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ABSTRACT. This paper considers a class of linear-quadratic-Gaussian (LQG)
mean-field games (MFGs) with partial observation structure for individual
agents. Unlike other literature, there are some special features in our formu-
lation. First, the individual state is driven by some common-noise due to the
external factor and the state-average thus becomes a random process instead of
a deterministic quantity. Second, the sensor function of individual observation
depends on state-average thus the agents are coupled in triple manner: not
only in their states and cost functionals, but also through their observation
mechanism. The decentralized strategies for individual agents are derived by
the Kalman filtering and separation principle. The consistency condition is
obtained which is equivalent to the wellposedness of some forward-backward
stochastic differential equation (FBSDE) driven by common noise. Finally, the
related e-Nash equilibrium property is verified.

1. Introduction. The starting point of our work is the recently well-studied mean-
field games (MFGs) for large-population system (sometimes, it is also termed multi-
agent system (MAS)). The large-population system arises naturally in various fields
such as economics, engineering, social science and operational research, etc. For ex-
ample, dynamic economic models involving competing agents ([9], [24], [35]); wire-
less power control, shared data buffer modeling and traffic engineering ([12], [17],
[22], [27]); synchronization of coupled nonlinear oscillators ([37]); crowd and consen-
sus dynamics ([8], [29]), etc. The most significant feature of large-population system
is the existence of a large number of individually negligible agents (or players) which
are interrelated in their dynamics and (or) cost functionals via the state-average or
more generally, the generated empirical measure over the whole population. Due to
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this highly complicated coupling feature, it is intractable for a given agent to study
the centralized optimization strategies based on the information of all its peers in
large-population system. In fact, this will bring considerably high computational
complexity in large-scale. Alternatively, one reasonable and practical direction is
to investigate the related decentralized strategies based on local information only.
By local information, we mean the related strategies should be designed upon the
individual state of given agent only together with some mass-effect quantities but
can be computed in off-line manner.

Along this research direction, one efficient and tractable methodology to decen-
tralized strategies is the MFGs which generally leads to a coupled system of HJB
equation and Fokker-Planck (FP) equation in nonlinear case. In principle, the pro-
cedure of MFGs consists of the following four main steps (see [3], [5], [6], [18],
[19], [25], etc): in Step 1, it is necessary to analyze the asymptotic behavior of
state-average when the agent number N tends to infinity and introduce the related
state-average limiting term. Of course, this limiting term is undetermined at this
moment thus it should be treated as some exogenous “frozen” term; Step 2 turns
to study the related limiting optimization problem (which is also called auxiliary
or tracking problem) by replacing the state-average by its frozen limit term. The
initial highly-coupled optimization problems of all agents are thus decoupled and
only parameterized by this generic frozen limit. The related decentralized optimal
strategy can be analyzed using standard control techniques such as dynamic pro-
gramming principle (DPP) or stochastic maximum principle (SMP) (see e.g., [38]).
As a result, some HJB equation due to DPP or Hamiltonian system due to SMP will
be obtained to characterize this decentralized optimality; Step 3 aims to determine
the frozen state-average limit by some consistency condition: when applying the
optimal decentralized strategies derived in Step 2, the state-average limit should be
reproduced as the agents number tends to infinity. Accordingly, some fixed-point
analysis should be applied here and some FP equation will be introduced and cou-
pled with the HJB equation in Step 2. As the necessary verification, Step 4 will
show that the derived decentralized strategies should possess the e-Nash equilibrium
properties.

For further analysis details of MFGs, the interested readers are referred to [11]
for a survey of mean-field games focusing on the partial differential equation as-
pect and related real applications; [3] for more recent MFG studies and the related
mean-field type control; [5] for the probabilistic analysis of a large class of stochas-
tic differential games for which the interaction between the players is of mean-field
type; [7] for the mean-field game where considerable interrelated banks share the
system risk and common noise; [32] for a class of risk-sensitive mean-field sto-
chastic differential games; [20] for MFGs with nonlinear diffusion dynamics and
their relations to McKean-Vlasov particle system; [15] for the dynamic optimiza-
tion of large-population system with partial information and the associated MFG;
[31] for nonlinear filtering theory for partially observed stochastic dynamical sys-
tems of McKean—Vlasov type stochastic differential equations. It is remarkable that
there exists a substantial literature body to the study of MFGs in linear-quadratic-
Gaussian (LQG) framework. Here, we mention a few of them which are more
relevant to our current work: [4] for the linear-quadratic mean field games via the
stochastic maximum principle and adjoint equation, [1] for the N-person linear dif-
ferential mean-field games with explicit solution, [16] for the mean-field LQG games
with a major player and a large number of minor players, [19] for the mean-field
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LQG games with nonuniform agents through the state-aggregation by empirical dis-
tribution, [28] for the mean-field LQG mixed games with continuum-parameterized
minor players; [14] for linear-quadratic-Gaussian MFGs having a major agent and
numerous heterogeneous minor agents in the presence of mean-field interactions.

In this paper, we discuss the mean-field games in the framework of partial ob-
servation. Specially, we consider a large population system wherein all agents are
coupled in their state evolutions and cost functionals. However, due to the realistic
factors such as finite datum, latent process or imperfect information, each agent
can only access some noisy observation on his own state. Based on this partial
observation, each agent aims to analyze the decentralized strategy with the help of
Kalman filtering and separation principle but in large-population setting. On the
other hand, unlike most existing MFG literature, we assume the states of all agents
are governed by some underlying common-noise. This common noise can be inter-
preted as some exogenous and generic factors such as the macro-economic scenario,
tax policy, interest rate or exchange rate. It follows these factors should influence
all participants in a given large-population economy. In fact, the effect of such com-
mon noise becomes more significant when we consider a given industry sector with
considerable small firms. Actually, the dynamic behaviors of all these firms should
be regularized by the same external competition mechanism. For example, suppose
all these firms produce the same type products hence their individual production
plans will depend on the quoted price of same raw materials, or the same underlying
tax regulation applied. The presence of common noise makes the state-average limit
in MFG analysis become some stochastic process instead of deterministic quantity.

