 as ui tends to infinity.
To further simplify Lemma 4.4, we separate ui+l into individual residue classes (mod Q).

E[Wui,Q] = cQ2

(log ui)2

ϕ(Q)∑
h=1

∑
l≥0

(ui+ϕ(Q)l+h − ui)
(
1 − cQ

log ui

)ϕ(Q)l+h−1
+ O

(
(log ui)ε

ui

)
.

Now let αi = 1 − cQ
log ui and obtain

E[Wui,Q] = cQ2

(log ui)2

ϕ(Q)∑
h=1

αh−1
i

∑
l≥0

(ui+h − ui + Ql)αϕ(Q)l
i + O

(
(log ui)ε

ui

)
. (4.13)

We utilize moments of a geometric distributed random variable Yp with parameter p ∈ (0, 1].

E[Y0
p ] =

∞∑
h=1

p(1 − p)h−1 = 1, (4.14)

E[Yp] =
∞∑
h=1

hp(1 − p)h−1 = 1
p
, (4.15)

E[Y2
p ] =

∞∑
h=1

h2p(1 − p)h−1 = 2 − p
p2

. (4.16)

More specifically consider Y1−α
ϕ(Q)
i

. Substituting the definition of moments to (4.13), we obtain

E[Wui,Q] = cQ2

(log ui)2

ϕ(Q)∑
h=1

αh−1
i

(
ui+h − ui
1 − α

ϕ(Q)
i

E

[
Y0
1−α

ϕ(Q)
i

]
+ Qα

ϕ(Q)
i

1 − α
ϕ(Q)
i

E

[
Y1−α

ϕ(Q)
i

])
+ O

(
(log ui)ε

ui

)
. (4.17)
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By substituting (4.14) and (4.15) into right hand side of (4.17), we obtain that

E[Wui,Q] = cQ2

(log ui)2

ϕ(Q)∑
h=1

αh−1
i

⎡
⎢⎣ ui+h − ui
1 − α

ϕ(Q)
i

+ Qα
ϕ(Q)
i(

1 − α
ϕ(Q)
i

)2
⎤
⎥⎦+ O

(
(log ui)ε

ui

)
. (4.18)

We further simplify (4.18) using the following series expansions.

αk
i =

(
log ui − cQ

log ui

)k
= 1 − kcQ

log ui
+ k(k − 1)cQ2

2(log ui)2
+ O

(
(log ui)−3) , (4.19)

1
1 − α

ϕ(Q)
i

= log ui
Q

(
1 − (ϕ(Q) − 1)cQ

2 log ui
+ O

(
1

(log ui)2

))−1
= log ui

Q
+ ϕ(Q) − 1

2ϕ(Q)
+ O

(
(log ui)−1) , (4.20)

α
ϕ(Q)
i(

1 − α
ϕ(Q)
i

)2 = 1(
1 − α

ϕ(Q)
i

)2 − 1
1 − α

ϕ(Q)
i

= (log ui)2

Q2 − log ui
Qϕ(Q)

+ O (1) . (4.21)

By substituting the series expansions (4.19)–(4.21) into the right-hand side of (4.18), we obtain the following equation.2

E[Wui,Q] = cQ2

(log ui)2

ϕ(Q)∑
h=1

[(
1 − (h − 1)cQ

log ui
+ O

(
1

(log ui)2

))

×
(

(log ui)2

Q
+
(
ui+l − ui

Q
− 1

ϕ(Q)

)
log ui + O (1)

)]
+ O

(
(log ui)ε

ui

)
. (4.22)

(4.22) simplifies to the following.

E[Wui,Q] = cQ + cQ2

log ui

ϕ(Q)∑
h=1

(
ui+h − ui

Q
− h

ϕ(Q)

)
+ O

(
1

(log ui)2

)
. (4.23)

Note that the projection of
{
ui+h : h = 1, 2, . . . ,ϕ(Q)

}
to (Z/QZ)× is a bijection. Also note that 1 ≤ ui+h − ui ≤ Q for 1 ≤ h ≤

ϕ(Q). Thus if ui ≡ s (mod Q), then

ϕ(Q)∑
h=1

(
ui+h − ui

Q
− h

ϕ(Q)

)
= −ϕ(Q) + 1

2
+ 1

Q
∑

1≤t≤Q,(t,Q)=1
[t − s]Q. (4.24)

Summing these contributions in (4.23) yields

∑
ui≤x

ui≡s (mod Q)

E[Wui,Q] = x
ϕ(Q)

