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Abstract—The “bee-identification problem” was formally de-
fined by Tandon, Tan and Varshney [IEEE Trans. Commun.,
vol. 67, 2019], and the error exponent was studied. This work
extends the results for the “absentee bees” scenario, where a
small fraction of the bees are absent in the beehive image
used for identification. For this setting, we present an exact
characterization of the bee-identification error exponent, and
show that independent barcode decoding is optimal, i.e., joint
decoding of the bee barcodes does not result in a better error
exponent relative to independent decoding of each noisy barcode.
This is in contrast to the result without absentee bees, where
joint barcode decoding results in a significantly higher error
exponent than independent barcode decoding. We also define and
characterize the ‘capacity’ for the bee-identification problem with
absentee bees, and prove the strong converse for the same.

I. INTRODUCTION

The problem of bee-identification with absentee bees can be
described as follows. Consider a group of m different bees,
in which each bee is tagged with a unique barcode for iden-
tification purposes in order to understand interaction patterns
in honeybee social networks [1], [2]. Assume a camera takes
a picture of the beehive to study the interactions among bees.
The beehive image output (see Fig. 1) can be considered as a
noisy and unordered set of barcodes. In this work, we consider
the “absentee bees” scenario, in which some bee barcodes
are missing in the image used to decode the identities of
the bees. This scenario can arise, for instance, when some
of the bees fly away from the beehive, or when some of
the bees (or their barcodes) are occluded from view. Posing
as an information-theoretic problem, we quantify the error
probability of identifying the bees still present in the finite-
resolution beehive image through the corresponding (largest
or best) error exponent.

The barcode for each bee is represented as a binary vector
of length n, and the bee barcodes are collected in a codebook
C comprising m rows and n columns, with each row corre-
sponding to a bee barcode. As shown in Fig. 2, the channel
first permutes the m rows of C with a random permutation
π to produce Cπ , where the i-th row of Cπ corresponds to
the π(i)-th row of C. Next, the channel deletes k rows of
Cπ , to model the scenario in which k bees, out of a total
of m bees, are absent in the beehive image. Without loss of
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Fig. 1: Bees tagged with barcodes (photograph provided by
T. Gernat and G. Robinson).

generality, we assume that the channel deletes the last k rows
of Cπ to produce Cπ(m−k)

, where π(m−k) denotes an injective
mapping from {1, . . . ,m−k} to {1, . . . ,m} and corresponds
to the restriction of permutation π to only its first m − k
entries. Finally, the channel adds noise, modeled as a binary
symmetric channel (BSC) with crossover probability p with
0 < p < 0.5, to produce C̃π(m−k)

at the channel output. We
assume the decoder has knowledge of codebook C, and its task
is to recover the channel-induced mapping π(m−k) using the
channel output C̃π(m−k)

. Note that π(m−k) directly ascertains
the identity of all m− k bees present in the image.

When j = π(i) and the j-th row of codebook C is denoted
cj = [cj,1 cj,2 · · · cj,n], then the i-th row of Cπ is equal to
cj . For 1 ≤ i ≤ m − k, the i-th row of C̃π(m−k)

, denoted c̃i,
is a noisy version of cj = cπ(i) and we have

Pr{c̃i | cπ(i)} = pdi(1− p)n−di , 1 ≤ i ≤ m− k,

Pr
{
C̃π(m−k)

∣∣ C, π(m−k)

}
=

m−k∏
i=1

pdi(1− p)n−di , (1)

where di , dH(c̃i, cπ(i)) denotes the Hamming distance
between vectors c̃i and cπ(i).

We remark that the bee-identification problem formula-
tion has other applications in engineering, such as package-
distribution to recipients from deliveries with noisy address la-
bels, and identification of warehouse products using wide-area
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Effective Channel

Codebook C - Row-Permutation π -
Cπ Delete k rows -

Cπ(m−k) BSC(p) -
C̃π(m−k)

Fig. 2: Effective channel for the bee-identification problem with k absentee bees.

sensors [1]. In a related work on identification via permutation
recovery [3], the identification of the respective distributions
of a set of observed sequences (in which each sequence
is generated i.i.d. by a distinct distribution) was analyzed.
Other models and applications, in which permutation recovery
arises naturally, are discussed in [4]. In another related work,
the fundamental limit of data storage via unordered DNA
molecules was investigated in [5], while the corresponding
capacity results were extended to a noisy setting in [6].
The effective channel in [6] is closely related to the bee-
identification channel.

