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Random Coding Error Exponent for the
Bee-Identification Problem
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Abstract—Consider the problem of identifying a massive
number of bees, uniquely labeled with barcodes, using noisy
measurements. We introduce this “bee-identification problem”,
characterize the random coding exponent, and derive efficiently
computable bounds for this exponent. We demonstrate that joint
decoding of barcodes has much better exponent than separate
decoding followed by permutation inference.

I. INTRODUCTION: THE BEE-IDENTIFICATION PROBLEM

Consider a group of m different bees, where each bee is
tagged with a unique barcode for identification purposes in
order to understand interaction patterns in honeybee social
networks [1]. Assume that a camera is employed to picture the
beehive to study the interactions among bees. The image out-
put (see Fig. 1) can be considered as a noisy and unordered set
of m barcodes. We pose the problem of bee-identification from
beehive image as an information-theoretic problem (Sec. I-A).

In a related work motivated by Internet of Things (IoT)
setting, the identification of users in strongly asynchronous
massive access channels was studied [2]. The identification
of the underlying distributions of a set of observed sequences
(where each sequence is generated i.i.d. by a distinct distribu-
tion) was analyzed in [3]. The effective channel for the bee-
identification problem (see Fig. 2) is also related to the DNA
storage channel [4].

Fig. 1: Bees tagged with barcodes (adapted from [1]).

A. Problem Formulation

The barcode for each bee may be represented by a binary
vector of length n. The collection of all the barcodes on bees
may be viewed as a codebook C' comprising m rows and
n columns, with each row corresponding to a unique bee
barcode. The channel output is a row-permuted and noisy
version of the codebook. If 7 denotes a given permutation
of m-letters, then the channel first permutes the m rows
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Effective Channel

Fig. 2: Effective channel for the bee-identification problem.

of codebook C, based on 7, to produce C, (see Fig. 2).
Therefore, if j = 7() and ¢; denotes the i-th row of C, then
the jth row of C} is equal to ¢;. The channel then applies
noise on the permuted codebook C to produce Cr. where
noise is modeled by a binary symmetric channel (BSC) having
crossover probability p, denoted BSC(p), with 0 < p < 0.5.
If j = 7 (i), and the j-th row of C.. is denoted (), then

Pr{é,lci,m} =ph(1—p)"~ %, 1<i<m,

mn m
br {O’T|C’”} = [[Pr{erlesy = [[p" (1 —p)" ",
=1 i=1

(1)
where d; £ du(€x(;),ci) denotes the Hamming distance
between vectors C,(; and c;. Let M 2 {1,2,...,m}, and

let the decoder correspond to a function ¢ which takes C;
as an input and produces a map v : M — M where v(k)
corresponds to the index of the transmitted codeword which
produced the received word ¢, for 1 < k£ < m. We assume
that the decoder has knowledge of codebook C', and its task is
to recover the row-permutation 7 introduced by the channel.

In this paper, we derive efficiently computable lower bounds
for the random coding bee-identification exponent when (i)
each received barcode is decoded independently (Sec. III),
and (ii) when all barcodes are decoded jointly (Sec. IV). We
also provide an explicit upper bound on the bee-identification
exponent that holds for all possible codebook designs (Sec. V).

II. BEE-IDENTIFICATION ERROR

The task of the decoder in the bee-identification problem is
to recover the row-permutation 7 introduced by the channel.
The bee-identification error indicator is defined as

D<¢(éﬂ),ﬂ_1> :D(l/,ﬂ_l) A {1, ify;;éﬂ-—l’

0, ifv=nmr"1
For a given codebook C' and decoding function ¢, the expected
bee-identification error probability over the BSC(p) is

D(C,p.9) 2B, [E[D (6(Ca)n )| @
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where the inner expectation is over the distribution of C, given
C and 7 (see (1)), and the outer expectation is over a uniform
distribution of 7 over all m-letter permutations. Note that (2)
can be equivalently expressed as

