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Abstract—Consider a social learning problem in a parallel
network, where N distributed agents make independent selfish
binary decisions, and a central agent aggregates them together
with a private signal to make a final decision. In particular, all
agents have private beliefs for the true prior, based on which they
perform binary hypothesis testing. We focus on the Bayes risk of
the central agent, and counterintuitively find that a collection of
agents with incorrect beliefs could outperform a set of agents with
correct beliefs. We also consider many-agent asymptotics (i.e., N
is large) when distributed agents all have identical beliefs, for
which it is found that the central agent’s decision is polarized
and beliefs determine the limit value of the central agent’s risk.
Moreover, it is surprising that when all agents believe a certain
prior-agnostic constant belief, it achieves globally optimal risk as
N → ∞.

I. INTRODUCTION

When individuals are asked to make a decision, they often
consider the decisions made by others (e.g., online reviews)
in addition to their own assessment, cf. [1]. With technology-
mediated social influence becoming much more prevalent,
there is growing interest in understanding social wisdom or
social learning from a theoretical perspective. Social learning,
often referred to as observational learning, is such a scenario
where individuals interact and learn from others’ decisions as
well as their own private signal. Here, we study a Bayesian
social learning problem in a parallel network, where N dis-
tributed agents make decisions to minimize their own Bayes
risk, and the decisions are sent to the central agent. The central
agent aggregates these N prior decisions and its own private
signal to make a decision, e.g., whether to buy or not.

Social learning has been widely studied by many commu-
nities with different flavors. In economics, a seminal result is
so-called information cascade [2]–[4] for a tandem of agents,
where the agents observe the history of decisions made by
preceding agents. As a result of Bayesian decision making,
an information cascade occurs, i.e., agents after some point
ignore their private signal and herd on the previous agent’s
(possibly incorrect) decision. Herding happens due to bounded
informativeness of private signals (such as a binary signal),
which are not sufficiently informative to counter biased prior
decisions [5]. There are a variety of extensions to the basic
social learning setting, for example, over networks [6] and
with noisy history [7].

Another line of work is in distributed inference, where a
central fusion agent collects local decisions from distributed
agents and makes a final decision [8], [9]. The link between
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Fig. 1. The parallel network model.

the distributed nodes and the fusion center could be rate-
limited [10], imperfect [11], [12], or with memory [13]. It
is also common to consider learning behavior and study its
convergence speed. The simplest setting is a tandem network,
also called serial detection, [14]–[16]. For a general network,
every vertex agent in a network can identify the unknown
hypothesis by repeating local belief exchanges [17]–[21].

In our previous research [22], we studied a tandem of agents
that have private prior beliefs on the hypothesis that are not
necessarily identical to the true prior, i.e., each agent has a
perceived belief of the prior. Focusing on the Bayes risk of
the last agent of the tandem, one might have thought that
beliefs identical to the prior would achieve the smallest Bayes
risk, since prior decisions are locally Bayes-optimal and the
last agent does not misunderstand them. However, we found
that a certain combination of incorrect beliefs achieves smaller
Bayes risk. Here we consider a parallel network with the same
setting—each agent has a perceived belief of the prior, and
the focus is on the Bayes risk of the central agent. As will be
seen, a certain combination of incorrect beliefs outperforms the
case of agents all having the true prior. Moreover, assuming
homogeneous distributed agents with identical beliefs and
focusing on asymptotics when N → ∞, we further find that
the central agent makes a certain decision with probability
1. Surprisingly, it is asymptotically optimal that all agents
have the belief such that decision thresholds are exactly the
middle between two hypotheses, e.g., all agents believe both
hypotheses are equally likely if costs are equal.

II. PROBLEM DESCRIPTION AND BELIEF UPDATE

A. Problem Model

Consider a parallel network, depicted in Fig. 1, consisting
of N distributed agents and a single central agent, denoted
as agent 0. The underlying binary hypothesis, H ∈ {0, 1},
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follows the prior P[H = 0] = p0 and P[H = 1] = p̄0 , 1−p0,
which is unknown to the agents. Instead of the unknown p0,
each agent i ∈ {0, 1, . . . , N} believes qi is the true prior.
Each agent receives the private signal Yi = H + Zi, where
Zi is taken as an independent standard Gaussian noise for
brevity of presentation. We assume that correct decisions incur
no cost and the costs for false alarm (or type I error, i.e.,
choosing Ĥ = 1 when H = 0) and missed detection (or type
II error, i.e., choosing Ĥ = 0 when H = 1) are cFA and cMD,
respectively. In addition, we assume that all agents share the
same costs so they are a team in the sense of Radner [23].
Agents are Bayes-rational so make decisions that minimize
perceived Bayes risk, i.e.,

