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Abstract  

Granular-microstructured rods show strong dependence of grain-scale interactions in their 

mechanical behavior, and therefore, their proper description requires theories beyond the classical 

theory of continuum mechanics. Recently, the authors have derived a micromorphic continuum 

theory of degree n based upon the granular micromechanics approach (GMA). Here, the GMA is 

further specialized for a one-dimensional material with granular microstructure that can be 

described as a micromorphic medium of degree 1. To this end, the constitutive relationships, 

governing equations of motion and variationally consistent boundary conditions are derived. 

Furthermore, the static and dynamic length scales are linked to the second gradient stiffness and 

micro-scale mass density distribution, respectively. The behavior of a one-dimensional granular 

structure for different boundary conditions is studied in both static and dynamic problems. The 

effect of material constants and the size effects on the response of the material is also investigated 

through parametric studies. In the static problem, the size-dependency of the system is observed 

in the width of the emergent boundary layers for certain imposed boundary conditions. In the 

dynamic problem, microstructural effects are always present and are manifested as deviations in 

the natural frequencies of the system from their classical counterparts. 

Keywords: free vibration; micromorphic theory; size effect; granular micromechanics; 

microstructured solids. 

 

  



1. Introduction 

Small-sized structures are being increasingly utilized in applications such as nano- and micro-

electro-mechanical systems (NEMS/MEMS) and Atomic Force Microscopes (AFMs). In these 

structures, the effect of the microstructure on the behavior of the material is significant. Such a 

microstructure can be the constituent grains in a granular medium or a collection of beam elements 

in pantographic materials [1]. In addition, microstructured materials have also been widely used 

in the context of mechanical metamaterials to obtain desired unusual behavior that natural 

materials do not exhibit [2, 3]. For such materials (or structures depending on the scale of 

observation), there exists inconsistencies between the experimental findings and the classical 

continuum mechanics predictions [4–7]. Such variations in the observed behavior and classical 

continuum theory predictions pertain to the existence of the micro-mechano-morphological 

effects. These effects on the mechanical behavior of the materials become noticeable, especially 

in dynamic problems where the wavelengths of excitation are comparable to the characteristic 

lengths of such systems [8]. To account for the discrepancies between the theoretical predictions 

and experimental observations, and to overcome the inherent limitations of the classical continuum 

theory, non-classical continuum theories were developed, among which we refer to the works in 

[9–14]. 

To investigate the predictions of such non-classical theories, one-dimensional models are often 

utilized. A particular widely-studied example of such one-dimensional structures is rods. There 

have been several recently published articles on the analysis of one-dimensional rods utilizing non-

classical continuum theories such as stress gradient (also called nonlocal), strain gradient (also 

called gradient elasticity), and nonlocal strain gradient models to capture the microstructural 

effects in static and dynamic problems [15–32]. We note that these effects have also been reported 

in the studies concerned with the vibration and buckling phenomena in beams, e.g. in [33–36], 

small-scaled truss and frame models, e.g., in [37], two-dimensional problems, e.g., in [38, 39], and 

metamaterials [40]. 

In the present paper, we expound upon a particular form of a microstructured solid, namely a one-

dimensional material with granular microstructure, which is modeled as a micromorphic media of 

degree one using the granular micromechanics approach (GMA). GMA is a micromorphic theory 

equipped with an enriched kinematics to describe grain motion, in which the derived governing 



equations of motion constituents are related to the granular mechano-structure of the material [41, 

42]. The mathematical model derived through GMA has shown interesting results in the prediction 

of acoustic (material deformation) and optical (internal deformation) wave branches in granular 

media undergoing excitation [43–45]. The dispersive behavior predicted by GMA reflects many 

aspects of granular structures dynamic behavior (e.g., existence of frequency band gaps and 

negative group velocity), and can potentially be employed to obtain the continuum material 

constants of granular media [46–48].  

It is notable that the dispersion analysis of infinite media does not fully reveal the effects of the 

length scale parameters and the applied boundary conditions on the behavior of the granular media. 