D(C,p,¢) =Pr {¢(éﬂ) # w‘l} =Pr{v#£n'}. (3

For a given R > 0, let the number of barcodes m scale
exponentially with blocklength n as m = 2", Let € (n, R)
be the set of all binary matrices with m = 2"% rows and n
columns. When the codebook C' is uniformly distributed over
% (n, R), for given values of n and R, we define the random
coding bee-identification error probability as

1
€ (n, R)| 2

Ce%(n,R)

DRC(”,R,p7 ¢) £ D(Cvpv (b) (4)

For a given decoding function ¢, the random coding bee-
identification exponent is defined as

- log DRC(nv Rvp» ¢)
n

Epge (R, p, ¢) = limsup ®)

n—oo
III. NAIVE DECODING STRATEGY

The naive decoding strategy is one where each barcode
is decoded independently. In this case, for 1 < ¢ < m,

the decoder picks ¢;, the i¢th row of C, and then assigns
v(i) = argming dp(é;, ¢x). If there is more than one code-
word at the same minimum Hamming distance from ¢;, then
any one of the corresponding codeword indices is chosen at
random. From (3), (4), and the union bound, we have

1 - N
Dro(n Rop, @) < 150 p, S S pr{vi) A6}

CEe€(n,R) i=1

Let P(n,R,p) = W},R)\ > cew(nr) T {v(i) #7"1()},
which, for j = 7~1(i), corresponds to the probability of
error, averaged over the ensemble of codebooks uniformly
distributed over % (n, R), when jth codeword is transmitted
over BSC(p), with 0 < p < 0.5. Further, P(n, R, p) is inde-
pendent of the index of the transmitted codeword due to the
averaging over the ensemble, and we have Drc(n, R, p, ¢) <
mP(n, R, p). Further, the random coding bee-identification
error probability is upper bounded by 1, and so

DRC(”>R7P7 ¢) < min{lv mP(mR,p)} (6)

The random coding exponent over BSC(p),
denoted E,(R,p), is defined as [5] E.(R,p) =
limsup,, ,..(—1/n)log P(n, R,p). The channel capacity
over BSC(p) is 1 — H(p), where H(-) is the binary entropy
function, and E,.(R,p) > 0 for R < 1 — H(p) while
E.(R,p) = 0 for R > 1 — H(p) [5]. The exact value of
E.(R,p) is given by [5], [6]

RO(p) - R7 >~
D@av(R)[lp),  Ra(p) <R <1-H(p)
0, R>1-H(p),

E.(R,p) =

where
Rop) &1-log (14+V&p(1=p)).  ®
Rcr(p)=1—H< v )

VP+V1-p
D(z|ly) £ xlog £ + (1 —x)log t—; and 6qv(R) denotes the
value of ¢ in the interval [0,0.5] where H(§) = 1 — R. The
next theorem is an explicit lower bound on Ep,.,(R,p, ¢).

9

Theorem 1. We have
Eppe(R.p.¢) > |Ro(p) — 2R,
where |z|* £ max(0, z).
Proof: Combining (5), (6), and the fact that m = 2"%,
Epye(R,p,¢) > |Ex(R,p) — R|". (D

Using explicit numerical computation, it can be shown that
Ro(p) < 2R (p), and we obtain (10) using (11) and (7).
Note that Ro(p) < 2R (p) implies |E.(R,p) — R|T = 0
when R > R, (p), as E.(R,p) is non-increasing in R. [ |

This bound on Ep,.(R,p,¢) is obtained by applying a
naive decoding strategy where each barcode is decode inde-
pendently. In the next section, we characterize Ep,(R,p, ¢)
when the decoding function ¢ jointly decodes all the barcodes.

(10)

IV. JOINT DECODING OF BARCODES

Let .S, denote the set of all m-letter permutations. For joint
maximum likelihood (ML) decoding of barcodes, the decoding
function ¢ takes the noisy row-permuted codebook C, as
input, and produces permutation v = p~! as output, where
p = argmin, g du(Cr,Cy), and dg(Cr,Cy) £ |{(i,7) :
Cr(iyj) # Co(iyj),1 < i < m,1 < j < n}. We aim to
provide bounds on Pr{v # 7~ 1} = Pr{p # «}.