A. Absentee Bee-Identification Error Exponent
The bee-identification problem involves designing a decoder

to detect the channel-induced mapping π(m−k) by using the
knowledge of codebook C and channel output C̃π(m−k)

. The
decoder is a function φ that takes C̃π(m−k)

as an input and
produces a map ν : {1, . . . ,m−k} → {1, . . . ,m} where ν(i)
corresponds to the index of the transmitted codeword which
produced the received word c̃i, where 1 ≤ i ≤ m − k. The
indicator variable for the bee-identification error is defined as

D
(
ν, π(m−k)

)
,

{
1, if ν 6= π(m−k),

0, if ν = π(m−k).

Let Υ denote the set of all injective maps from {1, . . . ,m−
k} to {1, . . . ,m}. For a given codebook C and decoding
function φ, the expected bee-identification error probability
over the BSC(p) is

D(C, p, k, φ) , Eπ(m−k)

[
E
[
D
(
ν, π(m−k)

)]]
, (2)

where the inner expectation is over the distribution of C̃π(m−k)

given C and π(m−k) (see (1)), and the outer expectation is over
the uniform distribution of π(m−k) over Υ. Note that (2) can
be equivalently expressed as

D(C, p, k, φ) = Eπ(m−k)

[
Pr
{
ν 6= π(m−k)

}]
. (3)

Let C (n,m) denote the set of all binary codebooks of size
m×n, i.e. binary codebooks with m codewords, each having
length n. Now, for given values of n, m, and k, define the
minimum expected bee-identification error probability as

D(n,m, p, k) , min
C,φ

D(C, p, k, φ), (4)

where the minimum is over all codebooks C ∈ C (n,m), and
all decoding functions φ. The exponent corresponding to the
minimum expected bee-identification error probability is given
by − 1

n logD(n,m, p, k). Note that we take all logarithms to
base 2, unless stated otherwise.

B. Our Contributions

We consider the bee-identification problem with a constant
fraction of “absentee bees”, and provide an exact characteri-
zation of the corresponding error exponent via Theorem 1. We
show that joint decoding of the bee barcodes does not result
in a better error exponent relative to the independent decoding
of noisy barcodes. This is in contrast to the result without ab-
sentee bees [1], where joint decoding results in a significantly
higher exponent than independent barcode decoding.

Moreover, we define and characterize the ‘capacity’ (i.e., the
supremum of all code rates for which the error probability can
be driven to 0) of the bee-identification problem with absentee
bees via Theorem 2. Further, we prove the strong converse
showing that for rates greater than the capacity, the error
probability tends to 1 as the blocklength (length of barcodes)
tends to infinity.

Due to space constraints, certain detailed proofs are omitted
and we refer readers to the full version of the paper in [7].

II. BOUNDS ON THE ERROR PROBABILITY

In this section, we present finite-length bounds on
the minimum expected bee-identification error probability,
D(n,m, p, k). The upper bound on D(n,m, p, k) is presented
in Section II-A using a naı̈ve decoding strategy in which
each noisy barcode is decoded independently, while the lower
bound on D(n,m, p, k) is presented in Section II-B using joint
maximum likelihood (ML) decoding of barcodes.

A. Independent decoding upper bound on D(n,m, p, k)

We present an upper bound on D(n,m, p, k) based on
two ideas: (i) independent decoding of each barcode, and
(ii) the union bound. Independent barcode decoding is a
naı̈ve strategy where, for 1 ≤ i ≤ m − k, the decoder
picks c̃i, the i-th row of C̃π(m−k)

, and then decodes it to
ν(i) = arg min1≤j≤m dH(c̃i, cj). If there is more than one
codeword at the same minimum Hamming distance from c̃i,
then any corresponding codeword index is chosen uniformly
at random.