Therefore, it is our purpose here to further elucidate the contribution of different length scale 

parameters, stiffness and inertial measures (micro-mechano-morphology) to the behavior of finite 

length one-dimensional granular media in both static and dynamic uniaxial loading under different 

boundary conditions. Such analyses are essential for understanding the complex behavior of such 

media and to help designing suitable experimental setup to extract and identify the material 

parameters defining granular materials, which currently proves challenging, if not impossible. 

Moreover, the findings of the present paper help analyzing a myriad of granular materials found 

in nature, as well as serve as a design tool to conceive granular metamaterials that can be realized 

through additive manufacturing technologies for particular applications [49, 50]. 

The structure of the paper is as follows. Section 2 describes the granular micromechanics approach 

to model one-dimensional continua with granular microstructure. Section 3 is devoted to the static 

behavior analysis of one-dimensional continua with granular microstructure subjected to different 

boundary conditions. In section 4, the dynamic behavior of one-dimensional continua with 

granular microstructure is investigated through free vibration analysis. Finally, section 5 presents 

the summary of the work and the concluding remarks. 

2. GMA based micromorphic theory of degree 1 for a 1D rod 

This section introduces the continuum framework for GMA based micromorphic theory of degree 

1 to model a one-dimensional granular structure. The model adopted in the current paper assumes 

linear elastic mechanisms of deformation with no damping. The references [41, 42, 45] describe 



the framework for a three-dimensional granular structure. The reader is referred to the mentioned 

articles for more detailed description. 

2.1. Kinematic variables 

Let us consider a one-dimensional object of length L with an underlying granular microstructure 

composed of many grains with random mechanical and inertial properties (hereafter referred as 

1D granular rod), as shown in Fig. 1. At the spatial scale, in which the object may be treated as a 

continuum, the material point P can be identified using the macro-scale coordinate system X. 

Material point P is considered to have the macro-scale linear mass density   (given as mass per 

unit length), differential length dX , and differential mass of dm dX  in the initial 

configuration. We denote by X and ( , )x X t  the position of the point P at initial and current 

configurations, respectively, where   is the macro-scale placement function and t denotes time. 

The macro-scale displacement is defined as u x X  . At a finer spatial scale, material point P is 

a collection of grains and is referred to as a volume element (VE) with length L dX  . For a 

periodic granular structure, such as a granular composite made of several grains repeating 

periodically, the VE is identical to the notion of a unit cell, and for non-periodic granular structures, 

it is the volume of the granular material over which the local (micro-scale) deformation is 

homogenized. In the latter case, the VE is chosen as per the requirement of the mechanical problem 

and such that it contains sufficiently large number of grains to justify the continuity assumption. 

The position of each grain within the VE is identified using the micro-scale coordinate system X’ 

of the finer spatial scale. This coordinate system is attached to the center of mass (COM) of the 

material point P, is taken to be parallel to the macro-scale coordinate system X, and displaces in 

consonance with the macro-scale displacement u. The micro-scale displacement u’ is expressed as 

u x X     where X’ and ( , , )x X X t    denote the position vectors of a grain centroid at initial 

and current configurations, respectively, and   is the micro-scale placement function. We assume 

that both the micro- and macro-scale deformations are infinitesimal, and are continuous and 

differentiable functions of the micro- and macro-scale coordinates up to the desired order, such 

that we can write  

   , , , ,u u x t u u x x t    .         (1) 



For a micromorphic theory of degree 1, the micro-scale displacement u’ can be written in the form 

below using a polynomial expansion with respect to x’ about the COM of the VE [41]. 

 
2

11 111u x x     .          (2) 

In Eq. (2), 11  and 111  are functions of x and t only, and account for the local deformation within 

the VE. We note that although for systems with small number of particles (or layers in composites 

modeled as one dimensional) a more accurate approximation of displacement can be made by 

subdividing the VE into different regions with different strain regimes (e.g., see [51, 52]), for large 

number of particles (or layers), such approaches become increasingly complicated and a linear or 

quadratic approximation within the whole domain of VE remains the most feasible (e.g., see [53]). 

