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ABSTRACT: The synthesis of graphene nanoribbons (GNRs) N
that contain site-specifically substituted backbone heteroatoms is
one of the essential goals that must be achieved in order to control r
the electronic properties of these next generation organic materials.
We have exploited our recently reported solid-state topochemical
polymerization/cyclization-aromatization strategy to convert the
simple 1,4-bis(3-pyridyl)butadiynes 3a,b into the fjord-edge
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R (solid

nitrogen-doped graphene nanoribbon structures 1a,b (fjord-edge R state)

N,[8]GNRs). Structural assignments are confirmed by CP/MAS _

BC NMR, Raman, and XPS spectroscopy. The fjord-edge g

N,[8]GNRs 1a,b are promising precursors for the novel backbone *  R=NHCOPr,
N NHCOn-Hex

nitrogen-substituted N,[8],GNRs 2ab. Geometry and band
calculations on N,[8],GNR 2c indicate that this class of
nanoribbons should have unusual bonding topology and metallicity.

B INTRODUCTION

Graphene nanoribbons (GNRs) are expected to usher in the
ultimate nanosizing of electronics'~* and sensors™ for next
generation devices. The electronic properties of GNRs can be

cyclization and ensuing aromatization from PDAs 4a,b to
GNRs 1a,b was monitored by cross-polarization magic angle
spinning (CP/MAS) solid state '*C NMR. X-ray photo-
electron spectroscopy (XPS) revealed both the pyridinic and

exquisitely tuned by modification of their width, backbone, and
edge structure.””~'" In the past decade, both on-surface and
in-solution bottom-up syntheses have achieved precise
structural control over these benchmarks."'~"* Early bottom-
up syntheses have focused on GNRs with armchair'®™*" or
zigzag”' edges. More recently, intricate edge or interior
configurations, such as chevron,'"**7** cove, >’ fjord,28 or
holey,””*' have been obtained. These novel topologies
significantly alter the electronic or magnetic properties of
GNRs, as do atomically precise’” substitutions of carbons with
heteroatoms such as boron,>*** sulfur,g's’g’6 or nitrogen.3o'37’38
Crucially, site-specific doping at the GNR backbone produces a
dramatic alteration of its electronics, making such structures
the most desirable targets for synthesis.”>*"~*' Nitrogen doped
GNRs are of particular interest as they produce p-doped
materials 2437384245

Herein, we describe the synthesis of the first eight-atom
wide, fjord-edge nitrogen-doped graphene nanoribbons (fjord-
edge N,[8]GNRs 1la,b; Figure 1). Fjord-edge N,[8]GNRs
la,b were obtained in a facile two-step conversion starting
from dipyridyl diynes 3a,b. Photochemically induced top-
ochemical polymerization in the crystalline state afforded
polydiacetylenes (PDAs) 4a,b, which were thermally converted
to GNRs 1la,b with no loss of the side chains. The Hopf
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amide bonding states of the nitrogen atoms. Raman spectros-
copy further confirmed the structural integrity of the fjord-edge
N,[8]GNRs 1a,b.

B RESULTS AND DISCUSSION

Diyne Monomer Synthesis. The topochemical polymer-
ization of diynes requires suitable packing of the monomers in
the crystal to trigger subsequent chain reactions.**™** Here, the
dipyridyl diyne units of 3a,b,d (Scheme 1, Figure 1) needed to
have the diyne 1,4-carbons within van-der-Waals contact
distance (~3.5 A) to promote facile formation of intermo-
lecular bonds, a process that often occurs under ambient
light.*”*° Although we synthesized several isomeric dipyridyl
diyne systems,”’ only one series, based on 3-amino-$-
alkynylpyridine, gave the polymerizable diynes 3a,b. Accord-
ingly, 3-amino-S-bromopyridine was coupled with trimethylsi-
lylacetylene under Sonogashira conditions, followed by
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Figure 1. Synthesis of fjord-edge nitrogen-doped graphene nanorib-
bons (fjord-edge N,[8]GNRs 1a,b).