We denote the decoding function φ corresponding to inde-
pendent barcode decoding as φI. Then, for a given codebook
C, it follows from (3) that

D(C, p, k, φI) = Eπ(m−k)

[
Pr
{
ν 6= π(m−k)

}]
,

≤
m−k∑
i=1

Eπ(m−k)

[
Pr
{
ν(i) 6= π(m−k)(i)

}]
,

(5)
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where the inequality follows from the union bound and the
linearity of the expectation operator.

For a scenario in which m binary codewords, each having
blocklength n, are used for transmitting information over
BSC(p), let Pe(n,m, p) denote the minimum achievable av-
erage error probability, where the minimization is over all
codebooks C ∈ C (n,m). The following lemma presents an
upper bound on D(n,m, p, k) in terms of Pe(n,m, p).

Lemma 1. Using independent barcode decoding, the bee-
identification error probability D(n,m, p, k) can be upper
bounded as follows

D(n,m, p, k) ≤ min {1, (m− k)Pe(n,m, p)} . (6)

Proof: Follows from (5), and the fact that

min
C∈C (n,m)

Eπ(m−k)

[
Pr
{
ν(i) 6= π(m−k)(i)

}]
= Pe(n,m, p).

B. Joint decoding based lower bound on D(n,m, p, k)

Recall Υ denotes the set of all injective maps from
{1, . . . ,m − k} to {1, . . . ,m}. With joint ML decoding of
barcodes using a given codebook C, the decoding function φ
takes the channel output C̃π(m−k)

as an input, and produces
the map

ν = arg min
σ∈Υ

dH(C̃π(m−k)
, Cσ), (7)

where Cσ denotes a matrix with m − k rows and n columns
whose i-th row is equal to the σ(i)-th row of C, and
dH(C̃π(m−k)

, Cσ) , |{(i, j) : C̃π(m−k)
(i, j) 6= Cσ(i, j), 1 ≤ i ≤

m− k, 1 ≤ j ≤ n}|. For this joint ML decoding scheme, we
denote the decoding function as φJ. As π(m−k) is uniformly
distributed over Υ, the joint ML decoder minimizes the error
probability [8, Thm. 8.1.1], and from (4) we have

D(n,m, p, k) = min
C∈C (n,m)

D(C, p, k, φJ). (8)

The following lemma uses (8) to present a lower bound on
D(n,m, p, k) in terms of Pe(n, k + 1, p).

Lemma 2. Let 0 < ε < 1/2, and let k > 1/ε. Then, the bee-
identification error probability D(n,m, p, k) using joint ML
decoding of barcodes can be lower bounded as follows

D(n,m, p, k)>
1−2ε

2
min

{
1, (m−k)ε Pe(n, bkεc, p)

}
. (9)

Furthermore, the error probability D(n,m, p, k) can alterna-
tively be lower bounded by the following expression

(1− 2ε)
[
1− exp (−(m− k)ε Pe(n, bkεc, p))

]
. (10)

Proof (Sketch): The lower bound in (9) follows
from Shulman’s lower bound on the probability of the
union of pairwise-independent error events [9, Eq. (30)],
[10, p. 109], whereas (10) uses the fact that if E (`),
for 1 ≤ ` ≤ m − k, are mutually indepen-
dent error events then Pr

{⋃
1≤`≤m−k E (`)

}
= 1 −

exp
(∑m−k

`=1 ln
(
1− Pr

{
E (`)

}))
. See [7] for a detailed proof.

The lower bound in (9) will be used to prove the converse
part in Theorem 1 on characterizing the error exponent. On the
other hand, the lower bound in (10) helps us to characterize
the ‘capacity’ of the bee-identification problem in Theorem 2
and to prove the strong converse for the same problem.