Ri,[i] = cFAqipĤi|H(1|0)[i] + cMD(1− qi)pĤi|H(0|1)[i], (1)

where subscript [i] indicates quantities ‘seen’ by agent i as if qi
is the true prior. When the quantity does not have [i], it implies
the quantity seen by an oracle aware of (p0, q0, q1, . . . , qN ).

To simplify notation, we use xN = (x1, . . . , xN ) to denote
a tuple of length N , and xN−i = (x1, . . . , xi−1, xi+1, . . . , xN )
to denote the tuple excluding the ith element. All logarithms
are natural logarithms. We use p, f to denote probability mass
functions and probability density functions, respectively. Q(x)
is defined to be the complementary cumulative distribution
function of the standard Gaussian,

Q(x) =

∫ ∞
x

φ(t; 0)dt,

where φ(·;µ) is the probability density function of Gaussian
with mean µ and unit variance.

B. Belief Update

It is easy to see that the likelihood ratio test (LRT) as if qi
is the true prior minimizes (1), that is, for i ∈ {1, . . . , N}, the
following test minimizes Ri,[i]:

fYi|H(yi|1)

fYi|H(yi|0)

Ĥi=1

≷
Ĥi=0

cFAqi
cMD(1− qi)

. (2)

Noting that fYi|H(yi|h) is Gaussian with mean h and
unit variance, (2) can be simplified to decision threshold
λi , λ(qi),

yi
Ĥi=1

≷
Ĥi=0

λ(qi) ,
1

2
+ log

(
cFAqi

cMD(1− qi)

)
. (3)

Therefore for distributed agents, the conditional error proba-
bilities are

pĤi|H(1|0) =

∫ ∞
λi

φ(t; 0)dt = Q(λi),

pĤi|H(0|1) =

∫ λi

−∞
φ(t; 1)dt = 1−Q(λi − 1) = Q(1− λi),

where the last equality follows from the property that Q(x) =
1−Q(−x).
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Fig. 2. Updated belief for possible decisions.

The central agent with belief q0 has access to all decisions
made by distributed agents, so its LRT, given (y0, ĥ1, . . . , ĥN )
is

fY0,ĤN |H(y0, ĥ
N |1)

fY0,ĤN |H(y0, ĥN |0)

Ĥ0=1

≷
Ĥ0=0

cFAq0
cMD(1− q0)

.

Since Y0, Ĥ1, . . . , ĤN are independent conditioned on H ,

fY0,ĤN |H(y0, ĥ
N |h) = fY0|H(y0|h)

N∏
i=1

pĤi|H(ĥi|h).

Here pĤi|H is a function of qi only, however, the central agent
recognizes q0 is the prior. Hence, the agent computes pĤi|H
as if distributed agents performed hypothesis testing (2) with
q0. It leads to the following LRT1

fY0|H(y0|1)

fY0|H(y0|0)

Ĥ0=1

≷
Ĥ0=0

cFAq0
cMD(1− q0)

N∏
i=1

pĤi|H(ĥi|0)[0]

pĤi|H(ĥi|1)[0]
. (4)

Since x/(1−x) is monotonically increasing in x ∈ (0, 1), we
can interpret (4) as a new LRT with updated belief q′0,

fY0|H(y0|1)

fY0|H(y0|0)

Ĥ0=1

≷
Ĥ0=0

cFAq
′
0

cMD(1− q′0)
, (5)

where q′0 is defined so that

q′0
1− q′0

=
q0

1− q0

N∏
i=1

pĤi|H(ĥi|0)[0]

pĤi|H(ĥi|1)[0]
. (6)

Finally, the true Bayes risk of the central agent is

R0 = cFAp0pĤ0|H(1|0) + cMDp̄0pĤ0|H(0|1), (7)

with

pĤ0|H(ĥ0|h) =
∑
ĥN

pĤN ,Ĥ0|H(ĥN , ĥ0|h).

