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Abstract 15 

This study investigates the potential effects of historical deforestation in South America 16 

using a regional climate model driven with reanalysis data. Two different sources of data 17 

were used to quantify deforestation during 1980-2010s, leading to two scenarios of forest 18 

loss, smaller but spatially continuous in Scenario 1 and larger but spatially scattered in 19 

Scenario 2. The model simulates a generally warmer and drier local climate following 20 

deforestation. Vegetation canopy becomes warmer due to reduced canopy evapotranspiration, 21 

and ground becomes warmer due to more radiation reaching the ground. The warming signal 22 

for surface air is weaker than for ground and vegetation, likely due to reduced surface 23 

roughness suppressing the sensible heat flux. For surface air over deforested areas, the 24 

warming signal is stronger for the nighttime minimum temperature and weaker or even 25 

becomes a cooling signal for the daytime maximum temperature, due to the strong radiative 26 

effects of albedo at midday, which reduces the diurnal amplitude. The drying signals over 27 

deforested areas include lower atmospheric humidity, less precipitation, and drier soil. The 28 

model identifies the La Plata basin as a region remotely influenced by deforestation, where 29 

a simulated increase of precipitation leads to wetter soil, higher ET, and a strong surface 30 

cooling. Over both deforested and remote areas, the deforestation-induced surface climate 31 

changes are much stronger in Scenario 2 than Scenario 1; coarse resolution data and models 32 

(such as in Scenarios 1) cannot represent the detailed spatial structure of deforestation and 33 

underestimate its impact on local and regional climates. 34 
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1. Introduction 35 

The Amazon rainforest is one of the largest carbon pools on Earth, which stores 36 

approximately 150-200 Pg C in living biomass and soils (Feldpausch et al., 2012), and plays 37 

a crucial role in the regional and global water, energy, and carbon cycles (Houghton et al., 38 

2000; Brienen et al., 2015; Cavalcante et al., 2019). However, more than 20% of Amazon 39 

forest has been replaced by pasture and cropland since the early 1970s (Fearnside, 2005; 40 

Davidson et al., 2012; Souza-Filho et al., 2016). After decades of severe deforestation, the 41 

rate of forest loss slowed down between 2004 and 2012, mostly due to Forest Code changes 42 

in Brazil (Soares-Filho et al., 2014; Alves et al., 2017; Rochedo et al., 2018). However, since 43 

2012, the deforestation rate has picked up again due to relaxed policy and accelerated 44 

agricultural development, putting the Amazon ecosystem at risk (Tollefson, 2016). For 45 

example, the annual deforestation area decreased from 19000 km2 in 2005 to 4500 km2 in 46 

2012, and rebounded to 5900 km2 in 2013 (Prodes, 2013). 47 

Land cover change modifies the surface water and energy budgets through several 48 

mechanisms (Swann et al., 2015; Wang et al. 2016b). Converting forest to cropland and 49 

grassland increases surface albedo, which tends to cool the surface through reduced 50 

absorption of solar radiation. On the other hand, the reduction of leaf area and canopy 51 

interception, as well as the loss of moisture-tapping deep roots in the dry season, all 52 

contribute to reducing evapotranspiration, which tends to increase surface temperature. In 53 

addition, deforestation-induced decrease of surface roughness reduces the turbulent transport 54 

of heat to atmosphere, which also induces a surface warming effect (Lejeune et al., 2015). 55 
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There is a high degree of consensus among previous modeling studies that deforestation in 56 

the Tropics leads to higher temperature, as the loss of evaporative cooling is dominant over 57 

the radiative effect of albedo changes (Lean & Warrilow, 1989; Malhi et al., 2008; Swann et 58 

al., 2015). Taking a space-for-time approach, many observational studies found a warming 59 

effect of deforestation by comparing temperature between cleared land and nearby forests 60 

(e.g., Duveiller et al. 2018; Cohn et al. 2019) with a stronger signal during daytime than at 61 

night (e.g., Li et al. 2015; Alkama and Cescatti 2016; Schultz et al. 2017). The asymmetric 62 

effects (and therefore the amplification of temperature diurnal cycle) found in observational 63 

studies may be partly due to the space-for-time approach not being able to account for the 64 

cloud effects related to atmospheric feedback (Chen and Dirmeyer 2020). A notable recent 65 

study (Zeppetello et al. 2020) analyzed daytime temperature from satellite observations in 66 

areas that were forest in 2003 and open land in 2018 and found a significant warming signal 67 

that increases with the size of the deforestation patch. 68 

The impact of deforestation is not limited to the surface. Evapotranspiration is an 69 

important source of moisture supply for precipitation in the Amazon Basin, accounting for 70 

15-50% of total Amazonian rainfall (Zemp et al. 2017; Van der Ent et al. 2010; Eltahir and 71 

Bras 1994; Satyamurty et al. 2013). The deforestation-induced reduction of 72 

evapotranspiration in the dry season can weaken regional atmospheric moisture recycling 73 

and reduce precipitation, which may trigger a positive vegetation-precipitation feedback that 74 

could drive forest loss in regions where the local climate approaches the water and 75 

temperature thresholds of existing vegetation (Da Rocha et al. 2009; Van der Ent et al. 2010; 76 
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Wang et al., 2011; Zemp et al. 2017). 77 

The impact of deforestation on precipitation is subject to a large degree of uncertainty 78 

and depends on the scale and location of the forest loss. Most modeling studies on idealized 79 

large-scale deforestation in the Amazon region found a decrease of precipitation (e.g., Lean 80 

& Warrilow, 1989; Gedney & Valdes, 2000; Nobre & Borma, 2009; Sampaio et al., 2007). 81 

However, small-scale patches of deforestation that are common in tropical rainforests could 82 

increase cloudiness and precipitation through thermally induced mesoscale circulations 83 