III. BEE-IDENTIFICATION EXPONENT AND THE
OPTIMALITY OF INDEPENDENT DECODING

In this section, we analyze the exponent of the
minimum expected bee-identification error probability,
− 1
n logD(n,m, p, k). We first present some notation for the

bee-identification exponent. Recall that Pe(n,m, p) denotes
the minimum achievable average error probability when m
binary codewords, each having blocklength n, are used for
transmission of information over BSC(p). For a given R > 0
and m = d2nRe,1 the reliability function of the channel
BSC(p) is defined as follows [11],2

E(R, p) , lim sup
n→∞

− 1

n
logPe(n, 2nR, p). (11)

Let (Rn)n∈N be a sequence that converges to R, and for a
fixed n we define

E(n,Rn, p) , −
1

n
logPe(n, 2nRn , p). (12)

We will relate E(n,Rn, p) to E(R, p) via Lemma 3.

Lemma 3. Assume that the sequence (Rn)n∈N converges, and
that R = limn→∞Rn. Then we have

lim sup
n→∞

E(n,Rn, p) = E(R, p). (13)

Proof (Sketch): Follows from the continuity of the
reliability function. See [7] for a detailed proof.

Lemma 3 will be pivotal in establishing the exact bee-
identification exponent (via Theorem 1), as well as in charac-
terizing the ‘capacity’ of the bee-identification problem (via
Theorem 2).

We will characterize the exact bee-identification error ex-
ponent for the following scenario:
• For a given R > 0, the number of bee barcodes m scale

exponentially with blocklength n as m = 2nR.
• For a given 0 < α < 1, the number of absentee bees k

scale as k = bαmc, where α denotes the fraction of bees
missing from the camera image.3

For this scenario, define the bee-identification exponent as4

ED(R, p, α) , lim sup
n→∞

− 1

n
logD(n,m, p, k). (14)

1We will remove the ceiling operator subsequently; this does not affect the
asymptotic behavior of the error exponent − 1

n
logD(n,m, p, k).

2Another popular, though perhaps pessimistic, definition of the reliability
function given by Han [12] and Csiszár-Körner [13], replaces lim sup with
lim inf in (11).

3We will assume k = αm, and drop the floor operator, subsequently.
4We remark that the result in Theorem 1 goes through verbatim if we

replace lim sup with lim inf in definitions (11) and (14).
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The following theorem uses Lemmas 1, 2, and 3, to establish
the main result in this paper.

Theorem 1. For 0 < α < 1, we have

ED(R, p, α) = |E(R, p)−R|+, (15)

where |x|+ , max(0, x). Further, this exponent is achieved
via independent decoding of each barcode.

Proof: We first show that ED(R, p, α) ≥ |E(R, p)−R|+
using the upper bound on D(n,m, p, k) with independent
barcode decoding in Lemma 1. Towards this, we note that
when m = 2nR and k = αm, for 0 < α < 1, then we have

lim
n→∞

− 1

n
log(m− k) =

(
lim
n→∞

− 1

n
log(1− α)

)
−R,

= −R. (16)

Combining (6), (14), and (16), we get

ED(R, p, α) ≥
∣∣∣∣(lim sup

n→∞
− 1

n
logPe(n,m, p)

)
−R

∣∣∣∣+ ,
= |E(R, p)−R|+ , (17)

where the last equality follows from (11).
Next, we show that ED(R, p, α) ≤ |E(R, p) − R|+ by

applying Lemma 2. Choose ε = 1/4, and define

R̂n ,
1

n
log(bkεc). (18)

For k > 8, we have kε/2 < bkεc ≤ kε. Thus, when k = αm
and m = 2nR, we get

R+
1

n
log
(αε

2

)
< R̂n ≤ R+

1

n
log(αε), (19)

which implies that

R = lim
n→∞

R̂n. (20)

Combining the facts that limn→∞
1
n log ((1− 2ε)/2) = 0,

limn→∞
1
n log ((m− k)ε) = R, with (14), (9), (12), and (18),

we get

ED(R, p, α) ≤
∣∣∣∣lim sup
n→∞

E(n, R̂n, p)−R
∣∣∣∣+ ,

= |E(R, p)−R|+ , (21)

where the last equality follows from (20) and (13). The proof
is now complete by combining (17) and (21).

The above theorem implies the following remarks.