In our work, the random state-average limit enters both the auxiliary state and
observation dynamics (refer Eq. (5)-(6) below). As a result, there arise some mea-
surability and adaptness issues (e.g., to verify the filtration generated by uncon-
trolled observation process equals that of the controlled observation process) when
constructing the admissible control set and analyzing the related state-observation
separation principle (see [2], [10], etc.). Such issues make our analysis different from
the MFG with partial information discussed in [18] where no common noise added.
Thus, their state-average limit is still deterministic and the standard separation
principle via Kalman filtering technique can be applied directly therein without ad-
ditional adaptness issues. As a solution, we give a modified separation to state and
observation by taking into account random state-average limit (but without any as-
sumption to its Gaussian-Markov property) and then verify the related observation
filtration equivalence. Based on it, we can get some separation principle and derive
the related decentralized control strategies. Moreover, the consistency condition
will be established by the resulting decentralized strategies through some fixed-
point analysis. Here, we connect the consistency condition to the well-posedness
of some forward-backward stochastic differential equation (FBSDE). Moreover, we
present some decoupling results of this FBSDE via some asymmetric Riccati equa-
tion system.

As a response to above discussions, this paper investigates a class of LQG MFGs
with partial observation and common noise. The reminder of this paper is structured
as follows: Section 2 gives the problem formulation. The decentralized strategies are
derived by Kalman filtering method and the consistency condition is also established
through some FBSDE system. Section 3 verifies the e-Nash equilibrium of the
decentralized strategies. Section 4 gives some numerical computations to illustrate
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the theoretical results. Section 5 concludes our work and presents some future
research directions.

2. LQG MFGs with partial observation. Consider a finite horizon [0,T] for
fixed T > 0. (Q,F,P) is a complete probability space on which a standard
(d + m x N)-dimensional Brownian motion {W(¢), W;(t), 1 < ¢ < N} is de-
fined. Here, d denotes the dimension of Brownian motion of common noise, m
the dimension of Brownian motion of individual noise, and N is the number of
agents in large population. R™ (R"*¥) denotes the n (n x k)-dimensional Eu-
clidean space with its norm denoted by |- |. We denote the set of symmetric
n X n matrices with real elements by S™. Here, n, k denote the dimensions of state
and control variable respectively. If M € S™ is positive (semi)definite, we write
M > (>) 0. For given filtration {F;}o<i<r, let L%(0,T;R™) (L%(0,T;R™*k))
denote the space of all F;-progressively measurable processes with values in R"
(R™**) satisfying EfOT |z(t)|?dt < 4+o0; L2(0,T;R™) (L?(0,T;R™**)) the space of
all deterministic functions with values in R” (R"**) satisfying foT lz(t)]2dt < +oc;
L>=(0,T;R™) (L>=(0,T; R™**)) the space of uniformly bounded functions with val-
ues in R™ (R™*%); C([0, T]; R™) (C([0, T]; R™**)) the space of continuous functions
with values in R™ (R™ ). If M(-) € L>(0,T;S™) and M(t) > (>) 0 for every
t € [0,T), M(-) is positive (semi)definite, and denoted by M(:) > (>) 0. For a
given vector or matrix M, M’ stands for its transpose.

We consider a large-population system with N individual agents {A; }1<i<n. The
state x; for i'" agent A; satisfies the following linear stochastic system:

da;(t) = [Ag, (£)2i(t) + B(t)us(t) + ag, ()™ () + m(t)]dt
+ o (t)dWi(t) + o (t)dW (1), (1)
x;(0) = x,

with 20V (-) 2 LSV () denoting the state-average of population. Here, W;
is the individual noise while W is the common noise due to underlying common
factors; Ag,, B denote the drift parameters of state and control; ay, is the state-
coupling parameter; o, denote the diffusion coefficients. Similar setup of common
noise can be found in [7]. A; can access the following additive white-noise partial
observation:

{in(t) = [H(t)zi(t) + Hp, )z ™ (t) + h(t)]dt + dVi(t), @

Y;(0) =0,

where {Vi}1<i<n stand for I-dimensional Brownian motions. Here, Hp, is intro-
duced in sensor function of (2) to characterize the coupling effects due to inter-
actions of agents in large population system. If H = 0, Equation (2) becomes
the additive white-noise observation which is commonly seen in (linear) filtering
literature (e.g., [2], [21], [30]). Define the observable filtration F* = {F}}o<i<T
of A; with F{ £ o{Yi(s),W(s);0 < s < t} and the filtration of common noise
FU = {F}o<t<r With F¥ £ o{W(s);0 < s < t}.

In (1), (2), 6; is a dynamic parameter for agent 4; in the heterogeneous pop-
ulation. For sake of brief notations, we only set the coefficients (A,a,fi;) to be
dependent on 6;. In case other coefficients for A; also depend on 6;, the analysis
is similar and we will not present its full details here. For 6;, we assume it takes
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values from a finite set © = {1,2,--- , K}, i.e., there are K different types of het-
erogeneous agents (see [16] for similar setup). For example, if 6; = k, then A; is
called a k—type agent. In this paper, we are interested in the asymptotic behavior
as IV tends to infinity. For 1 < k < K, introduce

T, ={il0;=k,1<i< N},  Np=|Tl

where Nj is the cardinality of index set Zx. For 1 < k < K, let XECN) = %,
then Y(N) = (XgN),--- ,X%V)) is a probability vector representing the empirical
distribution of 61, - ,0x. We introduce the following assumption:
(A1l): There exists a probability mass vector x = (x1, -, xk) such that
li (M) = x and mi > 0.
N T ARG R

The implication of (A1) is that if the population size N — +o0, the proportion
of k—type agents becomes stable for each k and the number of each type agents
tends to infinity. Otherwise, the agents in given type with bounded size should be
excluded from consideration when analyzing asymptotic behavior as N — +o0.

Remark 2.1. Hereafter, the time variable ¢ will often be suppressed to simplify
the notations and presentations.

