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Abstract

This study investigates the potential effects of historical deforestation in South America
using a regional climate model driven with reanalysis data. Two different sources of data
were used to quantify deforestation during 1980-2010s, leading to two scenarios of forest
loss, smaller but spatially continuous in Scenario 1 and larger but spatially scattered in
Scenario 2. The model simulates a generally warmer and drier local climate following
deforestation. Vegetation canopy becomes warmer due to reduced canopy evapotranspiration,
and ground becomes warmer due to more radiation reaching the ground. The warming signal
for surface air is weaker than for ground and vegetation, likely due to reduced surface
roughness suppressing the sensible heat flux. For surface air over deforested areas, the
warming signal is stronger for the nighttime minimum temperature and weaker or even
becomes a cooling signal for the daytime maximum temperature, due to the strong radiative
effects of albedo at midday, which reduces the diurnal amplitude. The drying signals over
deforested areas include lower atmospheric humidity, less precipitation, and drier soil. The
model identifies the La Plata basin as a region remotely influenced by deforestation, where
a simulated increase of precipitation leads to wetter soil, higher ET, and a strong surface
cooling. Over both deforested and remote areas, the deforestation-induced surface climate
changes are much stronger in Scenario 2 than Scenario 1; coarse resolution data and models
(such as in Scenarios 1) cannot represent the detailed spatial structure of deforestation and

underestimate its impact on local and regional climates.
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1. Introduction

The Amazon rainforest is one of the largest carbon pools on Earth, which stores
approximately 150-200 Pg C in living biomass and soils (Feldpausch et al., 2012), and plays
a crucial role in the regional and global water, energy, and carbon cycles (Houghton et al.,
2000; Brienen et al., 2015; Cavalcante et al., 2019). However, more than 20% of Amazon
forest has been replaced by pasture and cropland since the early 1970s (Fearnside, 2005;
Davidson et al., 2012; Souza-Filho et al., 2016). After decades of severe deforestation, the
rate of forest loss slowed down between 2004 and 2012, mostly due to Forest Code changes
in Brazil (Soares-Filho et al., 2014; Alves et al., 2017; Rochedo et al., 2018). However, since
2012, the deforestation rate has picked up again due to relaxed policy and accelerated
agricultural development, putting the Amazon ecosystem at risk (Tollefson, 2016). For
example, the annual deforestation area decreased from 19000 km? in 2005 to 4500 km? in

2012, and rebounded to 5900 km? in 2013 (Prodes, 2013).

Land cover change modifies the surface water and energy budgets through several
mechanisms (Swann et al., 2015; Wang et al. 2016b). Converting forest to cropland and
grassland increases surface albedo, which tends to cool the surface through reduced
absorption of solar radiation. On the other hand, the reduction of leaf area and canopy
interception, as well as the loss of moisture-tapping deep roots in the dry season, all
contribute to reducing evapotranspiration, which tends to increase surface temperature. In
addition, deforestation-induced decrease of surface roughness reduces the turbulent transport

of heat to atmosphere, which also induces a surface warming effect (Lejeune et al., 2015).
3
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There is a high degree of consensus among previous modeling studies that deforestation in
the Tropics leads to higher temperature, as the loss of evaporative cooling is dominant over
the radiative effect of albedo changes (Lean & Warrilow, 1989; Malhi et al., 2008; Swann et
al., 2015). Taking a space-for-time approach, many observational studies found a warming
effect of deforestation by comparing temperature between cleared land and nearby forests
(e.g., Duveiller et al. 2018; Cohn et al. 2019) with a stronger signal during daytime than at
night (e.g., Li et al. 2015; Alkama and Cescatti 2016; Schultz et al. 2017). The asymmetric
effects (and therefore the amplification of temperature diurnal cycle) found in observational
studies may be partly due to the space-for-time approach not being able to account for the
cloud effects related to atmospheric feedback (Chen and Dirmeyer 2020). A notable recent
study (Zeppetello et al. 2020) analyzed daytime temperature from satellite observations in
areas that were forest in 2003 and open land in 2018 and found a significant warming signal

that increases with the size of the deforestation patch.

The impact of deforestation is not limited to the surface. Evapotranspiration is an
important source of moisture supply for precipitation in the Amazon Basin, accounting for
15-50% of total Amazonian rainfall (Zemp et al. 2017; Van der Ent et al. 2010; Eltahir and
Bras 1994; Satyamurty et al. 2013). The deforestation-induced reduction of
evapotranspiration in the dry season can weaken regional atmospheric moisture recycling
and reduce precipitation, which may trigger a positive vegetation-precipitation feedback that
could drive forest loss in regions where the local climate approaches the water and

temperature thresholds of existing vegetation (Da Rocha et al. 2009; Van der Ent et al. 2010;
4
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Wang et al., 2011; Zemp et al. 2017).

The impact of deforestation on precipitation is subject to a large degree of uncertainty
and depends on the scale and location of the forest loss. Most modeling studies on idealized
large-scale deforestation in the Amazon region found a decrease of precipitation (e.g., Lean
& Warrilow, 1989; Gedney & Valdes, 2000; Nobre & Borma, 2009; Sampaio et al., 2007).
However, small-scale patches of deforestation that are common in tropical rainforests could
increase cloudiness and precipitation through thermally induced mesoscale circulations
(Baidya Roy & Avissar, 2002; Wang et al., 2009; Lawrence & Vandecar, 2015; Khanna et al.,
2017). As the spatial extent of deforestation increases beyond a certain level, the thermal
triggering may weaken and shift to a dynamically driven hydroclimate regime, leading to an
enhancement of convection in the downwind region and a suppression of convection in the
upwind region (Patton et al., 2005). Khanna et al. (2017) suggested that the extent of Amazon
deforestation may have crossed the threshold for the thermal-to-dynamic transition of the

hydroclimate regime.

