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Abstract—Consider the problem of identifying a massive
number of bees, uniquely labeled with barcodes, using noisy
measurements. We introduce this “bee-identification problem”,
characterize the random coding exponent, and derive efficiently
computable bounds for this exponent. We demonstrate that joint
decoding of barcodes has much better exponent than separate
decoding followed by permutation inference.

I. INTRODUCTION: THE BEE-IDENTIFICATION PROBLEM

Consider a group of m different bees, where each bee is
tagged with a unique barcode for identification purposes in
order to understand interaction patterns in honeybee social
networks [1]. Assume that a camera is employed to picture the
beehive to study the interactions among bees. The image out-
put (see Fig. 1) can be considered as a noisy and unordered set
of m barcodes. We pose the problem of bee-identification from
beehive image as an information-theoretic problem (Sec. I-A).

In a related work motivated by Internet of Things (IoT)
setting, the identification of users in strongly asynchronous
massive access channels was studied [2]. The identification
of the underlying distributions of a set of observed sequences
(where each sequence is generated i.i.d. by a distinct distribu-
tion) was analyzed in [3]. The effective channel for the bee-
identification problem (see Fig. 2) is also related to the DNA
storage channel [4].

Fig. 1: Bees tagged with barcodes (adapted from [1]).

A. Problem Formulation

The barcode for each bee may be represented by a binary
vector of length n. The collection of all the barcodes on bees
may be viewed as a codebook C comprising m rows and
n columns, with each row corresponding to a unique bee
barcode. The channel output is a row-permuted and noisy
version of the codebook. If π denotes a given permutation
of m-letters, then the channel first permutes the m rows
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Fig. 2: Effective channel for the bee-identification problem.

of codebook C, based on π, to produce Cπ (see Fig. 2).
Therefore, if j = π(i) and ci denotes the i-th row of C, then
the jth row of Cπ is equal to ci. The channel then applies
noise on the permuted codebook Cπ to produce C̃π , where
noise is modeled by a binary symmetric channel (BSC) having
crossover probability p, denoted BSC(p), with 0 < p < 0.5.
If j = π(i), and the j-th row of C̃π is denoted c̃π(i), then

Pr{c̃π(i)|ci, π} = pdi(1− p)n−di , 1 ≤ i ≤ m,

Pr
{
C̃π|C, π

}
=

m∏
i=1

Pr{c̃π(i)|ci, π} =
m∏
i=1

pdi(1− p)n−di ,

(1)

where di , dH(c̃π(i), ci) denotes the Hamming distance
between vectors c̃π(i) and ci. Let M , {1, 2, . . . ,m}, and
let the decoder correspond to a function φ which takes C̃π
as an input and produces a map ν : M → M where ν(k)
corresponds to the index of the transmitted codeword which
produced the received word c̃k, for 1 ≤ k ≤ m. We assume
that the decoder has knowledge of codebook C, and its task is
to recover the row-permutation π introduced by the channel.

In this paper, we derive efficiently computable lower bounds
for the random coding bee-identification exponent when (i)
each received barcode is decoded independently (Sec. III),
and (ii) when all barcodes are decoded jointly (Sec. IV). We
also provide an explicit upper bound on the bee-identification
exponent that holds for all possible codebook designs (Sec. V).

II. BEE-IDENTIFICATION ERROR

The task of the decoder in the bee-identification problem is
to recover the row-permutation π introduced by the channel.
The bee-identification error indicator is defined as

D
(
φ(C̃π), π−1

)
= D

(
ν, π−1

)
,

{
1, if ν 6= π−1,

0, if ν = π−1.