For 1 < i < N, the admissible control set U; of agent ¢ is defined as
Z/{i = {U,()|Uz() S L2 Z(O,T,]Rk)}
Let w = (u1,-+-,u; -+ ,uy) denote the strategy set of all N agents; u_; =

(w1, ,ui—1, Uitr1, -+ ,un) the strategy set except A;. The cost functional of A;
is assummed to be:

T
Ti(ui(-),u_i(-)) = E{/o ((l‘i — MY Q(z; — ™) + U;Ruz) dt + xi(T)Gxi(T)|.
(3)

Here, @, R are state and control weight matrix in running cost, while G the terminal
weight of state. We set the following assumptions on the coefficients:
(A2): {4}, € L=(0,T;R™™), B € L>(0, T;R™F) {ar }jZ, € L=(0,T;
R™") m € L?(0,T;R"),0 € L?(0, T;R™>™),5 € L?(0,T;R"*4);
(A3): H,{H.}K , € L=(0,T;R*"), h € L2(0, T; R!);
(A4): Q € L>(0,T;5™),Q > 0,R(-) € L>(0,T;S*), R > 41, for some § > 0,
GeS"G>N0.
Under (A2), for any u; € U;, the state equation (1) admits a unique strong
solution (e.g., [38]). Under (A4), the cost functional (3) is well-defined.
Now, we formulate the problem to find a Nash equilibrium of mean-field game
with partial observation (PO).

Problem (PO). Find the strategies set 4 = (u1,us, -+ ,un) such that for i =
1,2,---,N,

Ji(ui(-), u—i()) = u‘(infu_ Ti(ui(-); u—i(-))-
To study (PO), one efficient methodology is the mean-field LQG games which
relates the “centralized” LQG problems via the limiting state-average, as the agent
number tends to infinity. Define the state-average of all agents

-N TN i = Xg T s (4)
=1 k=1

k=1i€Z},



28 ALAIN BENSOUSSAN, XINWEI FENG AND JIANHUI HUANG
where x,(cN) = Nik ZieIk x; denotes the state-average of all k—type agents.

As explained in the introduction, the centralized strategies for Problem (PO)
are rather complicate and infeasible to be applied when the number of the agents
tends to infinity. Alternatively, we investigate the decentralized strategies via the
limiting problem with the help of the frozen limiting state-average. To this end,
first we figure out the representation of the limiting process by the heuristic argu-
ments. Based on this, we can find the decentralized strategies by the consistency
condition and verify the asymptotic Nash equilibrium of the derived decentralized
strategies. Since limy__, 00 xV) = x, by (4), we may approximate =), {xch) N
by 20, {29} || respectively, where 29, {z{}5 | should have the following relation

K
20 = Z XKLy,
k=1
Define the state filter for F; as
i(t) = B[z ()| 7).
Then £V (1) £ L fil #;(+) denotes the average of state filters. Similarly, #(™)(-)
can be approximated by 2°(-) = 1| xx29(-) where #9(-) £ BN oo - Do ier,
Z;(+). Moreover, due to the common noise, xo,xg,sﬁo,fcg should be adapted to fil-
tration {F;"} and this can be verified in our later analysis. Now, we introduce the
limiting state dynamics
{dyi = [Ap,yi + Bu; + agiIO + m]dt + odW; + adW,

yi(0) =z, (5)

and limiting observation process
dY; = [Hy; + ffeil‘o + hldt + dV;,
Y;(0) = 0.

The limiting cost functional is given by

Ji(ui(-)) = E[/OT ((yi —2%)'Q(y; — 2°) +UQRui> dt +y(T)Gys(T)|.  (7)

Note that (5)-(7) are limiting versions of (1)-(3) when the mean field term, 2(¥),
is replaced by 2, which will be determined later in the paper. Before formulating
the limiting LQG MFG, we should first analyze the control-observation information
structure as the observation process depends on the admissible control applied, and
vice versa, the admissible control should be adapted to observation process. To this
end, we will use the separation method which is originally obtained by Wonham
[36] and is systematically introduced in the book Bensoussan [2]. See also Wang
and Wu [33], Wang Wu and Xiong [34] for the backward separation method which
applies to partial observation problem of backward stochastic system. Introduce
the processes «;(-), 8;(-) by

{dai = [Ay,a; + m]dt + odW;,

(6)

;(0) =z, (8)

and
{dﬁi = [Ha, + hldt + dV;,

Bi(0) = 0.
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Note that the processes «;(-), 58;(+) correspond to the state and observation processes
when there is neither control nor z° (more precisely the control and z° are 0).
Further introduce

{mﬁzmwﬁ+3m+%ﬁ%ﬁ+amc )

and

o -
( :
(

It follows that for any control
yit) = ai(t) + z; (1), Yi(t) = Bi(t) + 2 (¢). (12)

Define Fy% £ o {Vi(s), W(s):0 < 5 < t}, FEW 2 0{Bi(s), W(s);0 < s < 1},
FP 2 5{Bi(s);0 < s < t}. Here, the subscript u in :ft’w emphasizes its depen-

dence on control. We define the following (restricted) admissible control set Uf; for
limiting partial observation:

U, = {ul()|ul() € L(0,T;R¥), u;(-) is adapted to Yi, W andftﬁ"’w}, 1<:<N.

u,t
Now formulate the following limiting partial observation (LPO) LQG game.
Problem (LPO). For the i*" agent, i = 1,2,--- , N, find 4,(-) € U; satisfying

Then @;(+) is called an optimal control for Problem (LPO).
With the definition of (restricted) admissibility, we have the following result to
measurability equivalence of admissible control set.

Lemma 2.1. If u;(-) is admissible, we have

Yi, W _ B, W
FoW = FW

u,t
Proof. By (10) and (11), we have
ui() e FPoW = al() e IOV = 2l () e IOV = vi() e VY
Thus, )
FayV c FW.
On the other hand,
w()e FaiV = al() e Fai = 20 e FUY = i) e By
Thus, )
Frv e mrt
Therefore the proof is complete. O

Remark 2.2. The proof of Lemma 2.1 relies on the construction of restricted
admissibility: in case there is no common noise as in [18], Lemma 2.1 holds true
as a trivial consequence since the state-average limit becomes deterministic; in case
the common noise W is unobservable and excluded from admissibility, the proof of
Lemma 2.1 fails to work and without such measurability equivalence, it is impossible
to construct the optimal filter in (LPO) setup, as discussed in [2, Page 52] and [33,
Remark 4.2 ].