Scheme 1. Synthesis of the 1,4-Bis(3-pyridyl)butadiynes
3a,b,d.
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acylation of amine § with the corresponding acid chlorides
(Scheme 1, R = i-Pr, n-Hex, Me). Removal of the trimethylsilyl
protecting group gave alkynyl amides 6a,b,d in good to
excellent yields. Oxidative coupling under the Hay conditions
afforded diyne amides 3a,b,d in good to high yields.

X-ray Structure. Crude diyne 3a afforded single crystals
after slow evaporation from methanol (Figure $28a,b).”" X-ray
diffraction at the Advanced Photon Source (APS) of the
Argonne National Lab (Figure $29) afforded a 1.0 A resolution
crystal structure of diyne 3a (Figure 2, Table S1).'

The crystal packing geometry for molecules of diyne 3a
validates the desired short, nonbonded C1—C4’ distance of
3.45 A (Figure 2a). The hydrogen bonds between the carbonyl

a)  ify .

Figure 2. (a) Crystal packing structure for diyne 3a displaying the
short C1—C4 distance directed by the C=O--H—N hydrogen-
bonded network. (b) View of 3a down the H-bonding axis.

oxygens and amide hydrogens have an optimal distance of 2.00
A, guiding the assembly of diyne units in 3a along the unit cell
vector a. The relative strength of these intermolecular
interactions is reflected in the crystal morphology and powder
diffraction (Figures S28 and S30). To accommodate the H-
bonding motif, the polymer growth axis exhibits a horizontal
offset between each molecule, organizing the diynes into an
optimal arrangement for topochemical polymerization (Figure
2b). While we were not able to obtain the single crystal
structure of 3b, its powder diffraction displayed a similar
packing arrangement to 3a (Figure S31).

Topochemical Polymerization of Diynes 3a,b. Both
dipyridyl diynes 3a,b quickly polymerized to dipyridyl PDAs
4a,b when subjected to UV light, as well as under ambient
light, whereas diyne 3¢ was unreactive. The polymerizations
were carried out by the irradiation of finely pulverized
dispersions of the crystals in hexanes using a medium pressure
Hanovia lamp (Pyrex filter), typically for 12 h, producing a
deep purple/black material. Dissolution of unreacted monomer
from the polymerized crystals gave the nearly insoluble,
pristine polydiacetylenes 4a,b (18 and 4%, respectively) as
fibrous powders after filtration. The low polymerization yield
for 3b appears to be inherent to this derivative, since repeated
attempts to increase yields by using nanocrystalline material
could not raise the conversion yield for this substrate.

Conversion of PDAs 4a,b to GNRs 1a,b. Thermal
conversion experiments were carried out in separate runs on
PDAs 4a,b under increasingly higher temperatures in argon.>'
This transformation could be conveniently monitored by CP/
MAS !3C solid state NMR, focusing on the four distinct carbon
signal ranges corresponding to the four functional groups of
interest (Figure 3b,c): amide carbonyls (160—170 ppm),
aromatic carbons (110—150 ppm), alkynyl carbons (~100
ppm), and amide side chains (10—40 ppm). As the PDAs 4a,b
were heated under increasingly higher temperatures (1h each
per run), the distinct '*C NMR signals tracked an initial Hopf
cyclization, as evidenced by the disappearance of the alkyne
peak at temperatures between 300 and 350 °C (Figure 3b,c).
Thus, the Hopf cyclization reactions of PDAs 4a,b occur more
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Figure 3. CP/MAS solid-state 13C NMR and Raman spectra for the
products obtained by heating PDAs 4a,b. Each heating experiment
was carried out for 1 h using a fresh sample of PDA. (a) PDAs 4a,b
and GNRs 1a,b are color-coded by chemical shift region to reflect
spectral changes in parts b and c. (b) PDA 4a conversion to fjord-
edge N,[8]GNR 1a, and (c) PDA 4b conversion to fjord-edge
N,[8]GNR 1b. The very broad, weak signal for the sample heated at
360 °C in part b is due to an air-stable z-radical intermediate formed
during heating,>” Baseline-corrected Raman spectra for the conversion
of (d) PDA 4a to fjord-edge N,[8]GNR 1a, and (e) PDA 4b to fjord-
edge N,[8]GNR 1b. The very weak Raman signal for the sample
heated at 330 °C in part d is due to the strong background
fluorescence of this sample, which was smoothed out through baseline
correction.

