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Abstract

Granular-microstructured rods show strong dependence of grain-scale interactions in their
mechanical behavior, and therefore, their proper description requires theories beyond the classical
theory of continuum mechanics. Recently, the authors have derived a micromorphic continuum
theory of degree n based upon the granular micromechanics approach (GMA). Here, the GMA 1is
further specialized for a one-dimensional material with granular microstructure that can be
described as a micromorphic medium of degree 1. To this end, the constitutive relationships,
governing equations of motion and variationally consistent boundary conditions are derived.
Furthermore, the static and dynamic length scales are linked to the second gradient stiffness and
micro-scale mass density distribution, respectively. The behavior of a one-dimensional granular
structure for different boundary conditions is studied in both static and dynamic problems. The
effect of material constants and the size effects on the response of the material is also investigated
through parametric studies. In the static problem, the size-dependency of the system is observed
in the width of the emergent boundary layers for certain imposed boundary conditions. In the
dynamic problem, microstructural effects are always present and are manifested as deviations in

the natural frequencies of the system from their classical counterparts.

Keywords: free vibration; micromorphic theory; size effect; granular micromechanics;

microstructured solids.



1. Introduction

Small-sized structures are being increasingly utilized in applications such as nano- and micro-
electro-mechanical systems (NEMS/MEMS) and Atomic Force Microscopes (AFMs). In these
structures, the effect of the microstructure on the behavior of the material is significant. Such a
microstructure can be the constituent grains in a granular medium or a collection of beam elements
in pantographic materials [1]. In addition, microstructured materials have also been widely used
in the context of mechanical metamaterials to obtain desired unusual behavior that natural
materials do not exhibit [2, 3]. For such materials (or structures depending on the scale of
observation), there exists inconsistencies between the experimental findings and the classical
continuum mechanics predictions [4—7]. Such variations in the observed behavior and classical
continuum theory predictions pertain to the existence of the micro-mechano-morphological
effects. These effects on the mechanical behavior of the materials become noticeable, especially
in dynamic problems where the wavelengths of excitation are comparable to the characteristic
lengths of such systems [8]. To account for the discrepancies between the theoretical predictions
and experimental observations, and to overcome the inherent limitations of the classical continuum
theory, non-classical continuum theories were developed, among which we refer to the works in

[9-14].

To investigate the predictions of such non-classical theories, one-dimensional models are often
utilized. A particular widely-studied example of such one-dimensional structures is rods. There
have been several recently published articles on the analysis of one-dimensional rods utilizing non-
classical continuum theories such as stress gradient (also called nonlocal), strain gradient (also
called gradient elasticity), and nonlocal strain gradient models to capture the microstructural
effects in static and dynamic problems [15-32]. We note that these effects have also been reported
in the studies concerned with the vibration and buckling phenomena in beams, e.g. in [33-36],
small-scaled truss and frame models, e.g., in [37], two-dimensional problems, e.g., in 38, 39], and

metamaterials [40].

In the present paper, we expound upon a particular form of a microstructured solid, namely a one-
dimensional material with granular microstructure, which is modeled as a micromorphic media of
degree one using the granular micromechanics approach (GMA). GMA is a micromorphic theory

equipped with an enriched kinematics to describe grain motion, in which the derived governing



equations of motion constituents are related to the granular mechano-structure of the material [41,
42]. The mathematical model derived through GMA has shown interesting results in the prediction
of acoustic (material deformation) and optical (internal deformation) wave branches in granular
media undergoing excitation [43—45]. The dispersive behavior predicted by GMA reflects many
aspects of granular structures dynamic behavior (e.g., existence of frequency band gaps and
negative group velocity), and can potentially be employed to obtain the continuum material

constants of granular media [46—48].

It is notable that the dispersion analysis of infinite media does not fully reveal the effects of the
length scale parameters and the applied boundary conditions on the behavior of the granular media.
Therefore, it is our purpose here to further elucidate the contribution of different length scale
parameters, stiffness and inertial measures (micro-mechano-morphology) to the behavior of finite
length one-dimensional granular media in both static and dynamic uniaxial loading under different
boundary conditions. Such analyses are essential for understanding the complex behavior of such
media and to help designing suitable experimental setup to extract and identify the material
parameters defining granular materials, which currently proves challenging, if not impossible.
Moreover, the findings of the present paper help analyzing a myriad of granular materials found
in nature, as well as serve as a design tool to conceive granular metamaterials that can be realized

through additive manufacturing technologies for particular applications [49, 50].

The structure of the paper is as follows. Section 2 describes the granular micromechanics approach
to model one-dimensional continua with granular microstructure. Section 3 is devoted to the static
behavior analysis of one-dimensional continua with granular microstructure subjected to different
boundary conditions. In section 4, the dynamic behavior of one-dimensional continua with
granular microstructure is investigated through free vibration analysis. Finally, section 5 presents

the summary of the work and the concluding remarks.
2. GMA based micromorphic theory of degree 1 for a 1D rod

This section introduces the continuum framework for GMA based micromorphic theory of degree
1 to model a one-dimensional granular structure. The model adopted in the current paper assumes

linear elastic mechanisms of deformation with no damping. The references [41, 42, 45] describe



the framework for a three-dimensional granular structure. The reader is referred to the mentioned

articles for more detailed description.

2.1.Kinematic variables

Let us consider a one-dimensional object of length L with an underlying granular microstructure
composed of many grains with random mechanical and inertial properties (hereafter referred as
1D granular rod), as shown in Fig. 1. At the spatial scale, in which the object may be treated as a
continuum, the material point P can be identified using the macro-scale coordinate system X.