III. RESULTS FOR FINITE N

A. Belief Update

As stated, the central agent adopts the new LRT based on
the updated belief q′0 as in (5). Fig. 2 depicts the updated
belief q′0 in (6) for possible decisions for N = 2, 3. The

1Again, the subscript [0] denotes the value that the central agent thinks.

1266

Authorized licensed use limited to: University of Illinois. Downloaded on July 16,2021 at 18:34:17 UTC from IEEE Xplore.  Restrictions apply. 



0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Fig. 3. Risk contour for N = 2 at p0 = 0.3, q0 = 0.7372, cFA = cMD = 1.

curves indicate how observing local decisions changes the
central agent’s belief. In addition, q0 changes significantly
when local agent decisions differ from what the central agent
expects. For example in Fig. 2(b), when q0 is small the central
agent believes H is highly likely to be 1. However, observing
(ĥ1, ĥ2, ĥ3) = (0, 0, 0), his updated belief approaches 1 so he
now believes H is highly likely to be 0. On the other hand,
observing (ĥ1, ĥ2, ĥ3) = (1, 1, 1) he confirms the small q0 and
enhances it so q′0 < q0 after (ĥ1, ĥ2, ĥ3) = (1, 1, 1).

It is noteworthy that the updated belief curves are not
monotonic in q0 for each set of prior decisions. In a tandem
network [22, Fig. 2 and Thm. 3], it is shown that the update
equation (6) for N = 1 preserves the ordering of beliefs,
i.e., the updated belief is always monotonically increasing in
q0. However, this is no longer true in the parallel case as
illustrated in Fig. 2 when multiple local decisions are taken
into account. This is because q0/(1− q0) is increasing in q0,
whereas pĤi|H(ĥi|0)[0]/pĤi|H(ĥi|1)[0] is decreasing in q0 for
both ĥi = 0, 1. So the reversal of ordering takes place when the
multiplicative terms in the right side of (6) are strong enough
to counter the increment of q0/(1− q0) term.

B. Optimal Beliefs

Following the LRTs (2) and (4), agents declare decisions
that appear in R0 according to (7). Clearly R0 is a function
of (q0, q1, . . . , qN ) for given p0 and costs. One might think
that R0 achieves its minimum when each agents knows the
true prior, i.e., at p0 = q0 = q1 = · · · = qN , since distributed
agents make the best decisions and the central agent does not
misunderstand them. However, this turns out to be false.

Recall that local decisions are independent conditioned on
H , which implies that PĤ0|H(ĥ0|h) in (7) can be rewritten as

pĤ0|H(ĥ0|h) =
∑
ĥN

(
N∏
i=1

pĤi|H(ĥi|h)

)
pĤ0|H,ĤN (ĥ0|h, ĥN ).
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(a) cFA = cMD = 1
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Fig. 4. Optimal beliefs that minimize R0 for several N . The curves for
N = 2, 3 are found by exhaustive search, and curves for N = 5, 10 are by
assuming q1 = q2 = · · · = qN .

Therefore (7) can be expressed as

R0 = cFAp0
∑
ĥN

(
N∏
i=1

pĤi|H(ĥi|0)

)
pĤ0|H,ĤN (1|0, ĥN )

+ cMDp̄0
∑
ĥN

(
N∏
i=1

pĤi|H(ĥi|1)

)
pĤ0|H,ĤN (0|1, ĥN ). (8)

Theorem 1. Let (q∗0 , q
∗
1 , . . . , q

∗
N ) be the optimal belief tuple

that minimizes R0. Then, the following necessary condition
holds: (q∗0 , q

∗
1 , . . . , q

∗
N ) is the solution to

qj
1− qj

=
p0

1− p0
A

(j)
1 −A

(j)
0

B
(j)
0 −B

(j)
1

, ∀j ∈ {1, . . . , N} (9)

where

A
(j)
h =

∑
ĥN
−j

(
pĤi|H(ĥi|0)

)
pĤ0|H,ĤN

−j ,Ĥj
(1|0, ĥN−j , h),

B
(j)
h =

∑
ĥN
−j

(
pĤi|H(ĥi|1)

)
pĤ0|H,ĤN

−j ,Ĥj
(0|1, ĥN−j , h).

Proof: Differentiating (8) with respect to decision thresh-
old λj and rearranging terms give the claim. See [24] for
details.