readily, ~100 °C lower than for our phenyl analogs.”® The
Hopf cyclization step is followed by further aromatization
reactions that form fjord-edge N,[8]GNRs la and 1b at
temperatures between 350 and 400 °C (Figure 3b,c), as
revealed by the changes in the overall envelope for the
aromatic signals between 110—150 ppm, which adopt an
underlying intensity ratio of 1:2:1 for both 1a and 1b (Figure

3b,c, Table la). Curve fitting of the experimental spectrum of
1b in the 110—150 ppm range with seven Gaussian curves of
equal intensity and width, representing the expected number of
aromatic "*C signals for fjord-edge N,[8]GNR 1b, affords the
fitted peaks in Table 1. These values compare rather well with
the calculated values for model compound 1e (Table 1b, top).
Furthermore, the clusters of peaks for the aromatic carbons for
each of the alternate possible model structures, i.e., 7c and 8¢
(Table 1b, middle and bottom), which are the structural
alternatives in the conversion of polydiacetylenes 4a,b to fjord-
edge N,[8]GNRs 1a,b (see discussion below and Figure S), do
not fit the experimental curve as well. In particular, structure 7¢
has its A,B peaks clustered around 144 ppm, which leaves a
large empty void between these peaks and the C—G peaks.
This gap is even wider for structure 8c, which has a ~20 ppm
gap between the clusters of A,B and C—G peaks. Thus, the
experimental CP/MAS "3C solid state NMR spectrum of fjord-
edge N,[8]GNR 1b matches best the calculated chemical shifts
of model structure le.

Furthermore, the convergence of both PDAs 4a and 4b to
identical aromatic peak shapes upon heating indicates that they
both likely undergo similar processes to form the same fjord-
edge N,[8]GNR core. Subsequent heating of 4a and 4b to
temperatures as high as 400 °C shows no change in the "*C
CP/MAS spectra, suggesting that the fjord-edge N,[8]GNRs
la,b have fully formed at 330 and 360 °C. These lower
conversion temperatures prevent side chain fragmentation,
unlike in our previous work on [8],GNR, which required
temperatures as high as 500 °C for full conversion.”

As expected, the presence of side chains in fjord-edge
N,[8]GNRs 1a,b increases their solubility to a small extent:
sonication in strongly hydrogen-bonding N-methyl-2-pyrroli-
done (NMP), followed by filtration through a 0.2 ym Teflon
membrane, gives yellowish solutions of fjord-edge N,[8] GNRs
lab (UV—vis, see Figure 527).%"

Raman Spectroscopy. The precursor PDAs 4a,b both
exhibit strong alkene peaks at 1494 and 1491 cm™/,
respectively, as well as alkyne peaks at 2117 and 2120 cm ™,
respectively, which are typical of the enyne backbone (Figure
3d,e, bottom traces). Upon heating, these signals disappear,
while the signature D and G peaks of GNRs lab appear
(Figure 3d,e, top traces). The Raman spectra for fjord-edge
N,[8]GNRs 1a,b show D peaks at 1360 and 1362 cm™!, and G
peaks at 1607 and 1608 cm™', respectively. The G peaks of
these GNRs are upshifted by ~30 cm™" from graphene (1580
cm™), due to the confined, strongly aggregated nature of
GNRs lab (see HR-TEM imaging, Figure S32).51 Prior
reports on GNRs show similar shifts in the D peak as well.>
Furthermore, the broad feature of the observed D peaks can be
attributed to the fjord-edge structure and the high levels of
site-specific heteroatom substitutions, as noted below.

Broadening of the D peak is generally caused by defects
within the graphene lattice.”*™° The fjord-edge GNRs 1a,b
have two inherent structural features that broaden the D peak
beyond previously reported GNR examples. Specifically, fjord-
edges represent bond vacancies along the edges of pristine
graphene. Broad D and G peaks are characteristic of a large
numbers of defects, which can also be seen in the all-carbon
fjord edge [8]GNR.”® Further broadening of the D peaks is
caused by distortion of the lattice from the nitrogen dopant.
Reports for both nitrogen doped graphene and top-down
synthesized doped GNRs have shown broad D peaks with
various levels of dopant atoms.””*® The bottom-up approach

https://dx.doi.org/10.1021/jacs.0c07657
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Table 1. Comparison of (a) the Curve-Fitted Experimental® Spectrum of Fjord-Edge N,[8]GNR 1b, and (b) Calculated *C

