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Abstract. This paper considers a class of linear-quadratic-Gaussian (LQG)

mean-field games (MFGs) with partial observation structure for individual

agents. Unlike other literature, there are some special features in our formu-
lation. First, the individual state is driven by some common-noise due to the

external factor and the state-average thus becomes a random process instead of

a deterministic quantity. Second, the sensor function of individual observation
depends on state-average thus the agents are coupled in triple manner: not

only in their states and cost functionals, but also through their observation

mechanism. The decentralized strategies for individual agents are derived by
the Kalman filtering and separation principle. The consistency condition is

obtained which is equivalent to the wellposedness of some forward-backward

stochastic differential equation (FBSDE) driven by common noise. Finally, the
related ε-Nash equilibrium property is verified.

1. Introduction. The starting point of our work is the recently well-studied mean-
field games (MFGs) for large-population system (sometimes, it is also termed multi-
agent system (MAS)). The large-population system arises naturally in various fields
such as economics, engineering, social science and operational research, etc. For ex-
ample, dynamic economic models involving competing agents ([9], [24], [35]); wire-
less power control, shared data buffer modeling and traffic engineering ([12], [17],
[22], [27]); synchronization of coupled nonlinear oscillators ([37]); crowd and consen-
sus dynamics ([8], [29]), etc. The most significant feature of large-population system
is the existence of a large number of individually negligible agents (or players) which
are interrelated in their dynamics and (or) cost functionals via the state-average or
more generally, the generated empirical measure over the whole population. Due to
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this highly complicated coupling feature, it is intractable for a given agent to study
the centralized optimization strategies based on the information of all its peers in
large-population system. In fact, this will bring considerably high computational
complexity in large-scale. Alternatively, one reasonable and practical direction is
to investigate the related decentralized strategies based on local information only.
By local information, we mean the related strategies should be designed upon the
individual state of given agent only together with some mass-effect quantities but
can be computed in off-line manner.

Along this research direction, one efficient and tractable methodology to decen-
tralized strategies is the MFGs which generally leads to a coupled system of HJB
equation and Fokker-Planck (FP) equation in nonlinear case. In principle, the pro-
cedure of MFGs consists of the following four main steps (see [3], [5], [6], [18],
[19], [25], etc): in Step 1, it is necessary to analyze the asymptotic behavior of
state-average when the agent number N tends to infinity and introduce the related
state-average limiting term. Of course, this limiting term is undetermined at this
moment thus it should be treated as some exogenous “frozen” term; Step 2 turns
to study the related limiting optimization problem (which is also called auxiliary
or tracking problem) by replacing the state-average by its frozen limit term. The
initial highly-coupled optimization problems of all agents are thus decoupled and
only parameterized by this generic frozen limit. The related decentralized optimal
strategy can be analyzed using standard control techniques such as dynamic pro-
gramming principle (DPP) or stochastic maximum principle (SMP) (see e.g., [38]).
As a result, some HJB equation due to DPP or Hamiltonian system due to SMP will
be obtained to characterize this decentralized optimality; Step 3 aims to determine
the frozen state-average limit by some consistency condition: when applying the
optimal decentralized strategies derived in Step 2, the state-average limit should be
reproduced as the agents number tends to infinity. Accordingly, some fixed-point
analysis should be applied here and some FP equation will be introduced and cou-
pled with the HJB equation in Step 2. As the necessary verification, Step 4 will
show that the derived decentralized strategies should possess the ε-Nash equilibrium
properties.

For further analysis details of MFGs, the interested readers are referred to [11]
for a survey of mean-field games focusing on the partial differential equation as-
pect and related real applications; [3] for more recent MFG studies and the related
mean-field type control; [5] for the probabilistic analysis of a large class of stochas-
tic differential games for which the interaction between the players is of mean-field
type; [7] for the mean-field game where considerable interrelated banks share the
system risk and common noise; [32] for a class of risk-sensitive mean-field sto-
chastic differential games; [20] for MFGs with nonlinear diffusion dynamics and
their relations to McKean-Vlasov particle system; [15] for the dynamic optimiza-
tion of large-population system with partial information and the associated MFG;
[31] for nonlinear filtering theory for partially observed stochastic dynamical sys-
tems of McKean–Vlasov type stochastic differential equations. It is remarkable that
there exists a substantial literature body to the study of MFGs in linear-quadratic-
Gaussian (LQG) framework. Here, we mention a few of them which are more
relevant to our current work: [4] for the linear-quadratic mean field games via the
stochastic maximum principle and adjoint equation, [1] for the N -person linear dif-
ferential mean-field games with explicit solution, [16] for the mean-field LQG games
with a major player and a large number of minor players, [19] for the mean-field
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LQG games with nonuniform agents through the state-aggregation by empirical dis-
tribution, [28] for the mean-field LQG mixed games with continuum-parameterized
minor players; [14] for linear-quadratic-Gaussian MFGs having a major agent and
numerous heterogeneous minor agents in the presence of mean-field interactions.

In this paper, we discuss the mean-field games in the framework of partial ob-
servation. Specially, we consider a large population system wherein all agents are
coupled in their state evolutions and cost functionals. However, due to the realistic
factors such as finite datum, latent process or imperfect information, each agent
can only access some noisy observation on his own state. Based on this partial
observation, each agent aims to analyze the decentralized strategy with the help of
Kalman filtering and separation principle but in large-population setting. On the
other hand, unlike most existing MFG literature, we assume the states of all agents
are governed by some underlying common-noise. This common noise can be inter-
preted as some exogenous and generic factors such as the macro-economic scenario,
tax policy, interest rate or exchange rate. It follows these factors should influence
all participants in a given large-population economy. In fact, the effect of such com-
mon noise becomes more significant when we consider a given industry sector with
considerable small firms. Actually, the dynamic behaviors of all these firms should
be regularized by the same external competition mechanism. For example, suppose
all these firms produce the same type products hence their individual production
plans will depend on the quoted price of same raw materials, or the same underlying
tax regulation applied. The presence of common noise makes the state-average limit
in MFG analysis become some stochastic process instead of deterministic quantity.

In our work, the random state-average limit enters both the auxiliary state and
observation dynamics (refer Eq. (5)-(6) below). As a result, there arise some mea-
surability and adaptness issues (e.g., to verify the filtration generated by uncon-
trolled observation process equals that of the controlled observation process) when
constructing the admissible control set and analyzing the related state-observation
separation principle (see [2], [10], etc.). Such issues make our analysis different from
the MFG with partial information discussed in [18] where no common noise added.
Thus, their state-average limit is still deterministic and the standard separation
principle via Kalman filtering technique can be applied directly therein without ad-
ditional adaptness issues. As a solution, we give a modified separation to state and
observation by taking into account random state-average limit (but without any as-
sumption to its Gaussian-Markov property) and then verify the related observation
filtration equivalence. Based on it, we can get some separation principle and derive
the related decentralized control strategies. Moreover, the consistency condition
will be established by the resulting decentralized strategies through some fixed-
point analysis. Here, we connect the consistency condition to the well-posedness
of some forward-backward stochastic differential equation (FBSDE). Moreover, we
present some decoupling results of this FBSDE via some asymmetric Riccati equa-
tion system.

As a response to above discussions, this paper investigates a class of LQG MFGs
with partial observation and common noise. The reminder of this paper is structured
as follows: Section 2 gives the problem formulation. The decentralized strategies are
derived by Kalman filtering method and the consistency condition is also established
through some FBSDE system. Section 3 verifies the ε-Nash equilibrium of the
decentralized strategies. Section 4 gives some numerical computations to illustrate
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the theoretical results. Section 5 concludes our work and presents some future
research directions.