30 ALAIN BENSOUSSAN, XINWEI FENG AND JIANHUI HUANG

By Lemma 21, we have
i) = E [0 2] B[l ],

Noting that W (-) is independent of W;(-),V;(:), we get W(-) is independent of
a;(+), Bi(-). Then it follows E(ai(t)\}'tﬁi’w) = E(ai(t)|ffi) = &;(t), where &; satis-
fies the Kalman filtering equation (e.g. [2], Section 1.2)

dd; = I:AQLOAQ + m} dt + PgiH/ [dﬂl — (I{OAéZ =+ h)dt],
N (13)
4;(0) =z,
and P, is the unique solution of the Riccati equation
Pgi = Agipgi + PgiAlgi — ngHalgj + O'O'/, (14)
Py, (0) =0.

Noting z2(-) € F*"' we have §; = &; + !. Besides,
dB; — (Ha; + h)dt = dY; — (H{j; + Hy,z° + h)dt.
Therefore,
{dgz- = [Ao, i + Bu; + ag,2° +m|dt + Py, H'[dY; — (H{; + Hp,2° + h)dt] + 5dW,

(15)
Introduce the innovation process

t
L(t) = Bi(t) — / (H () (s) + h(s)|ds,
0
which is adapted to ]_-t/B,-,W. Let Ag, € L>(0,T;R™ ™), \g, € L%..(0,T;R™) be the
parameters of a feedback Ag,x; + Ag,. Consider
dn; = [(Ag, + BAg,)ni + ag,x° +m + B, )dt + Po, H'dI; + 7dW,

It is clearly that n;(-) € F'"". Define u;(t) = Mg, (t)n;(t) + Ag,(t), then u;(-) is
square integrable and adapted to ]-"f W Further we have

dI; = dB; — (Hé,; + h)dt = dY; — (Hn; + Hg,z° + h)dt.

(16)

Plugging this into (16), we have
dn; = [(Ag, + BNy, — Py, H' H)n; + ag,z° + m + By,
— Py,H'(Hy,2° + h))dt + Py, H'dY; + GdW.

Therefore,
t
ni(t) =0 (t)x + ®(t) / O 1(s) [aeixo +m + BXg, — Py, H'(Hp,2° + h)|ds
0
t t
+ ®(t) / O~ (s) Py, H'dY; + ®(t) / O~ (s)FdW,
0 0
where

d®(t) = (A, + BNy, — Py, H' H)®(t)dt,
®(0) = I.
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Then 7;(-), and consequently w;(-), are adapted to 3 W Tt follows that ug(-)
is an admissible control. Naturally 7);(-) is the corresponding Kalman filter, and
w;(t) = Ag, (£)n:(t) + N, (t) is a feedback on it.

Introduce the following two equations of 7y, and 7y, respectively:

o, + mo, Ap, + Ap mo, — me, BR™'B'mg, + Q =0, an
o, (T) = G,
and
do, + [(Ap, — m, BR™'B')ye, + o, (ag,2° + m) — Qz°]dt + &,dW = 0,
' (18)
Yo, (T) =0.

Under (A2)-(A4), (14), (17) are standard Riccati equations which admit a unique
solution Py,,my, € C([0,T]; R™*™). Moreover, under (A2)-(A4), the linear backward
stochastic differential equation (LBSDE) (18) admits a unique adaptive solution
pair (vo,,£o,) € L3 (0, T;R™) x L3 (0, T; R™*%). Note that &, (-) is introduced in
solution pair to ensure 7, () to be adapted to F;“. Now we present the following
result.

Lemma 2.2. Let (A2)-(A4) hold and Py,,mp, € C([0,T];R™ ™) are solution of
(14), (17) respectively, (ve,,&o,) € L%—tw (0, T;R™) x L%_—tw (0, T;R™¥9) is the solution
pair of (18). Then the optimal control of (LPO) is

wi(t) = —R™(t)B'(t)me, (1)7:(t) — R~ () B'(t)7e, (1), (19)
where §;(t) satisfies the following filtering equation
djj; = [Ag, 9 — BR™'B'(m0,9; +70,) + ap,2° + m]dt
+ Py, H'[dY; — (Hy; + Ho,a° + h)dt] + 5dW, (20)
Proof. Suppose the optimal control @;(-) can be written by a linear feedback:
u; = Mg, Ui + g, for Ag,, Ap, to be determined (this can be verified in our later
analysis). Here, ¢;(-) is the Kalman filter corresponding to 4;, and y;(-),Y;(:) are

the corresponding state and observation to @; respectively. Then the following
relations hold:

dij; = [(As, + BAg,)Ji + ag,z° + m + By, ]dt
+ Py, H'[dY; — (Hy; + Ho,a° + h)dt] + 5dW,
9:(0) = =,
u; = No,Ji + Ao, (21)
dy; = [Ag,y; + Bi; + ag,x° + m]dt + cdW; + GdW,
yi(0) =z,
dY; = (Hy; + Hg,2° + h)dt + dV;, Y;(0) = 0.

Let p(-) be adapted to F*" and .FZQ’W. Consider the state y!'(-) and the
observation Y}(-) corresponding to u;(-), where w;(t) = Ag, (£)§' () + No, (t) + p(t) €
FPoW and fz?t’w, gt (t) is the related Kalman filter. Then we can write for any
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() € FPW oand Fry"
dit* = [(Ap, + BAg,)it + ag,2° + m + BXg, + Bp]dt
+ Py, H'[dY} — (Hy! + Hg,2° + h)dt] + 5dW,
9;'(0) = =,
w; = Ao, U8 + No, + 11, (22)
dyl' = [Ag,y! + Bu; + ag,2° + m]dt + odW; + cdW,
yi'(0) = =,
AV = (Hy" + Hp,2° + h)dt + dVi(t), Y}(0) = 0.