NMR Chemical Shifts for Model Structures le, 7c, and 8c.>'
a)

180 170 160 150

LN NN
[Tl
OTMOOmW>

R = NHCOCHg

140 130 120 110

Cc=0
T LI R | R LB T ]
180 170 160 150 140 110
A C DEF G
R — I i B R I
180 170 160 150 140 130 120 110
Carbon A B C D E F G
Fitted 6 143.5 139.7 136.5 134.5 132.5 129.4 125.4
le, calc 59¢ 142.6 138.0 1329 1313 130.6 128.5 128.7
7¢, calc 8¢ 144.0 143.6 131.6 129.4 128.2 124.4 123.6
8¢, calc 8¢ 150.3 150.0 129.4 1252 124.1 124.0 120.4

“The experimental CP/MAS "*C NMR spectrum is plotted as a solid black line, while the sum of the curve fits is a gray dashed line. bAverage of the
DFT calculated chemical shifts (GIAO/B3LYP//6-31G(d)) for each of the seven distinct, nonsymmetrically related carbons defined in part b).
Gaussian curves of arbitrary but constant width and height are displayed for better visualization of the groups of chemical shifts belonging to each of
the seven types of nonsymmetrically related carbons for each structure. “See Figures S39—S41.

of our synthesis incorporates higher levels of nitrogen doping,
10% by atom (based on core aromatic ring C,N,H atoms only),
which likely further accounts for the broad D peak.””

XPS Spectra. To confirm the formation of a fjord-edge
topology in compounds la,b, we examined the nitrogen
bonding environment present in GNRs 1la,b using XPS
spectroscopy (Figure 4). GNRs la)b should contain solely
pyridinic and amide nitrogens if the fjord edge structure is
exclusively formed. As expected, the XPS spectra of GNRs 1a,b

18096

show signatures corresponding to the pyridinic®”®" (398.7 eV)
and amide® (399.7 eV) bonding, and no other species (Figure
4). Notably, we do not see the presence of internal graphitic
(401.7 V)93 %or pyridinium species (402.5 €V),°>%°
which would indicate further cyclizations have occurred
beyond the fjord edge structure (see discussion below and
Figure S). Additionally, the retention of the side chain
substituents indicates that the alternate path of cyclization to
an edge-like topology (8), via intermediates 7a,b (Figures S

https://dx.doi.org/10.1021/jacs.0c07657
J. Am. Chem. Soc. 2020, 142, 18093—-18102
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Figure 4. N 1s XPS spectra for fjord-edge N,[8]GNR 1a and 1b, with
pyridinic and amide nitrogens centered at 398.7 and 399.7 eV,
respectively.
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Figure S. Two Hopf cyclization pathways for PDAs 4a,b, which can
occur at either the 4 or 6-positions of the pyridyl rings, resulting in the
nitrogen atoms being located at either internal (1a,b or 2,2**) or at
edge locations (7a,b or 8).

and 6), is unlikely to have occurred, in agreement with the
calculations, which show this pathway to be highly unfavorable
(see below). The increased width of the amide peak relative to
the pyridinic peak is consistent with conformational disorder in
the side-chains only. Together, these results all indicate that
the structure most consistent with the data is that of the fjord-
edge N,[8]GNRs 1a,b.

Conformation Preference, Cyclization Pathways, and
Reaction Barriers. The conformational preference in a model
system for the fjord-edge N,[8]GNR 1, R = NHCOMe) was
investigated with its two extreme cases, all-zigzag and helical
(see Section $4.8).>' The fjord edge structure of 1a,b imparts
strong steric repulsion between the pyridine nitrogen lone pairs
and the C—H bonds of adjacent diazachrysene units. Thus, the
two possible key conformations, all-zigzag (alternating up—
down pyridyl units) and helical (all pyridyl units staggered in a
nonalternating fashion) were calculated at the semiempirical
(PM3) and DFT (B3LYP) levels. The differences in energy
(35.9 and 60.2 kcal'mol™" for PM3 and B3LYP, respectively)
between the two conformers is very high, thus it is likely that
only the zigzag conformation exists in the fjord-edge
N2[8]GNRs 1a,b as represented in Figure 1.