Monitoring the magnitude of deforestation in the Amazon is challenging, due to
difficulties in identifying temporal thresholds and spatial scales, integrating field and satellite
datasets, as well as evaluating spatial impact and intensity (Herold et al., 2011). Quantifying
the extent of historical deforestation involves further challenges. Skole & Tucker (1993)
estimated deforestation over the Brazilian Amazon Basin from 1978 to 1988 through Landsat

satellite data of 1978 and 1988. Since the launch of the Moderate Resolution Imaging
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Spectroradiometer (MODIS) in 2000, it has been widely used as the main approach to
vegetation remote sensing in the Amazon (Huete et al., 2002). MODIS-derived deforestation
was verified through comparison with Landsat-derived deforestation estimates (Morton et
al., 2005) and annual deforestation data derived from the Amazon Deforestation Monitoring
Project (PRODES) (Hansen et al., 2008). Hilker et al. (2015) measured changes of Amazon
vegetation using MODIS Enhanced Vegetation Index (EVI) and Normalized
Difference Vegetation Index (NDVI) between 2000 and 2012. However, as remote sensing
cannot capture the loss of biomass until it interrupts the canopy continuity (e.g., selective
logging), it may underestimate the severity and extent of deforestation (Milodowski et al.

2017).

The goals of this study are to quantify the impact of historical land cover changes of
realistic magnitude on regional climate of Amazon during 1980s-2010s, investigate the
different mechanisms and processes in different regions and seasons, and assess how the
climatic effects of land cover changes depend on the source and nature of land cover change
data. For these purposes, we employ a regional climate model with sophisticated
representation of land surface processes and impose to the model deforestation scenarios
constructed from observational data and simulated data. Section 2 describes the model, data,
and experimental design. The results are presented in Section 3, followed by a summary and

discussion in Section 4.
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2. Model, Data, and Experimental Design

This study makes use of the International Center for Theoretical Physics (ICTP)
Regional Climate Model version 4.3.4 (RegCM4.3.4, Giorgi et al., 2012) coupled with the
Community Land Model version 4.5 (CLM4.5, Oleson et al., 2013) (RCM-CLM, Wang et
al., 2016a). In this coupled land-atmosphere system model, RCM simulates the atmospheric
dynamical and physical processes, while CLM simulates the land surface hydrological,
biogeophysical and biogeochemical processes, plant phenology, and vegetation dynamics.
CLM solves the water and energy fluxes at the level of plant functional types (PFTs), and
grid-level fluxes (and properties such as leaf area index (LAI) and albedo) are area-weighted
averages among the different PFTs. While the model has the capacity to simulate vegetation
dynamics, in this study we prescribe vegetation conditions (structure, distribution, and
phenology) to be static. That is, the LAI of each PFT varies from day to day but the LAI
seasonal cycles and PFT coverages remain the same from year to year. The model
performance was validated for Africa, Asia and South America (Yu et al. 2016; Wang et al.
2016a; Erfanian et al. 2017b; Shi et al. 2018; Liu et al. 2020a,b). Specifically for South
America, Erfanian & Wang (2018) conducted experiments on multiple domain sizes and
locations, and found that the model performance improves when the domain expands beyond
the Coordinated Regional Downscaling Experiment (CORDEX) domain to include the
influential oceans. In this study, we follow the Erfanian & Wang (2018) approach in adopting
a domain that spans the region 152° W-12° E, 56° S-44° N including South America, a major

portion of North America and the Pacific and Atlantic Oceans.
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We investigate how deforestation during 1980s-2010s may have influenced regional
climate based on RCM-CLM simulations that differ in vegetation cover in South America.
The lateral boundary conditions (LBCs) for all simulations are derived from the 6-hourly 1.5°
resolution ERA-Interim data (Dee et al., 2011). Two different sources of deforestation data
were used to derive three sets of land covers, using the spatial coverage of each PFT from
the Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data
corresponding to year 2000 (Lawrence et al., 2011; Lawrence & Chase, 2007) as a medium
(referred to as “Land 2000 hereafter). We derived the PFT spatial coverages for
“Land 1980 and “Land 2015 by combining the “Land 2000” MODIS data with forest
cover changes from the land use harmonization (LUH2) dataset (Hurtt et al., 2011) during
1980-2000 (for “Land_1980”) and 2000-2015 (for “Land 2015”), respectively (Figure 1al),
and derived the PFT spatial coverages for “Land 2017” by combining the “Land 2000”
MODIS data with forest cover changes derived from Landsat data during 2000-2017 (Hansen
et al., 2013) (Figure 1a2). Imbach et al. (2015) indicated that for most countries in the
Amazon basin the ratio of pastureland area to cropland area is typically 4:1. Thus, in this
study, deforested areas were converted to 20% cropland and 80% pasture. Note that the
LUH2 data is at 0.5°X0.5° resolution, and was linearly interpolated to the RCM resolution
of 50kmXx50km; Landsat data is at 30mX30m resolution, and was aggregated to the RCM
resolution through arithmetic averaging among all pixels within each RCM grid. So the
derived land cover data “Land 1980 and “Land 2015 are coarse resolution representation

of vegetation state in the early 1980s and in mid-2010s, respectively, while “Land 2017”
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partially retains the spatial structure of vegetation cover in mid-2010s. We are making these
derived land cover data available through GitHub (https://github.com/Yelin-

Jiang/land cover data JCLI-D-20-0380).

The three different land cover datasets were then used to prescribe vegetation for three
RegCM-CLM experiments, “Land 19807, “Land 2015”, and “Land 20177, named after
their corresponding land cover data respectively. The atmospheric model in all three
experiments was driven with the same atmospheric boundary conditions during the period
1996-2017 to simulate climate of the past two decades corresponding to three different land
cover scenarios; in each experiment, the coverage of each PFT and its LAI seasonal cycle do
not vary from year to year. This sensitivity experimental design allows us to assess how
vegetation changes during 1980s-2010s might influence the regional climate using the period
1996-2017 as an example. The three simulated climates represent hypothetically how the
climate during 1996-2017 would be if the vegetation were the same as described by
Land 1980, Land 2015, and Land 2017 datasets, respectively. The simulated climate
differences between Land 1980 and Land 2015 (Scenario 1) can quantify the effects of
coarse-resolution land cover changes on regional climate; differences between Land 1980
and Land 2017 (Scenario 2) account for the impact of a more realistic spatial structure of
deforestation and provide an alternative for comparison with Scenario 1 results. The two
scenarios were used to assess how the climatic effects of land cover changes may depend on