(Baidya Roy & Avissar, 2002; Wang et al., 2009; Lawrence & Vandecar, 2015; Khanna et al., 84 

2017). As the spatial extent of deforestation increases beyond a certain level, the thermal 85 

triggering may weaken and shift to a dynamically driven hydroclimate regime, leading to an 86 

enhancement of convection in the downwind region and a suppression of convection in the 87 

upwind region (Patton et al., 2005). Khanna et al. (2017) suggested that the extent of Amazon 88 

deforestation may have crossed the threshold for the thermal-to-dynamic transition of the 89 

hydroclimate regime.  90 

Monitoring the magnitude of deforestation in the Amazon is challenging, due to 91 

difficulties in identifying temporal thresholds and spatial scales, integrating field and satellite 92 

datasets, as well as evaluating spatial impact and intensity (Herold et al., 2011). Quantifying 93 

the extent of historical deforestation involves further challenges. Skole & Tucker (1993) 94 

estimated deforestation over the Brazilian Amazon Basin from 1978 to 1988 through Landsat 95 

satellite data of 1978 and 1988. Since the launch of the Moderate Resolution Imaging 96 
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Spectroradiometer (MODIS) in 2000, it has been widely used as the main approach to 97 

vegetation remote sensing in the Amazon (Huete et al., 2002). MODIS-derived deforestation 98 

was verified through comparison with Landsat-derived deforestation estimates (Morton et 99 

al., 2005) and annual deforestation data derived from the Amazon Deforestation Monitoring 100 

Project (PRODES) (Hansen et al., 2008). Hilker et al. (2015) measured changes of Amazon 101 

vegetation using MODIS Enhanced Vegetation Index (EVI) and Normalized 102 

Difference Vegetation Index (NDVI) between 2000 and 2012. However, as remote sensing 103 

cannot capture the loss of biomass until it interrupts the canopy continuity (e.g., selective 104 

logging), it may underestimate the severity and extent of deforestation (Milodowski et al. 105 

2017). 106 

The goals of this study are to quantify the impact of historical land cover changes of 107 

realistic magnitude on regional climate of Amazon during 1980s-2010s, investigate the 108 

different mechanisms and processes in different regions and seasons, and assess how the 109 

climatic effects of land cover changes depend on the source and nature of land cover change 110 

data. For these purposes, we employ a regional climate model with sophisticated 111 

representation of land surface processes and impose to the model deforestation scenarios 112 

constructed from observational data and simulated data. Section 2 describes the model, data, 113 

and experimental design. The results are presented in Section 3, followed by a summary and 114 

discussion in Section 4. 115 



 

7 

 

2. Model, Data, and Experimental Design 116 

This study makes use of the International Center for Theoretical Physics (ICTP) 117 

Regional Climate Model version 4.3.4 (RegCM4.3.4, Giorgi et al., 2012) coupled with the 118 

Community Land Model version 4.5 (CLM4.5, Oleson et al., 2013) (RCM-CLM, Wang et 119 

al., 2016a). In this coupled land-atmosphere system model, RCM simulates the atmospheric 120 

dynamical and physical processes, while CLM simulates the land surface hydrological, 121 

biogeophysical and biogeochemical processes, plant phenology, and vegetation dynamics. 122 

CLM solves the water and energy fluxes at the level of plant functional types (PFTs), and 123 

grid-level fluxes (and properties such as leaf area index (LAI) and albedo) are area-weighted 124 

averages among the different PFTs. While the model has the capacity to simulate vegetation 125 

dynamics, in this study we prescribe vegetation conditions (structure, distribution, and 126 

phenology) to be static. That is, the LAI of each PFT varies from day to day but the LAI 127 

seasonal cycles and PFT coverages remain the same from year to year. The model 128 

performance was validated for Africa, Asia and South America (Yu et al. 2016; Wang et al. 129 

2016a; Erfanian et al. 2017b; Shi et al. 2018; Liu et al. 2020a,b). Specifically for South 130 

America, Erfanian & Wang (2018) conducted experiments on multiple domain sizes and 131 

locations, and found that the model performance improves when the domain expands beyond 132 

the Coordinated Regional Downscaling Experiment (CORDEX) domain to include the 133 

influential oceans. In this study, we follow the Erfanian & Wang (2018) approach in adopting 134 

a domain that spans the region 152Á W-12Á E, 56Á S-44Á N including South America, a major 135 

portion of North America and the Pacific and Atlantic Oceans.  136 
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We investigate how deforestation during 1980s-2010s may have influenced regional 137 

climate based on RCM-CLM simulations that differ in vegetation cover in South America. 138 

The lateral boundary conditions (LBCs) for all simulations are derived from the 6-hourly 1.5Á 139 

resolution ERA-Interim data (Dee et al., 2011). Two different sources of deforestation data 140 

were used to derive three sets of land covers, using the spatial coverage of each PFT from 141 

the Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data 142 

corresponding to year 2000 (Lawrence et al., 2011; Lawrence & Chase, 2007) as a medium 143 

(referred to as ñLand_2000ò hereafter). We derived the PFT spatial coverages for 144 

ñLand_1980ò and ñLand_2015ò by combining the ñLand_2000ò MODIS data with forest 145 

cover changes from the land use harmonization (LUH2) dataset (Hurtt et al., 2011) during 146 

1980-2000 (for ñLand_1980ò) and 2000-2015 (for ñLand_2015ò), respectively (Figure 1a1), 147 

and derived the PFT spatial coverages for ñLand_2017ò by combining the ñLand_2000ò 148 

MODIS data with forest cover changes derived from Landsat data during 2000-2017 (Hansen 149 

et al., 2013) (Figure 1a2). Imbach et al. (2015) indicated that for most countries in the 150 

Amazon basin the ratio of pastureland area to cropland area is typically 4:1. Thus, in this 151 

study, deforested areas were converted to 20% cropland and 80% pasture. Note that the 152 