There are two possible Hopf cyclization pathways for PDAs
4a,b (Figure S), which can afford fjord-edge GNRs with two
different topologies. The internal-like topology (1a,b) has the
nitrogen atoms opposite to C—H bonds of the next
“diazachrysene” units, while the edge-like topology has them
at the edges of the fjord-edge nanoribbons 7a,b, or the ensuing
N,[8]AGNR 8, since it can be expected that the amide side
chains should be easily lost from structure 7a,b under our
heating conditions. Unlike our previous work on [8],GNR,*
which forms the same structure regardless of the initial
cyclization pathway at the 2 or 4-positions of the PDAs’ m-
amidophenyl rings owing to subsequent thermally induced loss
of sidechains, cyclization at either the similarly related 4 or 6-
positions of the pyridyl rings in PDAs 4a,b could give two
different fjord-edge GNRs or a statistical mixture alternating
both pathways along the nanoribbon length. However,
cyclization at the 4-position should be strongly disfavored
owing to the severe steric clash between the amide groups and
adjacent pyridyl units during Hopf cyclization (structures 7a,b,
Figure S). Furthermore, aromatization to the edge-doped
armchair N,[8],GNR 8 should easily ensue if the edge-like
pathway is followed, resulting in total loss of the side chains.
This is not the case, based on our experimental data (CP/MAS
solid-state *C NMR and XPS, Figures 3 and 4). In fact,
cyclization appears to favor the 6-position, which produces the
lesser strained, internally doped fjord-edge N,[8]GNRs 1la,b
with their amide side chains pointing away from the series of
fused diazachrysene units. The transition state calculations
reported below lend further strong support for the fact that the
Hopf cyclization occurs at the 6-pyridyl positions to yield
fjord-edge N,[8]GNRs 1a,b.

To further understand the energetics and pathway of the
Hopf cyclization of PDAs 4a,b, we base our theoretical
considerations on previous results by Prall et al.’” and our own
work.”® The Hopf cyclization mechanism has been calculated
to proceed through an initial 67-electrocyclization, followed by
two consecutive [1,2]-H shifts, with the first H-shift as the
rate-determining step.”® As discussed above (Figure S), the
enediyne units of PDAs 4a,b can undergo cyclization at either
the 6-position (para to the amide group) or the 4-position
(ortho to the amide group), the latter of which is intuitively
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Figure 6. Free energies (in kcal-mol™") of the intermediates and transition states for both the favored (left) and disfavored (right) Hopf cyclization

pathways relative to starting structure 9.

unfavorable due to the large steric bulk of the amide group,
compared to only H in 1a,b (Figure S).

Using density functional theory (DFT), we computed the
geometries of the model system 9 (Figure 6), the transition
states for the initial 67 electrocyclizations (10 and 10’), the
strained allene intermediates 11 and 11’, and the transition
states for the rate-determining 1,2-shifts (12 and 12”). These
structures were optimized in the gas-phase using B3LYP/6-
31G(d), and single-point energy calculations were performed
using M06-2X/6-311+G(d,p) with B3LYP frequencies to
obtain free energy values. The potential energy surfaces for
the two cyclization pathways are shown in Figure 6.

The energetic trends for this bispyridyl system are similar to
the all-carbon system previously studied by us.’” As expected,
the barriers for cyclization at the 4-position are higher than
those at the 6-position. The activation free energies for the
more favorable transition states 10 and 12 are 48.1 and 54.7
kecal'mol™!, respectively, while the analogous transition states
10’ and 12’ have higher barriers of 51.3 and 60.0 kcal-mol™",
respectively. Like the all-carbon PDAs previously studied, the
1,2-shift following electrocyclization is the rate-determining
step in both pathways, and the preference for the pathway with
cyclization at the 6-position is substantial (5.3 kcal-mol™).
This energy difference virtually ensures that the analogous
series of cyclizations within PDAs 4a,b should occur
exclusively at the 6-positions (para to the amide group) of
the pyridyl rings.