the spatial structure of land use/land cover changes.
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For more detailed results analysis, we selected 9 severely deforested areas of 3°X3° in
size from three regions: cluster 1 includes areas 1, 2 and 3 in the South Amazon (SouA),
cluster 2 includes areas 4, 5 and 6 in the Brazilian Highlands (BRH), and cluster 3 includes
areas 7, 8 and 9 in the East Amazon region (EastA). The same selected boxes of Scenario 1
and Scenario 2 are shown in Figure 1. The SouA and EastA are wet regions with a five-month
wet season, and BRH is a dry region with a three-month wet season. Here wet season is
defined as the period when daily precipitation exceeds 6.1 mm/day, following the method of
Li & Fu (2004). In Land 1980, the simulated annual average of daily precipitation is 5.28
mm/day, 3.26 mm/day and 5.22 mm/day for the SouA, BRH and EastA, respectively. Over
the region as a whole, the total area of forest cover loss is 837 million ha in Scenario 1 and
731 million ha in Scenario 2; over the three clusters of severe forest loss, the lost forest cover
as a percentage of total land area is 20.57%, 21.99% and 12.11% for the SouA, BRH and
EastA clusters in Scenario 1, and is 21.90%, 15.03% and 18.18% in Scenario 2, respectively.
However, due to the high degree of spatial heterogeneity of forest loss and substantially
different spatial pattern, greater difference between the two scenarios can be found in the
magnitude of forest loss over some localized areas (Figures lal-1a2). For example, for
Region 8 within EastA, the forest cover loss averages to 22.35% in Scenario 2 and only 7.95%

in Scenario 1.
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3. Results

3.1 Surface biogeophysical properties

Deforestation influences regional climate through not only the release of greenhouse
gases but also the shifts in surface biogeophysical properties (Houspanossian et al., 2017).
LAI is expected to decrease as the land cover is converted from forest to cropland and
grassland. Figures 1bl and 1b2 show the derived LAI changes over deforestation regions in
Scenario 1 and Scenario 2. The LAI changes in Scenario 1 are modest in magnitude and
spatially continuous, although there are some spots of relatively large changes in SouA; the
LAI changes in Scenario 2 tend to be larger in magnitude but spatially concentrated over
small fragmented areas, with most pixels of largest LAI changes found in SouA and EastA.
These differences result partly from the very different spatial resolution of the raw data from
which these changes were derived. In Scenario 1, LUH2 simulated data (1980-2015) is at
0.5°%0.5° spatial resolution; for Scenario 2, land cover change is influenced by both the
LUH2 simulated data (1980-2000) and the 30mXx30m Landsat observational data (2000-
2017). In addition to LAI changes, changes from dark forests to bright cropland and grassland
lead to higher surface albedo (Figures lcl-1c2). The increase of albedo shows spatial
correspondence to land cover changes of the corresponding scenario, but the magnitude of
the increases is small and mostly less than 0.01. Another important aspect of deforestation is
the reduction in surface roughness, which increases wind speed (Figure S1) but may reduce
turbulence therefore surface heat fluxes. These changes to the surface biogeophysical

properties influence local and regional climate through their impact on the surface water and
11



217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

energy budgets.

3.2 Impact on the Terrestrial Water Cycle

The loss of forest cover directly influences the terrestrial hydrological cycle (Table 1).
Evapotranspiration (ET) includes contributions from evaporation of precipitation intercepted
by the vegetation canopy (E.), plant transpiration (T;), and ground evaporation (E,) from the
soil surface. The responses of ET and its components to deforestation are highly consistent
among different seasons, with a common spatial pattern across all seasons (results not shown),
so only the annual average responses are shown in Figure 2. Over most deforested areas in
Amazon, the decrease of leaf area reduces canopy evaporation and transpiration; another
cause for the decrease of T; has to do with the loss of deep tree roots that tap moisture from
deep soil during the dry season or in dry regions. However, Eg is simulated to increase
following deforestation (Figure 2), as the removal of tree canopy allows more solar radiation
to reach the ground, warming the soil and driving up the ground evaporation. This is
especially the case in wet regions (SouA and EastA) or wet seasons when energy input into
the land surface (as opposed to soil water availability) is the primary limiting factor for Eg.
Therefore, the net effects of deforestation on ET (sum of Ec, T:, and Ey) is relatively small,
especially for Scenario 1. For each ET component and the total ET, the changes in Scenario
2 are larger in magnitude than in Scenario 1 and show a clearer spatial correspondence with

land cover changes (Figure 2).

The ET changes and the corresponding component changes as shown in Figure 2 have
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to do with whether the ET regime is energy-limited or water-limited. In the wet regions (or
wet seasons), energy availability and area of the transpiring surface plays a dominant role in
the ET changes. The annual average reduction in ET in SouA and EastA are -0.006 mm/day
and -0.004 mm/day in Scenario 1 and -0.015 mm/day and -0.022 mm/day in Scenario 2
(Table 1). In the drier region BRH, water availability dominates the change of ET in most
seasons. The annual average changes in BRH feature an increase in ET and are similar
between the two scenarios, both with an approximate increase of 0.05 mm/day, a result of

increased precipitation related to large scale precipitation changes.

In SouA and EastA, E. decreases in wet seasons as a result of deforestation-induced leaf
area reduction but shows little signal in the dry season (June, July, and August, “JJA”
hereafter) due to the lack of precipitation (therefore lack of canopy interception) (results not
shown). For the same reason, simulated E. changes are negligible during most seasons in the
BRH region when precipitation is absent and features a slight increase in the wet season due
to a large-scale increase of precipitation in that region simulated by the model. The response
of T: and its spatiotemporal variability are qualitatively similar to E¢, with a decrease in wet
regimes (e.g., SouA and EastA) and a precipitation-induced increase in BRH. In contrast, the
response of E; shows a high degree of spatiotemporal coherency, increasing across the

deforested areas and during all seasons.