LUH2 data is at 0.5Á0.5Á resolution, and was linearly interpolated to the RCM resolution 153 

of 50km 50km; Landsat data is at 30m30m resolution, and was aggregated to the RCM 154 

resolution through arithmetic averaging among all pixels within each RCM grid. So the 155 

derived land cover data ñLand_1980ò and ñLand_2015ò are coarse resolution representation 156 

of vegetation state in the early 1980s and in mid-2010s, respectively, while ñLand_2017ò 157 
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partially retains the spatial structure of vegetation cover in mid-2010s. We are making these 158 

derived land cover data available through GitHub (https://github.com/Yelin-159 

Jiang/land_cover_data_JCLI-D-20-0380).  160 

The three different land cover datasets were then used to prescribe vegetation for three 161 

RegCM-CLM experiments, ñLand_1980ò, ñLand_2015ò, and ñLand_2017ò, named after 162 

their corresponding land cover data respectively. The atmospheric model in all three 163 

experiments was driven with the same atmospheric  boundary conditions during the period 164 

1996-2017 to simulate climate of the past two decades corresponding to three different land 165 

cover scenarios; in each experiment, the coverage of each PFT and its LAI seasonal cycle do 166 

not vary from year to year. This sensitivity experimental design allows us to assess how 167 

vegetation changes during 1980s-2010s might influence the regional climate using the period 168 

1996-2017 as an example. The three simulated climates represent hypothetically how the 169 

climate during 1996-2017 would be if the vegetation were the same as described by 170 

Land_1980, Land_2015, and Land_2017 datasets, respectively. The simulated climate 171 

differences between Land_1980 and Land_2015 (Scenario 1) can quantify the effects of 172 

coarse-resolution land cover changes on regional climate; differences between Land_1980 173 

and Land_2017 (Scenario 2) account for the impact of a more realistic spatial structure of 174 

deforestation and provide an alternative for comparison with Scenario 1 results. The two 175 

scenarios were used to assess how the climatic effects of land cover changes may depend on 176 

the spatial structure of land use/land cover changes.  177 
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For more detailed results analysis, we selected 9 severely deforested areas of 3Á3Á in 178 

size from three regions: cluster 1 includes areas 1, 2 and 3 in the South Amazon (SouA), 179 

cluster 2 includes areas 4, 5 and 6 in the Brazilian Highlands (BRH), and cluster_3 includes 180 

areas 7, 8 and 9 in the East Amazon region (EastA). The same selected boxes of Scenario 1 181 

and Scenario 2 are shown in Figure 1. The SouA and EastA are wet regions with a five-month 182 

wet season, and BRH is a dry region with a three-month wet season. Here wet season is 183 

defined as the period when daily precipitation exceeds 6.1 mm/day, following the method of 184 

Li & Fu (2004). In Land_1980, the simulated annual average of daily precipitation is 5.28 185 

mm/day, 3.26 mm/day and 5.22 mm/day for the SouA, BRH and EastA, respectively. Over 186 

the region as a whole, the total area of forest cover loss is 837 million ha in Scenario 1 and 187 

731 million ha in Scenario 2; over the three clusters of severe forest loss, the lost forest cover 188 

as a percentage of total land area is 20.57%, 21.99% and 12.11% for the SouA, BRH and 189 

EastA clusters in Scenario 1, and is 21.90%, 15.03% and 18.18% in Scenario 2, respectively. 190 

However, due to the high degree of spatial heterogeneity of forest loss and substantially 191 

different spatial pattern, greater difference between the two scenarios can be found in the 192 

magnitude of forest loss over some localized areas (Figures 1a1-1a2). For example, for 193 

Region 8 within EastA, the forest cover loss averages to 22.35% in Scenario 2 and only 7.95% 194 

in Scenario 1.  195 
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3. Results 196 

3.1 Surface biogeophysical properties 197 

Deforestation influences regional climate through not only the release of greenhouse 198 

gases but also the shifts in surface biogeophysical properties (Houspanossian et al., 2017). 199 

LAI is expected to decrease as the land cover is converted from forest to cropland and 200 

grassland. Figures 1b1 and 1b2 show the derived LAI changes over deforestation regions in 201 

Scenario 1 and Scenario 2. The LAI changes in Scenario 1 are modest in magnitude and 202 

spatially continuous, although there are some spots of relatively large changes in SouA; the 203 

LAI changes in Scenario 2 tend to be larger in magnitude but spatially concentrated over 204 

small fragmented areas, with most pixels of largest LAI changes found in SouA and EastA. 205 

These differences result partly from the very different spatial resolution of the raw data from 206 

which these changes were derived. In Scenario 1, LUH2 simulated data (1980-2015) is at 207 

0.5Á0.5Á spatial resolution; for Scenario 2, land cover change is influenced by both the 208 

LUH2 simulated data (1980-2000) and the 30m 30m Landsat observational data (2000-209 

2017). In addition to LAI changes, changes from dark forests to bright cropland and grassland 210 

lead to higher surface albedo (Figures 1c1-1c2). The increase of albedo shows spatial 211 

correspondence to land cover changes of the corresponding scenario, but the magnitude of 212 

the increases is small and mostly less than 0.01. Another important aspect of deforestation is 213 

the reduction in surface roughness, which increases wind speed (Figure S1) but may reduce 214 

turbulence therefore surface heat fluxes. These changes to the surface biogeophysical 215 

properties influence local and regional climate through their impact on the surface water and 216 
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energy budgets. 217 

3.2 Impact on the Terrestrial Water Cycle 218 

The loss of forest cover directly influences the terrestrial hydrological cycle (Table 1). 219 