2. LQG MFGs with partial observation. Consider a finite horizon [0, T ] for
fixed T > 0. (Ω,F , P ) is a complete probability space on which a standard
(d + m × N)-dimensional Brownian motion {W (t),Wi(t), 1 ≤ i ≤ N} is de-
fined. Here, d denotes the dimension of Brownian motion of common noise, m
the dimension of Brownian motion of individual noise, and N is the number of
agents in large population. Rn (Rn×k) denotes the n (n × k)-dimensional Eu-
clidean space with its norm denoted by | · |. We denote the set of symmetric
n× n matrices with real elements by Sn. Here, n, k denote the dimensions of state
and control variable respectively. If M ∈ Sn is positive (semi)definite, we write
M > (≥) 0. For given filtration {Ft}0≤t≤T , let L2

F (0, T ;Rn) (L2
F (0, T ;Rn×k))

denote the space of all Ft-progressively measurable processes with values in Rn

(Rn×k) satisfying E
∫ T

0
|x(t)|2dt < +∞; L2(0, T ;Rn) (L2(0, T ;Rn×k)) the space of

all deterministic functions with values in Rn (Rn×k) satisfying
∫ T

0
|x(t)|2dt < +∞;

L∞(0, T ;Rn) (L∞(0, T ;Rn×k)) the space of uniformly bounded functions with val-
ues in Rn (Rn×k); C([0, T ];Rn) (C([0, T ];Rn×k)) the space of continuous functions
with values in Rn (Rn×k). If M(·) ∈ L∞(0, T ;Sn) and M(t) > (≥) 0 for every
t ∈ [0, T ], M(·) is positive (semi)definite, and denoted by M(·) > (≥) 0. For a
given vector or matrix M , M ′ stands for its transpose.

We consider a large-population system with N individual agents {Ai}1≤i≤N . The
state xi for ith agent Ai satisfies the following linear stochastic system:

dxi(t) = [Aθi(t)xi(t) +B(t)ui(t) + aθi(t)x
(N)(t) +m(t)]dt

+ σ(t)dWi(t) + σ̃(t)dW (t),

xi(0) = x,

(1)

with x(N)(·) , 1
N

∑N
i=1 xi(·) denoting the state-average of population. Here, Wi

is the individual noise while W is the common noise due to underlying common
factors; Aθi , B denote the drift parameters of state and control; aθi is the state-
coupling parameter; σ, σ̃ denote the diffusion coefficients. Similar setup of common
noise can be found in [7]. Ai can access the following additive white-noise partial
observation: {

dYi(t) = [H(t)xi(t) + H̃θi(t)x
(N)(t) + h(t)]dt+ dVi(t),

Yi(0) = 0,
(2)

where {Vi}1≤i≤N stand for l-dimensional Brownian motions. Here, H̃θi is intro-
duced in sensor function of (2) to characterize the coupling effects due to inter-

actions of agents in large population system. If H̃ = 0, Equation (2) becomes
the additive white-noise observation which is commonly seen in (linear) filtering
literature (e.g., [2], [21], [30]). Define the observable filtration F i = {F it}0≤t≤T
of Ai with F it , σ{Yi(s),W (s); 0 ≤ s ≤ t} and the filtration of common noise

Fw = {Fwt }0≤t≤T with Fwt , σ{W (s); 0 ≤ s ≤ t}.
In (1), (2), θi is a dynamic parameter for agent Ai in the heterogeneous pop-

ulation. For sake of brief notations, we only set the coefficients (A, a, H̃) to be
dependent on θi. In case other coefficients for Ai also depend on θi, the analysis
is similar and we will not present its full details here. For θi, we assume it takes
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values from a finite set Θ = {1, 2, · · · ,K}, i.e., there are K different types of het-
erogeneous agents (see [16] for similar setup). For example, if θi = k, then Ai is
called a k−type agent. In this paper, we are interested in the asymptotic behavior
as N tends to infinity. For 1 ≤ k ≤ K, introduce

Ik = {i|θi = k, 1 ≤ i ≤ N}, Nk = |Ik|,

where Nk is the cardinality of index set Ik. For 1 ≤ k ≤ K, let χ
(N)
k = Nk

N ,

then χ(N) = (χ
(N)
1 , · · · , χ(N)

K ) is a probability vector representing the empirical
distribution of θ1, · · · , θN . We introduce the following assumption:

(A1): There exists a probability mass vector χ = (χ1, · · · , χK) such that

lim
N−→+∞

χ(N) = χ and min
1≤k≤K

χk > 0.

The implication of (A1) is that if the population size N −→ +∞, the proportion
of k−type agents becomes stable for each k and the number of each type agents
tends to infinity. Otherwise, the agents in given type with bounded size should be
excluded from consideration when analyzing asymptotic behavior as N −→ +∞.

Remark 2.1. Hereafter, the time variable t will often be suppressed to simplify
the notations and presentations.

For 1 ≤ i ≤ N , the admissible control set Ui of agent i is defined as

Ui := {ui(·)|ui(·) ∈ L2
Fi(0, T ;Rk)}.

Let u = (u1, · · · , ui, · · · , uN ) denote the strategy set of all N agents; u−i =
(u1, · · · , ui−1, ui+1, · · · , uN ) the strategy set except Ai. The cost functional of Ai
is assummed to be:

Ji(ui(·), u−i(·)) = E
[ ∫ T

0

(
(xi − x(N))′Q(xi − x(N)) + u′iRui

)
dt+ x′i(T )Gxi(T )

]
.

(3)
Here, Q,R are state and control weight matrix in running cost, while G the terminal
weight of state. We set the following assumptions on the coefficients:

(A2): {Ak}Kk=1 ∈ L∞(0, T ;Rn×n), B ∈ L∞(0, T ;Rn×k), {ak}Kk=1 ∈ L∞(0, T ;
Rn×n),m ∈ L2(0, T ;Rn), σ ∈ L2(0, T ;Rn×m), σ̃ ∈ L2(0, T ;Rn×d);

(A3): H, {H̃k}Kk=1 ∈ L∞(0, T ;Rl×n), h ∈ L2(0, T ;Rl);
(A4): Q ∈ L∞(0, T ;Sn), Q ≥ 0, R(·) ∈ L∞(0, T ;Sk), R ≥ δI, for some δ > 0,
G ∈ Sn, G ≥ 0.

Under (A2), for any ui ∈ Ui, the state equation (1) admits a unique strong
solution (e.g., [38]). Under (A4), the cost functional (3) is well-defined.

Now, we formulate the problem to find a Nash equilibrium of mean-field game
with partial observation (PO).

Problem (PO). Find the strategies set ū = (ū1, ū2, · · · , ūN ) such that for i =
1, 2, · · · , N,

Ji(ūi(·), ū−i(·)) = inf
ui(·)∈Ui

Ji(ui(·), ū−i(·)).

To study (PO), one efficient methodology is the mean-field LQG games which
relates the “centralized” LQG problems via the limiting state-average, as the agent
number tends to infinity. Define the state-average of all agents

x(N) ,
1

N

N∑
i=1

xi =
1

N

K∑
k=1

∑
i∈Ik

xi =
K∑
k=1

χ
(N)
k x

(N)
k , (4)
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where x
(N)
k , 1

Nk

∑
i∈Ik xi denotes the state-average of all k−type agents.

As explained in the introduction, the centralized strategies for Problem (PO)
are rather complicate and infeasible to be applied when the number of the agents
tends to infinity. Alternatively, we investigate the decentralized strategies via the
limiting problem with the help of the frozen limiting state-average. To this end,
first we figure out the representation of the limiting process by the heuristic argu-
ments. Based on this, we can find the decentralized strategies by the consistency
condition and verify the asymptotic Nash equilibrium of the derived decentralized

strategies. Since limN−→∞ χ(N) = χ, by (4), we may approximate x(N), {x(N)
k }Nk=1

by x0, {x0
k}Kk=1, respectively, where x0, {x0

k}Kk=1 should have the following relation

x0 =
K∑
k=1

χkx
0
k.

Define the state filter for F it as

x̂i(t) , E[xi(t)|F it ].