Material point P is considered to have the macro-scale linear mass density o (given as mass per
unit length), differential length dX, and differential mass of dm=pdX in the initial
configuration. We denote by X and x =Z(X,#) the position of the point P at initial and current

configurations, respectively, where E is the macro-scale placement function and ¢ denotes time.
The macro-scale displacement is defined as u = x— X . At a finer spatial scale, material point P is
a collection of grains and is referred to as a volume element (VE) with length L'=dX . For a
periodic granular structure, such as a granular composite made of several grains repeating
periodically, the VE is identical to the notion of a unit cell, and for non-periodic granular structures,
it is the volume of the granular material over which the local (micro-scale) deformation is
homogenized. In the latter case, the VE is chosen as per the requirement of the mechanical problem
and such that it contains sufficiently large number of grains to justify the continuity assumption.
The position of each grain within the VE is identified using the micro-scale coordinate system X’
of the finer spatial scale. This coordinate system is attached to the center of mass (COM) of the
material point P, is taken to be parallel to the macro-scale coordinate system X, and displaces in
consonance with the macro-scale displacement u. The micro-scale displacement u” is expressed as
u'=x'— X' where X" and x' =Z'(X, X',t) denote the position vectors of a grain centroid at initial
and current configurations, respectively, and Z' is the micro-scale placement function. We assume
that both the micro- and macro-scale deformations are infinitesimal, and are continuous and
differentiable functions of the micro- and macro-scale coordinates up to the desired order, such

that we can write

u=u(x,t), u'=u'(x,x',t). (1)



For a micromorphic theory of degree 1, the micro-scale displacement «’ can be written in the form

below using a polynomial expansion with respect to x* about the COM of the VE [41].
”l:‘//ux,+‘//111(x')2' )

In Eq. (2), y,, and y,,, are functions of x and ¢ only, and account for the local deformation within

the VE. We note that although for systems with small number of particles (or layers in composites
modeled as one dimensional) a more accurate approximation of displacement can be made by
subdividing the VE into different regions with different strain regimes (e.g., see [51, 52]), for large
number of particles (or layers), such approaches become increasingly complicated and a linear or
quadratic approximation within the whole domain of VE remains the most feasible (e.g., see [53]).
We note here that efforts at formal homogenization (continualization) of mass-spring systems,
such as in [54, 55], also propose multiscale decomposition of displacement field among the
possible approaches for developing continuum models. Using Eq. (2), the total displacement vector

for the grains within the VE are written as
’ o ' 2
p=u+u :¢+‘//11x+‘//111(x) . 3)

where ¢ =u is adopted such that the variable names are in harmony with previous publications

[41, 42]. For a micromorphic theory of degree one, we utilize the following relative deformation

measures [12, 13, 41]

711:5,x_‘//119 Yin =¥y Vi 4)

where, hereafter, differentiation with respect to the spatial coordinates is denoted by a comma in
the subscript. In Eq. (4), the differentiation is performed with respect to the macro-scale coordinate
system. For a micromorphic theory of degree 1, and as a constitutive choice, we assume here that
the relative deformation measure p,,, vanishes, therefore we have y,,, =y, .. Note that if we

further assume that the relative deformation measure y,, vanishes, a second gradient model is

obtained [41].

The relative displacement between two neighboring grains n and p, 8™, can be written, using Eq.

(3) and Eq. (4), as



ST =g —¢" =" - " +5°, (5)
where the following micro-scale kinematic measures are introduced
é‘M:%lenp’ o=y, 0f =y, Jo". (6)

In Eq. (6), 6™ signifies the portion of the relative displacement due to the macro-scale

displacement gradient ¢

»X

, 0" represents the portion of the relative displacement due to the
fluctuation between the macro-scale displacement gradient ¢7’x and the micro-scale kinematic
measure y,,, and 6¢ denotes the portion of the relative displacement due to the second gradient
term. Furthermore, we have defined the geometry moment measures J,* =/"—/" and
J3P =1"1" —I"I", where [? represents the vector joining the COM of the RVE to the grain q
centroid. Note that J,* = (lp =" )(l" +l“) =J" (lp +1" ) which implies that for grains n and p, the

farther they are from the COM of'the VE, the higher the second gradient contribution to the relative

displacement, &€ .
2.2.Constitutive equations

We assume the macro-scale deformation energy density to be a function of the continuum

kinematic measures ﬁx, 7u>and y, ., i.e., of the form W = W(%x,yll,w“,x). Macro-scale stress

measures, namely, Cauchy stress, 7,,, relative stress, o,,, and double stress, y,,, are defined as

conjugates to the continuum kinematic measures, and expressed as

ow ow ow

T, =—, O,=—0H, =—. 7
11 a¢’x 1 oy, M oy (7

11,x

The macro-scale deformation energy density can also be expressed in terms of the micro-scale

deformation energy density as

Lo ((gomt_ gom gae
W=r2W (5,5, 5%), (®)



where W* represents the micro-scale deformation energy for the o interacting pair of grains
within the VE. Intergranular forces can be defined as conjugates to the micro-scale kinematic

measurcs as

owe . oWe . oW
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Substituting Eq. (8) in Eq. (7) and employing Eq. (6) and Eq. (9), the macro-scale stress measures

are expressed as
1 o a 1 oam o 1 og o
TIIZEZf MJ“ O'nzfzjf Ji ﬂm:fo £J; . (10)

Eq. (10) defines the macro-scale stress measures in terms of micro-scale force measures and

geometry moment measures, where J;* and J; for the o' grain pair for interacting grains n and p
are evaluated as J* and J,”, respectively.
For formulating micro-scale constitutive equations relating micro-scale kinematic measures to

their conjugate intergranular force measures, the following form for the micro-scale deformation

energy for the ' grain pair is considered

W = % K™ (5™ )2 +%K‘*‘“ (6™ )2 + KM g som +%K°~g (57 )2 . (11)

Based on Eq. (11), there are four linear mechanisms involved in the deformation of a grain pair in

contact, each quadratic in form. K%, i=M,mMm,g are the stiffnesses associated with their

corresponding mechanisms.

Intergranular forces introduced in Eq. (9) are obtained, using Eq. (11), as

](‘(xM — SZM — K(xMé‘aM +K(me5am,
f'am — 2gzm — Kaméam +KaMm5uM, (12)
pre =W _ guegue

00"

Finally, using Eq. (12), the macro-scale constitutive relationships in Eq. (10) are described as



= (CM +CMm)¢7,x ~C"y,,
Oy :(CMm"'Cm)%x_le//m (13)
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where the macro-scale stiffnesses CM, C™, C™", and C*® are expressed as

CM:%zKuMJlaJla’ Cm:%zKumJIaJlu’

(14)
cY" = %ZK“M“‘J{‘J{‘, Ct= %ZK“W;J;.

o o

For the stiffnesses introduced in Eq. (14), the superscript M denotes the stiffness due to macro-
scale deformation, the superscript m denotes the micro-scale (relative deformation) stiffness that
acts analogous to the shear rigidity in Timoshenko beam model, the superscript Mm denotes the
coupling (cross-linking) stiffness between the macro- and micro-scale deformations, and the
superscript g denotes the second gradient stiffness. We note here that the stiffness measures in Eq.