Evapotranspiration (ET) includes contributions from evaporation of precipitation intercepted 220 

by the vegetation canopy (Ec), plant transpiration (Tr), and ground evaporation (Eg) from the 221 

soil surface. The responses of ET and its components to deforestation are highly consistent 222 

among different seasons, with a common spatial pattern across all seasons (results not shown), 223 

so only the annual average responses are shown in Figure 2. Over most deforested areas in 224 

Amazon, the decrease of leaf area reduces canopy evaporation and transpiration; another 225 

cause for the decrease of Tr has to do with the loss of deep tree roots that tap moisture from 226 

deep soil during the dry season or in dry regions. However, Eg is simulated to increase 227 

following deforestation (Figure 2), as the removal of tree canopy allows more solar radiation 228 

to reach the ground, warming the soil and driving up the ground evaporation. This is 229 

especially the case in wet regions (SouA and EastA) or wet seasons when energy input into 230 

the land surface (as opposed to soil water availability) is the primary limiting factor for Eg. 231 

Therefore, the net effects of deforestation on ET (sum of Ec, Tr, and Eg) is relatively small, 232 

especially for Scenario 1. For each ET component and the total ET, the changes in Scenario 233 

2 are larger in magnitude than in Scenario 1 and show a clearer spatial correspondence with 234 

land cover changes (Figure 2). 235 

 The ET changes and the corresponding component changes as shown in Figure 2 have 236 
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to do with whether the ET regime is energy-limited or water-limited. In the wet regions (or 237 

wet seasons), energy availability and area of the transpiring surface plays a dominant role in 238 

the ET changes. The annual average reduction in ET in SouA and EastA are -0.006 mm/day 239 

and -0.004 mm/day in Scenario 1 and -0.015 mm/day and -0.022 mm/day in Scenario 2 240 

(Table 1). In the drier region BRH, water availability dominates the change of ET in most 241 

seasons. The annual average changes in BRH feature an increase in ET and are similar 242 

between the two scenarios, both with an approximate increase of 0.05 mm/day, a result of 243 

increased precipitation related to large scale precipitation changes. 244 

In SouA and EastA, Ec decreases in wet seasons as a result of deforestation-induced leaf 245 

area reduction but shows little signal in the dry season (June, July, and August, ñJJAò 246 

hereafter) due to the lack of precipitation (therefore lack of canopy interception) (results not 247 

shown). For the same reason, simulated Ec changes are negligible during most seasons in the 248 

BRH region when precipitation is absent and features a slight increase in the wet season due 249 

to a large-scale increase of precipitation in that region simulated by the model. The response 250 

of Tr and its spatiotemporal variability are qualitatively similar to Ec, with a decrease in wet 251 

regimes (e.g., SouA and EastA) and a precipitation-induced increase in BRH. In contrast, the 252 

response of Eg shows a high degree of spatiotemporal coherency, increasing across the 253 

deforested areas and during all seasons.  254 

Deforestation causes a clear decrease of the near-surface relative humidity in the model 255 

within the deforested areas (Figure 3), which results from not only the reduced moisture 256 



 

14 

 

supply through canopy evaporation and transpiration but also surface warming (as shown in 257 

section 3.3). This drying signal also extends to the lower troposphere over both deforested 258 

land and nearby areas, especially during the SON (September, October, and November, 259 

ñSONò hereafter) season (Figure 3), leading to an overall decrease of cloudiness and 260 

suppressed precipitation (Figure 4). The precipitation response is the strongest in the SON 261 

season, with a clear decrease of precipitation over deforested areas; the precipitation signal 262 

in other seasons is weaker and mixed, leading to an overall weak signal in the annual average, 263 

although there is still a clear correspondence with the deforestation pattern (Figure 4). The 264 

lack of strong rainfall response during the wet season (December-May, results not shown) is 265 

expected, as a large part of moisture source is from transport by the monsoon circulation.  266 

During the dry season (JJA, results not shown), rainfall in most of Amazonia is already very 267 

low, leaving little room for further reduction. Over the deforested southern Amazonia during 268 

the pre-monsoon season (SON), ET is the primary moisture source for precipitation, so the 269 

simulated reduction of precipitation following deforestation is expected, as also shown by 270 

observational studies (e.g., LeiteFilho et al., 2019). Among the heavily deforested wet 271 

regions, the deforestation-induced change of annual precipitation averages to -1.41% over 272 

SouA and -1.06% over EastA in Scenario 1, and -1.65% over SouA and -3.95% over EastA 273 

in Scenario 2. In the drier region BRH, the annual average precipitation change is simulated 274 

to decrease in Scenario 1 (by -5.46%) and increase (by 3.18%) in Scenario 2. However, these 275 

precipitation signals are weak and do not pass the significance test over most grid cells of 276 

South America.  277 
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Precipitation is influenced by both local and non-local land cover changes (Hirota et al., 278 

2011), through both moisture supply and circulation changes. Through moisture supply, 279 

deforestation influences atmospheric humidity and precipitation in the deforested areas and 280 

downwind. Additional remote impact can occur through large-scale circulation changes. In 281 

the subtropics over the La Plata basin with little or no local deforestation, a notable increase 282 

of precipitation is simulated during most seasons and in the annual average (Figure 4), 283 

apparently a result of large circulation changes associated with non-local deforestation. This 284 

increased precipitation is the primary cause for the increase of evapotranspiration and soil 285 

moisture in the La Plata basin (Figure 2 and Figure 4), a dry region where ET is limited by 286 

water availability. 287 

Over deforested region, soil moisture features a clear drying signal, as shown in Figure 288 

4 using moisture in the top 10cm of the soil (Wsoil) as an example; the response in deeper 289 

soils is qualitatively similar. In the wet regions, SouA and EastA, the spatially averaged, 290 

annual mean Wsoil change is -0.299 mm and -0.114 mm for Scenario 1 and -0.279 mm and -291 

0.421 mm for Scenario 2 in the top 10cm of soil (Table 1). This decrease of soil moisture 292 

results from the combination of a slight decrease of precipitation (especially in South 293 