Then x̂(N)(·) , 1
N

∑N
i=1 x̂i(·) denotes the average of state filters. Similarly, x̂(N)(·)

can be approximated by x̂0(·) =
∑K
k=1 χkx̂

0
k(·) where x̂0

k(·) , limN−→+∞
1
Nk

∑
i∈Ik

x̂i(·). Moreover, due to the common noise, x0, x0
k, x̂

0, x̂0
k should be adapted to fil-

tration {Fwt } and this can be verified in our later analysis. Now, we introduce the
limiting state dynamics{

dyi = [Aθiyi +Bui + aθix
0 +m]dt+ σdWi + σ̃dW,

yi(0) = x,
(5)

and limiting observation process{
dȲi = [Hyi + H̃θix

0 + h]dt+ dVi,

Ȳi(0) = 0.
(6)

The limiting cost functional is given by

Ji(ui(·)) = E
[ ∫ T

0

(
(yi − x0

)′
Q(yi − x0) + u′iRui

)
dt+ y′i(T )Gyi(T )

]
. (7)

Note that (5)-(7) are limiting versions of (1)-(3) when the mean field term, x(N),
is replaced by x0, which will be determined later in the paper. Before formulating
the limiting LQG MFG, we should first analyze the control-observation information
structure as the observation process depends on the admissible control applied, and
vice versa, the admissible control should be adapted to observation process. To this
end, we will use the separation method which is originally obtained by Wonham
[36] and is systematically introduced in the book Bensoussan [2]. See also Wang
and Wu [33], Wang Wu and Xiong [34] for the backward separation method which
applies to partial observation problem of backward stochastic system. Introduce
the processes αi(·), βi(·) by{

dαi = [Aθiαi +m]dt+ σdWi,

αi(0) = x,
(8)

and {
dβi = [Hαi + h]dt+ dVi,

βi(0) = 0.
(9)
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Note that the processes αi(·), βi(·) correspond to the state and observation processes
when there is neither control nor x0 (more precisely the control and x0 are 0).
Further introduce {

dx1
i = [Aθix

1
i +Bui + aθix

0]dt+ σ̃dW,

x1
i (0) = 0,

(10)

and {
dz1
i = [Hx1

i + H̃θix
0]dt,

z1
i (0) = 0.

(11)

It follows that for any control ui(·),
yi(t) = αi(t) + x1

i (t), Ȳi(t) = βi(t) + z1
i (t). (12)

Define F Ȳi,W
u,t , σ{Ȳi(s),W (s); 0 ≤ s ≤ t}, Fβi,W

t , σ{βi(s),W (s); 0 ≤ s ≤ t},
Fβi

t , σ{βi(s); 0 ≤ s ≤ t}. Here, the subscript u in F Ȳi,W
u,t emphasizes its depen-

dence on control. We define the following (restricted) admissible control set Ūi for
limiting partial observation:

Ūi :=
{
ui(·)|ui(·) ∈ L2(0, T ;Rk), ui(·) is adapted to F Ȳi,W

u,t and Fβi,W
t

}
, 1 ≤ i ≤ N.

Now formulate the following limiting partial observation (LPO) LQG game.

Problem (LPO). For the ith agent, i = 1, 2, · · · , N, find ūi(·) ∈ Ūi satisfying

Ji(ūi(·)) = inf
ui(·)∈Ūi

Ji(ui(·)).

Then ūi(·) is called an optimal control for Problem (LPO).
With the definition of (restricted) admissibility, we have the following result to

measurability equivalence of admissible control set.

Lemma 2.1. If ui(·) is admissible, we have

F Ȳi,W
u,t = Fβi,W

t .

Proof. By (10) and (11), we have

ui(·) ∈ Fβi,W
t ⇒ x1

i (·) ∈ F
βi,W
t ⇒ z1

i (·) ∈ Fβi,W
t ⇒ Ȳi(·) ∈ Fβi,W

t .

Thus,

F Ȳi,W
u,t ⊆ Fβi,W

t .

On the other hand,

ui(·) ∈ F Ȳi,W
u,t ⇒ x1

i (·) ∈ F
Ȳi,W
u,t ⇒ z1

i (·) ∈ F Ȳi,W
u,t ⇒ βi(·) ∈ F Ȳi,W

u,t .

Thus,

Fβi,W
t ⊆ F Ȳi,W

u,t .

Therefore the proof is complete. �

Remark 2.2. The proof of Lemma 2.1 relies on the construction of restricted
admissibility: in case there is no common noise as in [18], Lemma 2.1 holds true
as a trivial consequence since the state-average limit becomes deterministic; in case
the common noise W is unobservable and excluded from admissibility, the proof of
Lemma 2.1 fails to work and without such measurability equivalence, it is impossible
to construct the optimal filter in (LPO) setup, as discussed in [2, Page 52] and [33,
Remark 4.2 ].



30 ALAIN BENSOUSSAN, XINWEI FENG AND JIANHUI HUANG

By Lemma 2.1, we have

ŷi(t) = E
[
yi(t)|F Ȳi,W

u,t

]
= E

[
yi(t)|Fβi,W

t

]
.

Noting that W (·) is independent of Wi(·), Vi(·), we get W (·) is independent of

αi(·), βi(·). Then it follows E
(
αi(t)|Fβi,W

t

)
= E

(
αi(t)|Fβi

t

)
= α̂i(t), where α̂i satis-

fies the Kalman filtering equation (e.g. [2], Section 1.2){
dα̂i =

[
Aθi α̂i +m

]
dt+ PθiH

′[dβi − (Hα̂i + h)dt
]
,

α̂i(0) = x,
(13)

and Pθi is the unique solution of the Riccati equation{
Ṗθi = AθiPθi + PθiA

′
θi − PθiH

′HPθi + σσ′,

Pθi(0) = 0.
(14)

Noting x1
i (·) ∈ F

βi,W
t , we have ŷi = α̂i + x1

i . Besides,

dβi − (Hα̂i + h)dt = dȲi − (Hŷi + H̃θix
0 + h)dt.

Therefore,{
dŷi =

[
Aθi ŷi +Bui + aθix

0 +m
]
dt+ PθiH

′[dȲi − (Hŷi + H̃θix
0 + h)dt

]
+ σ̃dW,

ŷi(0) = x.

(15)
Introduce the innovation process

Ii(t) = βi(t)−
∫ t

0

[H(s)α̂i(s) + h(s)]ds,

which is adapted to Fβi,W
t . Let Λθi ∈ L∞(0, T ;Rn×n), λθi ∈ L2

Fw(0, T ;Rn) be the
parameters of a feedback Λθixi + λθi . Consider{

dηi = [(Aθi +BΛθi)ηi + aθix
0 +m+Bλθi ]dt+ PθiH

′dIi + σ̃dW,

ηi(0) = x.
(16)

It is clearly that ηi(·) ∈ Fβi,W
t . Define ui(t) = Λθi(t)ηi(t) + λθi(t), then ui(·) is

square integrable and adapted to Fβi,W
t . Further we have

dIi = dβi − (Hα̂i + h)dt = dȲi − (Hηi + H̃θix
0 + h)dt.

Plugging this into (16), we have

dηi = [(Aθi +BΛθi − PθiH ′H)ηi + aθix
0 +m+Bλθi

− PθiH ′(H̃θix
0 + h)]dt+ PθiH

′dȲi + σ̃dW.

Therefore,

ηi(t) =Φ(t)x+ Φ(t)

∫ t

0

Φ−1(s)
[
aθix

0 +m+Bλθi − PθiH ′(H̃θix
0 + h)

]
ds

+ Φ(t)

∫ t

0

Φ−1(s)PθiH
′dȲi + Φ(t)

∫ t

0

Φ−1(s)σ̃dW,

where {
dΦ(t) = (Aθi +BΛθi − PθiH ′H)Φ(t)dt,

Φ(0) = I.
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Then ηi(·), and consequently ui(·), are adapted to F Ȳi,W
u,t . It follows that ui(·)

is an admissible control. Naturally ηi(·) is the corresponding Kalman filter, and
ui(t) = Λθi(t)ηi(t) + λθi(t) is a feedback on it.

Introduce the following two equations of πθi and γθi respectively:{
π̇θi + πθiAθi +A′θiπθi − πθiBR

−1B′πθi +Q = 0,

πθi(T ) = G,
(17)

and{
dγθi +

[
(A′θi − πθiBR

−1B′)γθi + πθi(aθix
0 +m)−Qx0

]
dt+ ξθidW = 0,

γθi(T ) = 0.
(18)

Under (A2)-(A4), (14), (17) are standard Riccati equations which admit a unique
solution Pθi , πθi ∈ C([0, T ];Rn×n). Moreover, under (A2)-(A4), the linear backward
stochastic differential equation (LBSDE) (18) admits a unique adaptive solution
pair (γθi , ξθi) ∈ L2

Fw
t

(0, T ;Rn)× L2
Fw

t
(0, T ;Rn×d). Note that ξθi(·) is introduced in

solution pair to ensure γθi(·) to be adapted to Fwt . Now we present the following
result.