Comparing (21) and (22), we have
dY} — (Hj" + Hp,a° + h)dt = df; — (Ha; + h)dt = dY; — (Hg; + Hg,z° + h)dt.
(23)
Set X;(t) £ ¢ (t)—9(t), and introduce y; (), y}(-) such that §*(t) = a;(t)+y, *(t)
and §;(t) = &;(t) + y}(t). It follows that
W= gi=yt Yl =y =X
and
dX; = (Ag, + BAg,)X;dt + Budt, X;(0) = 0.
Compute the value of the cost functional as follows
T
Htu) = [ [t~ 2 Qs — a°) + 2001 - 2V Qs + XIQX,
0
+ (A, 9s + Xo.) - R(Ag,9s + Xo,) +2(No, i + Aa,) R(No, X + 1)
(g, K+ 1) (o, X + ) at
+ 3:(T) Gya(T) + 294(T) GXo(T) + Xi(T) GRA(T) }.
Hence
Jz(ul) = Ji(ﬂi)
T ~ ~ ~ ~ ~ ~
+E{ / [X1QXi + (Mo, X+ ) R(Ao, X + )|t + XUT)GRAT) | + 2%,
0
where
T ~ ~ ~ ~
X; = E{ / | XiQui = XiQu® + (Mo, X + w)R(Ao,Gi + Na,) | dt + XUT)Gyi(T) }.
0
Notice that
E[XI(0ROui(0)] = E[XIOROEW0)1F5™)] = B[ X/(OR®§:()).
Then we have
T
x =B{ [ [KiQui — XQa® + (0. + 0V R (o i+ ho)] dt + KATIGU(T) .
0

Define
Di (t> = T, (t)yi (t) + 7, (t)’
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where 7, (+), v, (+) are given by (17) and (18). Applying It6’s formula to )~(Z’ (t)pi(t),
integrating between 0 and 7', and taking the expectation, we obtain

E[XI(1)Gyi(T)]
T p _
:]E{ / [Xé (Aef, + BAei) pi + W' B'p; + X{o,y; (24)
0
~ T ~
+ Xz(ﬂ-@i (At%yi —&-BAgl:ﬁl + B)\e,i + G;gixo + m)} dt + / X{d’}/ai }
0
Substituting (24) into X;, it follows that X; = 0 and
Ji (ul)
T ~ ~ ~ ~ ~ ~
—gitws) + B{ [ [RiQ% + (0, %+ ' RO, Ks 4+ )] dt + TUDIGT(T)}.
0
with Ay, = —R™'B’'mg,, \g, = —R~'B’7p,. The optimal p is u = 0 as in this case,
X; =0, which implies the optimality of u;. g

Now, we aim to derive the consistency condition satisfied by the decentralized
strategies. In below, for two matrices A, B, A® B denotes their Kronecker product.

Lemma 2.3. Let (A1)-(A4) hold, then state-average limit 2° = ZJK=1 ij? where
the set of aggregate quantities z = [(29),---, (%)) and ¥ = [(v1),--, (vk)")
satisfies the following consistency condition:

dz = [A2+Bﬁ+ﬁl}dt+5dW,

4y = — [Az + G+ 5} dt — &AW, (25)
z(0) =x, 3(T) =0,
with
A=G+avyx, x=[, Xk, a=][d, -, dx],
A=qex, q=[ma-Q), - (tkax-Q)7, (26)
m=[m,--m), o=, E=[&, ],
s=[(ma), -, (rgar)] -m, x=][2',-- 2,
and
A, — BR™'B'm;
G= ,
Ax — BR 'B'nk
and
—BR™'B’
B=

~BR'B’
Proof. It follows from Lemma 2.2 that the (decentralized) strategy u;(¢) of Problem
(PO) is given by
U; = —R 'B'mg, 2 — R™'B'y,, (27)
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with
di; = [Agi:%i — BR™\B'(r9,3 +0,) + ag,2° + m] dt
+ Py H'[(H (2 = &) + Hy, («) = 2°) ) dt + avi] + Gaw.
Taking summation for i € 7y, and let N — 400,
2 = [(Ak — BR™'B'm; — PkH’H) #0 — BR™1B'~,
+m+ ara® + PkH’ng} dt + GdW.
Substituting (27) into (1), we have
dx; = [Ag,x; — BR™'B'mp,ii — BR™'B'vg, + ag,x™) + mdt + odW; + 5dW.
Taking summation for i € Zy, and let N — 400,
dz? = [Akxg +aga® — BRTB'mp? — BR™1By, + m} dt + FdW.
It follows that
() = #2(t), a.s.,a.e. (28)
for any t € [0,T]. With (18), we have for k =1,2,--- | K
dz = [Akz} — BR™'B'mpa + apz® — BR™'B'y, + m| dt + 5dW, zf, =z,
{dv;€ + [(A% — T BR™ B )y, + mp(apa® +m) — Qmo] dt 4+ &dW =0, v(T) = 0.
Write the above systems in compact form for k =1,2,--- | K, we formulate (25)(2 QD)

Similar to [4], suppose ¥ = Kz + ®, thus we have the following matrix-valued
equations for K and ®:

K+KA+G'K+KBK+A =0,
¢+ (G'+ KB)® + (s + Km) = 0, (30)
K(T) =0, o(T) =0.

K in (30) is nonsymmetric Riccati equation. We first state the following result

based on [4] (Proposition 3.2) which is a version of Radon’s lemma for nonsymmetric
Riccati equation. Suppose two-point boundary problem

i 51 B A B 51

dt _,,71 - A C__}/ ,,71 9

gl(to) = 07771(T) = Oa
admits a unique solution for any tq € [0, T, respectively. Then there is a unique so-
lution K (-) to the nonsymmetric Riccati equation (30). Then, applying the Banach

fixed point theorem for two-point boundary problem, we have the following general
existence result to nonsymmetric Riccati equation (see [26] for more details):

Proposition 2.1. Let (Al)-(A4) hold, there exists a unique solution of (30) if
L <1 where

L=T|A|7|B|r - exp(2l|Alr +2(|Gllr + Bl + |Allr)T)
and || - ||z denotes the super-norm of matriz-valued function on [0,T).

Given the special structure on A, a relaxed condition is given below which is
obtained in [4]:
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Proposition 2.2. Let (A1)-(A4) hold. Suppose A is invertible, let ¢(t, s) is the fun-
damental solution to G and ||¢||r = supy<,<r \/ftT qu’(s,t)As%Hst, |A - Gllr =

supo<;< ||(A — G)iA; 2. Then there exists a unique solution of (30) if
\/TH¢||T||A -Gl <1.

Proof. Applying the similar procedures in Theorem II1.6 in [4], we can obtain the
condition above for forward-backward SDE. Details are omitted. g
Unlike the condition in terms of two-point boundary problems, the condition of
Proposition 2.2 is given by matrix norm which is more checkable. For its illustration,
we present some numerical example in Section 4.
Finally, we obtain the estimation of the solution of (25) which will be used in
the following section.