Deforestation causes a clear decrease of the near-surface relative humidity in the model

within the deforested areas (Figure 3), which results from not only the reduced moisture
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supply through canopy evaporation and transpiration but also surface warming (as shown in
section 3.3). This drying signal also extends to the lower troposphere over both deforested
land and nearby areas, especially during the SON (September, October, and November,
“SON” hereafter) season (Figure 3), leading to an overall decrease of cloudiness and
suppressed precipitation (Figure 4). The precipitation response is the strongest in the SON
season, with a clear decrease of precipitation over deforested areas; the precipitation signal
in other seasons is weaker and mixed, leading to an overall weak signal in the annual average,
although there is still a clear correspondence with the deforestation pattern (Figure 4). The
lack of strong rainfall response during the wet season (December-May, results not shown) is
expected, as a large part of moisture source is from transport by the monsoon circulation.
During the dry season (JJA, results not shown), rainfall in most of Amazonia is already very
low, leaving little room for further reduction. Over the deforested southern Amazonia during
the pre-monsoon season (SON), ET is the primary moisture source for precipitation, so the
simulated reduction of precipitation following deforestation is expected, as also shown by
observational studies (e.g., Leite-Filho et al., 2019). Among the heavily deforested wet
regions, the deforestation-induced change of annual precipitation averages to -1.41% over
SouA and -1.06% over EastA in Scenario 1, and -1.65% over SouA and -3.95% over EastA
in Scenario 2. In the drier region BRH, the annual average precipitation change is simulated
to decrease in Scenario 1 (by -5.46%) and increase (by 3.18%) in Scenario 2. However, these
precipitation signals are weak and do not pass the significance test over most grid cells of

South America.
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Precipitation is influenced by both local and non-local land cover changes (Hirota et al.,
2011), through both moisture supply and circulation changes. Through moisture supply,
deforestation influences atmospheric humidity and precipitation in the deforested areas and
downwind. Additional remote impact can occur through large-scale circulation changes. In
the subtropics over the La Plata basin with little or no local deforestation, a notable increase
of precipitation is simulated during most seasons and in the annual average (Figure 4),
apparently a result of large circulation changes associated with non-local deforestation. This
increased precipitation is the primary cause for the increase of evapotranspiration and soil
moisture in the La Plata basin (Figure 2 and Figure 4), a dry region where ET is limited by

water availability.

Over deforested region, soil moisture features a clear drying signal, as shown in Figure
4 using moisture in the top 10cm of the soil (Wsil) as an example; the response in deeper
soils is qualitatively similar. In the wet regions, SouA and EastA, the spatially averaged,
annual mean Wil change is -0.299 mm and -0.114 mm for Scenario 1 and -0.279 mm and -
0.421 mm for Scenario 2 in the top 10cm of soil (Table 1). This decrease of soil moisture
results from the combination of a slight decrease of precipitation (especially in South
Amazon) and a broad increase of evaporation from the soil surface, and suggest that land
cover change may have contributed to the severe depletion of terrestrial water storage found
in South Amazon and EastA regions during recent droughts (Erfanian, et al., 2017a). In the
drier region BRH, the response of Wsil in the model is inconclusive, with a slight decrease

in Scenario 1 and slight increase in Scenario 2, consistent with precipitation responses.
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As the deforested areas are spatially scattered across a large region, spatial averages
(e.g., Tables 1) do not reflect the true magnitude of the local response at the grid cell level.
Figure 5 relates the deforestation-induced water cycle changes in each model grid cell to the
magnitude of local forest cover loss, and includes all grid cells in the Amazon where
deforestation exists. The magnitude of water cycle responses (including increase of E, and
decreases of Ec, Ty, ET, precipitation, and soil moisture) generally increases with the extent
of deforestation within each grid, although the range of uncertainty is quite large. For a given
magnitude of forest cover loss, the hydrological response does not differ qualitatively
between the two scenarios; differences between the two scenarios in the simulated water
cycle responses (Figure 2) are primarily attributed to the magnitude of forest cover loss
applied to the model. Specifically, forest cover loss in Scenario 1 is less than 40% in most
grid cells; for all grid cells with less than 40% forest cover loss in Scenario 2, the water cycle
changes derived from the Scenario 2 experiment are similar to those derived from Scenario
1 (Figure 5), although E., T;, and E, show stronger responses in Scenario 2 at some grid cells.
The large magnitude of water cycle changes found in Scenario 2 result primarily from forest
loss that are larger in magnitude (more than 40%) despite being spatially fragmented. Among
the grid cells approaching complete forest loss, the average decrease of ET and precipitation
is approximately 0.5 and 0.75 mm/day, respectively. The clear contrast between the two
scenarios has significant implications. Although deforestation often occurs in the form of
severe forest loss concentrated over fragmented areas (as shown by Scenario 2), coarse-

resolution data and climate models often represent deforestation as land cover changes of
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small magnitude over spatially continuous and extensive areas (as shown by Scenario 1) and

thus underestimate the local climatic impact of deforestation.

3.3 Impact on Surface Temperature and Energy Budget

Consistent with previous studies, results from the three experiments indicate that
deforestation leads to higher surface temperature (Table 2). Vegetation temperature (Tv)
increases markedly across the deforested areas, which results from the decrease of E¢ and T;
meanwhile, ground temperature (Tg) increases over the deforested areas as a result of more
solar radiation reaching the ground following the reduction of LAI (Figure 6). The spatial
pattern of Ty and T, responses feature a clear signal that is spatially continuous in Scenario
1 and scattered in Scenario 2, similar to the corresponding forest cover loss for the two
scenarios. The deforestation-induced increase of annual average Ty is approximately 0.30 °C
in SouA for both scenarios, and is 0.16 °C in Scenario 1 and negligible (0.02 °C) in Scenario
2 when averaged over BRH. In EastA, the annual Ty warming is 0.16 °C for Scenario 1 and
0.33 °C for Scenario 2. Compared to vegetation temperature, ground temperature shows a
greater sensitivity to the loss of forest cover. Averaged over the SouA, BRH and EastA
regions respectively, the changes of annual mean Ty are 0.59 °C, 0.38 °C, and 0.33 °C under
deforestation Scenario 1 and 0.65 °C, 0.18 °C and 0.65 °C under Scenario 2. Warmer
vegetation and warmer ground lead to an increase of the near surface air temperature (Tam)
along the arc of deforestation (Figure 6), with a smaller magnitude of warming in Tom than

in Ty and Tg. For the response of average temperature (including Ty, Tg, and Tom) to
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deforestation, the spatial pattern is consistent among different seasons, with the largest
magnitude of warming in the pre-monsoon season (SON). In the subtropics, consistent with
the increased precipitation related to large scale circulation changes, temperature decreases

as a result of both increased cloudiness and increased evapotranspiration.