Lemma 2.2. Let (A2)-(A4) hold and Pθi , πθi ∈ C([0, T ];Rn×n) are solution of
(14), (17) respectively, (γθi , ξθi) ∈ L2

Fw
t

(0, T ;Rn)× L2
Fw

t
(0, T ;Rn×d) is the solution

pair of (18). Then the optimal control of (LPO) is

ūi(t) = −R−1(t)B′(t)πθi(t)ŷi(t)−R−1(t)B′(t)γθi(t), (19)

where ŷi(t) satisfies the following filtering equation
dŷi =

[
Aθi ŷi −BR−1B′(πθi ŷi + γθi) + aθix

0 +m
]
dt

+ PθiH
′[dȲi − (Hŷi + H̃θix

0 + h)dt
]

+ σ̃dW,

ŷi(0) = x.

(20)

Proof. Suppose the optimal control ūi(·) can be written by a linear feedback:
ūi = Λθi ŷi + λθi for Λθi , λθi to be determined (this can be verified in our later
analysis). Here, ŷi(·) is the Kalman filter corresponding to ūi, and yi(·), Ȳi(·) are
the corresponding state and observation to ūi respectively. Then the following
relations hold:

dŷi =
[
(Aθi +BΛθi)ŷi + aθix

0 +m+Bλθi
]
dt

+ PθiH
′[dȲi − (Hŷi + H̃θix

0 + h)dt
]

+ σ̃dW,

ŷi(0) = x,

ūi = Λθi ŷi + λθi ,

dyi = [Aθiyi +Būi + aθix
0 +m]dt+ σdWi + σ̃dW,

yi(0) = x,

dȲi = (Hyi + H̃θix
0 + h)dt+ dVi, Ȳi(0) = 0.

(21)

Let µ(·) be adapted to Fβi,W
t and F Ȳi,W

u,t . Consider the state yµi (·) and the

observation Ȳ µi (·) corresponding to ui(·), where ui(t) = Λθi(t)ŷ
µ
i (t)+λθi(t)+µ(t) ∈

Fβi,W
t and F Ȳi,W

u,t , ŷµi (t) is the related Kalman filter. Then we can write for any
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µ(·) ∈ Fβi,W
t and F Ȳi,W

u,t

dŷµi =
[
(Aθi +BΛθi)ŷ

µ
i + aθix

0 +m+Bλθi +Bµ
]
dt

+ PθiH
′[dȲ µi − (Hŷµi + H̃θix

0 + h)dt
]

+ σ̃dW,

ŷµi (0) = x,

ui = Λθi ŷ
µ
i + λθi + µ,

dyµi = [Aθiy
µ
i +Bui + aθix

0 +m]dt+ σdWi + σ̃dW,

yµi (0) = x,

dȲ µi = (Hyµi + H̃θix
0 + h)dt+ dVi(t), Ȳ

µ
i (0) = 0.

(22)

Comparing (21) and (22), we have

dȲ µi − (Hŷµi + H̃θix
0 + h)dt = dβi − (Hα̂i + h)dt = dȲi − (Hŷi + H̃θix

0 + h)dt.

(23)

Set X̃i(t) , ŷ
µ
i (t)−ŷi(t), and introduce y1,µ

i (·), y1
i (·) such that ŷµi (t) = α̂i(t)+y1,µ

i (t)
and ŷi(t) = α̂i(t) + y1

i (t). It follows that

ŷµi − ŷi = y1,µ
i − y1

i = yµi − yi = X̃i,

and

dX̃i = (Aθi +BΛθi)X̃idt+Bµdt, X̃i(0) = 0.

Compute the value of the cost functional as follows

Ji(ui) =E
{∫ T

0

[
(yi − x0)′Q(yi − x0) + 2(yi − x0)′QX̃i + X̃ ′iQX̃i

+ (Λθi ŷi + λθi)
′ ·R(Λθi ŷi + λθi) + 2(Λθi ŷi + λθi)

′R(ΛθiX̃i + µ)

+ (ΛθiX̃i + µ)′(ΛθiX̃i + µ)
]
dt

+ yi(T )′Gyi(T ) + 2yi(T )′GX̃i(T ) + X̃i(T )′GX̃i(T )
}
.

Hence

Ji(ui) = Ji(ūi)

+ E
{∫ T

0

[
X̃ ′iQX̃i + (ΛθiX̃i + µ)′R(ΛθiX̃i + µ)

]
dt+ X̃ ′i(T )GX̃i(T )

}
+ 2Xi,

where

Xi = E
{∫ T

0

[
X̃ ′iQyi − X̃ ′iQx0 + (ΛθiX̃i + µ)′R(Λθi ŷi + λθi)

]
dt+ X̃ ′i(T )Gyi(T )

}
.

Notice that

E
[
X̃ ′i(t)R(t)yi(t)

]
= E

[
X̃ ′i(t)R(t)E(yi(t)|F Ȳi,W

u,t )
]

= E
[
X̃ ′i(t)R(t)ŷi(t)

]
.

Then we have

Xi =E
{∫ T

0

[
X̃ ′iQyi − X̃ ′iQx0 + (ΛθiX̃i + µ)′R(Λθiyi + λθi)

]
dt+ X̃ ′i(T )Gyi(T )

}
.

Define

pi(t) = πθi(t)yi(t) + γθi(t),
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where πθi(·), γθi(·) are given by (17) and (18). Applying Itô’s formula to X̃ ′i(t)pi(t),
integrating between 0 and T , and taking the expectation, we obtain

E
[
X̃ ′i(T )Gyi(T )

]
=E
{∫ T

0

[
X̃ ′i

(
Aθi +BΛθi

)′
pi + µ′B′pi + X̃ ′iπ̇θiyi

+ X̃ ′iπθi

(
Aθiyi +BΛθi ŷi +Bλθi + aθix

0 +m
)]
dt+

∫ T

0

X̃ ′idγθi

}
.

(24)

Substituting (24) into Xi, it follows that Xi = 0 and

Ji(ui)

= Ji(ūi) + E
{∫ T

0

[
X̃ ′iQX̃i + (ΛθiX̃i + µ)′R(ΛθiX̃i + µ)

]
dt+ X̃ ′i(T )GX̃i(T )

}
.

with Λθi = −R−1B′πθi , λθi = −R−1B′γθi . The optimal µ is µ = 0 as in this case,

X̃i ≡ 0, which implies the optimality of ūi. �
Now, we aim to derive the consistency condition satisfied by the decentralized

strategies. In below, for two matrices A,B, A⊗B denotes their Kronecker product.

Lemma 2.3. Let (A1)-(A4) hold, then state-average limit x0 =
∑K
j=1 χjx

0
j where

the set of aggregate quantities z̄ = [(x0
1)′, · · · , (x0

K)′]′ and γ̄ = [(γ1)′, · · · , (γK)′]′

satisfies the following consistency condition:
dz̄ =

[
Āz̄ + B̄γ̄ + m̄

]
dt+ σ̄dW,

dγ̄ = −
[
Ǎz̄ + Ḡ′γ̄ + s̄

]
dt− ξ̄dW,

z̄(0) = x̄, γ̄(T ) = 0,

(25)

with 
Ā = Ḡ + ā⊗ χ, χ = [χ1, · · · , χK ], ā = [a′1, · · · , a′K ]′,

Ǎ = q̄⊗ χ, q̄ = [(π1a1−Q)′, · · · , (πKaK−Q)′]′,

m̄ = [m′, · · ·,m′]′, σ̄ = [σ̃′, · · ·, σ̃′]′, ξ̄ = [ξ′1, · · ·, ξ′K ]′,

s̄ = [(π1a1)′, · · · , (πKak)′]′ ·m, x̄ = [x′, · · · , x′]′,

(26)

and

Ḡ =

 A1 −BR−1B′π1

. . .