Lemma 2.4. There exists a constant ¢ such that

sup E swp [t () + sup E sup u(t) < e (31)
1<k<K 0<t< 1<k<K 0Zt<T

Proof. By (29), it follows from the standard estimations for SDE and BSDE that,
there exists a constant c that

T
E sup |y(t)* < CE/O (12" (O + [m(t)[*)dL,

0<t<T
and .
E sup |z}(t)]* < dE/ (22O + [y (O + [m(t)* + |o(1)*)dt.
0<t<T 0
Therefore,
T
ZE sup |29 (t)]? <CZE/ |2dt+cE/ (Jm(t)? + |5 (t)[*)dt.
0<t<T

Hence there exists a constant c¢ such that

sup B sup |22(t)]* <e,
1<k<K  0<t<T

and
sup E sup |y, (1) <e.
1<k<K  0<t<T
]
3. e-Nash equilibrium for problem (PO). Now we show (uy,Us, - ,Uy) sat-

isfies the e-Nash equilibrium for (PO). Here, for 1 < i < N, u; is given by (27)
and ~yp, satisfies the consistent condition (25). We first give the definition of e-Nash
equilibrium.

Definition 3.1. A set of controls u;(-) € U;, 1 <1i < N, for N agents is called an e-
Nash equilibrium with respect to the costs J;, 1 < i < N, if there exists e = exy >0
and ey — 0 as N — oo such that for any fixed 1 <¢ < N, we have

Ti(uiyu—i) < Ji(uj,u—s) + en, (32)
when any alternative control u;(-) € U; is applied by A;.

Our main result in this section is as follows.
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Theorem 3.1. Let (Al)-(A4) hold, then (u1,us,- - ,un) is an e-Nash equilibrium
of Problem (PO) with e = O(\/l—ﬁ +en), where en = SUPy <<k |X;(€N) —X&| — 0 as
N — o0.
For @;(-) defined in (19) and any w;(-) € U;, we have
Ji(tisu—i) — Ji(ui,u—i) < Fi(wi, u—g) — Ji(wi(-)) + Ji(wi()) — Fi(wi, ;).

Therefore, in order to show that (uy,us, - ,Uy) satisfies the e-Nash equilibrium,
we will study J;(u;, u—;) — Ji(@;(+)) and J;i(ui(+)) — Ji(us,u—;) in the following
subsections, respectively.

3.1. Estimation of |J;(u;,u—_;) — J;(@;(-))|. In order to estimate |J;(u;, u—;) —
Ji(4;(+))|, first we need to obtain the estimations of the difference between the
optimal state-average and the frozen term(see Lemma 3.2) and the difference be-

tween the decentralized and centralized states and filters(see Lemma 3.3). For
k € ©,i € I, applying u;(-) for A;, we have the following close-loop state

dv; =[Axr; — BR™'B' (1,3 + ex(Kz + ®)) + ara™ + mldt + odW; + 5dW,
di; = [Akﬁ:i — BR7'B/(myi; + e, (K2 + ®)) + axa® + m] dt
+ PoH'|dY; — (Hai + Hya® + h)dt| +Faw,
dY; =[Hz; + Hyz™) + h)dt + dV;,
x;(0) =z, #;(0) =z, Y¥;(0) =0,

(33)
where for 1 < k < K, e is the n x (nK) matrix with the n x n identity ma-
trix I, located in its k — th block and other blocks are null matrix, that is e, =
[Onxns - Onxns In, Onxny 5 Onxn). The auxiliary system (of limiting problem) is
given by

dy; =[Awy; — BR™'B'(m9; + e (KzZ + ®)) + apa’ + m]dt + odW; + 5dW,
di =[Axg: = BRT'B (mi + g (K2 + @) + aga® +m| e
+}%fﬁ{dﬁgf(Hgﬁ+iﬁx°+iod4—%&dmc
dY; =[Hy; + Hy2° + h)dt + dV;,
yi(0) =z, 9:(0) =z, Y;(0) =0.

(34)
Based on (33), we derive that
da:ECN) :[(Akx,iN) — BR_lB’(mciéN) +er(Kz+ <I>)) + apz™) 4+ m]dt
1 ~
+ N Z odW; + 5dW,
1€LL

ditN) = [Akfc;’v) — BR'B'(m2") + e (Kz + ®)) + apa® + m] dt

(35)

+ &AW + Pl |av ™ — (Ha™ + Hya® + bt

~ 1
ay™ =[H2™ 1 Ha™ 1 njdt + = Z dv;,
1€y

2N (0) =z, 207(0) =z, v,V (0) =0,
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where Y(N) = 1\};9 >ier, Yi-

For (34) and (35), applying the same method as in Lemma 2.4 and using (31),
we have the following result.

Lemma 3.1. There exists a constant ¢ such that
E sup |yi(t)* +E sup [5:(t)* +E sup |Y;(t)]* <¢,
0<t<T 0<t<T 0<t<T

and

supE sup |x,(CN)(t)|2+bup]E sup |x(N)( )? <e
k€® 0<t<T k€® 0<t<T

The following lemma establishes the estimations of the difference between the
optimal state-average and the frozen term

Lemma 3.2.

2 1
sup sup E xéN)(t) — x%(t)’ = O(f + 6%;), (36)
k€O 0<t<T N

2 1
sup sup Elz\™(t) - zg(t)’ = O(— + s?\,> (37)
keO© 0<t<T N

Proof. By (29) and (35), we get

d(xéN) - x%) :[Ak (x,(SN) —ap) — BR_IB/ﬂ'k(JAZ](CN) —a)) + ap(z™) — 29| di+

+ Ni > odw;,

k i€Ty,

a(af o) = [(An = BR'B'my) (3 — af) |t

o+ P [H () = ) + Hi («™) - )]dt—irPH’ de,

ZGIL
7™ (0) — 29(0) = 0.
(39)
It follows from (38), (39) and (28) that
2
Bjel™ ) - o >\
2 2 2
SC’E/ <’ (N) )‘ + ’i:,(CN)(s) fasg(s)’ + ‘I(N)(S) fwo(s)’ )ds
1
+CE / — Y odWi| ,
w2

and
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gCE/t(

5:,(€N)(S) B xi(S)r " )fl(cN)(s) _ x%(s)f + ‘;AN)(S) — xo(s)r)ds

Note that

=[S0 (s) — a(s))|
k=

> (40)

K K
N N N
= S0V () = xee™()) + 3 ekl () — xxal(5))
k=1

=

K
<Csup ™ =0l Y eV + 031 () - ak(5)
k=1

k=1
b1 1
E‘ — —o(=).
[mZ ()
1€Ly
Then (36) and (37) follow by Gronwall’s inequality. O

Considering the difference between the decentralized and centralized states and
filters, we have the following estimates:

and

Lemma 3.3.