For any two permutations 71,7 € S, the set of
distances {dg(Cr,,Cs)}oes,, and {dg(Cr,, Cs)}oes,, are
equal. Therefore, the performance of the joint ML decoder is
independent of the channel permutation 7, and we assume,
without loss of generality, that the permutation induced by the
channel is the identity permutation, denoted m.

For a given codebook C' at the transmitter, let C,TO denote
the received noisy codebook at the output of the effective
channel, and for o € S,,, with ¢ # 7y, we define

Pr{my — o} £ Pr {dH(CyTO, Cy) < dyg(Chry, cwo)} . (12)

For any two functions f(n) and g¢(n), we use the no-
tation f(n) = g(n) if lim,_con™tlog(f(n)/g(n)) =
0. Similarly, we write f(n) < g(n) (resp. > g(n)) if
limsup,,, ., 7~ log (f(n)/g(n)) <0 (resp. > 0).

Now consider two codewords c;, c; at distance d from each
other. Given that ¢; is transmitted over BSC(p), the probability
that the Hamming distance of the received word from c;
is not more than its distance from c¢; is upper bounded as
Pr{c; — ¢;} < 279% where a;, £ —log \/4p(1 — p) [6].
Therefore, for a given codebook C' Cr, and permuta-
tion o € S,, with ¢ # m, if d, du(Cr,, Cy), then

(1> 11
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it follows that Pr{my — o} < 27 %%, From (3) and

(12), we get D(C,p,d) = Pr{UUGSﬂlﬂ#m{wo - a}} <
> 0eS, .oxm PTiT0 — o'}, where the last inequality follows

from the union bound. Let
Prco = E[Pr{m — o}], (13)

where the expectation is over an ensemble of random binary
codebooks. From (4) and (13), we get

DRC(”»R7P7 (b) S Z

OESy,07#m0

Pre,o- (14)

Next, we quantify Prc , for different o € S,,.
A. o is a transposition

We first consider the case where o is a transposition, i.e.
a permutation that interchanges only two indices. For indices
2,7, with 1 < 2 < 7 < m, the Hamming distance between
codewords ¢; and c; in a random codebook satisfies [6]

Pr{du(ei, ¢)) = d} <27"C-HE@M s

Note that if du(c;,c;) = d and ¢ = (7 j) denotes the
permutation that only interchanges indices ¢ and j, then
dy (C’,TO,C@ j)) = 2d, and it follows from (15) that

Pr{dy (Cry, Cpi j) = 2d} < 27 HE@/m) 0 (16)

Further, when dy (Cr,,C; j) = 2d, we have Pr{my —
(i j)} < 272¢%». Now the probability Pgrc,; ; can be
characterized using (13) and (16) as

Prep) < Z g—n(1—H(d/n)+2(d/n)ay)
d=0

a7

If § = d/n is treated as a continuous variable, then the
exponent Eo(§) £ 1 — H(8) + 20y, is a convex function
2o 4p(1—p)
with a unique minimum at § = §, £ % If we define
Ri(p) as .
Ri(p) =1 —log(1+ 4p(1 —p)), (18)

then it can be verified that Ey(d,) = Ri(p), and it follows
from (17) that when o is a transposition, we have

Pre,, <27 "(E7e), (19)
where ¢, = (log(n + 1)) /n.