+ Q
ϕ(Q)2

⎛
⎜⎜⎝−ϕ(Q) + 1

2
+ 1

Q
∑

1≤t≤Q
(t,Q)=1

[t − s]Q

⎞
⎟⎟⎠ x

log x
+ O

(
x

(log x)2

)
. (4.25)

Finally, summing (4.25) over all s ≡ a (mod d) for s = 1, 2, . . .Q that are co-prime to Q, we get

E[�(x; q, a)] =
∑
ui≤x

ui≡a (mod d)

E[Wui,Q] = x
ϕ(d)

+
(
R∗
Q(d; a) − 1

ϕ(d)
Q

ϕ(Q)

ϕ(Q) + 1
2

)
x

log x
+ O

(
x

(log x)2

)
.

4.3. Modified Cramérmodel: variance of the randomprime running function

The next theorem shows that the probability distribution is centered around the mean value with a standard deviation of scale at
most

√
x log x. Note that the standard deviation is significantly smaller than the order of bias x

log x .

Theorem 4.5. Fix an integer d ≥ 2 and an integer a such that (a, d) = 1. Then

Var(�̃Q(x; d, a)) = O
(
x log x

)
. (4.26)

2For fixed Q, we only sum over finite number of terms in (4.18). Thus the constants for the Big-O type bounds are bounded.
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Proof. As with Theorem 4.3, let UQ be the set of the unsieved integers and let cQ be the prefactor, i.e.

UQ = {1 = u1 < u2 < u3, . . .} := {u ∈ N | gcd(u,Q) = 1}
and cQ = Q

φ(Q)
.

We first utilize the variance of sum of random variables formula.

Var(�̃Q(x; q, a)) =
∑
ui≤x

ui≡a (mod d)

Var(Wui,Q) + 2
∑

ui<uj≤x
ui≡uj≡a (mod d)

Cov(Wui,Q,Wuj,Q).

We will bound the variance and the co-variance ofWui,Q separately.
By definition of variance,

Var(Wui,Q) = E[W2
ui,Q] − E[Wui,Q]2 ≤ E[W2

ui,Q].
It follows from (4.11) that

E[W2
ui,Q] = cQ2

log ui

∑
l>0

⎡
⎣(ui+l − ui

)2
log ui+l

∏
0<j<l

(
1 − cQ

log ui+j

)⎤⎦ . (4.27)

By Lemma 4.4 and the inequality ui+l − ui ≤ Ql, (4.27) simplifies to

Var(Wui,Q) ≤ cQ2Q2

log ui

∑
l>0

[
l2

log ui

(
1 − cQ

log ui

)l−1
]

+ O
(

(log ui)1+ε

ui

)
. (4.28)

Letting Yp be a geometrically distributed random variable with parameter p = cQ
log ui . By substituting equation for E[Y2

p ] into (4.28),
we obtain that

Var(Wui,Q) ≤ cQQ2

log ui
E[Y2

p ] + O
(

(log ui)1+ε

ui

)
. (4.29)

By second moment of geometric distribution (4.16), we obtain that

Var(Wui,Q) = O
(
log ui

)
. (4.30)

Thus there exists a constant C > 0 such that Var(Wui,Q) ≤ C log(ui) for sufficiently large ui. We obtain that∑
ui≤x

ui≡a (mod d)

Var(Wui,Q) ≤ Cx log x + O (1) . (4.31)

We now bound the covariance terms. Suppose that i < j. We will split the covariance into parts by conditioning on different
events.

Cov(Wui,Q,Wuj,Q) =
3∑

k=1
E[Wui,QWuj,Q|Ek]P(Ek) − E[Wui,Q]E[Wuj,Q], (4.32)

where E1,E2,E3 are events Wui,Q = uj − ui, Wui,Q < uj − ui, Wui,Q > uj − ui, respectively. Suppose Wui,Q > uj − ui (E3).
Then uj cannot be CQ-prime. Such event implies thatWuj,Q = 0. Thus E[Wui,QWuj,Q|E3] = 0. Now suppose thatWui,Q < uj − ui
(E2). Such event implies thatWui,Q andWuj,Q are (conditionally) independent. Thus E[Wui,QWuj,Q|E2] = E[Wui,Q|E2]E[Wuj,Q] ≤
E[Wui,Q]E[Wuj,Q]. By combining these two observations, we conclude that

Cov(Wui,Q,Wuj,Q) ≤ P(Wui,Q = uj − ui)E(Wui,QWuj,Q|Wui,Q = uj − ui),

which simplifies to

Cov(Wui,Q,Wuj,Q) ≤ P(Wui,Q = uj − ui)](uj − ui)
log uj
cQ

E[Wuj,Q].