For a given codebook C and decoding function φ, the expected
bee-identification error probability over the BSC(p) is

D(C, p, φ) , Eπ
[
E
[
D
(
φ(C̃π), π−1

)]]
, (2)
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where the inner expectation is over the distribution of C̃π given
C and π (see (1)), and the outer expectation is over a uniform
distribution of π over all m-letter permutations. Note that (2)
can be equivalently expressed as

D(C, p, φ) = Pr
{
φ(C̃π) 6= π−1

}
= Pr

{
ν 6= π−1

}
. (3)

For a given R > 0, let the number of barcodes m scale
exponentially with blocklength n as m = 2nR. Let C (n,R)
be the set of all binary matrices with m = 2nR rows and n
columns. When the codebook C is uniformly distributed over
C (n,R), for given values of n and R, we define the random
coding bee-identification error probability as

DRC(n,R, p, φ) ,
1

|C (n,R)|
∑

C∈C (n,R)

D(C, p, φ). (4)

For a given decoding function φ, the random coding bee-
identification exponent is defined as

EDRC
(R, p, φ) = lim sup

n→∞

− logDRC(n,R, p, φ)

n
. (5)

III. NAÏVE DECODING STRATEGY

The naïve decoding strategy is one where each barcode
is decoded independently. In this case, for 1 ≤ i ≤ m,
the decoder picks c̃i, the ith row of C̃π , and then assigns
ν(i) = arg mink dH(c̃i, ck). If there is more than one code-
word at the same minimum Hamming distance from c̃i, then
any one of the corresponding codeword indices is chosen at
random. From (3), (4), and the union bound, we have

DRC(n,R, p, φ) ≤
1

|C (n,R)|
∑

C∈C(n,R)

m∑
i=1

Pr
{
ν(i) 6= π−1(i)

}
.

Let P (n,R, p) , 1
|C (n,R)|

∑
C∈C (n,R) Pr

{
ν(i) 6= π−1(i)

}
,

which, for j = π−1(i), corresponds to the probability of
error, averaged over the ensemble of codebooks uniformly
distributed over C (n,R), when jth codeword is transmitted
over BSC(p), with 0 < p < 0.5. Further, P (n,R, p) is inde-
pendent of the index of the transmitted codeword due to the
averaging over the ensemble, and we have DRC(n,R, p, φ) ≤
mP (n,R, p). Further, the random coding bee-identification
error probability is upper bounded by 1, and so

DRC(n,R, p, φ) ≤ min {1, mP (n,R, p)} . (6)

The random coding exponent over BSC(p),
denoted Er(R, p), is defined as [5] Er(R, p) ,
lim supn→∞(−1/n) logP (n,R, p). The channel capacity
over BSC(p) is 1 − H(p), where H(·) is the binary entropy
function, and Er(R, p) > 0 for R < 1 − H(p) while
Er(R, p) = 0 for R ≥ 1 − H(p) [5]. The exact value of
Er(R, p) is given by [5], [6]

Er(R, p) =


R0(p)−R, 0 ≤ R ≤ Rcr(p) (7)
D(δGV(R)||p), Rcr(p) ≤ R ≤ 1−H(p)

0, R ≥ 1−H(p),

where

R0(p) , 1− log
(

1 +
√

4p(1− p)
)
, (8)

Rcr(p) = 1−H
( √

p
√
p+
√

1− p

)
, (9)

D(x||y) , x log x
y + (1−x) log 1−x

1−y and δGV(R) denotes the
value of δ in the interval [0, 0.5] where H(δ) = 1 − R. The
next theorem is an explicit lower bound on EDRC(R, p, φ).

Theorem 1. We have

EDRC
(R, p, φ) ≥ |R0(p)− 2R|+, (10)

where |x|+ , max(0, x).

Proof: Combining (5), (6), and the fact that m = 2nR,

EDRC(R, p, φ) ≥ |Er(R, p)−R|+. (11)

Using explicit numerical computation, it can be shown that
R0(p) ≤ 2Rcr(p), and we obtain (10) using (11) and (7).
Note that R0(p) ≤ 2Rcr(p) implies |Er(R, p) − R|+ = 0
when R ≥ Rcr(p), as Er(R, p) is non-increasing in R.