B. o is a product (composition) of disjoint transpositions

We now consider the case where o = o109,
where o7 and o095 are disjoint transpositions with
o1 = (i j) and o2 = (i j). As the codewords in

a random codebook are independent,
we have Pr{{dH(ci, Cj) = dl} n {dH(Ci, Cj) = dg}} S
H?zl 2~n(1=H(di/n) - Further, if du(ci,c;) = di and
dH(Ci,Cj) = dy, then dg (Cﬂ—n,cg) = 2(d1 + dg), and
Pr{my — o} < 27 2(ditd2)ap Therefore, if o is a product of
two disjoint transpositions, then

Proo < Z 2—”( §:1(1—H(dz/")+2(di/")%))’
dy,da
< 9—2n(Ri(p)—cn)

then using (15),

(20)

In general, when o is a product of s disjoint transpositions,
the above argument can be readily extended to show that

P, < 27m(Falp)=en), 1)

Now define A, RIT(M,%@)}, where Ro(p) and

Rq(p) are defined in (8) and (18), respectively. As 2}, <
R1(p), it follows from (21) that

A .
= Inln{

< (22)

PRC o < 2_8"2(>‘P_Cn).

We remark that when o is just a transposition, then from (19)
we have Prc, < 9-n(Ri(p)—en) < 9-n2(Xp—cn)  which is
only a special case of (22) with s = 1.

C. o is a k-cycle with k > 2

We will apply the following proposition towards character-
izing Prc,, When o is a k-cycle with k& > 2.

Proposition 1. Let For denote the space of all n-length binary
vectors. Let ¢y1,ca,...,c, be k > 2 ii.d. random vectors,
uniformly distributed over Fon, and let dyi,do,...,dr_1 be
given non-negative integers. Then the following holds

k—1 -
{ﬂ{dH CiyCit1) —d}} H

Proof: See Appendix A. [ ]

Let 0 € S,,, be a k-cycle (i1 i -+ i) where ¢;41 = o(i;)

for 1 <1< k-1, and iy = o(ig). Let dy,...,d; be non-

negative integers. For a given codebook C, if du(c;,, ¢;,,,) =

dl for 1 < [ < k-1, and du(ci,,ci;) = dg, then
dy(Cry, Cy) = Zz 1 di, and therefore

Pr{mg = o} < 9= (Zisy di)ay (24)

Further, if codebook C' is uniformly distributed over € (n, R),

k—1

Pr{( ﬂ {du(ci,, cipyy) = di} ) ﬂ{dH(cik,Cil) = dk}}

=1

< 9n(Si -H(d/m))

(25)
where (25) follows from (23). Combining (24) and (25),
Proo < Z Q*H((Zf’:l(dz/n)%)ﬂZfo(1*H(dz/n))))7

0<d;<n,
I<i<k
_ (Z 2dko¢p> (H Z 92— n(1—H( d;/n)Jr(d,/n)ap))
dp=0 =1 d;=
< 277.67, <H Z 2 1 H dl/’n)Jr(dl/n)ap)) . (26)
=1 d;=
If § = d;/n is treated as a continuous variable, then the
A

exponent F4(d) = 1 — H(d) + day is a convex function

_VAr(-p) We have
14+4/4p(1—p)

E1(6,) = 1 —log(1 4+ /4p(1 — p)) = Ro(p), and it follows

with a unique minimum at § = §, £
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from (26) that Prc , < 27 "((k=DRo(p)=ken) ‘Ag 2k /3 < k—1
for k > 2, we have kX, < (k —1)Ry(p),

Pre,o < 27w =en), 27)

where ¢ is a k-cycle with £ > 2. A transposition is just a
k-cycle with k£ = 2, and from the remark following (22), it
follows that (27) holds even for k = 2.

D. General o € Sy, with o # T

It is well known that any permutation o # 7y can be written
as a product (composition) of ¢ disjoint cycles, for ¢ > 1 [7].
Consider a given o which is a product of t disjoint cycles
of length kq,...,k;, respectively, where k; > 2 for 1 < i <
t. Then, extending the approach employed in Sec. IV-B, and
using (27), we obtain

Pro,o < 27 (Zima k) Op—en), (28)

E. Putting it all together

Define &; £ {0 € Sy, : |{i:0(i) #i,1 <i<m}| =j},
and Prey, = dezj Pre,o, for 1 < j < m, to equivalently
express (14) as