By (4.23),E[Wuj,Q] = O (1) and by (4.11), P(Wui,Q = uj−ui) = O
(

1
(log ui)2

(
1 − cQ

log uj

)j−i
)
. Thus there exists a constantA > 0

such that if Q
log uj ≤ 1, then

Cov(Wui,Q,Wuj,Q) ≤ A
log uj

(1 + log ui)2
(uj − ui)

(
1 − cQ

log uj

)j−i
. (4.33)
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Note that instead of (log ui)2 as the denominator in equation (4.33), we have (1 + log ui)2. This allows us to avoid dividing by 0
when ui = 1. This inconvenience occurs because the probability that ui is CQ prime is equal to cQ

log ui only if ui is sufficiently large. By
summing equation (4.33) over different values of ui, uj, we obtain

∑
ui<uj≤x

ui≡uj≡a (mod d)

Cov(Wui,Q,Wuj,Q) ≤ A
∑

ui<uj≤x
ui≡uj≡a (mod d)

log uj
(1 + log ui)2

(uj − ui)
(
1 − cQ

log uj

)j−i
+ O (1) . (4.34)

By utilizing (A.8), log uj ≤ log x, and adding additional non-negative terms, (4.34) simplifies to

∑
ui<uj≤x

ui≡uj≡a (mod d)

Cov(Wui,Q,Wuj,Q) ≤ AQ
∑
ui≤x

log x
(1 + log ui)2

∞∑
h=1

h
(
1 − cQ

log x

)h
+ O (1) . (4.35)

By setting Y cQ
log x

to be a geometric random variable with parameter p = cQ
log x and substituting the definition of E

[
Y cQ

log x

]
into (4.35),

we obtain that

∑
ui<uj≤x

ui≡uj≡a (mod d)

Cov(Wui,Q,Wuj,Q) ≤ AQ
∑
ui≤x

log x
(1 + log ui)2

log x
cQ

E

[
Y cQ

log x

]
+ O (1) . (4.36)

By (4.15) and the fact
∑

n≤x
1

(1+log n)2 = O
(

x
(log x)2

)
, we obtain

∑
ui<uj≤x

ui≡uj≡a (mod d)

Cov(Wui,Q,Wuj,Q) ≤ O
(
x log x

)
. (4.37)

4.4. Modified Cramérmodel: anti-symmetry properties

Theorem 4.6 suggests that the bias constant anti-symmetry Conjecture 2.4 should be true.

Theorem 4.6. For any integer d ≥ 2 and integer Q divisible by d, the following anti-symmetry holds.

RQ(d;−a) = −RQ(d; a).

Proof. Fix an integer a co-prime to Q. By definition of bias constants,

R∗
Q(d;−a) = 1

ϕ(Q)2

Q∑
s,t=1

s≡−a (mod d)
(st,Q)=1

[t − s]Q.

Because t → −t is a permutation of (Z/QZ)×, we can sum over −t. Furthermore, s ≡ a (mod d) implies −s ≡ −a (mod d). Thus

R∗
Q(d;−a) = 1

ϕ(Q)2

Q∑
s,t=1

s≡a (mod d)
(st,Q)=1

[s − t]Q.

It follows that

R∗
Q(d; a) + R∗

Q(d;−a) = 1
ϕ(Q)2

Q∑
s,t=1

s≡a (mod d)
(st,Q)=1

([t − s]Q + [s − t]Q
)
. (4.38)
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Note that [t − s]Q + [s − t]Q ≡ 0 (mod Q) and [t − s]Q + [s − t]Q ∈ [2, 2Q]. Thus

[t − s]Q + [s − t]Q =
{
Q t 
≡ s (mod Q),
2Q t ≡ s (mod Q).

(4.39)

By counting the number of times s = t in (4.38) and utilizing (4.39), we obtain that

R∗
Q(d; a) + R∗

Q(d;−a) = 1
ϕ(Q)2

(
Q

ϕ(Q)2

ϕ(d)
+ Q

ϕ(Q)

ϕ(d)

)
= 2R̄Q(d). (4.40)

As an immediate corollary, we obtain that the bias constants add up to 0.