Amazon) and a broad increase of evaporation from the soil surface, and suggest that land 294 

cover change may have contributed to the severe depletion of terrestrial water storage found 295 

in South Amazon and EastA regions during recent droughts (Erfanian, et al., 2017a). In the 296 

drier region BRH, the response of Wsoil in the model is inconclusive, with a slight decrease 297 

in Scenario 1 and slight increase in Scenario 2, consistent with precipitation responses.  298 
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As the deforested areas are spatially scattered across a large region, spatial averages 299 

(e.g., Tables 1) do not reflect the true magnitude of the local response at the grid cell level. 300 

Figure 5 relates the deforestation-induced water cycle changes in each model grid cell to the 301 

magnitude of local forest cover loss, and includes all grid cells in the Amazon where 302 

deforestation exists. The magnitude of water cycle responses (including increase of Eg and 303 

decreases of Ec, Tr, ET, precipitation, and soil moisture) generally increases with the extent 304 

of deforestation within each grid, although the range of uncertainty is quite large. For a given 305 

magnitude of forest cover loss, the hydrological response does not differ qualitatively 306 

between the two scenarios; differences between the two scenarios in the simulated water 307 

cycle responses (Figure 2) are primarily attributed to the magnitude of forest cover loss 308 

applied to the model. Specifically, forest cover loss in Scenario 1 is less than 40% in most 309 

grid cells; for all grid cells with less than 40% forest cover loss in Scenario 2, the water cycle 310 

changes derived from the Scenario 2 experiment are similar to those derived from Scenario 311 

1 (Figure 5), although Ec, Tr, and Eg show stronger responses in Scenario 2 at some grid cells. 312 

The large magnitude of water cycle changes found in Scenario 2 result primarily from forest 313 

loss that are larger in magnitude (more than 40%) despite being spatially fragmented. Among 314 

the grid cells approaching complete forest loss, the average decrease of ET and precipitation 315 

is approximately 0.5 and 0.75 mm/day, respectively. The clear contrast between the two 316 

scenarios has significant implications. Although deforestation often occurs in the form of 317 

severe forest loss concentrated over fragmented areas (as shown by Scenario 2), coarse-318 

resolution data and climate models often represent deforestation as land cover changes of 319 
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small magnitude over spatially continuous and extensive areas (as shown by Scenario 1) and 320 

thus underestimate the local climatic impact of deforestation.  321 

3.3 Impact on Surface Temperature and Energy Budget  322 

Consistent with previous studies, results from the three experiments indicate that 323 

deforestation leads to higher surface temperature (Table 2). Vegetation temperature (Tv) 324 

increases markedly across the deforested areas, which results from the decrease of Ec and Tr; 325 

meanwhile, ground temperature (Tg) increases over the deforested areas as a result of more 326 

solar radiation reaching the ground following the reduction of LAI (Figure 6). The spatial 327 

pattern of Tv and Tg responses feature a clear signal that is spatially continuous in Scenario 328 

1 and scattered in Scenario 2, similar to the corresponding forest cover loss for the two 329 

scenarios. The deforestation-induced increase of annual average Tv is approximately 0.30 ÁC 330 

in SouA for both scenarios, and is 0.16 ÁC in Scenario 1 and negligible (0.02 ÁC) in Scenario 331 

2 when averaged over BRH. In EastA, the annual Tv warming is 0.16 ÁC for Scenario 1 and 332 

0.33 ÁC for Scenario 2. Compared to vegetation temperature, ground temperature shows a 333 

greater sensitivity to the loss of forest cover. Averaged over the SouA, BRH and EastA 334 

regions respectively, the changes of annual mean Tg are 0.59 ÁC, 0.38 ÁC, and 0.33 ÁC under 335 

deforestation Scenario 1 and 0.65 ÁC, 0.18 ÁC and 0.65 ÁC under Scenario 2. Warmer 336 

vegetation and warmer ground lead to an increase of the near surface air temperature (T2m) 337 

along the arc of deforestation (Figure 6), with a smaller magnitude of warming in T2m than 338 

in Tv and Tg. For the response of average temperature (including Tv, Tg, and T2m) to 339 
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deforestation, the spatial pattern is consistent among different seasons, with the largest 340 

magnitude of warming in the pre-monsoon season (SON). In the subtropics, consistent with 341 

the increased precipitation related to large scale circulation changes, temperature decreases 342 

as a result of both increased cloudiness and increased evapotranspiration. 343 

The daily minimum 2m temperature (T2m_min) (Figure 7) is simulated to increase, and 344 

the response is consistent across all seasons; the T2m_min warming shows a similar spatial 345 

pattern to the average T2m warming but is larger in magnitude. In contrast, the daily maximum 346 

2m temperature (T2m_max) is simulated to slightly increase or even decrease, and the cooling 347 

is stronger in Scenario 2 than in Scenario 1 and over both deforested and non-deforested 348 

areas (Figures 7-8, Table 2); the strongest cooling is simulated in the subtropics with little or 349 

no deforestation. The responses of the minimum, average, and maximum temperature at the 350 

lowest level of the atmosphere (results not shown) are similar to those of the 2m air 351 

temperature. Note that the decrease of the day-time maximum air temperature over 352 

deforested areas found here contradicts a strong warming signal found in observational 353 

studies that were mostly based on a ñspace-for-timeò approach. Three factors contributed to 354 

the cooling signal simulated by our model. First, temperature response to deforestation 355 

depends heavily on the competition between the ET effects and albedo effects, and the 356 

cooling effects of albedo increase are the strongest during mid-day hours when the solar 357 

radiation is the strongest. Second, deforestation induces a large-scale circulation change with 358 

increased mid-day cloudiness and decrease of solar insolation, an effect that cannot be 359 

captured by the space-for-time approach in observational studies. Third, converting forest to 360 
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cropland and grassland reduces surface roughness and efficiency of surface heat dissipation 361 

into the atmosphere (Chen and Dirmeyer 2019), leading to cooler air over a warmer ground.   362 