(14) possess inherent length scales within their definitions that are natural consequences of the

: : : : : / ce . : :
assumed kinematic field of motion for the grains. Accordingly, o is considered as the static
length scale for the current problem.

2.3.Governing equations of motion

Hamilton’s principle is used to obtain equations of motion for the 1D granular rod. Hamilton’s

principle requires the action functional to be minimum, and is expressed as

4 - - -
Lo(éT—ﬁWJréWext)dt:O, (15)
where & is the variation symbol and the terms 7, W, and W, are defined in the following. The

term T = J , Tdx is the total kinetic energy of the granular structure, in which T'is the kinetic energy

density, utilizing Konig's theorem [56] defined and expanded as [41]

IL¢1 ..., 1 — 1 .. .. 1 ..
T:?J.L,Epﬂédx :Ep¢¢+5plll/llll//ll+p111w11w11,x+5p1111l//11,xl//11,x' (16)



In Eq. (16), p' is the micro-scale mass density per unit macro-volume, and over-dots here and

henceforward represent differentiation with respect to time. The following inertia measures have

been defined [41]

1

1 ! ! !
= .L"O (x )4 dx' (17)

1 ! / !/
L,p (x )2 ax', py, = E
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The term p represents the macro-scale mass density and is an average of the micro-scale mass
density o' within the VE. On the other hand, the other inertia measures introduced in Eq. (17) are
functions of the micro-scale mass density and its spatial distribution and inherently include the

length scales existing in the dynamic problem. In particular, the inertia measure p,,, is due to non-

symmetric micro-scale mass density distribution in the VE, e.g., for a graded granular material in
micro-scale, and vanishes for symmetric micro-scale mass density distributions [45]. Interestingly,
and as a consequence of Eq. (17), these length scales are not independent, but are related to each

other through the micro-scale mass density p’ distribution. In other words, for a known micro-
scale mass density p’ distribution within the VE, these length scales are fixed [45]. The kinetic

energy introduced in Eq. (16) results from the assumed kinematic field in Eq. (3). We note that the
additional velocity gradient terms appearing in Eq. (16) are not postulated a priori as often done
in higher order continuum modeling (which are typically introduced to improve the dispersion
predictions). This form of kinetic energy includes terms that are absent in classical continuum
mechanics formulation to account for the non-uniform distribution of velocity in the VE, and
expands upon the terms currently postulated in nonlocal strain gradient elasticity (e.g. in [31]). The
existence of velocity gradient terms in the description of the kinetic energy has also been observed
in gradient elasticity models to describe lattices with distributed mass properties [15] and in works
concerning modeling the effect of micro-inertia in heterogeneous materials, e.g., in [57].
Moreover, velocity gradient terms have been also adopted to model wave dispersion in nonlinear

pantographic beams and related to the distributed masses along the rigid links [58]. For the kinetic

energy in Eq. (16) to be positive definite, the inequality p,,0,,,, — 25, >0 must hold. This
: e G : one : 1 T X = - - . . u
inequality is obtained by rewriting Eq. (16) in the form T = EX AX, where X = [(,15 7 WIl,x:| :

and requiring that the matrix A be positive definite.



In Eq. (15), SW = L OWdx represents the variation of total macro-scale deformation energy,
expressed as

- — —|x=L x=L
oW = —L(TM +0, ),x 5¢dx—L(,um’x +0, )51//11dx+ (7, +0,, )00 L—:o + ﬂ1115‘//11|x:0 . (18)
Finally, the term O Wex, in Eq. (15) corresponds to the variation of total external energy defined as

6, = [, P+ [ ®S, s+ 167" +Tow, [~ (4

In Eq. (19), f is the non-contact body force per unit length, ¢ is the contact traction, @ is the

non-contact body double force per unit length, and T is the contact double traction. Substituting

Eq. (16), Eq. (18), and Eq. (19) in the expression for Hamilton’s principle in Eq. (15) results in

tl = —

IL[(TU vo,) + [P }5¢dxdt

+J‘J.L|:O-11 Tt Q- pyy + plllllﬁll,xx + (pm ),x Wi+ (pllll ),x l/;ll,x:|5WIldth (20)
l

+J]‘|:(£_711 _611)5¢7:|j:§dt+JL[(Z_pllll/.}ll ~ P _ﬂlll)é‘l//ll]iisdt =0

fy

From Eq. (20) it follows that, after assuming zero non-contact body forces and double forces, using
the constitutive equations in Eq. (13), and assuming spatial independence of the macro-scale

stiffnesses, the equations of motion for the problem domain 0 < x < L are expressed as

(CM+cm+2c™™)g, —(Cm+CY™ V= pd (21a)

Coyyp 0+ (CMm +C" )ax ~C =PV~ PV _(pm ),x 7 _(101111 ),x Wiy (21b)
From Eq. (20), the boundary conditions are stated as

(£-(c¥+Cm+2C")g +(Cm+C*™ )y, )0F =0 atx=0and L, (22a)

(Z_p111‘/711 =PV _Cg‘//u,x)&//n =0 atx=0and L. (22b)



We remark the presence of terms with time derivative in the boundary conditions in Eq. (22b). The
existence of time derivative terms in the boundary conditions are also discussed in the analysis of

nonlocal strain gradient rods [31].