Quantities A(j)
h , B

(j)
h are the false alarm and missed detec-

tion probabilities of the central agent conditioned on ĥj = h,
therefore independent of qj . Thm. 1 can be thought of as a
balance condition that the optimal initial beliefs must satisfy
between error probabilities. Clearly, the value A

(j)
1 −A

(j)
0

B
(j)
0 −B

(j)
1

is not
1 in general, thus, q∗i 6= p0 in general. Fig. 3 illustrates optimal
beliefs for N = 2, cFA = cMD = 1, and p0 = 0.3. The
central agent’s initial belief is given by q0 = 0.7372, at which
R0 attains its minimum from Fig. 4. Clearly, biased beliefs
q1 = q2 = 0.3960 with R0 = 0.1918 outperforms context-
aware distributed agents p0 = q1 = q2 with R0 = 0.2039.
Also note that when p0 = q1 = q2 = q0 (not shown in Fig. 3),
it gives R0 = 0.1976, strictly worse. Another interesting
implication of Fig. 4 is that optimal beliefs become closer
to cMD

cFA+cMD
as N grows for the entire range of p0. It suggests

that setting qi = cMD

cFA+cMD
for all i ∈ {0, 1, . . . , N} would be
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asymptotically optimal as N grows. This will be rigorously
proven in Thm. 5 in the risk exponent sense.

The global optimization problem for R0 belongs to neither a
convex class nor any analytically solvable classes, as far as we
know. A popular numerical approach for this is the person-by-
person optimization (PBPO) that optimizes only one variable
at a time with other variables being fixed, e.g., [25], [26]. It
is also applicable for our setting. Before stating an algorithm,
note the coordinate-wise convexity of R0.

Lemma 1. R0 is strictly convex in pĤj |H(1|0), j ∈
{0, 1, . . . , N} when other quantities are fixed.

Proof: Focusing on agent j 6= 0 and rearranging (8) in
terms of pĤj |H(1|0) and pĤj |H(1|1),

R0 = cFAp0pĤj |H(1|0)
(
A

(j)
1 −A

(j)
0

)
+ cFAp0A

(j)
0

− cMDp̄0pĤj |H(1|1)
(
B

(j)
0 −B

(j)
1

)
+ cMDp̄0B

(j)
0 .

Now recall what A(j)
h , B

(j)
h stand for—A

(j)
h (or B(j)

h ) is the
false alarm (or missed detection) probability of the central
agent conditioned on ĥj = h. Also recall that conditioning on
ĥj = 0 increases the central agent’s initial belief, which in turn
implies the decision threshold also does, whereas conditioning
on ĥj = 1 decreases the decision threshold. Since the false
alarm probability is decreasing in the decision threshold, we
can conclude that A

(j)
1 − A

(j)
0 is nonnegative always. A

similar argument for missed detection shows B(j)
0 − B(j)

1 is
nonnegative. Finally the fact from the property of a receiver
operating curve [27] that pĤj |H(1|1) is strictly concave in
pĤj |H(1|0) yields the convexity in pĤj |H(1|0).

For pĤ0|H(1|0), it can be shown similarly.
Therefore, a convex optimization algorithm with respect

to {pĤj |H(1|0)}j numerically finds the PBPO solution
{pĤj |H(1|0)}j , which in turn implies the PBPO solution
(q0, q1, . . . , qN ) since they are continuous bijection. Coor-
dinated gradient descent with Gauss-Seidel update in the
following solves the PBPO:

1) Initialize qi for i = 0, 1, . . . , N arbitrarily.
2) For each i ∈ {1, . . . , N}, update pĤi|H(1|0) to

pĤi|H(1|0)′ (so update qi to q′i as well) assuming
{pĤj |H(1|0)′}i−1j=1, {pĤj |H(1|0)}Nj=i+1, q0 are all fixed.
Then, update q0 to q′0 assuming {pĤj |H(1|0)′}j≤N are
fixed.

3) Repeat 2) until (q0, q1, . . . , qN ) converges.
The algorithm exhibits monotone decreasing R0 over each
iteration in Step 2), hence, converges. Once the convergence
occurs, there is no decrease in R0 along any ith direction and,
therefore, attains either a local minimum or a saddle point
[28]. Repeating Step 1)–3) a number of times and selecting
the solution that yields the least risk yields the global solution.