The daily minimum 2m temperature (Tom min) (Figure 7) is simulated to increase, and
the response is consistent across all seasons; the Tom min Warming shows a similar spatial
pattern to the average Tom warming but is larger in magnitude. In contrast, the daily maximum
2m temperature (Tom max) 1S simulated to slightly increase or even decrease, and the cooling
is stronger in Scenario 2 than in Scenario 1 and over both deforested and non-deforested
areas (Figures 7-8, Table 2); the strongest cooling is simulated in the subtropics with little or
no deforestation. The responses of the minimum, average, and maximum temperature at the
lowest level of the atmosphere (results not shown) are similar to those of the 2m air
temperature. Note that the decrease of the day-time maximum air temperature over
deforested areas found here contradicts a strong warming signal found in observational
studies that were mostly based on a “space-for-time” approach. Three factors contributed to
the cooling signal simulated by our model. First, temperature response to deforestation
depends heavily on the competition between the ET effects and albedo effects, and the
cooling effects of albedo increase are the strongest during mid-day hours when the solar
radiation is the strongest. Second, deforestation induces a large-scale circulation change with
increased mid-day cloudiness and decrease of solar insolation, an effect that cannot be

captured by the space-for-time approach in observational studies. Third, converting forest to
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cropland and grassland reduces surface roughness and efficiency of surface heat dissipation

into the atmosphere (Chen and Dirmeyer 2019), leading to cooler air over a warmer ground.

Despite locally strong signals, spatially averaged air temperature changes are quite
small in magnitude. For example, the warming of annual average Tmin in SouA, BRH, and
EastA regions are 0.38 °C, 0.30 °C, and 0.20 °C in Scenario 1 and 0.39 °C, 0.13 °C, and
0.37 °C in Scenario 2 (Table 2). At the grid-cell level, the changes in surface temperature
generally scale with the magnitude of local tree cover loss (Figure 8a). For example, the
coefficient of spatial correlation between annual average Tom change and forest cover loss is
0.67 in Scenario 1 and 0.80 in Scenario 2. The approximately linear relationship seems to
hold as forest cover loss continues to increase, and the simulated warming signal reaches 2-
3°C in areas of complete forest loss. The relationship as shown in Figure 8a, together with
the good correspondence between spatial patterns of deforestation and temperature response,
indicates that surface temperature response is dominated by local effect in the Amazonia.
The cloud-moderated effects (through incident shortwave radiation, “SW” hereafter) on
temperature in deforested areas is also analyzed (Figure 8b), and the correlation coefficient
between annual average Tm change and SW change is 0.59 in Scenario 1 and 0.56 in
Scenario 2. Note that this correlation results from complex feedback processes involving not
only the warming effect of solar radiation but also the contribution of warming to reduced
relative humidity therefore reduced cloudiness. In areas surrounding deforestation, a stronger
correlation is found between the average Tom change and SW change, with a correlation

coefficient of 0.79 in Scenario 1 and 0.84 in Scenario 2 (Figure 8c), which reflect the non-
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local effect of deforestation. However, within the Amazon region, the magnitude of the non-
local effects is relatively small (Figure 8c). At grid points where SW increases, the warming
of daily average temperature is less than 0.3°C in grid cells with no deforestation (Figure 8c),
and can be one order of magnitude higher in some grid cells with severe deforestation (Figure
8b). This contrast between Figure 8b and 8c indicates that the large magnitude of warming
over deforested areas results primarily from local processes, with SW changes playing a
secondary role. In contrast, the relationship between Tam max and SW for deforested grid cells
is generally similar to the relationship for grid cells with no forest loss (Figure 8e vs. 8f),
which indicates that cloud feedback related to large-scale circulation changes play an

important role in the response of day-time maximum temperature to deforestation.

The effects of deforestation on surface energy budget are estimated based on their
annual averages (Figure 9). Over deforested areas, surface insolation (SW) increases as a
result of fewer clouds, but the net shortwave absorption is smaller due to the increase of
surface albedo. The surface longwave emission (LW) increases as a result of warmer
vegetation and warmer ground in the Tropics (Figure 9b1-9b2); in the subtropics, LW
features a decreasing signal owing to the decrease of surface temperature caused by non-
local deforestation. The net radiation changes are dominated by longwave emission response,
with a general decrease over deforested areas, and are larger for Scenario 2 than Scenario 1
(Figure 9¢1-9¢2). With the general decrease of total ET following deforestation, latent heat
flux (LE) decreases over most of the heavily deforested areas (Figure 9d1-9d2), but the signal

is much weaker than the net radiation decrease (Figure 9c1-9¢2). As a result, sensible heat
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flux (SH) decreases substantially (Figure 9e¢1-9¢2). At the process level, converting forest to
cropland and grassland reduces surface roughness and the turbulent transport of heat to the
overlying atmosphere. This, together with the general decrease of Ruyet, causes a decrease of

sensible heat flux over deforested areas.