AK −BR−1B′πK

 ,

and

B̄ =

 −BR
−1B′

. . .

−BR−1B′

 .

Proof. It follows from Lemma 2.2 that the (decentralized) strategy ũi(t) of Problem
(PO) is given by

ũi = −R−1B′πθi x̂i −R−1B′γθi , (27)
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with

dx̂i =
[
Aθi x̂i −BR−1B′(πθi x̂i + γθi) + aθix

0 +m
]
dt

+ PθiH
′
[(
H
(
xi − x̂i

)
+ H̃θi

(
x(N) − x0

))
dt+ dVi

]
+ σ̃dW.

Taking summation for i ∈ Ik and let N −→ +∞,

dx̂0
k =
[(
Ak −BR−1B′πk − PkH ′H

)
x̂0
k −BR−1B′γk

+m+ akx
0 + PkH

′Hx0
k

]
dt+ σ̃dW.

Substituting (27) into (1), we have

dxi = [Aθixi −BR−1B′πθi x̂i −BR−1B′γθi + aθix
(N) +m]dt+ σdWi + σ̃dW.

Taking summation for i ∈ Ik, and let N −→ +∞,

dx0
k =
[
Akx

0
k + akx

0 −BR−1B′πkx̂
0
k −BR−1B′γk +m

]
dt+ σ̃dW.

It follows that
x0
k(t) = x̂0

k(t), a.s., a.e. (28)

for any t ∈ [0, T ]. With (18), we have for k = 1, 2, · · · ,K,{
dx0

k =
[
Akx

0
k −BR−1B′πkx

0
k + akx

0 −BR−1B′γk +m
]
dt+ σ̃dW, x0

k = x,

dγk +
[
(A′k − πkBR−1B′)γk + πk(akx

0 +m)−Qx0
]
dt+ ξkdW = 0, γk(T ) = 0.

(29)
Write the above systems in compact form for k = 1, 2, · · · ,K, we formulate (25). �

Similar to [4], suppose γ̄ = Kz̄ + Φ, thus we have the following matrix-valued
equations for K and Φ:

K̇ +KĀ + Ḡ′K +KB̄K + Ǎ = 0,

Φ̇ +
(
Ḡ′ +KB̄

)
Φ + (s̄ +Km̄) = 0,

K(T ) = 0, Φ(T ) = 0.

(30)

K in (30) is nonsymmetric Riccati equation. We first state the following result
based on [4] (Proposition 3.2) which is a version of Radon’s lemma for nonsymmetric
Riccati equation. Suppose two-point boundary problem

d

dt

(
ξ1

−η1

)
=

(
Ā B̄
Ǎ Ḡ′

)(
ξ1

η1

)
,

ξ1(t0) = 0, η1(T ) = 0,

admits a unique solution for any t0 ∈ [0, T ], respectively. Then there is a unique so-
lution K(·) to the nonsymmetric Riccati equation (30). Then, applying the Banach
fixed point theorem for two-point boundary problem, we have the following general
existence result to nonsymmetric Riccati equation (see [26] for more details):

Proposition 2.1. Let (A1)-(A4) hold, there exists a unique solution of (30) if
L < 1 where

L = T‖Ǎ‖T ‖B̄‖T · exp((2‖Ā‖T + 2‖Ḡ‖T + ‖B̄‖T + ‖Ǎ‖T )T )

and ‖ · ‖T denotes the super-norm of matrix-valued function on [0, T ].

Given the special structure on Ǎ, a relaxed condition is given below which is
obtained in [4]:
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Proposition 2.2. Let (A1)-(A4) hold. Suppose Ǎ is invertible, let φ(t, s) is the fun-

damental solution to Ḡ and ‖φ‖T = sup0≤t≤T

√∫ T
t
‖φ′(s, t)Ǎ

1
2
s ‖2ds, ‖Ā− Ḡ‖T =

sup0≤t≤T ‖(Ā− Ḡ)tǍ
− 1

2
t ‖. Then there exists a unique solution of (30) if

√
T‖φ‖T ‖Ā− Ḡ‖T < 1.

Proof. Applying the similar procedures in Theorem III.6 in [4], we can obtain the
condition above for forward-backward SDE. Details are omitted. �

Unlike the condition in terms of two-point boundary problems, the condition of
Proposition 2.2 is given by matrix norm which is more checkable. For its illustration,
we present some numerical example in Section 4.

Finally, we obtain the estimation of the solution of (25) which will be used in
the following section.

Lemma 2.4. There exists a constant c such that

sup
1≤k≤K

E sup
0≤t≤T

|x0
k(t)|2 + sup

1≤k≤K
E sup

0≤t≤T
|γk(t)|2 ≤ c. (31)

Proof. By (29), it follows from the standard estimations for SDE and BSDE that,
there exists a constant c that

E sup
0≤t≤T

|γk(t)|2 ≤ cE
∫ T

0

(|x0(t)|2 + |m(t)|2)dt,

and

E sup
0≤t≤T

|x0
k(t)|2 ≤ cE

∫ T

0

(|x0(t)|2 + |γk(t)|2 + |m(t)|2 + |σ̃(t)|2)dt.

Therefore,

K∑
k=1

E sup
0≤t≤T

|x0
k(t)|2 ≤ c

K∑
k=1

E
∫ T

0

|x0
k(t)|2dt+ cE

∫ T

0

(|m(t)|2 + |σ̃(t)|2)dt.

Hence there exists a constant c such that

sup
1≤k≤K

E sup
0≤t≤T

|x0
k(t)|2 ≤ c,

and

sup
1≤k≤K

E sup
0≤t≤T

|γk(t)|2 ≤ c.

�

3. ε-Nash equilibrium for problem (PO). Now we show (ũ1, ũ2, · · · , ũN ) sat-
isfies the ε-Nash equilibrium for (PO). Here, for 1 ≤ i ≤ N, ũi is given by (27)
and γθi satisfies the consistent condition (25). We first give the definition of ε-Nash
equilibrium.

Definition 3.1. A set of controls ui(·) ∈ Ui, 1 ≤ i ≤ N, for N agents is called an ε-
Nash equilibrium with respect to the costs Ji, 1 ≤ i ≤ N, if there exists ε = εN ≥ 0
and εN → 0 as N →∞ such that for any fixed 1 ≤ i ≤ N , we have

Ji(ui, u−i) ≤ Ji(u′i, u−i) + εN , (32)

when any alternative control u′i(·) ∈ Ui is applied by Ai.

Our main result in this section is as follows.



36 ALAIN BENSOUSSAN, XINWEI FENG AND JIANHUI HUANG

Theorem 3.1. Let (A1)-(A4) hold, then (ũ1, ũ2, · · · , ũN ) is an ε-Nash equilibrium

of Problem (PO) with ε = O( 1√
N

+ εN ), where εN := sup1≤k≤K |χ
(N)
k −χk| → 0 as

N →∞.

For ūi(·) defined in (19) and any ui(·) ∈ Ui, we have

Ji(ũi, ũ−i)− Ji(ui, ũ−i) ≤ Ji(ũi, ũ−i)− Ji(ūi(·)) + Ji(ui(·))− Ji(ui, ũ−i).
Therefore, in order to show that (ũ1, ũ2, · · · , ũN ) satisfies the ε-Nash equilibrium,
we will study Ji(ũi, ũ−i) − Ji(ūi(·)) and Ji(ui(·)) − Ji(ui, ũ−i) in the following
subsections, respectively.