Since distributed agents’ observations are i.i.d., the assump-
tion of identical distributed beliefs is often made. Although
this does not in general guarantee global optimality [29], it
greatly simplifies numerical computation. Note that the fixed
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Fig. 5. (a) Belief polarization (10) for N = 100 with q1 =
· · · = q100 = 0.4. (b) Beliefs partition by limiting value of R0 ∈
{0, cFAp0, cMDp̄0}. The optimal points for large N suggested by Fig. 4,
i.e.,

(
cMD

cFA+cMD
, . . . , cMD

cFA+cMD
, cMD
cFA+cMD

)
, are drawn in dotted line.

point in Fig. 4, i.e., p0 = q∗0 = q∗1 = . . . = q∗N , is at cMD

cFA+cMD
.

Restricting to identical distributed beliefs, we can prove that
this is globally optimal. Before stating it, note a useful property
of (9). Due to page limitation, proof is provided in [24].

Lemma 2. The right side of (9) is strictly decreasing in qi,
i ∈ {1, . . . , N} with other parameters being fixed.

Then, the fixed point theorem follows.

Theorem 2. Being aware of the true prior attains the globally
minimal R0 when p0 ∈ {0, cMD

cFA+cMD
, 1}, i.e., p0 = q∗0 = q∗1 =

· · · = q∗N when p0 ∈ {0, cMD

cFA+cMD
, 1}.

Proof: The cases p0 ∈ {0, 1} are trivial so focus on p0 =
cMD

cFA+cMD
. At this q∗i , each agent takes initial decision threshold

λi = 1/2 by (3). It implies by symmetry that

pĤi|H(1|0) = pĤi|H(0|1) and pĤi|H(0|0) = pĤi|H(1|1).

Furthermore, the central agent’s initial threshold is also 1/2
so that

pĤ0|H,ĤN
−j ,Ĥj

(1|0, ĥN−j , h) = pĤ0|H,ĤN
−j ,Ĥj

(0|1, (ĥN−j)′, h′),

where (·)′ stands for a flip of decision. Hence, A(j)
1 =

B
(j)
0 , A

(j)
0 = B

(j)
1 , and (9) hold. Since the right side of (9) is

decreasing along the q1 = · · · = qN direction, the solution is
unique.

IV. MANY HOMOGENEOUS DISTRIBUTED AGENTS

In this section, we consider asymptotic global optimality
when N → ∞. To this end, we begin with homogeneous
distributed agents assumption, i.e., q1 = · · · = qN , but q0
being arbitrary, and will end up with q0 = q1 = · · · = qN .
Recall the results for finite N that optimal beliefs q∗0 , q

∗
i are

dependent on p0 so the system designer must be context-aware
to attain the least Bayes risk. However, unlike finite N , simply
setting q0 = q1 = · · · = qN = cMD

cFA+cMD
without knowledge of

p0 is asymptotically optimal, among all (possibly nonidentical)
beliefs as in Thm. 5.

Theorem 3. When q1 = · · · = qN , the updated belief (6) of
the central agent approaches either 0 or 1 almost surely as
N →∞.
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TABLE I
ASYMPTOTIC RISK OF THE CENTRAL AGENT AS A FUNCTION OF INITIAL

BELIEFS.

z1z
Q(λ1)
2 z1z

Q(λ1−1)
2 Resulting R0

CASE 1 > 1 < 1 0
CASE 2 < 1 < 1 cFAp0
CASE 3 > 1 > 1 cMDp̄0
CASE 4 < 1 > 1 impossible

Proof. Consider the belief update formula (6) for
(ĥ1, . . . , ĥN ) and define a random variable r1 to be the
ratio of 1 decisions in ĥN , i.e., r1 , # of ones in ĥN

N . Then, by
algebra, we can write

q′0
1− q′0

=
q0

1− q0

N∏
i=1

pĤi|H(ĥi|0)[0]

pĤi|H(ĥi|1)[0]
=

q0
1− q0

(z1z
r1
2 )

N
,

where

z1 ,
pĤi|H(0|0)[0]

pĤi|H(0|1)[0]
, z2 ,

pĤi|H(0|1)[0]

pĤi|H(0|0)[0]
·
pĤi|H(1|0)[0]

pĤi|H(1|1)[0]
.