The general warming over deforested areas may influence temperature extremes. The
99 percentile of daily average temperature (To9) is enhanced over deforested areas in SouA
and EastA, but is reduced in BRH (Figure 10). Averaged over the three deforestation clusters,
the changes of Tog in Scenario 2 (0.33 °C, -0.38 °C, and 0.33 °C respectively) are larger than
in Scenarios 1 (0.19 °C, -0.06 °C, and 0.13 °C respectively for SouA, BRH, and EastA).
Similar to Too, the extreme temperature frequency (Fro9, number of days with Tom exceeding
Tog from the Land 1980 experiment) increases in SouA and EastA but decreases in BRH
(Figure 10). In Scenario 2, Fr99 increases substantially, by 3.91 days/year in EastA (which
means the frequency more than doubles its pre-deforestation value), and by 2.72 days/year
in SouA. Note that SouA and EastA are wet regions with a high ET rate in Land 1980, while
BRH is a dry region with a water-limited ET regime. Changes in both the intensity and
frequency of the extreme temperature are larger for Scenario 2 than Scenario 1, indicating
that coarse resolution, spatially continuous representation of deforestation tends to cause

underestimation of the extreme temperature events in the model.

4. Conclusions and Discussion

In this paper, we derive two scenarios of deforestation-induced land cover changes in
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South America during 1980s-2010s from two different sources of data, and assess how these
changes might influence the regional climate. Converting forest to cropland and grassland
leads to lower LAI and surface roughness and higher surface albedo. As a result of these
deforestation-induced surface property changes, the model’s surface climate becomes
generally warmer and drier over deforested areas in the tropics. The surface warming signal
is stronger for the ground and vegetation temperatures, and weaker for air temperature; for
the surface air temperature, the warming signal is stronger for the nighttime minimum and
weaker or even becomes a cooling signal for the daytime maximum temperature, which
reduces the diurnal amplitude of air temperature over deforested areas. The surface drying
signals include lower atmospheric humidity, less precipitation, and drier soil over deforested

arcas.

In addition to the local effects, deforestation causes non-local effects through altering
atmospheric circulation and therefore moisture transport (Badger and Dirmeyer, 2016; Hasler
et al., 2009). In the subtropics of South America including part of the La Plata basin where
no land cover changes were imposed in the model, an increase of precipitation is simulated,
apparently as a result of large-scale circulation changes associated with deforestation in the
Amazon and surrounding regions. The increased precipitation leads to wetter soil, higher

evapotranspiration, and a strong cooling signal in all temperatures examined.

The simulated temperature and water cycle changes resulting from deforestation show

substantial differences between the two scenarios of deforestation. Coarse resolution data (as
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used in Scenario 1) underestimates the severity of forest loss at the grid cell level, which
causes the model to underestimate the local impact of deforestation. In Scenario 1, the grid-
level forest cover loss rarely exceeds 40%, and the projected local warming is mostly less
than 1°C; in Scenario 2, the model suggests a warming of close to 3°C for grid cells with
complete forest loss. The differences between the two scenarios in the simulated warming
effects confirm the findings from recent studies (Khanna et al., 2017; Zeppetello et al., 2020)
that the deforestation-induced hydrothermal changes are closely related to the deforested
patch size. It is important that data and models used to study deforestation be able to capture

the detailed spatial structure of land use land cover changes.

The cooling or weak warming of daytime maximum and the reduced diurnal amplitude
of surface air temperature as a response to deforestation seem to contradict findings from
observation-based studies that documented a significantly higher daytime temperature over
open land than the neighboring forest areas. Several factors contribute to this discrepancy.
From the model side, some simulated responses, especially the comparison among
competing mechanisms, may be model specific. In this particular model, the
evapotranspiration response is rather modest. During midday when the incoming solar
radiation is the strongest, the radiative effects of albedo increase and the cloud effects related
to a circulation change may outcompete the evapotranspiration effects. Meanwhile, reduced
surface roughness suppresses latent heat flux, which may cause cooler air over a warmer
ground. From the observation side, most studies relied on satellite-sensed temperature

differences between forest and nearby patches of open land, which reflect the differences in
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ground temperature (as opposed to air temperature), and the “space for time” approach
cannot capture the atmospheric feedback effect that is important for the simulated air
temperature response in the model (e.g., Chen and Dirmeyer, 2020). This discrepancy will

be the subject of our follow-up research.

Our study identifies the subtropical South America as a region remotely influenced by
deforestation in the Amazon and surrounding regions. Observational data indicates that the
La Plata basin has experienced increased precipitation and flooding in recent decades,
accompanied by relatively slow warming trend or even cooling in some areas (e.g., Barros
et al., 2015). Our model simulates similar signals, as a response to non-local deforestation,
including an increased precipitation resulting from altered large-scale circulation and a strong
cooling due to the associated cloud effects as well as enhanced surface evapotranspiration
under increased water availability. These results suggest that non-local deforestation may

have contributed to the observed climate trends in the La Plata basin.

For all temperature indicators evaluated in this study, the strongest warming signal is
simulated in SON, the dry-to-wet transition season; SON is also the most sensitive season in
terms of precipitation response. This is consistent with the argument put forward by Fu & Li
(2004) and Li & Fu (2004). Specifically, the interactions between rainfall and large-scale,
low-level convergence, as well as higher surface wetness during the wet seasons (DJF and
MAM) tend to self-amplify and self-sustain the conditions favorable for rainfall until the

seasonal maximum solar radiation moves away from this region; on the other hand, the dry-
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to-wet transition during SON has to overcome the surface dryness and inversion at the top of
the boundary layer, which in the absence of summer large-scale circulation may depend more

on land surface processes.

Other than anthropogenic land use changes, self-amplified forest loss may result from
the interactions between vegetation and regional climate (Delire et al., 2011; Sun & Wang,
2011; Wang et al., 2011; Zemp et al., 2017). Forest cover can degrade as a result of increasing
natural disturbances such as drought and fire and/or decreasing rainfall (Verbesselt et al.,
2016); on the other hand, deforestation could enhance drought through reducing
evapotranspiration and weakening the atmospheric moisture supply during dry seasons (Van
der Ent et al., 2010; von Randow et al., 2012). Consequently, deforestation could potentially
trigger self-amplified forest loss and destabilize the forest (Wang & Eltahir, 2000a, b).
However, this study prescribes vegetation cover and its changes and therefore does not
account for the processes and feedback underlying a potential self-amplification of
deforestation, which is a limitation that will be tackled in follow-up studies. On the other
hand, even without the self-amplification effect, the magnitude of deforestation-induced
local warming found in this study (2-3°C under fragmented clear cut) is alarming. This is not
only because it is significantly greater than the greenhouse gas warming (which is estimated
to be ~0.7 °C since 1980 in the Amazonia). More importantly, deforestation-induced
warming can occur over a relatively short time when deforestation rapidly expands. The
future of Amazon forest is still poorly understood due to the great uncertainties in regional

climate change and the resulting forest response (Boulton et al., 2013). A large number of
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505 numerical modeling studies have pointed out the risk of Amazon forest dieback in the 21st
506 century under the influence of climate change or in combination with human activities (Cox
507 et al., 2000, 2004; Cochrane & Barber, 2009;Rammig et al., 2010; Boulton et al., 2013).
508 Although these simulations are subject to a large array of uncertainties, it is rather certain
509 that the Amazon forest will not be sustainable under current land use practices especially in