In this paper, we assume that the micro-scale mass density, p’, is constant in both micro- and

macro-scale coordinate systems. Consequently, the equations of motion reduce to
(CM+Cm20™) g, ~(Cm+C™ Yy, = pd (232)

Coyyp 0+ (CMm +C" )ax -C =P = P - (23b)
Moreover, the boundary conditions in Eq. (22) reduce to

(2-(CM+Cm+20") g, +(C+CM" Yy, )55 =0 atx=0and L, (24a)
(Z_pun‘/;u,x_Cg‘//n,x)&Vu=0 atx=0and L. (24b)

2.4.Dimensionless form of the governing equations

For further discussion, it is useful to reduce the number of parameters by nondimensionalizing the
equations of motion in Eq. (23) to exclude the explicit physical parameters of the system. To this

end, we first define three dynamic length scales /,, ,, and [, as

112=&, 123=&, 134::01111, (25)
P P P

! 2 ! 4
. . . ' 2 _ (L ) 3 _ 4 _ (L )
which, for the constant micro-scale mass density, o', lead to /] = =0, I

80

where L’ is the VE size [45]. Additionally, we introduce the following dimensionless variables

2

and parameters

N N om e L
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It 1s understood that the parameter o, gives the ratio of the micro-scale (relative deformation)
stiffness to the macro-scale stiffness, «,,, represents the ratio of the cross-linking stiffness to the
macro-scale stiffness, and [, is the dimensionless static length scale, where it is clear that larger
values for [ signify more noticeable second gradient effects. Moreover, n shows how large the

macro-scale structure length is compared to the VE length. Now, using Eq. (25) and Eq. (26), the

dimensionless form of the equations of motion in Eq. (23) is stated as

(1+am +2aMm)g,” _(am +aMm)l/;ll,i :ga (27a)

1
121°

1
80n*

lszlﬁn,;& +(am "'051\4;71)5,~ —a,y, = ‘»;11 - ';11,;& . (27b)

The dimensionless spatial domain of the problem is 0 < X <1. We emphasize that the coefficients
on the right hand side of Eq. (27b) are not arbitrary, but are natural consequences of the assumed

micro-scale mass density, p’, distribution. Indeed, these coefficients differ if one considers a
different distribution for the micro-scale mass density, p', within the VE [45]. We note that the
dimensionless material constants «,, and «,,, must satisfy the positive definiteness of the macro-

scale deformation energy density. This necessitates the inequality «,, —«;,, >0 to hold.

The dimensionless form of the boundary conditions in Eq. (24) is expressed as

(£-(1+, +2a4,,)d: + (@, + 1, ) )59 =0 at £=0and 1, (282)
(f——ljﬁh?—ﬁﬁujaﬁl=o at ¥=0and 1. (28b)
80n ’ ’
.t ~ T : : . .
where ¢ :C;M and T = C&L are dimensionless contact traction and contact double traction,
respectively.

The governing equations of motion in Eq. (27) result from the assumption of the existence of the

relative deformation field y,,, i.e., the macro-scale displacement gradient @ is different from the

micro-scale kinematic measure /. They are also predicated on the assumption of the existence



of a VE with a finite size, yet very small, compared to the macroscopic length of the structure. For

the case of vanishing coupling stiffness «,,, , if we also assume that «, — oo, or equivalently, if

the relative deformation measure y,, is zero, i.e., ,, =¢@_, we obtain the governing equation of

1 0 1 o)z > )=

motion of the form | 1— —+——— ¢ =|1-I"= |@... The derived equation has a
[ 12i% 37 80n° ax“)¢ [ s o )0 1

more general form although it has similarities with the nonlocal strain gradient models presented

in [27, 31] and the model presented in [59], where the term L can be considered to be the

J12n

dimensionless typical nonlocal parameter, and the term is considered as an additional

|
J80n?
higher gradient nonlocal parameter. Note that the model presented in [31] can be deemed as a

special case of the present model with only one term as the nonlocal parameter, and the model in

[59] treats the dynamic length scales as independent constants without an explicit relation to the

!

micro-scale mass density distribution. If we further assume 7 — 0 (equivalently, if n —> o), we

recover the equation of motion of a rod based on strain-gradient elasticity of the dimensionless
= o’ \=

form ¢ = [1 - Fj¢ - » similar to the form reported in [30]. This approximation, in the limit as
2 |7

n — oo, shows that for practical cases, with finite n, the small scale effects described by the

vanishing terms cannot be assumed to be insignificant although they may not be easily detectable

in large-scale structures. Finally, in the absence of the static length scale [, the classical form of

the governing equation is retrieved.

3. Static behavior

3.1.General solution

Here we focus on the static deformation of the 1D granular rod. The governing equations in Eq.

(27) for the static case reduce to the following balance equations

(1+am +2aMm) XX _(am +aMm)l/7ll,J"c = O’ (293)



15-2‘/711,2% + (am + %y, )¢x -y, =0, (29b)

where the spatial domain for the problem is 0 < x <1. Using Eq. (28), the boundary conditions for

the static case are written as

(i—(1+am +205Mm)¢7~’)E +(am +aM”1)¢11)5g=0 at ¥=0and]1, (30a)

(T—13,,5 )0, =0 atZ=0and]. (30b)

Here, an analytical solution for Eq. (29) is sought. To this end, Eq. (29b) is differentiated with

respect to the spatial variable to obtain

Zszl/;ll,)"cfc%_'_(am+aMm)¢,)b?_aml/;ll,} =0. (€1)
Substituting for Zﬂ from Eq. (29a) into Eq. (31) gives

2

~ ~ a —a

A T U T . (32)
[ (l+am +2aMm)

Eq. (32) can be readily solved to obtain a solution for the micro-scale kinematic measure, /,,,

expressed as

i, = C, cosh (k%) +C, sinh (k%) +C,, (33)
where @1, @2, and @3 are constants of integration. From substituting Eq. (33) in Eq. (29a) it
follows that

a, +a,,
k(1+a, +2a,,)

a, +a,,
xk(1+a, +2a,,)

¢ = C, sinh (x%)+ C, cosh (x%)+Ci5+C,, (34)

where @4 and @5 are additional constants of integration to be determined. The solution for the

macro-scale displacement ¢ expressed in Eq. (34) bears similarities with the solution obtained

following the strain gradient theory for a microbar in [30], and for the gradient-elastic bar in [25].



Substituting Eq. (33) and Eq. (34) in Eq. (29b) results in 65 = @3 , thereby reducing the number of

unknown constants from five to four.