Here z1, z2 are dependent only on q0 since they are perceived
quantities by the central agent. In addition, ĥ1, . . . , ĥN are N
i.i.d. copies of Bernoulli random variable with P[ĥi = 1|H =
0] = Q(λ1) if H = 0, and P[ĥi = 1|H = 1] = Q(λ1 − 1) if
H = 1. This implies that

r1 →

{
Q(λ1) if H = 0,

Q(λ1 − 1) if H = 1,

almost surely as N grows. Hence, the right side converges to

q′0
1− q′0

=


q0

1−q0

(
z1z

Q(λ1)
2

)N
if H = 0

q0
1−q0

(
z1z

Q(λ1−1)
2

)N
if H = 1

(10)

almost surely. Depending on the value to be exponentiated,
the right side approaches either 0 or ∞. Therefore we can
conclude that the updated belief is polarized using the fact that
x/(1− x) : (0, 1) 7→ (0,∞) is monotonic in x ∈ (0, 1).

Thm. 3 reveals an interesting fact that when N is large, the
central agent makes a decision either 0 or 1 almost surely,
in other words, the decision is asymptotically deterministic,
as a function of q1 and q0 no matter what value the private
signal takes. Updating the belief, the central agent could make
a correct decision always if q′0 = 1 when h = 0 and q′0 = 0
when h = 1. Tab. I summarizes, and corresponding regions are
depicted in Fig. 5(b) with limiting values of R0. The shaded
region in Fig. 5(b) achieves R0 = 0 asymptotically for all p0.
Clearly the shaded region contains cMD

cFA+cMD
= q0 = q1 = · · · =

qN for any cFA, cMD, at which R0 is asymptotically minimized
regardless of p0 as suggested numerically by Fig. 4.

Finally, we can also derive the speed of risk convergence
to its limiting value in Fig. 5(b). To explicitly denote de-
pendency on N , let R(N)

0 be the risk of the central agent
with N distributed agents and R

(∞)
0 , limN→∞R

(N)
0 ∈

{0, cFAp0, cMDp̄0}. Then, the next theorem shows that R(N)
0 →

R
(∞)
0 exponentially fast in N , that is,

β , − lim
N→∞

1

N
log
(
R

(N)
0 −R(∞)

0

)
is strictly positive.

Theorem 4. Suppose (q0, q1) satisfies CASE 1, 2, or 3, that
is, (q0, q1) strictly belongs to one of the regions in Fig. 5(b).
Then, β is strictly positive and finite.

Proof: Proof is mainly based on the concentration in-
equality of i.i.d. Bernoulli random variables and Chernoff
approximation of the Q function. Details are in [24].

Returning to the result of finite N in Fig. 4, two important
observations can be made. The first is that we cannot achieve
the smallest Bayes risk if p0 is unknown since the optimal
beliefs are functions of p0. The other is that the optimal beliefs
converges to cMD

cFA+cMD
as N grows, although curves for N =

5, 10 in Fig. 4 are drawn under q1 = · · · = qN assumption.
Denote the optimal risk exponent over all possible decision

rules, not necessarily homogeneous nor LRTs, by

β∗ , sup

(
− lim
N→∞

1

N
logR

(N)
0

)
,

where the supremum is over all decision rules. Unlike obser-
vations for finite N , the next theorem states that β∗ can be
attained simply by setting q0 = q1 = · · · = qN = cMD

cFA+cMD
for

any p0.

Theorem 5. Suppose q0 = q1 = · · · = qN = cMD

cFA+cMD
. Then

the LRT asymptotically achieves β∗ as N →∞. Furthermore,

β∗ = C(Bern(Q(0.5)),Bern(Q(−0.5))) ≈ 0.0793,

where C(·, ·) is the Chernoff information.

Proof: The result of [29] is the mainstay of this proof.
We show the claims by careful comparison with our model.
Details are in [24].

The scaling trick used in the proof of Thm. 5 also yields
the following corollary.

Corollary 1. The optimal risk exponent, β∗, is independent
of values of p0, cFA, cMD and the presence of Y0.

V. CONCLUSION

This work investigates a social learning problem in a parallel
network and mainly focuses on optimal beliefs. As in a tandem
network [22], the optimal belief tuple that minimizes the
central agent’s Bayes risk is in general different from the tuple
of true priors. The setting of many homogeneous distributed
agents is also investigated. As suggested from Fig. 4 for
finite number of agents, the optimal beliefs are asymptotically
cMD

cFA+cMD
as N → ∞ no matter what the true prior is. Also

from the fact that the central agent’s decision polarizes, belief
partition depending on limit of Bayes risk is depicted in
Fig. 5(b). It is also shown that the risk converges to its limiting
value exponentially fast.
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