This bound on EDRC
(R, p, φ) is obtained by applying a

naïve decoding strategy where each barcode is decode inde-
pendently. In the next section, we characterize EDRC(R, p, φ)
when the decoding function φ jointly decodes all the barcodes.

IV. JOINT DECODING OF BARCODES

Let Sm denote the set of all m-letter permutations. For joint
maximum likelihood (ML) decoding of barcodes, the decoding
function φ takes the noisy row-permuted codebook C̃π as
input, and produces permutation ν = ρ−1 as output, where
ρ = arg minσ∈Sm dH(C̃π, Cσ), and dH(C̃π, Cσ) , |{(i, j) :

C̃π(i, j) 6= Cσ(i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n}|. We aim to
provide bounds on Pr{ν 6= π−1} = Pr{ρ 6= π}.

For any two permutations π1, π2 ∈ Sm, the set of
distances {dH(C̃π1

, Cσ)}σ∈Sm and {dH(C̃π2
, Cσ)}σ∈Sm are

equal. Therefore, the performance of the joint ML decoder is
independent of the channel permutation π, and we assume,
without loss of generality, that the permutation induced by the
channel is the identity permutation, denoted π0.

For a given codebook C at the transmitter, let C̃π0
denote

the received noisy codebook at the output of the effective
channel, and for σ ∈ Sm with σ 6= π0, we define

Pr{π0 → σ} , Pr
{

dH(C̃π0 , Cσ) ≤ dH(C̃π0 , Cπ0)
}
. (12)

For any two functions f(n) and g(n), we use the no-
tation f(n)

.
= g(n) if limn→∞ n−1 log (f(n)/g(n)) =

0. Similarly, we write f(n) ≤̇ g(n) (resp. ≥̇ g(n)) if
lim supn→∞ n−1 log (f(n)/g(n)) ≤ 0 (resp. ≥ 0).

Now consider two codewords cı̂, c̂ at distance d from each
other. Given that cı̂ is transmitted over BSC(p), the probability
that the Hamming distance of the received word from c̂
is not more than its distance from cı̂ is upper bounded as
Pr{cı̂ → c̂} ≤ 2−dαp , where αp , − log

√
4p(1− p) [6].

Therefore, for a given codebook C = Cπ0
and permuta-

tion σ ∈ Sm with σ 6= π0, if dσ , dH(Cπ0 , Cσ), then
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it follows that Pr{π0 → σ} ≤ 2−dσαp . From (3) and
(12), we get D(C, p, φ) = Pr

{⋃
σ∈Sm,σ 6=π0

{π0 → σ}
}
≤∑

σ∈Sm,σ 6=π0
Pr{π0 → σ}, where the last inequality follows

from the union bound. Let

PRC,σ , E [Pr{π0 → σ}] , (13)

where the expectation is over an ensemble of random binary
codebooks. From (4) and (13), we get

DRC(n,R, p, φ) ≤
∑

σ∈Sm,σ 6=π0

PRC,σ. (14)

Next, we quantify PRC,σ for different σ ∈ Sm.
A. σ is a transposition

We first consider the case where σ is a transposition, i.e.
a permutation that interchanges only two indices. For indices
ı̂, ̂, with 1 ≤ ı̂ < ̂ ≤ m, the Hamming distance between
codewords cı̂ and c̂ in a random codebook satisfies [6]

Pr {dH(cı̂, c̂) = d} ≤ 2−n(1−H(d/n)). (15)

Note that if dH(cı̂, c̂) = d and σ = (̂ı ̂) denotes the
permutation that only interchanges indices ı̂ and ̂, then
dH

(
Cπ0 , C(ı̂ ̂)

)
= 2d, and it follows from (15) that

Pr
{

dH

(
Cπ0

, C(ı̂ ̂)

)
= 2d

}
≤ 2−n(1−H(d/n)). (16)