510 an increasingly warmer climate (Boulton et al. 2017; Malhi et al. 2009).
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730 Table 1 Annual average for terrestrial hydrological variables (left column), and their corresponding

731 changes. Unit for all fluxes are mm/day. Wi is given in mm.
S1 SouA S1 BRH S1 EastA S2 SouA S2 BRH S2 EastA
ET -0.006 0.045 -0.004 -0.015 0.052 -0.022
E. -0.043 0.004 -0.013 -0.042 0.005 -0.052
T, -0.013 0.017 -0.018 -0.041 0.026 -0.129
E, 0.050 0.025 0.027 0.069 0.021 0.158
Precipitation -0.104 0.046 0.001 -0.027 0.104 -0.019
Wil -0.299 -0.158 -0.114 -0.279 0.142 -0.421
732
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733 Table 2 Annual average for surface temperature variables (left column), and their corresponding

734 changes

S1 SouA S1 BRH S1 EastA S2 SouA S2 BRH S2 EastA

Ty 0.31 0.16 0.16 0.30 0.02 0.33

T, 0.59 0.38 0.33 0.65 0.18 0.65

Tom 0.24 0.13 0.12 0.23 0.01 0.27

Tom max -0.10 -0.21 -0.08 -0.17 -0.23 -0.11
T2m min 0.38 0.30 0.20 0.39 0.13 0.37
Tog 0.19 -0.06 0.13 0.33 -0.38 0.33

Frog 1.44 -0.19 0.84 2.72 -1.23 3.91

735 Ty, Tg, Tom, Tom_max, T2m_min, and Too are given in °C. Frog is given in times/year.
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Figure Captions

Figure 1. Loss of forest cover (al-a2, in %) and the resulting annual average LAI changes (b1-b2, in

m?/m?) and albedo changes (c1-c2).

Figure 2. Changes of the annual average ET (al-a2), canopy evaporation (b1-b2), transpiration (c1-

c2), and soil evaporation (d1-d2), in mm/day.

Figure 3. Absolute changes of the SON and annual average relative humidity (in %) at 2m above

canopy (al-a2 and b1-b2) and 800mb (c1-c2 and d1-d2).

Figure 4. Changes of the SON and annual average precipitation (al-a2 and b1-b2, in %) and water

depth in the top 10cm of soil (c1-c2 and d1-d2, in mm).

Figure 5. Correspondence between average changes of hydrological cycle variables and forest cover
loss (in %) in SON, based on all grid cells with non-zero forest cover loss in the region 65-45° W, 0-
30°S, for both Scenario 1 (blue) and Scenario 2 (red). a) Canopy evaporation, b) Transpiration, c)
Soil evaporation, d) total ET, e) Precipitation, f) Water depth in the top 10cm of soil (in mm). Unit

for all fluxes are mm/day.

Figure 6. Changes of the average vegetation temperature (al-a4), ground temperature (b1-b4), and
2-m air temperature (c1-c4) for deforestation Scenario 1 (S1) and Scenario 2 (S2), in °C, based on

annual mean and September-October-November seasonal mean.
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Figure 7. Changes of daily maximum (al-a5 and b1-b5) and minimum 2-m air temperatures (c1-c5

and d1-d5), in °C, based on the seasonal and annual means.

Figure 8. Changes of the daily average (a-c) and daily maximum (d-f) 2-m air temperatures (in °C)
during the September-October-November season corresponding to forest cover loss (a and d, in %)
and incident shortwave radiation (b-c and e-f, in W/m?) for Scenario 1 (blue) and Scenario 2 (red),
based on grid cell with forest cover loss (a-b, d-f) and those without (c, f) within the region 65-45°

W, 0-30°S.

Figure 9. Changes of the annual mean fluxes of incident shortwave radiation (al-a2), emitted

longwave radiation (b1-b2), Ryt (c1-¢2), latent heat flux (d1-d2) and sensible heat (el-€2), in W/m?.

Figure 10. Changes to the 99" percentile of the average 2-m air temperature (al-a2, in °C) and

changes to the number of days with temperature exceeding the 99™ percentile (b1-b2, in days/year).

42



Forest cover loss LAI change Albedo change

T . at) b1) cl)
Rpre S I Y Y5,

- €. Gl Coagd Y

g 15° ! 158 N e 157 -l

: . B ? .

L a0°s -0.01*°

4505 o 45°5 o 45° - Fr
1§02 T
80°W . 70°W 60' 80°W . 70°W &?“ X 40°W -0 5 B0°W  70°W 6?“W 50°W  40°W
' RliE
IS o o B kel T -1 o 4EK
47 i

™ b ) Ko

P . 2 W ;

g 15°S - . D s

2 i

é 30°8 30°8 y 30°8 :

45°S _ 45°S Joi 45°S Joidfl
- B - -

777 HO:W T0°W  BO°W  50°W  40°W BO:W 70°W  60°W  50°W 40‘“W EOLW 70°W  60°W SD:W 40:’W
778 Figure 1. Loss of forest cover (al-a2, in %) and the resulting annual average LAI changes (b1-b2, in

779 m?/m?) and albedo changes (c1-c2).