3.1. Estimation of |Ji(ũi, ũ−i) − Ji(ūi(·))|. In order to estimate |Ji(ũi, ũ−i) −
Ji(ūi(·))|, first we need to obtain the estimations of the difference between the
optimal state-average and the frozen term(see Lemma 3.2) and the difference be-
tween the decentralized and centralized states and filters(see Lemma 3.3). For
k ∈ Θ, i ∈ Ik, applying ũi(·) for Ai, we have the following close-loop state

dxi =[Akxi −BR−1B′
(
πkx̂i + ek(Kz̄ + Φ)) + akx

(N) +m]dt+ σdWi + σ̃dW,

dx̂i =
[
Akx̂i −BR−1B′

(
πkx̂i + ek (Kz̄ + Φ)) + akx

0 +m
]
dt

+ PkH
′
[
dYi −

(
Hx̂i + H̃kx

0 + h
)
dt
]

+ σ̃dW,

dYi =[Hxi + H̃kx
(N) + h]dt+ dVi,

xi(0) =x, x̂i(0) = x, Yi(0) = 0,

(33)
where for 1 ≤ k ≤ K, ek is the n × (nK) matrix with the n × n identity ma-
trix In located in its k − th block and other blocks are null matrix, that is ek =
[0n×n, · · · , 0n×n, In, 0n×n, · · · , 0n×n]. The auxiliary system (of limiting problem) is
given by

dyi =[Akyi −BR−1B′
(
πkŷi + ek

(
Kz̄ + Φ

))
+ akx

0 +m]dt+ σdWi + σ̃dW,

dŷi =
[
Akŷi −BR−1B′

(
πkŷi + ek

(
Kz̄ + Φ

))
+ akx

0 +m
]
dt

+ PkH
′
[
dȲi −

(
Hŷi + H̃kx

0 + h
)
dt
]

+ σ̃dW,

dȲi =[Hyi + H̃kx
0 + h]dt+ dVi,

yi(0) =x, ŷi(0) = x, Ȳi(0) = 0.

(34)
Based on (33), we derive that

dx
(N)
k =[(Akx

(N)
k −BR−1B′

(
πkx̂

(N)
k + ek(Kz̄ + Φ)

)
+ akx

(N) +m]dt

+
1

Nk

∑
i∈Ik

σdWi + σ̃dW,

dx̂
(N)
k =

[
Akx̂

(N)
k −BR−1B′

(
πkx̂

(N)
k + ek(Kz̄ + Φ)

)
+ akx

0 +m
]
dt

+ σ̃dW + PkH
′
[
dY

(N)
k −

(
Hx̂

(N)
k + H̃kx

0 + h
)
dt
]
,

dY
(N)
k =[Hx

(N)
k + H̃kx

(N) + h]dt+
1

Nk

∑
i∈Ik

dVi,

x
(N)
k (0) =x, x̂

(N)
k (0) = x, Y

(N)
k (0) = 0,

(35)
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where Y
(N)
k = 1

Nk

∑
i∈Ik Yi.

For (34) and (35), applying the same method as in Lemma 2.4 and using (31),
we have the following result.

Lemma 3.1. There exists a constant c such that

E sup
0≤t≤T

|yi(t)|2 + E sup
0≤t≤T

|ŷi(t)|2 + E sup
0≤t≤T

|Ȳi(t)|2 ≤ c,

and

sup
k∈Θ

E sup
0≤t≤T

|x(N)
k (t)|2 + sup

k∈Θ
E sup

0≤t≤T
|x̂(N)
k (t)|2 ≤ c.

The following lemma establishes the estimations of the difference between the
optimal state-average and the frozen term

Lemma 3.2.

sup
k∈Θ

sup
0≤t≤T

E
∣∣∣x(N)
k (t)− x0

k(t)
∣∣∣2 = O

( 1

N
+ ε2

N

)
, (36)

sup
k∈Θ

sup
0≤t≤T

E
∣∣∣x(N)
k (t)− x0

k(t)
∣∣∣2 = O

( 1

N
+ ε2

N

)
. (37)

Proof. By (29) and (35), we get
d
(
x

(N)
k − x0

k

)
=
[
Ak
(
x

(N)
k − x0

k

)
−BR−1B′πk(x̂

(N)
k − x0

k)
)

+ ak(x(N) − x0)
]
dt+

+
1

Nk

∑
i∈Ik

σdWi,

x
(N)
k (0)− x0

k(0) =0,

(38)
and

d
(
x̂

(N)
k − x0

k

)
=
[(
Ak −BR−1B′πk

)(
x̂

(N)
k − x0

k

)]
dt

+ PkH
′
[
H
(
x

(N)
k − x̂(N)

k

)
+ H̃k

(
x(N) − x0

)]
dt+ PkH

′ 1

Nk

N∑
i∈Ik

dVi,

x̂
(N)
k (0)− x0

k(0) = 0.

(39)
It follows from (38), (39) and (28) that

E
∣∣∣x(N)
k (t)− x0

k(t)
∣∣∣2

≤CE
∫ t

0

(∣∣∣x(N)
k (s)− x0

k(s)
∣∣∣2 +

∣∣∣x̂(N)
k (s)− x0

k(s)
∣∣∣2 +

∣∣∣x(N)(s)− x0(s)
∣∣∣2)ds

+ CE
∣∣∣ ∫ t

0

1

Nk

∑
i∈Ik

σdWi

∣∣∣2,
and

E
∣∣∣x̂(N)
k (t)− x0

k(t)
∣∣∣2
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≤CE
∫ t

0

(∣∣∣x̂(N)
k (s)− x0

k(s)
∣∣∣2 +

∣∣∣x(N)
k (s)− x0

k(s)
∣∣∣2 +

∣∣∣x(N)(s)− x0(s)
∣∣∣2)ds

+ CE
∣∣∣ ∫ t

0

1

Nk

∑
i∈Ik

dVi

∣∣∣2.
Note that ∣∣∣x(N)(s)− x0(s)

∣∣∣2
=
∣∣∣ K∑
k=1

(χ
(N)
k x

(N)
k (s)− χkx0

k(s))
∣∣∣2

=
∣∣∣ K∑
k=1

(χ
(N)
k x

(N)
k (s)− χkx(N)

k (s)) +
K∑
k=1

(χkx
(N)
k (s)− χkx0

k(s))
∣∣∣2

≤C sup
k∈Θ
|χ(N)
k − χk|2

K∑
k=1

|x(N)
k (s)|2 + C

K∑
k=1

|x(N)
k (s)− x0

k(s)|2.

(40)

and

E
∣∣∣ ∫ t

0

1

Nk

∑
i∈Ik

σdWi

∣∣∣2 ∼ E
∣∣∣ ∫ t

0

1

Nk

∑
i∈Ik

dVi

∣∣∣2= O
( 1

N

)
.

Then (36) and (37) follow by Gronwall’s inequality. �
Considering the difference between the decentralized and centralized states and

filters, we have the following estimates:

Lemma 3.3.

sup
1≤i≤N

[
sup

0≤t≤T
E
∣∣∣xi(t)− yi(t)∣∣∣2] = O

( 1

N
+ ε2

N

)
, (41)

sup
1≤i≤N

[
sup

0≤t≤T
E
∣∣∣x̂i(t)− ŷi(t)∣∣∣2] = O

( 1

N
+ ε2

N

)
, (42)

sup
1≤i≤N

[
sup

0≤t≤T
E
∣∣∣Yi(t)− Ȳi(t)∣∣∣2] = O

( 1

N
+ ε2

N

)
. (43)

Proof. By (33) and (34), we get

sup
0≤s≤t

E
∣∣∣xi(s)− yi(s)∣∣∣2

≤C
∫ t

0

E
∣∣∣xi(s)− yi(s)∣∣∣2ds+ CE

∫ t

0

[∣∣∣x̂i(s)− ŷi(s)∣∣∣2 +
∣∣∣x(N)(s)− x0(s)

∣∣∣2]ds,
and

sup
0≤s≤t

E
∣∣∣x̂i(s)− ŷi(s)∣∣∣2 ≤ C ∫ t

0

E
∣∣∣x̂i(s)− ŷi(s)∣∣∣2ds+ CE

∣∣∣Yi(t)− Ȳi(t)∣∣∣2,
and

E
∣∣∣Yi(t)− Ȳi(t)∣∣∣2 ≤ C ∫ t

0

E
∣∣∣xi(s)− yi(s)∣∣∣2ds+ C

∫ t

0

E
∣∣∣x(N)(s)− x0(s)

∣∣∣2ds.
Recalling (40), by virtue of Lemma 3.2 and Gronwall’s inequality, we obtain (41)-
(43). �

The following is the main result of this subsection.
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Proposition 3.1. For ∀ 1 ≤ i ≤ N,∣∣∣Ji(ũi, ũ−i)− Ji(ūi)∣∣∣ = O
( 1√

N
+ εN

)
.