Dro(n, R,p,¢) <> Prox,- (29)
Jj=2

We have |X5| = (7;’) < 2n(2R) For all o € ¥, the value of
Prc,o is upper bounded by (19), and so

Pres, <27 "R@men =28, (30)

For a given j > 2, if 0 € ;, then from (28) it follows
that Prc,s < 27 "30‘ —¢n)_ For j > 2, the size of the set E
satisfies |Z | < [TZa(m — i) < 279R_ If we define 3, £
27w =en=R) then we have Prcx, < (7. Now, if R < A,
then because ¢, = o(1), there exists N such that for n > N,
we have R < A, — ¢, and hence 3, < 1. Therefore, for

n>N,
ZPRCE <Zﬁn_ T

As 3, — 0 and ¢, — 0 when n — oo, it follows from (31),

€Y

m 3
P, - B3 = 99— 3n(Ap— ) 2
ZRCE_l_ﬁn B (32)
j=3
Combining (29), (30), and (32), for R < A,
Drc(n, R,p,¢) < 27 (@720 4 gmn(3 =30 (33

Comparing (14) with (33), we observe that Drc(n, R, p, @)
is dominated by Prc,, terms for o corresponding to k-cycles
with k£ = 2 and k = 3. The next theorem presents an explicit
lower bound for Ep, (R, p, ¢) when ¢ jointly decodes all the
barcodes using a maximum likelihood approach.

Theorem 2. We have
Epge(R,p,¢) > Wp(R)ﬁ,
where 1,(R) £ min {R;(p) — 2R, 2R (p) — 3R}.

(34)

Proof: When R < A, then we have R;(p) > 2R. There-
fore, from (33) it follows that if R < X, then Ep,(R,p, })
is lower bounded by min { Ry (p) — 2R, 3\, — 3R} = n,(R).
Note that 77,(R) > 0 if and only if R < A,,. [ |

V. BEE-IDENTIFICATION EXPONENT: UPPER BOUND

Define the following optimum minimum distance metrics:
d* (TL, R) £ maxcee¢(n,R) mincl';écj du (Ci, Cj)’ 6" (TL, R) =
d*(n,R)/n, and §*(R) = limsup,,_,., 0*(n, R). For any
given codebook C' € % (n, R), we show that there exists a
set .Zo consisting of pairs of codeword indices (i, j), i # j,
with the following three properties: (i) If (¢,7) € #c, then
du(e;,¢j) < d*(n, R—1), (i) If (i,5) € Fc and (2, )) € IS¢,
then i # i,2 # j and j # 4,7 # j, (iii) Size of set ¢ is
equal to m/4. A set satisfying the above properties can be
constructed iteratively as follows
e Step I: For a given codebook C' € € (n, R), initialize .Y
to be the empty set and let 7 = C.

o Step 2: As |T| > m/2, there exists ¢;,c; € T, with
i # j, satisfying du(c;, ¢;) < d*(n, R — 1). Include the
pair (¢,7) to Jo, and let T =T \ {¢;, ¢;}.

o Step 3: If | I¢| < m/4, then go to Step 2, else stop.
Assume that the receiver employs ML decoding, and interpret
each pair (7, j) € ¢ as a transposition o = (i j). Let A;
denote the error event that the receiver incorrectly decodes the
channel induced permutation to transposition (¢ j) (instead of
the identity permutation 7g), i.e. A(; jy = {mo — (i,4)}. Then,

U A

(i,5)€Sc

D(C,p,¢) > Pr (35)

Using de Caen’s lower bound [8], the expression on the right
side in (35) can itself be lower bounded by

(Pr{Au )"
ipese Pr{Aupy+ Y Pr{du;nAagy}
('ZJ)EJC
(52 (5.9)
(@) (Pr{Ag})’
ihese Pr{Aant+ Y. Pr{du,}Pr{du;}
(.))esc
(3£ (i.9)
Z PI‘{A(%])}
(i,5)€fc
(36)
1+ Y Pri{dey}
(2,5€eHc

where (a) follows because events A(; ;) and A; ;) are inde-
pendent when (%, 7) # (4,7). Now