Remark 1. For a given 0 < α < 1, if the number of absentee
bees k scales as αm, then independent barcode decoding is
optimal, i.e., independent decoding of barcodes does not lead
to any loss in the bee-identification exponent, relative to joint
ML decoding of barcodes. This is in contrast to the result
in [1], which showed that if no bees are absent, then joint bar-
code decoding provides significantly better bee-identification
exponent relative to independent barcode decoding.

Remark 2. The lower bound on the bee-identification error
probability using joint ML decoding in Lemma 2 was obtained
by considering only those events in which just a single bee is
incorrectly identified [7]. The proof of Theorem 1 employs
Lemma 2, and implies that these error events dominate the
error exponent.

Remark 3. The bee-identification exponent ED(R, p, α) does
not depend on the precise value of 0 < α < 1.

A. ‘Capacity’ of the bee-identification problem

The bee-identification exponent (14) is exactly characterized
in terms of the reliability function E(R, p) via Theorem 1,
when the total number of bees scale as m = 2nR with R >
0, and the number of absentee bees scale as k = αm with
0 < α < 1. For this same setting, we now formulate and
characterize the ‘capacity’ of the bee-identification problem.

For 0 ≤ ε < 1, we say that rate R is (α, ε)-achievable
if lim infn→∞D(n, 2nR, p, α2nR) ≤ ε, and define the ε-
capacity of the bee-identification problem as the supremum
of all (α, ε)-achievable rates. We denote this ε-capacity as5

CD(p, α, ε),sup
{
R : lim inf

n→∞
D(n, 2nR, p, α2nR)≤ε

}
. (22)

The above definition implies that for R < CD(p, α, ε), there
exists a decoding function φ, and a codebook C with 2nR code-
words having blocklength n, for which the bee-identification
error probability D(C, p, α2nR, φ) < ε, for infinitely many n.

Now, the Bhattacharyya parameter for BSC(p) is [15]

Bp , − log
√

4p(1− p), (23)

and it is well known that [15]

lim
R↓0

E(R, p) =
Bp
2
. (24)

For a given 0 < p < 0.5, define the function
f(R) , E(R, p) − R. From (23) and (24), it follows that
limR↓0 f(R) > 0, while f(1) = −1 because E(R, p) = 0 for
R ≥ 1−H(p), where H(·) denotes the binary entropy func-
tion. Further, f(·) is continuous because E(R, p) is continuous
in R [7]. Therefore, it follows from the intermediate value
theorem [16] that the equation f(R) = E(R, p)−R = 0 has
a positive solution, and this solution is unique because f(R) is
strictly decreasing in R. The following theorem states that the
capacity of the bee-identification problem with absentee bees
is equal to the unique solution of the equation f(R) = 0.

Theorem 2. For 0 < α < 1, and every 0 ≤ ε < 1, we have

CD(p, α, ε) = R∗p, (25)

where R∗p is unique positive solution of the following equation

E(R, p) = R. (26)

Proof: We first prove the direct part CD(p, α, ε) ≥ R∗p.
If R < R∗p, then it follows from (15) and the definition of

5This is analogous to the optimistic ε-capacity defined by Chen and
Alajaji [14, Def. 4.10].
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R∗p that ED(R, p, α) is strictly positive. Therefore, it follows
from (14) that there exist infinitely many n for which

− 1

n
logD(n, 2nR, p, α2nR) > ED(R, p, α)/2.

In other words, when R < R∗p, D(n, 2nR, p, α2nR) <

2−nED(R,p,α)/2. Thus when R < R∗p, we have

lim inf
n→∞

D(n, 2nR, p, α2nR) = 0.

Therefore, any rate less than R∗p is achievable and it follows
from the definition of capacity in (22) that CD(p, α, ε) ≥ R∗p.

Next, we will apply the lower bound on D(n,m, p, k), given
by (10), to prove the converse part CD(p, α, ε) ≤ R∗p. This
is a strong converse statement, i.e., for rates R > R∗p, the
error probability D(n, 2nR, p, α2nR) tends to 1 as n → ∞.
Consider a rate R that satisfies R > R∗p, and define ∆R ,
R − E(R, p). Then it follows from the definition of R∗p, and
the fact E(R, p) is non-increasing in R, that ∆R > 0. Define
εn , 1

n , and let n be sufficiently large such that k = α2nR >

2n = 2/εn. Now define R̂n to be

R̂n ,
1

n
log(bkεnc). (27)

Then, we have

R+
1

n
log
( α

2n

)
< R̂n ≤ R+

1

n
log
(α
n

)
,

R = lim
n→∞

R̂n. (28)

It follows from (28) and (13) that

lim sup
n→∞

E(n, R̂n, p) = E(R, p).