43



- 0°
2
& s 15°8
5
(3]
m 30°8 30°S
45°5 oo 45°5 O 06
° BO°W T0°W B0°W 50°W 0
0° 0 7.'"!' 0 '0-06
N ? s '.’ -.' , »” 1 2
=] -
‘5 15°8 15°8 15°8 O'
£
Q
% a0°s 30°8 30°s
455 o 458 s 4505 ornd
780 80°W T70°W BO°W 50‘°W 40°W BO*W TO°W 60°W EDLW 40°W 80°W T70°W B0°W SOI‘W 40°W BO*W 70°W B0°W EOLW 40:W
781 Figure 2. Changes of the annual average ET (al-a2), canopy evaporation (b1-b2), transpiration (c1-

782 ¢2), and soil evaporation (d1-d2), in mm/day.

44



2m_Annual 800mb_SON 800mb_Annual

y b1) cl) d1)
) sy NS, | S,
— S S
i B2 ML
g 15°8 g —/ 158 e < b‘ :j,’ oy < 5 j
Cz 30°8 f 30°8 f 30°8 f
5 2.4 =5 5 0.8
45°5 Fr ) 45 e s Ff 458 e _Fr '
e TS T s | Hoa
B80°W T0°W B0°W 50°W AU:'W O B0°W T70°W B0°W EOLW QU:W B80°W T0°W B0°W SU:W 4U:W 0

D e S @m;a 0.4
_ J? 0.8

Sy

i . > 1°! - ¥ ‘....... i vl !
e ‘*
L .\ 5 . - 30°5 E
4508 o 4 4505 oo 4505 oo
- - - -
; ~ : - ; ~ i -

T T T T T T T T
BOW  70°W BO°W S0°W 40°W BO*W T0°W 60°W 50°W 40°W BOW 70°W B0°W S0°W 40°W BO°W T0°W  BOSW  50°W  40°W

Scenario 2

783

784 Figure 3. Absolute changes of the SON and annual average relative humidity (in %) at 2m above

785 canopy (al-a2 and b1-b2) and 800mb (c1-c2 and d1-d2).

45



Precipitation_ SON Precipitation_Annual Wsoil_SON Wsoil _Annual

NG Ty, | e, "
¢
- P - S
=) ¢ v , v -
.- A, b 1} - . z
‘a‘ 158 e S 4 " 15°8 ‘1 3
g 1 S/ ¥o
o Bt ; }»
& a
mo 30°s -y 30°8 - 30°8
S 12 0.8
455 A-reennm e _ 45% e 4598 4 i
Y - 6 0.4
I‘
40°W O oW 0
b2)
o~ [ e '6 0 [ '0.4
N e T
B Ao e -12 . -0.8
=BLER 15°8 Mg i 16°5 g 155 4N
g ; %}-:/
Q R -
(2 30°s s ‘ \‘; ’r 30°8 30°8
45°5 o5 i .-.7 455 o 4505
-
=~ b =~
T T T T T T
7 8 6 B0°W TOW BOW SOW 40°W BOW TOW 6OSW SOW  40°W BOW TOW 60°W S0SW 40°W BOPW TOUW 60°W 50°W 40°W

787 Figure 4. Changes of the SON and annual average precipitation (al-a2 and b1-b2, in %) and water

788 depth in the top 10cm of soil (c1-c2 and d1-d2, in mm).

46



789

790
791
792
793
794

795

4.0

a) b) 35 c)

K 3.0
E ES & 25
g 3 3

E z -
e e e
= < - < 1.0

- 0.5 . ..

0.0 pemeiit i
-1.44 -2.54 -0.5
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Forest cover loss (%) Forest cover loss (%) Forest cover loss (%)
d e) f
-E
B E 7
= <
i : <
£ K] -
- b1 L5
= = =
= & =
< - g
&

0.8 Scenario 1 <

L0 Scenario 2 15

T0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Forest cover loss (%) Forest cover loss (%) Forest cover loss (%)

Figure 5. Correspondence between average changes of hydrological cycle variables and forest cover
loss (in %) in SON, based on all grid cells with non-zero forest cover loss in the region 65-45° W, 0-
30°S, for both Scenario 1 (blue) and Scenario 2 (red). a) Canopy evaporation, b) Transpiration, ¢)
Soil evaporation, d) total ET, e) Precipitation, f) Water depth in the top 10cm of soil (in mm). Unit

for all fluxes are mm/day.

47



S1_SON S1_Annual S2_SON S2_Annual

a2) ‘? a3) @ a4)
ED& . ""‘- 2 o 0 X - s

atl)

=
b
¥

BV ESRRY AN o

T T T T T T T
BO°W  70°W 60°W 50°W  40°W B0°W  70°W 60°W 50°W 40°W 80°W TO°W  60°W 50°W  40°W 80°W  70°W  60°W 50°W 40°W

o | S 2] P E ] SR, | fl03

0.2

= 0.1
L’SE N S

T T T T
BO°W  70°W B0°W S0°W 40°W B0°W  70°W B0°W 50°W 40°W
T

SE

wTv_
iy
NI #
]ﬁ -1
En el
Ly
N
AV,
"
ok
g
<

ol

Tg

—-0.1
—-0.2
-0.3
-0.4
-0.5
-0.6

e
~
Q

15°5 A

BO'W 70°W B0°W 50°W 40°W B80°W  70°W B0°W 50°W  40°W BO°W TO°W 60°W 50°W 40°W BO°W 70°W 60°W 50°W 40°W

796
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802 Figure 7. Changes of daily maximum (al-a5 and b1-b5) and minimum 2-m air temperatures (c1-c5
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804
805 Figure 8. Changes of the daily average (a-c) and day-time maximum (d-f) 2-m air temperatures (in °C)
806 during the September-October-November season corresponding to forest cover loss (a and d, in %)
807 and incident shortwave radiation (b-c and e-f, in W/m?) for Scenario 1 (blue) and Scenario 2 (red),
808 based on grid cell with forest cover loss (a-b, d-f) and those without (c, f) within the region 65-45°

809 W, 0-30°S.
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811 Figure 9. Changes of the annual mean fluxes of incident shortwave radiation (al-a2), emitted

812 longwave radiation (b1-b2), Rnet (c1-¢2), latent heat flux (d1-d2) and sensible heat (e1-€2), in W/m?.
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