Corollary 4.7. For d ≥ 2 and Q divisible by d,
d∑

a=1
(a,d)=1

RQ(d; a) = 0 (4.41)

and

R̄Q(d) = 1
ϕ(d)

d∑
a=1

(a,d)=1

R∗
Q(d; a). (4.42)

4.5. Modified Cramérmodel: radical equivalence property

Theorem 4.8. For all d ≥ 2 with (a, d) = 1 and d|Q,
RQ(d; a) = ϕ(dsf )

ϕ(d)
RQ(dsf , a), (4.43)

where dsf = rad(d) is the maximal square-free divisor of d. Equivalently,

RQ(d; a) = RQ(d; a′) (4.44)

if a ≡ a′ (mod dsf ).

Proof. Note that for any fixed sample sequence of CQ primes,

�̃Q(dsf ; a) =
d∑

a′=1
a′≡a (mod dsf )

�̃Q(d; a′). (4.45)

By linearity of expected value and inspecting the x
log x order term from Theorem 4.3, we obtain that

RQ(dsf ; a) =
d∑

a′=1
a′≡a (mod dsf )

RQ(d; a′). (4.46)

Thus (4.43) and (4.44) are equivalent. Fix a and a′ such that a ≡ a′ (mod dsf ). Let Qsf = rad(Q) denote the square-free part of Q.
Because dsf divides Qsf and Qsf/dsf is co-prime to d, there exists some integer k such that a + kQsf = a′ (mod d). Thus it suffices to
show that RQ(d; a) = RQ(d; a + Qsf ) for any fixed a. By definition of bias constants given in Theorem 4.3,

RQ(d; a + Qsf ) = −R̄Q(d) + 1
ϕ(Q)2

Q∑
s,t=1

(st,Q)=1
s≡a+Qsf (mod d)

[t − s]Q.

Since [t − s]Q only depends on value of t − s (mod Q), we can sum over s ≡ a (mod d) and then add Qsf to s.

RQ(d; a + Qsf ) = −R̄Q(d) + 1
ϕ(Q)2

Q∑
s,t=1

(st,Q)=1
s≡a (mod d)

[t − (s + Qsf )]Q,
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RQ(d; a + Qsf ) = −R̄Q(d) + 1
ϕ(Q)2

Q∑
s,t=1

(st,Q)=1
s≡a (mod d)

[(t − Qsf ) − s]Q,

RQ(d; a + Qsf ) = −R̄Q(d) + 1
ϕ(Q)2

Q∑
s,t=1

(s(t+Qsf ),Q)=1
s≡a (mod d)

[t − s]Q.

Well, for any integer t, and any prime factor p of Q, t ≡ t +Qsf (mod p). Thus t is co-prime to Q if and only if t +Qsf is co-prime to
Q. It follows that

RQ(d; a + Qsf ) = −R̄Q(d) + 1
ϕ(Q)2

Q∑
s,t=1

(st,Q)=1
s≡a (mod d)

[t − s]Q. (4.47)

We are done because (4.47) is the definition of RQ(d; a).

5. Computation for modified Cramérmodel

In this section, we compute the bias constants RQ(d; a) for the modified Cramér model for various values of Q and d.

5.1. Recursive formula for bias constants

Brute force computation of bias constant RQ(d; a) has runtime complexity that is polynomial in Q, which is exponential in input bit
sizeO(logQ). The following result gives a recursive formula yielding an improvedmethod for computing the bias constants RQ(d; a)
for fixed d and all a (mod d) with (a, d) = 1.

Theorem 5.1. Suppose d, p,Q0 ≥ 2 are pairwise co-prime and p is a prime. Let Q = dQ0. Then

RpQ(d; pa) = ϕ(p)2 − 1
ϕ(p)2

RQ(d; pa) + p
ϕ(p)2

RQ(d; a). (5.1)

Definition 5.2. GivenQ1, . . . ,Qk pairwise co-prime, we define [n1, . . . , nk]Q1,...,Qk to be the unique element in [1,Q1Q2 . . .Qk] such
that

[n1, . . . , nk]Q1,...,Qk ≡ ni (mod Qi), i = 1, . . . , k.