As ∆R > 0, the above equation implies that there exists an
N such that for all n ≥ N , we have

E(n, R̂n, p) < E(R, p) +
∆R

2
. (29)

Combining (12), (27), and (29), for n ≥ N , we obtain

Pe(n, bkεnc, p) > 2−n(E(R,p)+(∆R/2)). (30)

Now, if we define βn as

βn , − 1

n
log ((1− α)εn) ,

then we have βn > 0, while limn→∞ βn = 0. Thus, we have

(m− k)εn = m(1− α)εn = 2n(R−βn). (31)

Combining (30) and (31), for all n ≥ N , we have

(m− k)εn Pe(n, bkεnc, p) > 2n(R−E(R,p)−(∆R/2)−βn),

= 2n((∆R/2)−βn). (32)

As (10) holds for all 0 < ε < 1/2 and k > 1/ε, replacing ε
with εn = 1

n in (10), we get for n > N that

D(n, 2nR, p, α2nR)

> (1− 2εn) [1− exp (−(m− k)εn Pe(n, bkεnc, p))] ,
> (1− 2εn)

[
1− exp

(
− 2n((∆R/2)−βn)

)]
, (33)

where (33) follows from (32). Now, as βn = o(1), there exists
N̂ such that for all n ≥ N̂ , we have ∆R/2−βn > 0. Further,
as βn is a decreasing function of n, it follows that

lim
n→∞

[
1− exp

(
− 2n((∆R/2)−βn)

)]
= 1. (34)

As limn→∞(1− 2εn) = 1, combining (33) and (34) with the
fact that D(n, 2nR, p, α2nR) is upper bounded by 1, we obtain
the following important result

lim
n→∞

D(n, 2nR, p, α2nR) = 1, for R > R∗p, (35)

thereby showing that CD(p, α, ε) ≤ R∗p, and completing the
proof of the strong converse.

Note that the above proof shows that if R > R∗p, then the
error probability D(n, 2nR, p, α2nR) tends to 1 as n → ∞,
thereby proving the strong converse property [17]. Also note
that the expression for the ε-capacity (25) is independent of the
value of α ∈ (0, 1), and that a similar behavior was observed
for the bee-identification exponent (15).

IV. REFLECTIONS

This work extended the characterization of the bee-
identification error exponent to the “absentee bees” scenario,
where a fraction of the bees are absent in the beehive image.
For this scenario, we presented the exact characterization of
the bee-identification error exponent in terms of the well
known reliability function [11].

The derivation of the bee-identification exponent led to three
interesting observations. The first observation is that when the
number of absentee bees k scales as k = αm, where α lies
in the interval (0, 1) and is fixed, and the number of bees
m scales exponentially with blocklength, then independent
barcode decoding is optimal, i.e., joint decoding of the bee
barcodes does not result in any better error exponent relative
to the independent decoding of each noisy barcode. This result
is in contrast to the result without absentee bees [1], where
joint barcode decoding results in significantly higher error
exponent compared to independent barcode decoding. The
second interesting observation is that when k = αm, the bee-
identification exponent is dominated by the events where a
single bee in the beehive image is incorrectly identified as
one of the absentee bees, while the other bee barcodes are
correctly decoded. The third observation is that for k = αm,
the bee-identification exponent does not depend on the actual
value of α when 0 < α < 1. We also characterized the exact
‘capacity’ for the bee-identification problem with absentee
bees, and proved the strong converse.

Future work includes exploring the error exponent for the
scenario where α, the fraction of absentee bees, also varies
with blocklength n, and second-order or finite-length analysis,
i.e., the scaling of the code rate when 0 ≤ ε < 1 and n is finite.
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