Despite locally strong signals, spatially averaged air temperature changes are quite 363 

small in magnitude. For example, the warming of annual average Tmin in SouA, BRH, and 364 

EastA regions are 0.38 ÁC, 0.30 ÁC, and 0.20 ÁC in Scenario 1 and 0.39 ÁC, 0.13 ÁC, and 365 

0.37 ÁC in Scenario 2 (Table 2). At the grid-cell level, the changes in surface temperature 366 

generally scale with the magnitude of local tree cover loss (Figure 8a). For example, the 367 

coefficient of spatial correlation between annual average T2m change and forest cover loss is 368 

0.67 in Scenario 1 and 0.80 in Scenario 2. The approximately linear relationship seems to 369 

hold as forest cover loss continues to increase, and the simulated warming signal reaches 2-370 

3ÁC in areas of complete forest loss. The relationship as shown in Figure 8a, together with 371 

the good correspondence between spatial patterns of deforestation and temperature response, 372 

indicates that surface temperature response is dominated by local effect in the Amazonia. 373 

The cloud-moderated effects (through incident shortwave radiation, ñSWò hereafter) on 374 

temperature in deforested areas is also analyzed (Figure 8b), and the correlation coefficient 375 

between annual average T2m change and SW change is 0.59 in Scenario 1 and 0.56 in 376 

Scenario 2. Note that this correlation results from complex feedback processes involving not 377 

only the warming effect of solar radiation but also the contribution of warming to reduced 378 

relative humidity therefore reduced cloudiness. In areas surrounding deforestation, a stronger 379 

correlation is found between the average T2m change and SW change, with a correlation 380 

coefficient of 0.79 in Scenario 1 and 0.84 in Scenario 2 (Figure 8c), which reflect the non-381 
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local effect of deforestation. However, within the Amazon region, the magnitude of the non-382 

local effects is relatively small (Figure 8c). At grid points where SW increases, the warming 383 

of daily average temperature is less than 0.3ÁC in grid cells with no deforestation (Figure 8c), 384 

and can be one order of magnitude higher in some grid cells with severe deforestation (Figure 385 

8b). This contrast between Figure 8b and 8c indicates that the large magnitude of warming 386 

over deforested areas results primarily from local processes, with SW changes playing a 387 

secondary role. In contrast, the relationship between T2m_max and SW for deforested grid cells 388 

is generally similar to the relationship for grid cells with no forest loss (Figure 8e vs. 8f), 389 

which indicates that cloud feedback related to large-scale circulation changes play an 390 

important role in the response of day-time maximum temperature to deforestation. 391 

The effects of deforestation on surface energy budget are estimated based on their 392 

annual averages (Figure 9). Over deforested areas, surface insolation (SW) increases as a 393 

result of fewer clouds, but the net shortwave absorption is smaller due to the increase of 394 

surface albedo. The surface longwave emission (LW) increases as a result of warmer 395 

vegetation and warmer ground in the Tropics (Figure 9b1-9b2); in the subtropics, LW 396 

features a decreasing signal owing to the decrease of surface temperature caused by non-397 

local deforestation. The net radiation changes are dominated by longwave emission response, 398 

with a general decrease over deforested areas, and are larger for Scenario 2 than Scenario 1 399 

(Figure 9c1-9c2). With the general decrease of total ET following deforestation, latent heat 400 

flux (LE) decreases over most of the heavily deforested areas (Figure 9d1-9d2), but the signal 401 

is much weaker than the net radiation decrease (Figure 9c1-9c2). As a result, sensible heat 402 
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flux (SH) decreases substantially (Figure 9e1-9e2). At the process level, converting forest to 403 

cropland and grassland reduces surface roughness and the turbulent transport of heat to the 404 

overlying atmosphere. This, together with the general decrease of Rnet, causes a decrease of 405 

sensible heat flux over deforested areas.  406 

The general warming over deforested areas may influence temperature extremes. The 407 

99th percentile of daily average temperature (T99) is enhanced over deforested areas in SouA 408 

and EastA, but is reduced in BRH (Figure 10). Averaged over the three deforestation clusters, 409 

the changes of T99 in Scenario 2 (0.33 ÁC, -0.38 ÁC, and 0.33 ÁC respectively) are larger than 410 

in Scenarios 1 (0.19 ÁC, -0.06 ÁC, and 0.13 ÁC respectively for SouA, BRH, and EastA). 411 

Similar to T99, the extreme temperature frequency (FT99, number of days with T2m exceeding 412 

T99 from the Land_1980 experiment) increases in SouA and EastA but decreases in BRH 413 

(Figure 10). In Scenario 2, FT99 increases substantially, by 3.91 days/year in EastA (which 414 

means the frequency more than doubles its pre-deforestation value), and by 2.72 days/year 415 

in SouA. Note that SouA and EastA are wet regions with a high ET rate in Land_1980, while 416 