Further, when dH

(
Cπ0 , C(ı̂ ̂)

)
= 2d, we have Pr{π0 →

(̂ı ̂)} ≤ 2−2dαp . Now the probability PRC,(ı̂ ̂) can be
characterized using (13) and (16) as

PRC,(ı̂ ̂) ≤
n∑
d=0

2−n(1−H(d/n)+2(d/n)αp). (17)

If δ = d/n is treated as a continuous variable, then the
exponent E2(δ) , 1 − H(δ) + 2δαp is a convex function
with a unique minimum at δ = δ̂p ,

4p(1−p)
1+4p(1−p) . If we define

R1(p) as
R1(p) , 1− log(1 + 4p(1− p)), (18)

then it can be verified that E2(δ̂p) = R1(p), and it follows
from (17) that when σ is a transposition, we have

PRC,σ ≤ 2−n(R1(p)−cn), (19)

where cn , (log(n+ 1)) /n.

B. σ is a product (composition) of disjoint transpositions

We now consider the case where σ = σ1σ2,
where σ1 and σ2 are disjoint transpositions with
σ1 = (i j) and σ2 = (̂ı ̂). As the codewords in
a random codebook are independent, then using (15),
we have Pr {{dH(ci, cj) = d1} ∩ {dH(cı̂, c̂) = d2}} ≤∏2
i=1 2−n(1−H(di/n)). Further, if dH(ci, cj) = d1 and

dH(cı̂, c̂) = d2, then dH (Cπ0
, Cσ) = 2(d1 + d2), and

Pr{π0 → σ} ≤ 2−2(d1+d2)αp . Therefore, if σ is a product of
two disjoint transpositions, then

PRC,σ ≤
∑
d1,d2

2−n(
∑2
i=1(1−H(di/n)+2(di/n)αp)),

≤ 2−2n(R1(p)−cn). (20)

In general, when σ is a product of s disjoint transpositions,
the above argument can be readily extended to show that

PRC,σ ≤ 2−sn(R1(p)−cn). (21)

Now define λp , min
{
R1(p)

2 , 2R0(p)
3

}
, where R0(p) and

R1(p) are defined in (8) and (18), respectively. As 2λp ≤
R1(p), it follows from (21) that

PRC,σ ≤ 2−sn2(λp−cn). (22)

We remark that when σ is just a transposition, then from (19)
we have PRC,σ ≤ 2−n(R1(p)−cn) ≤ 2−n2(λp−cn), which is
only a special case of (22) with s = 1.

C. σ is a k-cycle with k > 2

We will apply the following proposition towards character-
izing PRC,σ when σ is a k-cycle with k > 2.

Proposition 1. Let F2n denote the space of all n-length binary
vectors. Let c1, c2, . . . , ck be k > 2 i.i.d. random vectors,
uniformly distributed over F2n , and let d1, d2, . . . , dk−1 be
given non-negative integers. Then the following holds

Pr

{
k−1⋂
i=1

{dH(ci, ci+1) = di}

}
≤
k−1∏
i=1

2−n(1−H(di/n)). (23)

Proof: See Appendix A.
Let σ ∈ Sm be a k-cycle (i1 i2 · · · ik) where il+1 = σ(il)

for 1 ≤ l ≤ k − 1, and i1 = σ(ik). Let d1, . . . , dk be non-
negative integers. For a given codebook C, if dH(cil , cil+1

) =
dl for 1 ≤ l ≤ k − 1, and dH(cik , ci1) = dk, then
dH(Cπ0 , Cσ) =

∑k
l=1 dl, and therefore

Pr{π0 → σ} ≤ 2−(
∑k
l=1 dl)αp . (24)