2 1
sup sup E|z;(t) — yi(t)‘ = O(* + E%), (41)
1<i<N 0<t<T N
- A e X 2
sup sup E|&;(t) — yi(t)‘ } = O(N + EN), (42)
1<i<N 0<t<T
- o )
sup | sup E|v;(t) — i(t)‘ } - o(f +5N). (43)
1<i<N lo<t<T N

Proof. By (33) and (34), we get

oiilztE o) - %‘<S>\2
<c/ )‘ ds+CIE/Ot [;f:z-(s) —g}i(s)r n ‘xuv)(s) —mo(s)ﬂds,
s Blai) .6 < [ st g as + CEvir - v
and
i(t) — Yz(t)’z <C Ot x;i(s) — yi(s)rds + C’/OtE‘x(N)(s) - xo(s)rds.

Recalling (40), by virtue of Lemma 3.2 and Gronwall’s inequality, we obtain (41)-
(43). O
The following is the main result of this subsection.



LINEAR-QUADRATIC-GAUSSIAN MEAN-FIELD-GAME WITH ... 39

Proposition 3.1. ForV1<i:i< N,

T, i) — Ji(a;)| = O(L n €N>.

VN

Proof. Applying Cauchy-Schwarz inequality, we have
sup E||ei(t) = ™ (1) = [y(t) —2"(1)]

0<t<T
< OiltlET]EWt) — 2™ (t) = yi(t) + 2°(1)|?
+2 sup_E[[ys(t)=a*(t)] - [ws(t)—2 (1) = ys(t) + 2°(0)]|
0<t<T
< sup Elei(t) - yi(t) — (@ (1) - ()
0<t<T
su (1) — 2° ()| %- su zi(t) — yi(t) — (N (t) — 2° 2)#
+2( sup Elui() = 2°OF) "+ (s Blai(0) () - @) @)
1
ZO(W—FEN),

where the last equality is obtained by using the results of Lemmas 3.1, 3.2 and 3.3.
Similarly, by (19), (27) and (42), applying the same technique we get

_ |ai(t)|2‘ = O(\/—lﬁ —|—6N>.

sup E“ﬂi(tﬂz
0<t<T
In addition,
2 2 1
B[ ()" ~ (D] = 0 5 +ew),

Then

:O(%—’—EN)a

which completes the proof. O

3.2. Estimation of |J;(u;, u—;) — J;(u;(+))]. The proof of | J;(us;, u_;) — J;i(ui(+))]
is similar to the proof in Subsection 3.1. We will consider the state and cost under
perturbation. Thus, we give some new notations first. For i € Zj, consider a
perturbed control u; € U; for A; and introduce

dl; = [Apl; + Bu; + apl™) + mldt + odW; + 5dW,
dY} = [Hl; + Hd™) + h)dt + dV;, (44)
1;(0) =z, Y} (0) =0,

K2

Ji(ti, u—s) — Ji(w;)

whereas other agents of same type still keep the control u;, j # i, i.e.,
dl; =[Ag,l; — BR™*B'(mg,l; + eg,(KZ + ®)) + ag,I'™) + m]dt
+ odW; + gdW,

dli; =|Ag,l; — BR™'B'(mg,1; + eq, (KZ + ®) + ag,2° + m] dt
o (45)
+GaW + PH'|dY] — (Hi; + Ho,a® + h)dt,

Ay} =[Hl; + Ho,I'™) + h]dt + dV},
1(0) =z, [;(0) =z, Y}(0) =0,
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where [(V)(t) = & Zszl l,(t). By the definition of e-Nash equilibrium, we need
only consider the perturbation control u; € U; such that J;(u;,u—;) < J;(u;, u—;),
which implies

1

R - _ i 1

ie.,
T
E / s (1) 2dt < e, (46)
0

where ¢; is a positive constant which is independent of N. Then we have the
following result.

Lemma 3.4. There exists a constant c independent of N and j such that

sup sup E[|lj(t)\2] + sup sup IE“ZAJ(t)H + sup sup E[|Y](t)\2] <ecs.
1<j<SN 0<t<T 1<j<SN 0<t<T 1<Gj<N 0<t<T

Proof. By (44) and (45), it holds that

N

L) scl{xm/; (1) + fui(5) Z ()12 + [m(s) ] ds

-l—‘/oto(s)dWi(s)’Q—&-‘/o Fs)aw (s)] .

N
Z ()] + |m(s)[* | ds

(47)

and for j # 1,

oF <P+ [ LR + ) +

TN
+’/Otcr(s)d (5) +]/ $)dW (s }

5(0)2 < ex{Jal* + / [u}(s)F + 2 () + m(s)? + [¥] ()2 + A(s)[? ] ds

| [Lowamf +| [[swavef}

|le(t)|2§cl{/0t[ Zu ()2 + |h(s) ds—i—‘/ dv; (s (50)

where ¢ is a positive constant independent of N. Thus,

ﬁ:E“lj(t)F] +ﬁ:1€[|ij(t>|2] +ﬁ:1@[|yj(t)|2}

<e{miat 5 [ [ + st |2+Z|z (5) + N2 ()]

(48)

(49)
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+ Nm(s |2+§:\Yl (3)[2 + |h(s) ds—i—E:E‘/

+NE’/Otc~r(s)dW(s)‘2+NE’/o dvj(s)Q}
¢ N N N
<a{NaP+ [ [SEL@R+ Y EL R+ Y B (s)F]as

By (46), we can see that wu;(-) is L?-bounded. Then by Gronwall’s inequality, it
follows that there exists a constant c, independent of N such that

ZsupEﬂ Zsup IE[|Z |}+—Z sup E[|Y;(t)°] < e

7 0<t<T 7 0<t<T 0<t<T
(51)