Note that the definition is consistent with the definition of least positive residue [n]Q. Because [n]Q1Q2...Qk is congruent to
n (mod Qi) for i = 1, . . . , k, we obtain

[n]Q1Q2...Qk = [n, . . . , n]Q1,...,Qk . (5.2)

Proof of Theorem 5.1. By Corollary 4.7,

RpQ(d; pa) := 1
ϕ(pQ)2

pQ∑
s,t=1

(st,pQ)=1
s≡a (mod d)

[t − s]pQ − 1
ϕ(pQ)2ϕ(d)

pQ∑
s,t=1

(st,pQ)=1

[t − s]pQ. (5.3)

By substituting (5.2) into (5.3), we obtain that

RpQ(d; pa) = 1
ϕ(pQ)2

⎛
⎜⎜⎜⎜⎝

pQ∑
s=1

s≡pa (mod d)
(s,pQ)=1

pQ∑
t=1

(t,pQ)=1

[t − s, t − s]pQ0,d − 1
ϕ(d)

pQ∑
s,t=1

(st,pQ)=1

[t − s, t − s]pQ0,d

⎞
⎟⎟⎟⎟⎠ . (5.4)

For each integer s co-prime to pQ, there are eaxactly φ(d) many integers 1 ≤ s′ ≤ pQ that are co-prime to pQ and congruent to
s (mod pQ0). Furthermore, if s ≡ pa (mod d), then for each s′ that satisfies the conditions above, [t−s, t−s, ]pQ0,d = [t−s′, t−pa]pQ0,d.
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Thus we can remove the restriction s ≡ pa (mod d) from first sum in (5.4) by replacing [t − s, t − s]pQ0,d with [t − s, t − pa]pQ0, d
and accounting for multiplicity.

By substituting (5.5) into (5.4),

RpQ(d; pa) = 1
ϕ(pQ)2ϕ(d)

pQ∑
s,t=1

(st,pQ)=1

(
[t − s, t − pa]pQ0,d − [t − s, t − s]pQ0,d

)
(5.5)

and similarly,

RQ(d; a) = 1
ϕ(Q)2ϕ(d)

Q∑
s,t=1

(st,Q)=1

(
[t − s, t − a]Q0,d − [t − s, t − s]Q0,d

)
. (5.6)

We now decompose (5.5) by the decomposition
(
Z/pQ0Z

)× ∼= (Z/pZ
)× × (Z/Q0Z)×.

RpQ(d; pa) = 1
ϕ(pQ)2ϕ(d)

Q∑
s,t=1

(st,Q)=1

p−1∑
s′,t′=1

(
[t − s, t − pa, t′ − s′]Q0,d,p − [t − s, t − s, t′ − s′]Q0,d,p

)
. (5.7)

Note that for any r1, r2, r3 ∈ Z, [r1, r2, r3]Q0,d,p − [r1, r2]Q0,d is congruent to 0 (mod Q) and r3 − [r1, r2]Q0,d (mod p). By Chinese
remainder theorem, for any fixed r1, r2 ∈ Z,

r3 �→ 1
Q

([r1, r2, r3]Q0,d,p − [r1, r2]Q0,d)

is a permutation on {0, 1, 2, . . . , p − 1}. By further fixing r′2 ∈ Z and summing over the set {0, 1, . . . , p − 1}, we conclude that
p−1∑
r3=0

([r1, r2, r3]Q0,d,p − [r1, r′2, r3]Q0,d,p
) = p([r1, r2]Q0,d − [r1, r′2]Q0,d). (5.8)

We apply (5.8) to (5.7) as we sum over s′.

RpQ(d; pa) = 1
ϕ(pQ)2ϕ(d)

Q∑
s,t=1

(st,Q)=1

p−1∑
t′=1

p([t − s, t − pa]Q0,d − [t − s, t − s]Q0,d)

− 1
ϕ(pQ)2ϕ(d)

Q∑
s,t=1

(st,Q)=1

p−1∑
t′=1

([t − s, t − pa, t′]Q0,d,p − [t − s, t − s, t′]Q0,d,p).

We apply (5.8) once more by summing over t′.

RpQ(d; pa) = p(p − 1)
ϕ(pQ)2ϕ(d)

Q∑
s,t=1

(st,Q)=1

([t − s, t − pa]Q0,d − [t − s, t − s]Q0,d)

− 1
ϕ(pQ)2ϕ(d)

Q∑
s,t=1

(st,Q)=1

p([t − s, t − pa]Q0,d − [t − s, t − s]Q0,d)

+ 1
ϕ(pQ)2ϕ(d)

Q∑
s,t=1

(st,Q)=1

([t − s, t − pa, 0]Q0,d,p − [t − s, t − s, 0]Q0,d,p).