Further, if codebook C is uniformly distributed over C (n,R),

Pr

{( k−1⋂
l=1

{
dH(cil , cil+1

) = dl
})⋂

{dH(cik , ci1) = dk}
}

≤ 2−n(
∑k−1
l=1 (1−H(dl/n))), (25)

where (25) follows from (23). Combining (24) and (25),

PRC,σ ≤
∑

0≤dl≤n,
1≤l≤k

2−n((
∑k
l=1(dl/n)αp)+(

∑k−1
l=1 (1−H(dl/n)))),

=

(
n∑

dk=0

2−dkαp

)(
k−1∏
l=1

n∑
dl=0

2−n(1−H(dl/n)+(dl/n)αp)

)

≤ 2ncn

(
k−1∏
l=1

n∑
dl=0

2−n(1−H(dl/n)+(dl/n)αp)

)
. (26)

If δ = dl/n is treated as a continuous variable, then the
exponent E1(δ) , 1 − H(δ) + δαp is a convex function

with a unique minimum at δ = δ̃p ,
√

4p(1−p)
1+
√

4p(1−p)
. We have

E1(δ̃p) = 1 − log(1 +
√

4p(1− p)) = R0(p), and it follows
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from (26) that PRC,σ ≤ 2−n((k−1)R0(p)−kcn). As 2k/3 ≤ k−1
for k > 2, we have kλp ≤ (k − 1)R0(p),

PRC,σ ≤ 2−nk(λp−cn), (27)

where σ is a k-cycle with k > 2. A transposition is just a
k-cycle with k = 2, and from the remark following (22), it
follows that (27) holds even for k = 2.

D. General σ ∈ Sm with σ 6= π0

It is well known that any permutation σ 6= π0 can be written
as a product (composition) of t disjoint cycles, for t ≥ 1 [7].
Consider a given σ which is a product of t disjoint cycles
of length k1, . . . , kt, respectively, where ki ≥ 2 for 1 ≤ i ≤
t. Then, extending the approach employed in Sec. IV-B, and
using (27), we obtain

PRC,σ ≤ 2−n(
∑t
i=1 ki)(λp−cn). (28)

E. Putting it all together

Define Σj , {σ ∈ Sm : |{i : σ(i) 6= i, 1 ≤ i ≤ m}| = j},
and PRC,Σj ,

∑
σ∈Σj

PRC,σ , for 1 ≤ j ≤ m, to equivalently
express (14) as

DRC(n,R, p, φ) ≤
m∑
j=2

PRC,Σj . (29)

We have |Σ2| =
(
m
2

)
≤ 2n(2R). For all σ ∈ Σ2, the value of

PRC,σ is upper bounded by (19), and so

PRC,Σ2 ≤ 2−n(R1(p)−cn−2R). (30)

For a given j > 2, if σ ∈ Σj , then from (28) it follows
that PRC,σ ≤ 2−nj(λp−cn). For j > 2, the size of the set Σj
satisfies |Σj | <

∏j−1
i=0 (m − i) ≤ 2njR. If we define βn ,

2−n(λp−cn−R), then we have PRC,Σj ≤ βjn. Now, if R < λp,
then because cn = o(1), there exists N such that for n ≥ N ,
we have R < λp − cn and hence βn < 1. Therefore, for
n ≥ N ,

m∑
j=3

PRC,Σj ≤
m∑
j=3

βjn ≤
β3
n

1− βn
. (31)

As βn → 0 and cn → 0 when n→∞, it follows from (31),
m∑
j=3

PRC,Σj ≤
β3
n

1− βn
.
= β3

n
.
= 2−3n(λp−R). (32)

Combining (29), (30), and (32), for R < λp,

DRC(n,R, p, φ) ≤̇ 2−n(R1(p)−2R) + 2−n(3λp−3R). (33)

Comparing (14) with (33), we observe that DRC(n,R, p, φ)
is dominated by PRC,σ terms for σ corresponding to k-cycles
with k = 2 and k = 3. The next theorem presents an explicit
lower bound for EDRC

(R, p, φ) when φ jointly decodes all the
barcodes using a maximum likelihood approach.