Plugging (51) into (47), (48), (49) and (50), it follows from Gronwall inequality that
there exists a constant co independent of N and j such that

sw E[IL(0F] + swp B[]+ sw E[Y;(0F) < e
0<t<T 0<t<T 0<t<T

O

Correspondingly, the system for agent .A; under control u; in (LPO) is as follows

dlO [Aklo + Bu; + apz® + m]dt + odW; + adW,
dY}° = [HIO + Hyz® + h)dt + dV;, (52)
19(0) =z, ¥;°(0) =0,

and for agent A;, j # i,
dl? :[Agjlg — BR_lB/(ﬂ'gjl? =+ ey, (K5 + ‘I’)) + (19]..230 + m]dt +odW; + odW,
diY =[A0,0 = BR7'B' (70,5 + e, (K + @)) + ag,a” + m] dt
+GAW + PH'[dY;° — (HI) + Ho,a® + h)dt],
dY;* =[HI9 + Hy,2° + h)dt + dV},
19(0) ==, 19(0) = 2, Y}°(0) = 0.

In order to give necessary estimates in (PO) and (LPO), we introduce the in-
termediate state for A; as

N -1
dn; = [Agn; + Bu; + ag, ¥ V-1 4 m]dt + odW; + odW,

N -1~
dY;" = [an + THkn(N_l) + h}dt + dV;,

ni(0) =z, Y"(0) =0,
and for j # 1,
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nM =Y o)t

dn; =[Ag,n; — BR™'B'(mg,7tj + ey, (KZ + ®)) + ay,
+ odW; + gdW,
div; =| Ao,y = BR™'B'(wo,1; + eq, (K% + ®)) + ag,a° + m|dt
+GAW + PH'[dY]" — (Hig + Ho,a® + h)dt],
v =(Hn; + YL i, Y 4 pde 1 d
7 =[Hn; + = Ho,n ™~V 4 h]dt + dV,
n;(0) =z, 7;(0) = =, Y;"(0) =0,

(53)
N
where n(V=D £ L S~ p;. Define
J=1,j#i
1 = 1 =
(N-1) & = . (N-1) & = [
: _N—1,Z4l” : _N—l,ZAl”
J=Lj#i J=1,3#1
1 & R
(N-1) & + l (N-1) o _+ n
Y _Nfl,z,yj’ Yo _Nf1,Z,YJ"
J=1.g#i j=1,j#i
By (45) and (53), we have the following estimates on these states.
Lemma 3.5. ) )
sup B[N~V —ﬁ(N_l)‘ :O(f—i-a?v),
0<t<T N
(N-1) (N—1)|? 1 2
sup E|l —-n ’ :O<f—i-£N>7
0<t<T N
_ 2 1
sup B[NV -y 0 = o &4 ed),
0<t<T N
2 1
sup EZ(N)—I(N_U‘ :O(f-i-s?\,),
0<t<T N
2 1
sup E[pV-1 — 30 :O(erE?V),
0<t<T N
2 1
sup En(N_l)—x(J’ :O<f+€?v>.
0<t<T N
Proof. The proof is similar to that of Lemma 3.3 and omitted. O
In addition, based on Lemma 3.5, we have
Lemma 3.6.
2 1
sup EZ(N)—xO‘ ZO(——i—s?\;), (54)
0<t<T N
0|? 1 2
sup E|n — 19 = 0(— + 5N). (55)
0<t<T N
Proof. (54) follows from Lemma 3.5 directly. By (44) and (52), and using (54), we
get (55). O

Finally, applying the same technique as the proof of Proposition 3.1, we obtain
the following proposition.
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Proposition 3.2. Forany 1 <i<N,

Ji(ug, u_i) — Ji(uy)

1
= O(— +e )
VN
3.3. Proof of Theorem 3.1. Combining Propositions 3.1 and 3.2, we have

Ti (s, u_q) = J;(w;) + O(\/l—ﬁ + 5N) < Ji(w;) + O(% +5N)

= Jilus, i) + 0(% en).

Thus, Theorem 3.1 follows by taking € = O(\/% + EN). O

4. Numerical results. Consider the case: n = 2, K = 2, thus there have two
different types of agents: type-1 and type-2 respectively. The state of each agent
has two components. Consider the following parameters of state, observation and

cost 0.12 0.2 0.18 0.1
A= ( 0.23 0.17 ) Az = ( 0.15 0.23 )
alz(o.ls 0.2 ) a2:<0.21 0.1 )
0.1 0.3 0.17 0.12
B = (0.31,0.22)', x1 = 0.55, xo = 0.45,m = (2.7,0.45)’,
H = (0.23,0.45), H; = (0.03,0.08), Hy = (—0.04,0.05),

0.2 0 04 0
Q‘( 0 o.13>’G_< 0 0.6)’h_0'02’R_2’

o =(0.75,0.65)", &= (0.35,0.85), T =3, x(0)=0.

Corresponding to the above parameters, the matrix Riccati equations P, Ps; 7y,
mo are all of sizes 2 x 2, and their solutions can be computed using Radon matrix
representation (see e.g., Ch2, Theorem 4.3, [26]) after a transform on their initial
or terminal conditions (recall P is forward equation with initial condition, while 7
is backward equation with terminal condition). Given the solution of 71,79, the
matrix and their norms in Proposition 2.1, 2.2 can be evaluated. In our example
here, A is invertible and v7T'||¢|7||A - G||7 ~ 0.1197 < 1 thus (30) admits a unique
solution (K, ®). Note that the matrix Riccati equation K is of size 4 x 4, and its
solution can be computed using the Runge-Kutta method [13]. Given K,®, the
state Z and observation equation can be simulated using the Euler approximation
scheme of [23]. The MFG strategies can be computed and we simulate the individual
agent states with N = 500. The realized state-average for agents is also computed.
The simulation results are reported by the following figures.

5. Conclusion and future work. We discuss mean-field games (MFGs) where
each individual agent can only access partial observation on his own state. Moreover,
the states of all agents are driven by a underlying common noise. The decentralized
strategies are derived with the help of Kalman filtering together with consistency
condition. It is notable the consistency condition is connected to the wellposedness
of a FBSDE driven by the common noise. Our work suggests some future research
topics. For example, the related MFGs for classical mean-variance problem but
within the partial observation framework; the related MFGs where common-noise
process is not observable to our agents.
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