We here consider three possible scenarios for the applied boundary conditions in order to explore
the static behavior of the 1D granular rod. These boundary conditions are all following the
conventional macro-scale displacement-control experimental setup where the macro-scale
displacement is fixed at one end and prescribed at the other end. The three considered experiments

are different in terms of the boundary conditions imposed on the micro-scale kinematic measure

¥,, where either the value for 1, (geometrical boundary condition) or the value for 7, ; (natural

boundary condition, i.e., the double traction) is prescribed at the ends (boundaries) of the structure.
Such experiments, although performed computationally here, may help devise experiments to
observe and extract micro-scale phenomena for materials with granular microstructure by
demonstrating the level of the effect of the non-classical boundary conditions on the response of
the system in a static case. For illustration of the predicted behavior, we consider a material with

constants o, =0.5, «,,, =—0.4, and / =0.05, for all three scenarios. This choice of parameters

is known to yield interesting dynamic behavior of granular structures, namely the emergence of
frequency band gaps and negative group velocity, while the deformation energy remains positive
definite [43, 45]. In addition, certain micro-morphologies (e.g., see structure C in [60]) yield elastic

constants of similar type.
3.2.Scenario 1

In the first scenario, demonstrated in Fig. 2(a), we consider the geometric boundary conditions of

the form

#(0)=0, ¥,(0)=0, ¢(1)=¢. v, ()=v,. (35)
Eq. (35) implies that on the left end of the domain, both kinematic measures are fixed, and on the
right end, both kinematic measures have prescribed values. Imposing the boundary conditions in

Eq. (35) results in the following system of linear equations from which the constants

C,C,,C,,and C, are readily calculated



0 o ™ Bt 0 1
k(1+a, +2a,,) C, 0
I 0 1ofle| o 6
%t %an_Ginh (x) Dt % cosh (v) 1 1 ?3 9,
K(1+am +2aMm) K(1+am +20(Mm) # v,
i cosh () sinh (&) 1 0]

. . . o W
Moreover, the dimensionless macro-scale deformation energy density W = o is calculated as

=~ 1 =~ Y ~ (= 5 |
¢,5;2 +Eam (¢x _‘//11) +aMm¢,fc (¢x _W11)+ Elszl/lll,fc2' (37)

Fig. 3(a) corresponds to the case where ¢, =0.01 and w, =0, Fig. 3(b) corresponds to the case
where ¢ =0 and w, =0.01, and Fig. 3(c) shows the results for the case where ¢ =0.01 and
v, =0.01. According to the results in Fig. 3(a), having the kinematic measure y,, fixed has
negligible observable contribution on the behavior of the macro-scale displacement 5 , however,
results in larger energy stored in the boundary layers. From the results shown in Fig. 3(b) for the

case of zero macro-scale displacement ¢ and imposed nonzero micro-scale kinematic measure
¥, at the right end, we observe that while macroscopically the length of the structure has not

changed, regions undergoing compression and tension exist within the material. Also, due to the
difference in values between the macro-scale displacement gradient 5 - and micro-scale kinematic

measure i/,, , high deformation energy concentration is observed in the right boundary layer, while

the rest of the material experiences negligible stored deformation energy. Fig. 3(c) results are the

superposition of the two results in Fig. 3(a) and Fig. 3(b), which in terms of the macro-scale

displacement ¢ shows near linear trend, and in terms of the deformation energy density reveals

localization in the left end and uniform deformation energy density in the rest of the domain.
3.3.Scenario 2

In the second scenario with results given in Fig. 4, we consider the following boundary conditions



Z(O):Q 1/711,2(0):0’ g(l):¢r> lﬁll,fc(l):l//;’ (38)

which, in addition to the macro-scale displacement boundary conditions, imposes zero double

traction on the left end, and a prescribed double traction on the right end. Such boundary conditions

lead to the following system of linear equations for the constants 6‘1, 62, @3, and @4,

0 a, +a, 01
k(1+a, +2a,,) C, 0
0 © 0 ojel_jo (39)
Dy F Loty sinh (&) Doy ¥ Loy cosh(x) 1 1 ?3 9,
K(l+am +2aMm) K(1+am +2aMm) # v,
i x sinh (x) K cosh (x) 0 0]

Fig. 4(a) corresponds to the case where ¢, =0.01 and w' =0, Fig. 4(b) corresponds to the case
where ¢ =0 and ' =0.01, and Fig. 4(c) shows the results for the case where ¢ =0.01 and
w. =0.01. According to the results in Fig. 4(a), having the double traction zero at both ends results

in a solution equal to a classical continuum. The macro-scale displacement ¢ is perfectly linear

and there is no contribution of energy due to the relative motion and second gradient deformation.
Specifying a nonzero double traction on the right end, for which case the results are shown in Fig.
4(b), follows the same behavior as of the one in Fig. 3(b). For the superposition of the cases in Fig.

4(a) and Fig. 4(b), shown in Fig. 4(c), except for the right boundary layer, the energy content

within the structure is equal to the classical case and the macro-scale displacement ¢ follows an

almost linear regime.
3.4.Scenario 3

In the third scenario with results presented in Fig. 5, we consider the mixed boundary conditions

expressed as

5(0)=0. ¥,.(0)=0. §(1)=F. v,(1)=v,. (40)



Similar to the approach taken in previous scenarios, the constants 61: 62, 63, and C , are obtained

by solving the following system of linear equations

am + aMm

0 01|
xk(1+a, +2a,,) C 0
0 K 0 o|le,| |o ah
Dy ¥ Loty sinh (x) Doy Lt cosh(/c) 1 1 (53 9,
k(1+a, +2a,,) k(1+a, +2a,,) ; w,
i cosh(«) sinh () 1 0]

Fig. 5(a) corresponds to the case where @, =0.01 and y, =0, Fig. 5(b) corresponds to the case
where ¢ =0 and y, =0.01, and Fig. 5(c) shows the results for the case where @, =0.01 and

v, =0.01. A fixed micro-scale kinematic measure at the right end in Fig. 5(a) results in large
deformation energy stored in the right boundary layer and uniform energy density distribution in
the rest of the domain. This stored energy can be attributed to the difference in value between the

imposed macro-scale displacement gradient 5 . and the micro-scale kinematic measure i, at the

right end. The results in Fig. (5b) are qualitatively similar to those in Fig. 3(b) and Fig. 4(b) and
follow the same discussion. Interestingly, the results in Fig. 5(c) are similar to the ones in Fig. 4(a).

This case corresponds to a zero double traction at the left end and a prescribed value for the micro-

scale kinematic measure /,, equal to the macro-scale strain at the right end. In this case, similar

to the one in Fig. 4(a), the macro-scale displacement 5 is linear and the deformation energy

density due to the macro-scale displacement gradient is the sole contributor to the total deformation

energy density.