We note here that efforts at formal homogenization (continualization) of mass-spring systems, 

such as in [54, 55], also propose multiscale decomposition of displacement field among the 

possible approaches for developing continuum models. Using Eq. (2), the total displacement vector 

for the grains within the VE are written as 

 
2

11 111u u x x          .        (3) 

where u   is adopted such that the variable names are in harmony with previous publications 

[41, 42]. For a micromorphic theory of degree one, we utilize the following relative deformation 

measures [12, 13, 41] 

11 , 11 111 11, 111,x x         ,        (4) 

where, hereafter, differentiation with respect to the spatial coordinates is denoted by a comma in 

the subscript. In Eq. (4), the differentiation is performed with respect to the macro-scale coordinate 

system. For a micromorphic theory of degree 1, and as a constitutive choice, we assume here that 

the relative deformation measure 111  vanishes, therefore we have 111 11,x  . Note that if we 

further assume that the relative deformation measure 11  vanishes, a second gradient model is 

obtained [41]. 

The relative displacement between two neighboring grains n and p, np , can be written, using Eq. 

(3) and Eq. (4), as 



np p n M m g          ,         (5) 

where the following micro-scale kinematic measures are introduced 

M np m np np
, 1 11 1 11, 2, , g
x xJ J J        .       (6) 

In Eq. (6), M  signifies the portion of the relative displacement due to the macro-scale 

displacement gradient ,x , m  represents the portion of the relative displacement due to the 

fluctuation between the macro-scale displacement gradient ,x  and the micro-scale kinematic 

measure 11 , and g  denotes the portion of the relative displacement due to the second gradient 

term. Furthermore, we have defined the geometry moment measures np p n
1J l l   and 

np p p n n
2J l l l l  , where ql  represents the vector joining the COM of the RVE to the grain q 

centroid. Note that     np p n p n np p n
2 1J l l l l J l l     which implies that for grains n and p, the 

farther they are from the COM of the VE, the higher the second gradient contribution to the relative 

displacement, g .  

2.2. Constitutive equations 

We assume the macro-scale deformation energy density to be a function of the continuum 

kinematic measures ,x , 11 , and 11,x , i.e., of the form , 11 11,( , , )x xW W    . Macro-scale stress 

measures, namely, Cauchy stress, 11 , relative stress, 11 , and double stress, 111 , are defined as 

conjugates to the continuum kinematic measures, and expressed as 

11 11 111
, 11 11,

, ,
x x

W W W
  

  

  
  
  

.       (7) 

The macro-scale deformation energy density can also be expressed in terms of the micro-scale 

deformation energy density as 

 α αM αm αg

α

1 , ,W W
L

  

 ,        (8) 



where αW  represents the micro-scale deformation energy for the αth interacting pair of grains 

within the VE. Intergranular forces can be defined as conjugates to the micro-scale kinematic 

measures as 

αM αm αg
αM αm αg, , .W W Wf f f
  

  

  
  

  
       (9) 

Substituting Eq. (8) in Eq. (7) and employing Eq. (6) and Eq. (9), the macro-scale stress measures 

are expressed as 

αM α αm α αg α
11 1 11 1 111 2

α α α

1 1 1, ,f J f J f J
L L L

    
  
   .    (10) 

Eq. (10) defines the macro-scale stress measures in terms of micro-scale force measures and 

geometry moment measures, where α
1J  and α

2J  for the αth grain pair for interacting grains n and p 

are evaluated as np
1J  and np

2J , respectively. 

For formulating micro-scale constitutive equations relating micro-scale kinematic measures to 

their conjugate intergranular force measures, the following form for the micro-scale deformation 

energy for the αth grain pair is considered 

     
2 2 2α αM αM αm αm αMm αM αm αg αg1 1 1

2 2 2
W K K K K        .    (11) 

Based on Eq. (11), there are four linear mechanisms involved in the deformation of a grain pair in 

contact, each quadratic in form. α , M,m,Mm,giK i   are the stiffnesses associated with their 

corresponding mechanisms. 