The geometries of the transition states 10 and 10’ are similar
to each other and to their all-carbon variants. In 10 and 10,
the 7-system of the alkynes is planar, while the flanking pyridyl
groups are out-of-plane by approximately 30°. The slightly
higher barrier of 10’ is likely due to the close proximity of the
amide oxygen and methyl group on the forming C—C bond.

More ample differences can be seen between the rate-
determining states 12 and 12°. In 12, the quinoline
intermediate is planar, and the C6—HI1 bond stretches to
1.22 A from its normal C—H bond length of 1.09 A. However,
in the less-favorable transition state 12’, the bulky amide group
forces the quinoline out of plane, largely due to unfavorable
steric interactions between the amide oxygen and the shifting
hydrogen and adjacent methyl group, which accounts for the
intrinsic preference for the 6-position cyclization.

Calculations for the unsubstituted variant (no amide groups)
were also computed to probe the intrinsic preference for the 6-
position (Figure $35).>" The barriers of the rate-determining
1,2-shift for the unsubstituted system are 53.7 and 55.7 kcal-
mol ™" for the 6 and 4-positions, respectively, with less strong of
a preference (2.0 kcal'mol™') for the 6-position. Thus, the
increased preference for the 6-position in the substituted
system 9 can be wholly attributed to the unfavorable steric
interactions between substituents in the rate-determining
transition state structure 12’.

We note that the barrier of the rate-determining step in
pyridyl system 9 is ~3 kcal'mol™" lower than that of the all-
carbon system, which correlates well with the ~100 °C lower
conversion temperature for this N-based system.

Electronic Properties of Fully Cyclized N,[8],GNR. In
order to better understand the electronic properties of the fully
cyclized (graphitic) N,[8],GNR system 2c, we calculated the
electronic Density of States (DOS) for the parent systems lc
and 2c by means of periodic DFT (Figures 1 and 7).”' The
DOS of 1¢ and 2c¢, obtained from the HSE06 functional on the
basis of PBE geometries,”*” are depicted in Figure 7. As we
can see, fjord-edge N,[8]GNR 1lc is expected to be a
semiconductor, with a bandgap of 2.04 eV (Figure 7a). Fully
cyclized N,[8],GNR 2c clearly displays metallic behavior, as
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Figure 7. DOS plots calculated at the HSE06 level for (a) fjord-edge
GNR 1c and (b) fully cyclized N,[8],GNR 2c. The inset shows a 3D
representation of the partial charge density at the Fermi level in the
[-0.2, 0.2] eV range for 2c.

indicated by the continuous DOS landscape at the Fermi level
depicted in Figure 7b. Notice that the HSE06 results are in
agreement with the results at the PBE level of theory (Figure
$37).”' Namely, both predict 2¢ to be metallic and 1c to be a
semiconductor, although the band gap predicted by PBE is
smaller than by HSE06 (1.43 eV vs 2.04 eV, respectively), as
expected from the DFT delocalization error.”” Furthermore,
bond-equalization of many of the carbon—carbon bonds within
the structure of fully fused N,[8],GNR 2c, unlike those in
fjord edge structure 1c (Figure $38),”' indicates that
N,[8]4GNR 2c has quinoid character, which incites its
metallic nature. This fact is in agreement with the charge
density at the Fermi level, which exhibits a delocalized 7-
character (Figure 7b, inset).

These calculations indicate that experimental isolation of the
fully cyclized, metallic N,[8],GNRs 2a,b could be challenging,
and despite our best efforts so far, this step is awaiting further
work. Formation and characterization of these novel, exciting
graphene nanoribbons is currently under investigation.

B CONCLUSION

In summary, we have demonstrated the synthesis of a novel
fjord-edge N,[8]GNR system with site-specific nitrogen
substitution. The stepwise conversion from dipyridyl diynes
3a,b to the nitrogen doped, fjord edge N,[8]GNRs 1a,b via
topochemical polymerization of PDAs 4a,b, followed by Hopf
cyclizations to the GNRs, proceeded at relatively moderate
temperatures of 330—360 °C. The formation of the fjord-edge
structure in the GNRs 1a,b was confirmed via CP/MAS *C
NMR, XPS, and Raman spectroscopy. The success of our
bottom-up method demonstrates the versatility of the
crystalline state topochemical polymerization method to
incorporate heteroatom substitution and structural diversity
into GNR structures.
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