Based on the observations from the results in Figs. 3-5, the following conclusions can be drawn.

First, imposing fixed and prescribed macro-scale displacements ¢ at left and right ends of the
structure, respectively, one observes a classical-like behavior only if at each end, the contact

double traction is held to be zero, or the micro-scale kinematic measure i, is assigned a value
equal to the macro-scale displacement gradient @ (macro-scale strain). For the cases where the

macro-scale displacement gradient ¢. and micro-scale kinematic measure 7,, have non-equal



values on the boundary, localized deformation energy density of finite thickness near that

boundary is observed, while the deformation energy density in the rest of the domain of the

problem is rather uniform. Second, for fixed macro-scale displacement 5 applied at both

boundaries and imposed double traction or micro-scale kinematic measure {7,, at one end, we

notice both compression and tension (negative and positive macro-scale displacement gradient 5 -
) induced within the granular structure. Third, the gradients appearing because of the imposed field

variables ¢ and 17, at both ends only exist close to the outer boundaries of the structure, thereby

signifying the existence of boundary layers. Finally, one notices the small change in the macro-

scale displacement ¢ in response to the alterations in the imposed non-classical boundary

conditions. Nevertheless, such small changes have large influence on the energy localization near
the boundaries, and such energy localization becomes even more noticeable as the size of the rod

shrinks.
3.5.Parametric study

To further explore the effect of the material constants «,,, «,,, , and [, on the behavior of the field

variables ¢ and ¥, , a parametric study is performed. We consider two cases of boundary

conditions for this investigation. Fig. 6 shows the results for the following applied boundary

conditions

$(0)=0, ,(0)=0, $(1)=001, %, (1)=0, (42)
and Fig. 7 shows the results for the following boundary conditions

Z(O)ZO’ v, (0)=0, ;(I)ZO: 7, (1)=0.01. (43)

In both studies, the baseline material constants are taken as «, =0.5, «,,, =—0.4 and /. =0.05.
In Fig. 6(a) and Fig. 7(a) the material constant ¢, is varied, in Fig. 6(b) and Fig. 7(b) the material

constant «,,, is varied, and in Fig. 6(c) and Fig. 7(c) the material constant / is varied. We here



recognize that a growth in the material constant /. can be interpreted as either an increase in the

second gradient stiffness of the material, or as a decrease in the size of the rod under study.

For the case of boundary conditions in Eq. (42) with the results shown in Fig. 6, a change in the

values of the parameters «,, «,, , and /. has small effect on the solution for the macro-scale

m?o
displacement ¢ . However, it is evident that increasing «, or «,,, alters the solution for 7,
significantly. Moreover, increasing «,, and «,,, , decreases and increases the size of the boundary

layer, respectively. An increase in the value of /| reduces the maximum for 7,, and increases the

size of the boundary layer. The change of the size of the boundary layer due the value of the

parameter /. may be explained using the definition of the parameter «. A larger value for the

parameter /[ results in smaller value for x which consequently leads to larger boundary layer.

For the case of the boundary conditions in Eq. (43) with the results shown in Fig. 7, increasing «,,

results in a change from positive to negative sign for the macro-scale displacement ¢ , which
switches the regions of compression and tension (see Fig. 7(a)). According to Fig. 7(a), the micro-

scale kinematic measure 7, follows the same trend, although the sign of the solution for y,,
becomes negative as «, increases while the boundary layer thickness decreases somewhat. Fig.

7(b) shows the results for the change in the value of «,,,. Increasing ¢,,, also changes the sign

of the macro-scale displacement ¢ . Furthermore, as the value of «,,, increases, the boundary

layer size increases by a small amount. Fig. 7(c) shows that increasing [/  results in an increase in

the magnitude of the macro-scale displacement ¢ as well as an increase in the size of the boundary

layer.

The size effect of the rod can be observed in Fig. 6(c) and Fig. 7(c), where a decrease in the size
of the sample (increase in the value of /) results in a larger boundary layer which implies that the
localization zone of the strain energy has grown and spread towards the center of the rod. In this
case, the average deformation energy density absorbed by the material has increased compared to

the same material with larger size, thus suggesting a stiffening effect.



4. Free vibration behavior

4.1.General solution

In this section, we analyze the free vibration characteristics of the 1D granular rod. The
dimensionless form of the governing equations of motion are stated in Eq. (27) with the boundary
conditions expressed in Eq. (28). For small harmonic vibration, the following form of solution

(plane wave solution) is assumed

(x%,7)=0(x)e”, v, (%7)=VY(X)e”, (44)

ASSH

where ® and ¥ are the dimensionless space parts of the solutions and @ is the dimensionless
angular natural frequency. Substitution of Eq. (44) into the governing equations of motion in Eq.

(27) results in the following equations
(1+a, +2a,, )P —(a,+a,,)¥; =—a"P, (45a)

@° @°

- Y+ Y. 45b
12n° gont M (45b)

lsz‘Pm +(am +0¢Mm)q_3,i —a,¥=

The above equations can be uncoupled to obtain two fourth order homogenous linear ordinary

differential equations with constant coefficients as follows

2D i +2,P  +2,P =0, (46a)
2Vt 2, o +2¥Y =0, (46b)
where

Z1 = 3((02 _80137’14)(1"'0{,71 +2aMm)’

s

z, =240n" (o, -y, L0’ ) - 200" (1+ @, + 20, ) + 300", (47)

z,=20n’e’ (12a,n° - 0°).
The general solutions for the differential equations in Eq. (46) can be presented as

® = @, cos (k,¥)+®D, sin (k) + D, cosh (k,%)+ D, sinh (k,%) , (48a)



¥ =, cos(kX)+P,sin(kF)+¥, cosh(k,%)+P,sinh(k,5), (48b)

where
1 1
i _[zz —\zs —4zz, Jz i _{—22 —\zs —4zz, Jz (49)
1 > 2 :
2z, 2z,

In Eq. (48), k, and k, are the dimensionless angular wavenumbers, and are functions of the

material parameters and the angular frequency w. Also, ﬁ)i,‘i’i,i =1,...,4 are constant to be

determined by the appropriate boundary conditions, which, using Eq. (45a), are related as