Proof. Applying Cauchy-Schwarz inequality, we have

sup
0≤t≤T

E
∣∣∣∣∣xi(t)− x(N)(t)

∣∣2 − ∣∣yi(t)− x0(t)
∣∣2∣∣∣

≤ sup
0≤t≤T

E
∣∣xi(t)− x(N)(t)− yi(t) + x0(t)

∣∣2
+ 2 sup

0≤t≤T
E
[∣∣yi(t)−x0(t)

∣∣ · ∣∣xi(t)−x(N)(t)− yi(t) + x0(t)
∣∣]

≤ sup
0≤t≤T

E
∣∣xi(t)− yi(t)− (x(N)(t)− x0(t))

∣∣2
+ 2
(

sup
0≤t≤T

E
∣∣yi(t)− x0(t)

∣∣2) 1
2 ·
(

sup
0≤t≤T

E
∣∣xi(t)− yi(t)− (x(N)(t)− x0(t))

∣∣2) 1
2

=O
( 1√

N
+ εN

)
,

where the last equality is obtained by using the results of Lemmas 3.1, 3.2 and 3.3.
Similarly, by (19), (27) and (42), applying the same technique we get

sup
0≤t≤T

E
∣∣∣∣∣ũi(t)∣∣2 − ∣∣ūi(t)∣∣2∣∣∣ = O

( 1√
N

+ εN

)
.

In addition,

E
∣∣∣∣∣xi(T )

∣∣2 − ∣∣yi(T )
∣∣2∣∣∣ = O

( 1√
N

+ εN

)
.

Then ∣∣∣Ji(ũi, ũ−i)− Ji(ūi)∣∣∣ = O
( 1√

N
+ εN

)
,

which completes the proof. �

3.2. Estimation of |Ji(ui, ũ−i)− Ji(ui(·))|. The proof of |Ji(ui, ũ−i)− Ji(ui(·))|
is similar to the proof in Subsection 3.1. We will consider the state and cost under
perturbation. Thus, we give some new notations first. For i ∈ Ik, consider a
perturbed control ui ∈ Ui for Ai and introduce

dli = [Akli +Bui + akl
(N) +m]dt+ σdWi + σ̃dW,

dY li = [Hli + H̃kl
(N) + h]dt+ dVi,

li(0) = x, Y li (0) = 0,

(44)

whereas other agents of same type still keep the control ũj , j 6= i, i.e.,

dlj =[Aθj lj −BR−1B′
(
πθj l̂j + eθj (Kz̄ + Φ)

)
+ aθj l

(N) +m]dt

+ σdWj + σ̃dW,

dl̂j =
[
Aθj l̂j −BR−1B′

(
πθj l̂j + eθj

(
Kz̄ + Φ

)
+ aθjx

0 +m
]
dt

+ σ̃dW + PH ′
[
dY lj −

(
Hl̂j + H̃θjx

0 + h
)
dt
]
,

dY lj =[Hlj + H̃θj l
(N) + h]dt+ dVj ,

lj(0) =x, l̂j(0) = x, Y lj (0) = 0,

(45)
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where l(N)(t) = 1
N

∑N
k=1 lk(t). By the definition of ε-Nash equilibrium, we need

only consider the perturbation control ui ∈ Ui such that Ji(ui, ũ−i) ≤ Ji(ũi, ũ−i),
which implies

1

2
E
∫ T

0

ui(t)
′R(t)ui(t)dt ≤ Ji(ui, ũ−i) ≤ Ji(ũi, ũ−i) = Ji(ūi) +O

( 1√
N

+ εN

)
,

i.e.,

E
∫ T

0

|ui(t)|2dt ≤ c1, (46)

where c1 is a positive constant which is independent of N . Then we have the
following result.

Lemma 3.4. There exists a constant c independent of N and j such that

sup
1≤j≤N

sup
0≤t≤T

E
[
|lj(t)|2

]
+ sup

1≤j≤N
sup

0≤t≤T
E
[
|l̂j(t)|2

]
+ sup

1≤j≤N
sup

0≤t≤T
E
[
|Yj(t)|2

]
≤ c3.

Proof. By (44) and (45), it holds that

|li(t)|2 ≤ c1
{
|x|2 +

∫ t

0

[
|li(s)|2 + |ui(s)|2 +

1

N

N∑
j=1

|lj(s)|2 + |m(s)|2
]
ds

+
∣∣∣ ∫ t

0

σ(s)dWi(s)
∣∣∣2 +

∣∣∣ ∫ t

0

σ̃(s)dW (s)
∣∣∣2},

(47)

and for j 6= i,

|lj(t)|2 ≤ c1
{
|x|2 +

∫ t

0

[
|lj(s)|2 + |l̂j(s)|2 + |x0(s)|2 +

1

N

N∑
j=1

|lj(s)|2 + |m(s)|2
]
ds

+
∣∣∣ ∫ t

0

σ(s)dWj(s)
∣∣∣2 +

∣∣∣ ∫ t

0

σ̃(s)dW (s)
∣∣∣2},

(48)

|l̂j(t)|2 ≤ c1
{
|x|2 +

∫ t

0

[
|l̂j(s)|2 + |x0(s)|2 + |m(s)|2 + |Y lj (s)|2 + |h(s)|2

]
ds

+
∣∣∣ ∫ t

0

σ(s)dWj(s)
∣∣∣2 +

∣∣∣ ∫ t

0

σ̃(s)dW (s)
∣∣∣2}, (49)

|Y lj (t)|2 ≤ c1
{∫ t

0

[
|lj(s)|2 +

1

N

N∑
j=1

|lj(s)|2 + |h(s)|2
]
ds+

∣∣∣ ∫ t

0

dVj(s)
∣∣∣2}, (50)

where c1 is a positive constant independent of N . Thus,

N∑
j=1

E
[
|lj(t)|2

]
+

N∑
j=1

E
[
|l̂j(t)|2

]
+

N∑
j=1

E
[
|Yj(t)|2

]

≤c1
{
N |x|2 + E

∫ t

0

[ N∑
j=1

|lj(s)|2 + |ui(s)|2 +
N∑
j=1

|l̂j(s)|2 +N |x0(s)|2
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+N |m(s)|2 +
N∑
j=1

|Y lj (s)|2 + |h(s)|2
]
ds+

N∑
j=1

E
∣∣∣ ∫ t

0

σ(s)dWj(s)
∣∣∣2

+NE
∣∣∣ ∫ t

0

σ̃(s)dW (s)
∣∣∣2 +NE

∣∣∣ ∫ t

0

dVj(s)
∣∣∣2}

≤c1
{
N |x|2 +

∫ t

0

[ N∑
j=1

E|lj(s)|2 +
N∑
j=1

E|l̂j(s)|2 +
N∑
j=1

E|Yj(s)|2
]
ds

+NE
∫ t

0

(
|ui(s)|2 + |x0(s)|2 + |m(s)|2 + |h(s)|2 + |σ(s)|2 + |σ̃(s)|2 + 1

)
ds
}
.

By (46), we can see that ui(·) is L2-bounded. Then by Gronwall’s inequality, it
follows that there exists a constant c2 independent of N such that

1

N

N∑
j=1

sup
0≤t≤T

E
[
|lj(t)|2

]
+

1

N

N∑
j=1

sup
0≤t≤T

E
[
|l̂j(t)|2

]
+

1

N

N∑
j=1

sup
0≤t≤T

E
[
|Yj(t)|2

]
≤ c2.

(51)
Plugging (51) into (47), (48), (49) and (50), it follows from Gronwall inequality that
there exists a constant c2 independent of N and j such that

sup
0≤t≤T

E
[
|lj(t)|2

]
+ sup

0≤t≤T
E
[
|l̂j(t)|2

]
+ sup

0≤t≤T
E
[
|Yj(t)|2

]
≤ c3.