This simplifies to

RpQ(d; pa) = p(p − 2)
ϕ(p)2

1
ϕ(Q)2ϕ(d)

Q∑
s,t=1

(st,Q)=1

([t − s, t − pa]Q0,d − [t − s, t − s]Q0,d)

+ 1
ϕ(pQ)2ϕ(d)

Q∑
s,t=1

(st,Q)=1

([t − s, t − pa, 0]Q0,d,p − [t − s, t − s, 0]Q0,d,p). (5.9)
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By (5.6) the first term of (5.9) is ϕ(p)2−1
ϕ(p)2 RQ(d; pa).

RpQ(d; pa) = ϕ(p)2 − 1
ϕ(p)2

RQ(d; pa)

+ 1
ϕ(pQ)2ϕ(d)

Q∑
s,t=1

(st,Q)=1

([t − s, t − pa, 0]Q0,d,p − [t − s, t − s, 0]Q0,d,p). (5.10)

Note that multiplication by p is a permutation of (Z/Q0Z)× and (Z/dZ)×. Thus one could sum over ps and pt instead of s and t.

RpQ(d; pa) = ϕ(p)2 − 1
ϕ(p)2

RQ(d; pa)

+ 1
ϕ(pQ)2ϕ(d)

Q∑
s,t=1

(st,Q)=1

([pt − ps, pt − pa, 0]Q0,d,p − [pt − ps, pt − ps, 0]Q0,d,p). (5.11)

By the Chinese remainder theorem,

[pr1, pr2, 0]Q0,d,p = p[r1, r2]Q0,d, r1, r2 ∈ Z. (5.12)

RpQ(d; pa) = ϕ(p)2 − 1
ϕ(p)2

RQ(d; pa)

+ p
1

ϕ(pQ)2ϕ(d)

Q∑
s,t=1

(st,Q)=1

([t − s, t − a]Q0,d − [t − s, t − s]Q0,d). (5.13)

On substituting (5.6), we conclude that

RpQ(d; pa) = ϕ(p)2 − 1
ϕ(p)2

RQ(d; pa) + p
ϕ(p)2

RQ(d; a). (5.14)

5.2. Computation ofmodified Cramér bias constants

We compute bias constants RQ(d; a) utilizing the recursive algorithm in Theorem 5.1. For modulus d = p a prime, the simplest case
is Q = d, and the bias constant is given by

Rd(d; a) = d
ϕ(d)2

(
a
d

− 1
2

)
, 1 ≤ a ≤ d − 1. (5.15)

These constants Rd(d; a) are increasing as a function of a for 1 ≤ a ≤ d − 1. For d = 3, 5, 7 Rd(d; a) significantly differ from the
empirical data on bias constants R(x; d, a) given in Tables 3–5 in Section 3. The empirical data also disagrees in sign for d = 3 and
the constants oscillate in a for d = 5 and d = 7.

We now study the effect of larger sieve modulusQ on the modified Cramér bias constants, which seems to improve our numerical
result. In particular, we consider the case of a modified Cramér model with an initial sieve over all the prime numbers less than or
equal to T. We let our sieve modulus Q = T#, where the primorial at T, is defined by

T# :=
∏
p≤T

p. (5.16)

The notationT# for primorials follows Caldwell andGallot [2]. Thus �̃T#(x; d, a) is a randomprime running function corresponding
to the modified Cramér model with initial sieving by all primes less than or equal to T.

Tables 8–10 give values of Cramér bias constants at various primorials.
The bias constant for the expected values in these modified Cramér models with sieve modulus of Q = 1000# exhibit numerical

resemblance with the empirical data for d = 5 and 7. However, for the case d = 3, there are significant deviations from the empirical
data.

Note that as T varies in these tables, the values of the constants RT#(d; a) may be showing oscillations as T increases.
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Table 8. The bias constant RQ(3; a) for various sieve moduli Q.

Cramér model bias constants rescaled bias function

a
Q Q = 3 Q = 3# Q = 10# Q = 100# Q = 1000# R(1012; 3, a)

a = 1 −0.125 0.25 0.1823 0.1599 0.1569 0.2022
a = 2 0.125 −0.25 −0.1823 −0.1599 −0.1569 −0.2022

The right most column is the empirical data R(1012; 3, a).

Table 9. The bias constant RQ(5; a) for various sieve moduli Q.

Cramér model bias constants rescaled bias function

a
Q Q = 5 Q = 5# Q = 10# Q = 100# Q = 1000# R(1012; 5, a)

a = 1 −0.09375 −0.0938 −0.0547 −0.0699 −0.0685 −0.0703
a = 2 −0.03125 −0.1875 −0.2005 −0.2027 −0.2043 −0.2211
a = 3 0.03125 0.1875 0.2005 0.2027 0.2043 0.2059
a = 4 0.09375 0.0938 0.0547 0.0699 0.0685 0.0855

The right most column is the empirical data R(1012; 5, a).