Theorem 2. We have

EDRC(R, p, φ) ≥ |ηp(R)|+, (34)

where ηp(R) , min {R1(p)− 2R, 2R0(p)− 3R}.

Proof: When R < λp then we have R1(p) > 2R. There-
fore, from (33) it follows that if R < λp, then EDRC(R, p, φ)
is lower bounded by min {R1(p)− 2R, 3λp − 3R} = ηp(R).
Note that ηp(R) > 0 if and only if R < λp.

V. BEE-IDENTIFICATION EXPONENT: UPPER BOUND

Define the following optimum minimum distance metrics:
d∗(n,R) , maxC∈C (n,R) minci 6=cj dH(ci, cj), δ∗(n,R) ,
d∗(n,R)/n, and δ∗(R) , lim supn→∞ δ∗(n,R). For any
given codebook C ∈ C (n,R), we show that there exists a
set IC consisting of pairs of codeword indices (i, j), i 6= j,
with the following three properties: (i) If (i, j) ∈ IC , then
dH(ci, cj) ≤ d∗(n,R− 1

n ), (ii) If (i, j) ∈ IC and (̂ı, ̂) ∈ IC ,
then ı̂ 6= i, ı̂ 6= j and ̂ 6= i, ̂ 6= j, (iii) Size of set IC is
equal to m/4. A set satisfying the above properties can be
constructed iteratively as follows
• Step 1: For a given codebook C ∈ C (n,R), initialize IC

to be the empty set and let T = C.
• Step 2: As |T | ≥ m/2, there exists ci, cj ∈ T , with
i 6= j, satisfying dH(ci, cj) ≤ d∗(n,R− 1

n ). Include the
pair (i, j) to IC , and let T = T \ {ci, cj}.

• Step 3: If |IC | < m/4, then go to Step 2, else stop.
Assume that the receiver employs ML decoding, and interpret
each pair (i, j) ∈ IC as a transposition σ = (i j). Let A(i,j)

denote the error event that the receiver incorrectly decodes the
channel induced permutation to transposition (i j) (instead of
the identity permutation π0), i.e. A(i,j) = {π0 → (i, j)}. Then,

D(C, p, φ) ≥ Pr

 ⋃
(i,j)∈IC

A(i,j)

 . (35)

Using de Caen’s lower bound [8], the expression on the right
side in (35) can itself be lower bounded by∑

(i,j)∈IC

(
Pr{A(i,j)}

)2
Pr{A(i,j)}+

∑
(ı̂,̂)∈IC
(ı̂,̂) 6=(i,j)

Pr
{
A(i,j) ∩A(ı̂,̂)

} ,

(a)
=

∑
(i,j)∈IC

(
Pr{A(i,j)}

)2
Pr{A(i,j)}+

∑
(ı̂,̂)∈IC
(ı̂,̂)6=(i,j)

Pr
{
A(i,j)

}
Pr
{
A(ı̂,̂)

} ,

≥

∑
(i,j)∈IC

Pr{A(i,j)}

1 +
∑

(ı̂,̂)∈IC

Pr
{
A(ı̂,̂)

} , (36)

where (a) follows because events A(i,j) and A(ı̂,̂) are inde-
pendent when (̂ı, ̂) 6= (i, j). Now∑

(i,j)∈IC

Pr{A(i,j)}
(b)

≥̇
∑

(i,j)∈IC

2−n(2δ∗(n,R− 1
n )αp),

(c)

≥ 2−n(2δ∗(n,R− 1
n )αp−(R− 2

n )),
.
= 2−n(2δ∗(R)αp−R), (37)
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Fig. 3: Lower bounds on EDRC
(R, p, φ) using independent

decoding (ID) (see (10)) and joint decoding (JD) (see (34))
of barcodes. Upper bound (41) holds for all code sequences.