BRH is a dry region with a water-limited ET regime. Changes in both the intensity and 417 

frequency of the extreme temperature are larger for Scenario 2 than Scenario 1, indicating 418 

that coarse resolution, spatially continuous representation of deforestation tends to cause 419 

underestimation of the extreme temperature events in the model. 420 

4. Conclusions and Discussion 421 

In this paper, we derive two scenarios of deforestation-induced land cover changes in 422 
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South America during 1980s-2010s from two different sources of data, and assess how these 423 

changes might influence the regional climate. Converting forest to cropland and grassland 424 

leads to lower LAI and surface roughness and higher surface albedo. As a result of these 425 

deforestation-induced surface property changes, the modelôs surface climate becomes 426 

generally warmer and drier over deforested areas in the tropics. The surface warming signal 427 

is stronger for the ground and vegetation temperatures, and weaker for air temperature; for 428 

the surface air temperature, the warming signal is stronger for the nighttime minimum and 429 

weaker or even becomes a cooling signal for the daytime maximum temperature, which 430 

reduces the diurnal amplitude of air temperature over deforested areas. The surface drying 431 

signals include lower atmospheric humidity, less precipitation, and drier soil over deforested 432 

areas. 433 

In addition to the local effects, deforestation causes non-local effects through altering 434 

atmospheric circulation and therefore moisture transport (Badger and Dirmeyer, 2016; Hasler 435 

et al., 2009). In the subtropics of South America including part of the La Plata basin where 436 

no land cover changes were imposed in the model, an increase of precipitation is simulated, 437 

apparently as a result of large-scale circulation changes associated with deforestation in the 438 

Amazon and surrounding regions. The increased precipitation leads to wetter soil, higher 439 

evapotranspiration, and a strong cooling signal in all temperatures examined.  440 

The simulated temperature and water cycle changes resulting from deforestation show 441 

substantial differences between the two scenarios of deforestation. Coarse resolution data (as 442 
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used in Scenario 1) underestimates the severity of forest loss at the grid cell level, which 443 

causes the model to underestimate the local impact of deforestation. In Scenario 1, the grid-444 

level forest cover loss rarely exceeds 40%, and the projected local warming is mostly less 445 

than 1ÁC; in Scenario 2, the model suggests a warming of close to 3ÁC for grid cells with 446 

complete forest loss. The differences between the two scenarios in the simulated warming 447 

effects confirm the findings from recent studies (Khanna et al., 2017; Zeppetello et al., 2020) 448 

that the deforestation-induced hydrothermal changes are closely related to the deforested 449 

patch size. It is important that data and models used to study deforestation be able to capture 450 

the detailed spatial structure of land use land cover changes.  451 

The cooling or weak warming of daytime maximum and the reduced diurnal amplitude 452 

of surface air temperature as a response to deforestation seem to contradict findings from 453 

observation-based studies that documented a significantly higher daytime temperature over 454 

open land than the neighboring forest areas. Several factors contribute to this discrepancy. 455 

From the model side, some simulated responses, especially the comparison among 456 

competing mechanisms, may be model specific. In this particular model,  the 457 

evapotranspiration response is rather modest. During midday when the incoming solar 458 

radiation is the strongest, the radiative effects of albedo increase and the cloud effects related 459 

to a circulation change may outcompete the evapotranspiration effects. Meanwhile, reduced 460 

surface roughness suppresses latent heat flux, which may cause cooler air over a warmer 461 

ground. From the observation side, most studies relied on satellite-sensed temperature 462 

differences between forest and nearby patches of open land, which reflect the differences in 463 
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ground temperature (as opposed to air temperature), and the ñspace for timeò approach 464 

cannot capture the atmospheric feedback effect that is important for the simulated air 465 

temperature response in the model (e.g., Chen and Dirmeyer, 2020). This discrepancy will 466 

be the subject of our follow-up research.  467 

Our study identifies the subtropical South America as a region remotely influenced by 468 

deforestation in the Amazon and surrounding regions. Observational data indicates that the 469 

La Plata basin has experienced increased precipitation and flooding in recent decades, 470 

accompanied by relatively slow warming trend or even cooling in some areas (e.g., Barros 471 

et al., 2015). Our model simulates similar signals, as a response to non-local deforestation, 472 

including an increased precipitation resulting from altered large-scale circulation and a strong 473 

cooling due to the associated cloud effects as well as enhanced surface evapotranspiration 474 

under increased water availability. These results suggest that non-local deforestation may 475 

have contributed to the observed climate trends in the La Plata basin. 476 

For all temperature indicators evaluated in this study, the strongest warming signal is 477 

simulated in SON, the dry-to-wet transition season; SON is also the most sensitive season in 478 

terms of precipitation response. This is consistent with the argument put forward by Fu & Li 479 

(2004) and Li & Fu (2004). Specifically, the interactions between rainfall and large-scale, 480 

low-level convergence, as well as higher surface wetness during the wet seasons (DJF and 481 

MAM) tend to self-amplify and self-sustain the conditions favorable for rainfall until the 482 

seasonal maximum solar radiation moves away from this region; on the other hand, the dry-483 
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to-wet transition during SON has to overcome the surface dryness and inversion at the top of 484 

the boundary layer, which in the absence of summer large-scale circulation may depend more 485 

on land surface processes.   486 

Other than anthropogenic land use changes, self-amplified forest loss may result from 487 

the interactions between vegetation and regional climate (Delire et al., 2011; Sun & Wang, 488 

2011; Wang et al., 2011; Zemp et al., 2017). Forest cover can degrade as a result of increasing 489 

natural disturbances such as drought and fire and/or decreasing rainfall (Verbesselt et al., 490 

2016); on the other hand, deforestation could enhance drought through reducing 491 

evapotranspiration and weakening the atmospheric moisture supply during dry seasons (Van 492 

der Ent et al., 2010; von Randow et al., 2012). Consequently, deforestation could potentially 493 

trigger self-amplified forest loss and destabilize the forest (Wang & Eltahir, 2000a, b). 494 

However, this study prescribes vegetation cover and its changes and therefore does not 495 

account for the processes and feedback underlying a potential self-amplification of 496 

deforestation, which is a limitation that will be tackled in follow-up studies. On the other 497 

hand, even without the self-amplification effect, the magnitude of deforestation-induced 498 

local warming found in this study (2-3ÁC under fragmented clear cut) is alarming. This is not 499 

only because it is significantly greater than the greenhouse gas warming (which is estimated 500 

to be ~0.7 ÁC since 1980 in the Amazonia). More importantly, deforestation-induced 501 

warming can occur over a relatively short time when deforestation rapidly expands. The 502 

future of Amazon forest is still poorly understood due to the great uncertainties in regional 503 

climate change and the resulting forest response (Boulton et al., 2013). A large number of 504 
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numerical modeling studies have pointed out the risk of Amazon forest dieback in the 21st 505 

century under the influence of climate change or in combination with human activities (Cox 506 

et al., 2000, 2004; Cochrane & Barber, 2009;Rammig et al., 2010; Boulton et al., 2013). 507 