®) . .
Z PI’{A(l7])} Z Z 2*’”(25 (’n,qu)ozp)’

(i,5)€Ic (i,§)€EIC
(>) 92— n(25 (n, R**)ap (Rf%))7
=9 n n(28 (R)O‘D—R)’ (37)
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Fig. 3: Lower bounds on Ep,.(R,p, ¢) using independent
decoding (ID) (see (10)) and joint decoding (JD) (see (34))
of barcodes. Upper bound (41) holds for all code sequences.

where (b) follows as di(Cr,, Ci ;) < 2d*(n, R — 1) for
(i,) € S and () follows because |.7o| > m/d. It
Rup(p) = sup{R : 20*(R)a, > R}, then combining (35),
(36), (37), and noting that x/(1 + x) increases with z,
. 9—n(26*(R)ap—R)
D(CJ% ¢) > 1+ 92—n(26*(R)ap—R)’
= 9~n(2"(Wey=R) (< R < Ryg(p).
As (38) is true for all C' € € (n, R), we have

Dre(n, R, p, ¢) > 2727 (Baw=R) (< R < Ryg(p).
(39)

(38)

The value §*(R) can be upper bounded as [9], [10]

§*(R) < érp(R) £ % —Vdav(l = R)(1 —dav(l — R)).
(40)

Theorem 3. We have

Epge(R,p,¢) < [26*(R)ay, — R|™ < |20Lp(R)oy, — RIY.
(41)

Proof: Follows immediately from (39) and (40). [ |

Fig. 3 plots different bounds on Ep..(R,p,®). As (38)

holds for all C € ¥ (n,R), we observe that the upper
bound (41) is applicable to all possible codebook designs.

VI. DISCUSSION

We demonstrated that joint decoding of barcodes provides
much better random coding exponent compared to independent
decoding. We also gave an explicit upper bound on the bee-
identification exponent that is applicable to all possible code-
book designs. Future work will characterize the exponent for
typical random codes. Other extension of this work includes
the scenario where the bee-identification error is flagged only
when the fraction of incorrectly decoded barcodes exceeds a
threshold. Another interesting scenario is when some of the
m rows in codebook C' are deleted, due to some bees being
outside the hive when taking the picture.

APPENDIX A
PROOF OF PROP. 1

Let Yu—1,3%—1 € Fon, and A £ ~,_1 @351, where @ de-
notes modulo-2 addition. Then, Pr{dy(yx—1,¢k) = dp—1} =

Pr{da(x—1,cx+A) = dp_1} © Pr{du(Jx—1,ck) = dp—1},
where (i) follows from the fact that the distribution of ¢ + A
is same as the distribution of ¢;. Thus Pr{du(ci—_1,cr) =

dr—1lck-1 = Yr-1} © Pr{du(cr-1,cr) = di—1}. Then
Pr{ﬂfz_ll{dH(ci, ci+1) = d;}} is equivalently expressed as

>

Y1s5eyVk—1EF2n

k—1
x Pr ﬂ {du(ei, cit1) = di}
=1

- ¥

Y1y Ve—1

k-1
Pr ﬂ {ci =}
i=1

k-1
ﬂ {ci = fyl} y
=1
k—1
Prq (e =7} ¢ ez autnmen)—d}
=1

x Pr{du(cr—1, k) = di—1|ck—1 = -1} |,

k-1
(iii)
= 2 |\ P e =% p Y anten=a)
Y1y Vh—1 =1
x Pr{du(ck—1,cr) = dp—1} |,
k—2
= Pr{ ﬂ du(e, cip1) = di} Pr{du(cik—1,cr) =dp_1},
i=1

(42)

where 1. denotes the indicator function, (iii) follows from
(ii), while (23) follows by recursively applying (42) and using
the fact that Pr {dy(c;, ¢iy1) = d;} < 27n(1=H(di/n)) \when
¢; and ¢;4; are uniformly distributed over Fon [6].
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