Table 10. The bias constant RQ(7; a) for various sieve moduli Q.

Cramér model bias constants rescaled bias function

a
Q Q = 7 Q = 10# Q = 100# Q = 1000# R(1012; 7; a)

a = 1 −0.0964 0.1432 0.1303 0.1310 0.1461
a = 2 −0.0417 −0.0781 −0.0749 −0.0753 −0.0680
a = 3 −0.0139 0.0651 0.0554 0.0557 0.0506
a = 4 0.0139 −0.0651 −0.0554 −0.0557 −0.0571
a = 5 0.0417 0.0781 0.0749 0.0753 0.0626
a = 6 0.0964 −0.1432 −0.1303 −0.1310 −0.1343

The right most column is the empirical data R(1012; 7, a).

6. Concluding remarks

Section 4 presents a modified Cramér model which exhibits a mechanism that can lead to biases of order x/ log x. Our data in
Section 5 computes bias constants for this model for primorials T# that roughly agree with the empirical data in Section 3 for d = 5
and d = 7.

The choice of taking the sieve modulus Q to run through primorials T# in the modified Cramér model is significant. Based on
the choice of the sequence of integers {Si}∞i=1 with Si|Si+1, RSi(d; a) could diverge or converge to a value that depends on the choice
of {Si}∞i=1. For example, fix d ≥ 2 prime and choose a with (a, d) = 1. Define

QT = d
∏
p≤T

p≡1 (mod d)

p.

By Theorem 5.1,

RQT (d; a) =

⎛
⎜⎜⎝ ∏

p≤T
p≡1 (mod d)

φ(p)2 + p − 1
φ(p)2

⎞
⎟⎟⎠Rd(d; a) =

⎛
⎜⎜⎝ ∏

p≤T
p≡1 (mod d)

p
p − 1

⎞
⎟⎟⎠Rd(d; a). (6.1)

It is known that ⎛
⎜⎜⎝ ∏

p≤T
p≡1 (mod d)

p
p − 1

⎞
⎟⎟⎠ ∼ c(log(x))1/φ(d)

for some constant c > 0 (see [16], [22]). In particular, by taking QT as the sieve factor, the constants RQT (d; a) diverge as T grows to
infinity.

We do not address the question of whether the bias constants RQ(d; a) produced by this model (letting Q → ∞ through the
primorials) will necessarily agree with the bias constants R(d; a) asserted to exist in Conjecture 2.3.

We defined the prime running functions �(x; d, a) as summing gaps between primes pk ≡ a (mod d) below x and the next
following prime pk+1, up to x. However, one also consider the reversed prime running functions �R(x; d, a) which puts instead a
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congruence condition on the upper endpoint of the interval pk+1 ≡ a (mod d) and putting no congruence condition on pk. By an
analysis similar to that made in Section 4, the modified Cramér model predicts

�R(x; d, a) = 1
φ(d)

x − R(d; a)
x

log x
+ o

(
x

log x

)
,

with the bias term having the opposite sign as for the prime running function.
Amore refined analysis of the biases of prime running function and its generalizations can be done based on theHardy–Littlewood

k-tuple conjecture, following ideas in the paper of Lemke-Oliver and Soundararajan [17]. We leave this topic for future work.
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Appendix A: Proof of Lemma 4.4

Proof. We begin by decomposing |T1(n) − T2(n)| into two parts using the triangle inequality.∣∣Tm
1 (n) − Tm

2 (n)
∣∣ ≤ Hm

1 (n) + Hm
2 (n),

where

Hm
1 (n) :=

∑
k>0

(
un+k − un

)m ( 1
log un

− 1
log un+k

)(
1 − c

log un

)k−1
, (A.1)

Hm
2 (n) :=

∑
k>1

(
un+k − un

)m
log un+k

⎡
⎣k−1∏
j=1

(
1 − c

log un+j

)
−
(
1 − c

(log un)

)k−1
⎤
⎦ . (A.2)

Thus it suffices to show the following inequalities.