Although these simulations are subject to a large array of uncertainties, it is rather certain 508 

that the Amazon forest will not be sustainable under current land use practices especially in 509 

an increasingly warmer climate (Boulton et al. 2017; Malhi et al. 2009). 510 
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Table Captions 721 

 722 

 723 

Table 1 Annual average for terrestrial hydrological variables (left column), and their corresponding 724 

changes  725 

 726 

Table 2 Annual average for surface temperature variables (left column), and their corresponding 727 

changes  728 

  729 
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Table 1 Annual average for terrestrial hydrological variables (left column), and their corresponding 730 

changes. Unit for all fluxes are mm/day. Wsoil is given in mm.  731 

 S1_SouA S1_BRH S1_EastA S2_SouA S2_BRH S2_EastA 

ET -0.006  0.045  -0.004  -0.015  0.052  -0.022  

Ec -0.043  0.004  -0.013  -0.042  0.005  -0.052  

Tr -0.013  0.017  -0.018  -0.041  0.026  -0.129  

Eg 0.050  0.025  0.027  0.069  0.021  0.158  

Precipitation -0.104  0.046  0.001  -0.027  0.104  -0.019  

Wsoil -0.299  -0.158  -0.114  -0.279  0.142  -0.421  

  732 
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Table 2 Annual average for surface temperature variables (left column), and their corresponding 733 

changes  734 

 S1_SouA S1_BRH S1_EastA S2_SouA S2_BRH S2_EastA 

Tv 0.31 0.16 0.16 0.30 0.02 0.33 

Tg 0.59 0.38 0.33 0.65 0.18 0.65 

T2m 0.24 0.13 0.12 0.23 0.01 0.27 

T2m_max -0.10 -0.21 -0.08 -0.17 -0.23 -0.11 

T2m_min 0.38 0.30 0.20 0.39 0.13 0.37 

T99 0.19 -0.06 0.13 0.33 -0.38 0.33 

FT99 1.44 -0.19 0.84 2.72 -1.23 3.91 

Tv, Tg, T2m, T2m_max, T2m_min, and T99 are given in ÁC. FT99 is given in times/year.  735 

  736 
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Figure Captions 737 

 738 

 739 

Figure 1. Loss of forest cover (a1-a2, in %) and the resulting annual average LAI changes (b1-b2, in 740 

m2/m2) and albedo changes (c1-c2). 741 

 742 

Figure 2. Changes of the annual average ET (a1-a2), canopy evaporation (b1-b2), transpiration (c1-743 

c2), and soil evaporation (d1-d2), in mm/day. 744 

 745 

Figure 3. Absolute changes of the SON and annual average relative humidity (in %) at 2m above 746 

canopy (a1-a2 and b1-b2) and 800mb (c1-c2 and d1-d2). 747 

 748 

Figure 4. Changes of the SON and annual average precipitation (a1-a2 and b1-b2, in %) and water 749 

depth in the top 10cm of soil (c1-c2 and d1-d2, in mm). 750 

 751 

Figure 5. Correspondence between average changes of hydrological cycle variables and forest cover 752 

loss (in %) in SON, based on all grid cells with non-zero forest cover loss in the region 65-45Á W, 0-753 

30ÁS, for both Scenario 1 (blue) and Scenario 2 (red).  a) Canopy evaporation, b) Transpiration, c) 754 

Soil evaporation, d) total ET, e) Precipitation, f) Water depth in the top 10cm of soil (in mm). Unit 755 

for all fluxes are mm/day.  756 

 757 

Figure 6. Changes of the average vegetation temperature (a1-a4), ground temperature (b1-b4), and 758 

2-m air temperature (c1-c4) for deforestation Scenario 1 (S1) and Scenario 2 (S2), in ÁC, based on 759 

annual mean and September-October-November seasonal mean. 760 
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 761 

Figure 7. Changes of daily maximum (a1-a5 and b1-b5) and minimum 2-m air temperatures (c1-c5 762 

and d1-d5), in ÁC, based on the seasonal and annual means. 763 

 764 

Figure 8. Changes of the daily average (a-c) and daily maximum (d-f) 2-m air temperatures (in ÁC) 765 

during the September-October-November season corresponding to forest cover loss (a and d, in %) 766 

and incident shortwave radiation (b-c and e-f, in W/m2)  for Scenario 1 (blue) and Scenario 2 (red), 767 

based on grid cell with forest cover loss (a-b, d-f) and those without (c, f) within the region 65-45Á 768 

W, 0-30ÁS. 769 

 770 

Figure 9. Changes of the annual mean fluxes of incident shortwave radiation (a1-a2), emitted 771 

longwave radiation (b1-b2), Rnet (c1-c2), latent heat flux (d1-d2) and sensible heat (e1-e2), in W/m2. 772 

 773 

Figure 10. Changes to the 99th percentile of the average 2-m air temperature (a1-a2, in ÁC) and 774 

changes to the number of days with temperature exceeding the 99th percentile (b1-b2, in days/year). 775 

  776 
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 777 

Figure 1. Loss of forest cover (a1-a2, in %) and the resulting annual average LAI changes (b1-b2, in 778 

m2/m2) and albedo changes (c1-c2).  779 
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 780 

Figure 2. Changes of the annual average ET (a1-a2), canopy evaporation (b1-b2), transpiration (c1-781 

c2), and soil evaporation (d1-d2), in mm/day.  782 