(1+a, +2a,, )k -

‘f‘l=a&)2, ‘i’z:—a(f)l, where a=
(@, +ay, )k

3

i ; (1+a, +2a,, )k + @’ (50)
@3 - 13_4’ li14 = ,BCT)3 where f= (’" Mm ) 2
am + aMm )kZ

In what follows, we study the free vibration characteristics of the 1D granular rod subjected to four
types of boundary conditions. The first three types of boundary conditions are examined following
the same motivation discussed in the static case: for identical classical boundary conditions, how
does a change in the non-classical boundary conditions affect the response of the system. The
fourth type of boundary conditions is investigated to have a more complete comparison with the

results of the models found in the literature. For the analyses to follow, we consider the same

material constants as for the static case, namely, «, =0.5, «,,,=-0.4, [ =0.05, and n=100,

and compare the resulting natural frequencies and mode shapes with the solutions of a classical

rod problem. We note that, in the following results, the mode shapes of the classical rod have been

scaled such that they have the same amplitude as the macro-scale displacement Z amplitude for

the mode shapes of the present model.
4.2.Clamped strained-clamped strained (CS-CS)
The boundary conditions associated with the CS-CS case are defined as

®(0)=0, ¥(0)=0, ®(1)=0, ¥(1)=0. (51)



Eq. (51) enforces that the macro-scale displacement ¢ and the micro-scale kinematic measure 17,

are identically fixed at both ends. Enforcing Eq. (51), and by using Eq. (50), the following set of

algebraic equations result from Eq. (48)

1 0 1 0 @ | (0

0 a 0 i @, |0
cos(k,)  sin(k)  cosh(k,) sinh(k,) o, o[ (52)

—asin(k) acos(k) Bsinh(k,) Bcosh(k,) 5)4 0

The necessary condition to have non-zero solutions for Eq. (52) is that the determinant of the

coefficient matrix is zero, i.e.
(az —ﬂz)sin(k1 )sinh (k, )+ 2a(cos(k, )cosh (k,)—1)=0. (53)

Eq. (53) is a transcendental equation denoting the general characteristic equation for the CS-CS

boundary conditions and is equivalent to the characteristic equation for the clamped-clamped case

of the nonlocal strain gradient rod in [31] for o =k, and B =k,.

Fig. 8(a-c) show the first three mode shapes and natural frequencies. The mode shapes

corresponding to the macro-scale displacement ¢ are similar to that’s for the classical one-
dimensional continua for the material parameters considered here. Denoting by o, and o,

respectively, the i natural frequency of the current model and the classical continuum model, the
first three natural frequencies in the CS-CS boundary condition case for the chosen material

parameters are smaller than their classical continuum counterparts and are evaluated as

w, =0.8283w,, w, =0.8290w; , and w, =0.8300w; .

4.3.Clamped strained-clamped forcing (CS-CF)

The boundary conditions associated with the CS-CF case are obtained by having the macro-scale

displacement ¢ at both ends fixed, the micro-scale kinematic measure 17,, fixed at the left end,

and the double traction zero (free) at the right end. Explicitly, the boundary conditions are stated

as



®(0)=0, ¥(0)=0, ®(1)=0, ¥.(1)=0, (54)

where the last condition is obtained by introducing the solution in Eq. (44) into the boundary
condition in Eq. (28b). Enforcing Eq. (54), and by using Eq. (50), the following set of algebraic
equations result from Eq. (48)

1 0 1 0 @ (o
0 a 0 B o, o s
cos(k,) sin (k, ) cosh (k) sinh () D, o (53)
—ak, cos(k,) —akssin(k) Pk, cosh(k,) Pk,sinh(k,) & 0
4
The characteristic equation corresponding to Eq. (55) is
(ak, + Bk,) I:a cos(k, )sinh (k, )— Ssin(k, )cosh (k :I 0. (56)

Eq. (56) is the general characteristic equation for the CS-CF boundary conditions and for « =k,
and f =k, it becomes equivalent to the characteristic equation for the clamped-simply supported

case of the nonlocal strain gradient rod described in [31].

Fig. 8(d-f) show the first three mode shapes and natural frequencies. Similar to the results for the

CS-CS case, the mode shapes corresponding to the macro-scale displacement Z for the CS-CF

case are approximately same as the mode shapes of classical 1D bar. The first three natural

frequencies in the CS-CF boundary condition case are smaller than their classical continuum

counterparts for the material parameters considered here, and have values of @, =0.8267w/,

w, =0.8278w; , and o, =0.8292w , respectively.

4.4.Clamped forcing-clamped forcing (CF-CF)
The boundary conditions associated with the CF-CF case are expressed as

®(0)=0, ¥.(0)=0, ®(1)=0, ¥.(1)=0. (57)



Enforcing the boundary conditions in Eq. (57), the following set of algebraic equations result from

Eq. (48)

1 0 1 0 R
—-ak, 0 Pk, 0 @, |0 53
cos(k,) sin (k, ) cosh (k, ) sinh (k, ) ®, o[- 58)
—ak, cos(k,) —ak sin(k)) pk,cosh(k,) pBk,sinh(k,) 5 0
4
The characteristic equation corresponding to Eq. (58) is
(atk, + Bk, ) sin(k, )sinh (k,)=0. (59)

Eq. (59) is the general characteristic equation for the CF-CF boundary conditions, and for « =k,
and f=k,, it becomes of similar form to the characteristic equation for the simply supported-

simply supported case of the nonlocal strain gradient rod in [31], the nonlocal strain gradient rod

in [27], and the strain gradient rod in [30].