where (b) follows as dH(Cπ0
, C(i,j)) ≤ 2 d∗(n,R − 1

n ) for
(i, j) ∈ IC , and (c) follows because |IC | ≥ m/4. If
RUB(p) , sup{R : 2δ∗(R)αp > R}, then combining (35),
(36), (37), and noting that x/(1 + x) increases with x,

D(C, p, φ) ≥̇ 2−n(2δ∗(R)αp−R)

1 + 2−n(2δ∗(R)αp−R)
,

.
= 2−n(2δ∗(R)αp−R), 0 ≤ R < RUB(p). (38)

As (38) is true for all C ∈ C (n,R), we have

DRC(n,R, p, φ) ≥̇ 2−n(2δ∗(R)αp−R), 0 ≤ R < RUB(p).
(39)

The value δ∗(R) can be upper bounded as [9], [10]

δ∗(R) ≤ δLP(R) ,
1

2
−
√
δGV(1−R)(1− δGV(1−R)).

(40)

Theorem 3. We have

EDRC
(R, p, φ) ≤ |2δ∗(R)αp −R|+ ≤ |2δLP(R)αp −R|+.

(41)

Proof: Follows immediately from (39) and (40).
Fig. 3 plots different bounds on EDRC

(R, p, φ). As (38)
holds for all C ∈ C (n,R), we observe that the upper
bound (41) is applicable to all possible codebook designs.

VI. DISCUSSION

We demonstrated that joint decoding of barcodes provides
much better random coding exponent compared to independent
decoding. We also gave an explicit upper bound on the bee-
identification exponent that is applicable to all possible code-
book designs. Future work will characterize the exponent for
typical random codes. Other extension of this work includes
the scenario where the bee-identification error is flagged only
when the fraction of incorrectly decoded barcodes exceeds a
threshold. Another interesting scenario is when some of the
m rows in codebook C are deleted, due to some bees being
outside the hive when taking the picture.

APPENDIX A
PROOF OF PROP. 1

Let γk−1, γ̃k−1 ∈ F2n , and ∆ , γk−1⊕ γ̃k−1, where ⊕ de-
notes modulo-2 addition. Then, Pr{dH(γk−1, ck) = dk−1} =

Pr{dH(γ̃k−1, ck+∆) = dk−1}
(i)
= Pr{dH(γ̃k−1, ck) = dk−1},

where (i) follows from the fact that the distribution of ck +∆
is same as the distribution of ck. Thus Pr{dH(ck−1, ck) =

dk−1|ck−1 = γk−1}
(ii)
= Pr{dH(ck−1, ck) = dk−1}. Then

Pr{
⋂k−1
i=1 {dH(ci, ci+1) = di}} is equivalently expressed as∑

γ1,...,γk−1∈F2n

(
Pr

{
k−1⋂
i=1

{ci = γi}

}

× Pr

{
k−1⋂
i=1

{dH(ci, ci+1) = di}
∣∣∣∣ k−1⋂
i=1

{ci = γi}

})
,

=
∑

γ1,...,γk−1

(
Pr

{
k−1⋂
i=1

{ci = γi}

}
1{⋂k−2

i=1 {dH(γi,γi+1)=di}}

× Pr
{

dH(ck−1, ck) = dk−1

∣∣ck−1 = γk−1

})
,

(iii)
=

∑
γ1,...,γk−1

(
Pr

{
k−1⋂
i=1

{ci = γi}

}
1{⋂k−2

i=1 {dH(γi,γi+1)=di}}

× Pr {dH(ck−1, ck) = dk−1}

)
,

= Pr
{ k−2⋂
i=1

dH(ci, ci+1) = di

}
Pr {dH(ck−1, ck) = dk−1} ,

(42)

where 1{·} denotes the indicator function, (iii) follows from
(ii), while (23) follows by recursively applying (42) and using
the fact that Pr {dH(ci, ci+1) = di} ≤ 2−n(1−H(di/n)) when
ci and ci+1 are uniformly distributed over F2n [6].
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