�

Correspondingly, the system for agent Ai under control ui in (LPO) is as follows
dl0i = [Akl

0
i +Bui + akx

0 +m]dt+ σdWi + σ̃dW,

dY l,0i = [Hl0i + H̃kx
0 + h]dt+ dVi,

l0i (0) = x, Y l,0i (0) = 0,

(52)

and for agent Aj , j 6= i,

dl0j =[Aθj l
0
j −BR−1B′

(
πθj l̂

0
j + eθj (Kz̄ + Φ)

)
+ aθjx

0 +m]dt+ σdWj + σ̃dW,

dl̂0j =
[
Aθj l̂

0
j −BR−1B′

(
πθj l̂

0
j + eθj (Kz̄ + Φ)

)
+ aθjx

0 +m
]
dt

+ σ̃dW + PH ′
[
dY l,0j −

(
Hl̂0j + H̃θjx

0 + h
)
dt
]
,

dY l,0j =[Hl0j + H̃θjx
0 + h]dt+ dVj ,

l0j (0) =x, l̂0j (0) = x, Y l,0j (0) = 0.

In order to give necessary estimates in (PO) and (LPO), we introduce the in-
termediate state for Ai as

dni = [Akni +Bui + ak
N − 1

N
n(N−1) +m]dt+ σdWi + σ̃dW,

dY ni = [Hni +
N − 1

N
H̃kn

(N−1) + h]dt+ dVi,

ni(0) = x, Y ni (0) = 0,
and for j 6= i,



42 ALAIN BENSOUSSAN, XINWEI FENG AND JIANHUI HUANG

dnj =[Aθjnj −BR−1B′
(
πθj n̂j + eθj (Kz̄ + Φ)

)
+ aθj

N − 1

N
n(N−1) +m]dt

+ σdWj + σ̃dW,

dn̂j =
[
Aθj n̂j −BR−1B′

(
πθj n̂j + eθj (Kz̄ + Φ)

)
+ aθjx

0 +m
]
dt

+ σ̃dW + PH ′
[
dY nj −

(
Hn̂j + H̃θjx

0 + h
)
dt
]
,

dY nj =[Hnj +
N − 1

N
H̃θjn

(N−1) + h]dt+ dVj ,

nj(0) =x, n̂j(0) = x, Y nj (0) = 0,

(53)

where n(N−1) , 1
N−1

N∑
j=1,j 6=i

nj . Define

l(N−1) ,
1

N − 1

N∑
j=1,j 6=i

lj , l̂(N−1) ,
1

N − 1

N∑
j=1,j 6=i

l̂j ,

Y
(N−1)
l ,

1

N − 1

N∑
j=1,j 6=i

Y lj , Y (N−1)
n ,

1

N − 1

N∑
j=1,j 6=i

Y nj .

By (45) and (53), we have the following estimates on these states.

Lemma 3.5.

sup
0≤t≤T

E
∣∣∣l̂(N−1) − n̂(N−1)

∣∣∣2 = O
( 1

N
+ ε2

N

)
,

sup
0≤t≤T

E
∣∣∣l(N−1) − n(N−1)

∣∣∣2 = O
( 1

N
+ ε2

N

)
,

sup
0≤t≤T

E
∣∣∣Y (N−1)
l − Y (N−1)

n

∣∣∣2 = O
( 1

N
+ ε2

N

)
,

sup
0≤t≤T

E
∣∣∣l(N) − l(N−1)

∣∣∣2 = O
( 1

N
+ ε2

N

)
,

sup
0≤t≤T

E
∣∣∣n̂(N−1) − x̂0

∣∣∣2 = O
( 1

N
+ ε2

N

)
,

sup
0≤t≤T

E
∣∣∣n(N−1) − x0

∣∣∣2 = O
( 1

N
+ ε2

N

)
.

Proof. The proof is similar to that of Lemma 3.3 and omitted. �
In addition, based on Lemma 3.5, we have

Lemma 3.6.

sup
0≤t≤T

E
∣∣∣l(N) − x0

∣∣∣2 = O
( 1

N
+ ε2

N

)
, (54)

sup
0≤t≤T

E
∣∣∣li − l0i ∣∣∣2 = O

( 1

N
+ ε2

N

)
. (55)

Proof. (54) follows from Lemma 3.5 directly. By (44) and (52), and using (54), we
get (55). �

Finally, applying the same technique as the proof of Proposition 3.1, we obtain
the following proposition.
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Proposition 3.2. For any 1 ≤ i ≤ N ,∣∣∣Ji(ui, ũ−i)− Ji(ui)∣∣∣ = O
( 1√

N
+ εN

)
.

3.3. Proof of Theorem 3.1. Combining Propositions 3.1 and 3.2, we have

Ji(ũi, ũ−i) = Ji(ūi) +O
( 1√

N
+ εN

)
≤ Ji(ui) +O

( 1√
N

+ εN

)
= Ji(ui, ũ−i) +O

( 1√
N

+ εN

)
.

Thus, Theorem 3.1 follows by taking ε = O
(

1√
N

+ εN

)
. �

4. Numerical results. Consider the case: n = 2,K = 2, thus there have two
different types of agents: type-1 and type-2 respectively. The state of each agent
has two components. Consider the following parameters of state, observation and
cost: 

A1 =

(
0.12 0.2
0.23 0.17

)
, A2 =

(
0.18 0.1
0.15 0.23

)
,

a1 =

(
0.18 0.2
0.1 0.13

)
, a2 =

(
0.21 0.1
0.17 0.12

)
,

B = (0.31, 0.22)′, χ1 = 0.55, χ2 = 0.45,m = (2.7, 0.45)′,

H = (0.23, 0.45), H1 = (0.03, 0.08), H2 = (−0.04, 0.05),

Q =

(
0.2 0
0 0.13

)
, G =

(
0.4 0
0 0.6

)
, h = 0.02, R = 2,

σ = (0.75, 0.65)′, σ̃ = (0.35, 0.85)′, T = 3, x(0) = 0.

Corresponding to the above parameters, the matrix Riccati equations P1, P2;π1,
π2 are all of sizes 2 × 2, and their solutions can be computed using Radon matrix
representation (see e.g., Ch2, Theorem 4.3, [26]) after a transform on their initial
or terminal conditions (recall P is forward equation with initial condition, while π
is backward equation with terminal condition). Given the solution of π1, π2, the
matrix and their norms in Proposition 2.1, 2.2 can be evaluated. In our example
here, Ǎ is invertible and

√
T‖φ‖T ‖Ā−Ḡ‖T ≈ 0.1197 < 1 thus (30) admits a unique

solution (K,Φ). Note that the matrix Riccati equation K is of size 4 × 4, and its
solution can be computed using the Runge-Kutta method [13]. Given K,Φ, the
state z̄ and observation equation can be simulated using the Euler approximation
scheme of [23]. The MFG strategies can be computed and we simulate the individual
agent states with N = 500. The realized state-average for agents is also computed.
The simulation results are reported by the following figures.

5. Conclusion and future work. We discuss mean-field games (MFGs) where
each individual agent can only access partial observation on his own state. Moreover,
the states of all agents are driven by a underlying common noise. The decentralized
strategies are derived with the help of Kalman filtering together with consistency
condition. It is notable the consistency condition is connected to the wellposedness
of a FBSDE driven by the common noise. Our work suggests some future research
topics. For example, the related MFGs for classical mean-variance problem but
within the partial observation framework; the related MFGs where common-noise
process is not observable to our agents.
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Figure 1. Trajectories of the type-1 agents’ states when N=500

Figure 2. Trajectories of the type-2 agents’ states when N=500

Figure 3. Trajectories of the type-1 agents state average and the
mean field term
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Figure 4. Trajectories of the type-2 agents state average and the
mean field term
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[8] C. Dogbé, Modeling crowd dynamics by the mean-field limit approach, Math. Comput. Mod-

elling , 52 (2010), 1506–1520.

[9] G. M. Erickson, Differential game methods of advertising competition, European Journal
Operational Research, 83 (1995), 431–438.

[10] W. Fleming and W. Rishel, Deterministic and Stochastic Control of Partially Observable

Systems, Springer-Verlag, 1975.
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