Hm
1 (n) = O

(
(log n)m

n

)
, (A.3)

Hm
2 (n) = O

(
(log n)m+ε

n

)
. (A.4)

We first prove (A.3). Note that d
dx

1
log x = − 1

x(log x)2 is decreasing in magnitude. Thus by mean value theorem,

1
log x

− 1
log(x + t)

≤ t
x(log x)2

, t ≥ 0. (A.5)

By substituting (A.5) into (A.1), we establish that

Hm
1 (n) ≤

∑
k>0

(un+k − un)m+1

un(log un)2

(
1 − c

log un

)k−1
. (A.6)

Note that for any positive integer a, there exists some integer u ∈ [a, a + Q) co-prime to Q. Thus the following holds

n ≤ un ≤ Qn, (A.7)

k ≤ un+k − un ≤ Qk, k = 0, 1, 2, . . . . (A.8)

By substituting (A.7) and (A.8) into (A.6), we obtain that

Hm
1 (n) ≤ Qm+1

un log un

∑
k>0

km+1

log un

(
1 − c

log un

)k−1
. (A.9)
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Let Yp be a geometric random variable with parameter p = c
log un . By substituting the definition for them + 1th moment, we obtain that

Hm
1 (n) ≤ Qm+1

cun log un
E

[
Ym+1
p

]
. (A.10)

Wewill use themoment generating functionM(t) = E[exp(tYp)] to bound the growth ofE
[
Ym+1]. By direct computation,M(t) = pet

1−et(1−p) .

By utilizing the fact that ∂m+1

∂tm+1M(t)|t=0 = E[Ym+1
p ], we conclude that

E[Ym+1
p ] = O

(
1

pm+1

)
p∈(0,1]

. (A.11)

By substituting (A.11) into (A.10) and p = c
log un , we obtain that

Hm
1 (n) = O

(
log(un)m

un

)
. (A.12)

Now all we have left is to prove (A.4). Note that for any k > 0,(
1 − c

log un

)k−1
≤

k−1∏
j=1

(
1 − c

log un+j

)
≤
(
1 − c

log un+k

)k−1
.

Thus

Hm
2 (n) ≤

∑
k>0

(
un+k − un

)m
log un+k

[(
1 − c

log un+k

)k−1
−
(
1 − c

log un

)k−1
]
. (A.13)

Note that d
dx

(
1 − c

log x

)k = ck
x(log x)2

(
1 − c

log x

)k−1
. Thus the derivative of the function

(
1 − c

log x

)k
is bounded above by ck

a(log a)2
(
1 − c

log b

)k−1

over the interval x ∈ [a, b]. By mean value theorem, we establish that for ec < a < b,(
1 − c

log b

)k
−
(
1 − c

log a

)k
≤ ck(b − a)

a(log a)2

(
1 − c

log b

)k−1
. (A.14)

By substituting (A.14) into (A.13), we establish that for sufficiently large n,

Hm
2 (n) ≤ c

∑
k>0

(
un+k − un

)m+1
(k − 1)

log(un+k)un(log un)2

(
1 − c

log un+k

)k−2
. (A.15)

By substituting (A.7) and (A.8) into (A.15), we obtain that

Hm
2 (n) ≤ cQm+1

n(log n)3
∑
k>0

km+1(k − 1)
(
1 − c

log(Q(n + k))

)k−2
.

By noting that
(
1 − c

log(Q(n+k))

)−2 ≤ 2 for sufficiently large n, we obtain that

Hm
2 (n) ≤ 2

cQm+1

n(log n)3
∑
k>0

km+2
(
1 − c

log(Q(n + k))

)k
,

for sufficiently large n.
Because 1 − x ≤ e−x for all x ∈ R, we know that

Hm
2 (n) ≤ 2

cQm+1

n(log n)3
∑
k>0

km+2e−ck/ log(Q(n+k)) (A.16)

for sufficiently large n. Let P = m+3
m+3+ε . Since P < 1, there exists a constant CP > 0 such that for all sufficiently large n,

k
log(Q(n + k))

≥ kP

CP log n
, k = 1, 2, . . . . (A.17)

Thus for sufficiently large n,

Hm
2 (n) ≤ 2

cQm+1

n(log n)3
∑
k>0

km+2e−c kP
Ca log n , (A.18)

Hm
2 (n) ≤ 2

cQm+1

n(log n)3

∫ ∞
0

(t + 1)m+2e−c tP
CP log n dt. (A.19)

By substituting u = ta, we obtain that

∫ ∞
0

(t + 1)m+2e−c tP
CP log n dt = O

(
(log n)m+3+ε

)
. (A.20)

By substituting (A.20) into (A.19), we conclude (A.4).
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