Fig. 8(g-1) show the first three mode shapes and natural frequencies. Similar to previous cases, the

mode shapes corresponding to the macro-scale displacement ¢ for the CF-CF case are similar to

that of the classical 1D continua. The first three natural frequencies in the CF-CF boundary

condition case are smaller than their classical continuum counterparts for the material parameters

chosen in this study, and have values of o, =0.8252w,, @, =0.8266w;, and @, =0.8283w;,

respectively.
4.5.Clamped forcing-free strained (CF-FS)
The boundary conditions associated with the CF-FS case are expressed as
CT)(O)=O, Y. (0)=O, CT),; (1)=0, ¥(1)=0. (57)

With regards to Eq. (57), Eq. (48) results in the following set of algebraic equations



I 0 I 0 @ | (0
—ak, 0 Bk, 0 o, o .
—ksin(k,) k cos(k) k,sinh(k,) k,cosh(k,) ®, o[ %)
—asin(k) acos(k) Psinh(k,) Bcosh(k,) & 0
4
The characteristic equation corresponding to Eq. (58) is
(ak, + Bk, ) (ak, — Bk, ) cos(k, )cosh (k,)=0. (59)

Eq. (59) is the general characteristic equation for the CF-FS boundary conditions and for « =k,
and S =k, it becomes of similar form to the characteristic equation for the CF-FS case of the

nonlocal strain gradient rod in [27].The first three natural frequencies for the CF-FS case are

o, =0.82470, v, =0.8258w;, and w, =0.8275w;, respectively, which are lower than classical

continuum predictions for the material parameters considered. In addition, the macro-scale

displacement ¢ mode shapes are close to the classical continuum predictions.

Based on the results of the four different examples studied above, several observations and

conclusions can be made. Firstly, the mode shapes of the macro-scale displacement ¢ are similar
to that of a classical continuum, although for a different choice of material parameters (for example
if we had «,,, =0), small deviations from the mode shapes of classical rod are observed (results

not shown). Such a deviation is the result of the presence of terms containing the second

wavenumber &, in Eq. (48), which, for the problems studied here, had negligible amplitude
compared to the leading term containing k, . Moreover, one concludes from the first three visited

examples that even when the double traction is prescribed as zero on the boundaries, the
microstructural effects alter the natural frequency of the system. This is in contradistinction to the
results from the static problem where a classical form of solution is obtained if the non-classical
terms are not excited. This distinction in the behavior of the system in static and dynamic problems
are due to the presence of the terms containing dynamic length scales in the governing equations

of motion.

4.6.Parametric study



In order to study the effect of different material constants on the dynamic behavior of one-
dimensional materials with granular microstructure, we have plotted the ratio of the first three

natural frequencies for the three CS-CS, CS-CF, and CF-CF cases to their classical counterparts

for different material parameters with the base material constants at o, =0.5, «,,, =0, [, =0.05

,and n=100 in Fig. 9. Based on the results in Fig. 9, the following conclusions can be drawn.

First, an increase in the micro-scale (relative deformation) stiffness, «, , leads to larger natural

frequencies (Fig. 9(a)). This result is expected as additional stiffness increases the natural

frequency of the system. Second, contrary to the trend observed for the effect of the parameter «,,

, an increase in the cross-linking stiffness «,,, is accompanied by an initial increase in the value

of the natural frequencies, followed by a decrease (Fig. 9(b)). Therefore, the effect of the parameter

a,,, can be either softening or stiffening. Third, increasing the length scale parameter /  results in

an increase in the value of the natural frequencies (Fig. 9(f)), hence implying stiffening of the

material when either the second gradient stiffness becomes larger or when the rod size becomes
smaller. For /_ values large enough, an asymptotic value for the natural frequencies are obtained.

Similar observation has been made for the rod modeled using nonlocal strain gradient theory [31].
Fourth, the natural frequencies can be smaller or larger than their classical counterparts, depending
on the material constants. Fifth, one observes that the effect of different boundary conditions on
the natural frequencies is rather small for a wide range of material parameters. For higher modes,
however, the effect of different boundary conditions on the results becomes increasingly
significant. Finally, it is interesting to note that the higher mode frequencies are not integer
multiples of the fundamental mode, which is a departure from the results for classical 1D elastic

rod under the considered boundary conditions, and seems to suggest an apparent internal damping.

5. Conclusion and Summary (prognosis towards experimental design)

Mechanical response of materials with granular microstructures are known to be influenced by the
grain-scale mechano-morphology. Here we have utilized the granular micromechanics approach
(GMA) based continuum theory to reveal certain peculiar aspects of the mechanical behavior of a

material with granular microstructure. To keep the development tractable and understandable, we



have focused upon a 1D rod composed of granular materials. To this end, the governing equations

of motion and the variationally consistent boundary conditions for a one-dimensional material with

granular microstructure were obtained using the principle of least action. Closed-form solutions

for both the static and dynamic problems were obtained and the effect of different boundary

conditions and material parameters on the response of the material were investigated. The key

findings of the presented work are:

1.

That micromorphicity due to micro-mechano-morphological properties has a significant
influence on the static and free vibration response of rods with granular microstructure.

In the static case, we observe that the dependency of the structural response on the imposed
boundary conditions is most obvious near the boundaries of the structure where gradients
of strain are large. In addition, the size-dependency effects are manifested in the width of
the emergent boundary layers.

In the dynamic case, the length scale parameter has stiffening effect, i.e., as the size of the
structure shrinks, the behavior is predicted to be stiffer, a finding which classical theory

does not predict.

The mode shapes corresponding to the micro-scale kinematic measure 7, are not identical

to that of the macro-scale displacement gradient @, as distinct from that for a second

gradient model and account for the energy due to the relative deformation in macro- and
micro-scales.

Additional kinematic constraints and simplifications imposed on the presented model leads
to several (nonlocal) strain gradient models introduced in the literature, and therefore, the
current model, encompasses such models as special cases.

While the cases studied in the static problem show microstructural effects of the system
under certain boundary conditions, the effect of the microstructure is always present in the
dynamic problem for any form of applied boundary conditions.

The dynamic length scale parameters (referred to as nonlocal parameters in the literature)
in the current model are directly linked to the micro-scale mass density distribution of the
system under study and do not take arbitrary values.

The model predicts measureable effects such that experimental approaches/protocols can

be designed to detect these effects.



9. While a 1D system is helpful in understanding the underlying physics behind the observed
phenomena, many engineering applications are concerned with higher dimensional
systems. GMA based micromorphic model of degree one presented here can be
systematically expanded to include 2D and 3D systems [41], or to model deflection in
beams [61].

To conclude, appreciating the complexity of the materials with granular microstructure and the
limitations on the current experimental prescriptions to observe and extract microstructural effects,
the results of the current paper can promote the understanding of such complex systems and what
to expect if experiments are to be devised. Furthermore, the results of the current paper will serve
as a prelude to our future work on static deformation, vibration and elastic wave propagation

simulations of initial/boundary value problems for structures made of granular media.
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