Intergranular forces introduced in Eq. (9) are obtained, using Eq. (11), as 

α
αM αM αM αMm αm

αM

α
αm αm αm αMm αM

αm

α
αg αg αg

αg

,

,

.

Wf K K

Wf K K

Wf K

 


 






  



  



 


        (12) 

Finally, using Eq. (12), the macro-scale constitutive relationships in Eq. (10) are described as 



 

 

M Mm Mm
11 , 11

Mm m m
11 , 11

g
111 11,

,

,

,

x

x

x

C C C

C C C

C

  

  

 

  

  



        (13) 

where the macro-scale stiffnesses MC , mC , MmC , and gC  are expressed as 

M αM α α m αm α α
1 1 1 1

α α

Mm αMm α α g α α
1 1 2 2

α α

1 1, ,

1 1, .g

C K J J C K J J
L L

C K J J C K J J
L L



 
 

 
 

 

 
       (14) 

For the stiffnesses introduced in Eq. (14), the superscript M denotes the stiffness due to macro-

scale deformation, the superscript m denotes the micro-scale (relative deformation) stiffness that 

acts analogous to the shear rigidity in Timoshenko beam model, the superscript Mm denotes the 

coupling (cross-linking) stiffness between the macro- and micro-scale deformations, and the 

superscript g denotes the second gradient stiffness. We note here that the stiffness measures in Eq. 

(14) possess inherent length scales within their definitions that are natural consequences of the 

assumed kinematic field of motion for the grains. Accordingly, 
g

M

C
C

 is considered as the static 

length scale for the current problem. 

2.3. Governing equations of motion 

Hamilton’s principle is used to obtain equations of motion for the 1D granular rod. Hamilton’s 

principle requires the action functional to be minimum, and is expressed as 

 
1

0
0

t

extt
T W W dt     ,          (15) 

where   is the variation symbol and the terms T , W , and extW  are defined in the following. The 

term 
L

T Tdx   is the total kinetic energy of the granular structure, in which T is the kinetic energy 

density, utilizing König's theorem [56] defined and expanded as [41] 

11 11 11 111 11 11, 1111 11, 11,
1 1 1 1 1

2 2 2 2x x xL
T dx

L
           


     

 
.   (16) 



In Eq. (16),   is the micro-scale mass density per unit macro-volume, and over-dots here and 

henceforward represent differentiation with respect to time. The following inertia measures have 

been defined [41] 

     
2 3 4

11 111 1111
1 1 1 1, , ,

L L L L
dx x dx x dx x dx

L L L L
       

   
             

       .(17) 

The term   represents the macro-scale mass density and is an average of the micro-scale mass 

density   within the VE. On the other hand, the other inertia measures introduced in Eq. (17) are 

functions of the micro-scale mass density and its spatial distribution and inherently include the 

length scales existing in the dynamic problem. In particular, the inertia measure 111  is due to non-

symmetric micro-scale mass density distribution in the VE, e.g., for a graded granular material in 

micro-scale, and vanishes for symmetric micro-scale mass density distributions [45]. Interestingly, 

and as a consequence of Eq. (17), these length scales are not independent, but are related to each 

other through the micro-scale mass density   distribution. In other words, for a known micro-

scale mass density   distribution within the VE, these length scales are fixed [45]. The kinetic 

energy introduced in Eq. (16) results from the assumed kinematic field in Eq. (3). We note that the 

additional velocity gradient terms appearing in Eq. (16) are not postulated a priori as often done 

in higher order continuum modeling (which are typically introduced to improve the dispersion 

predictions). This form of kinetic energy includes terms that are absent in classical continuum 

mechanics formulation to account for the non-uniform distribution of velocity in the VE, and 

expands upon the terms currently postulated in nonlocal strain gradient elasticity (e.g. in [31]). The 

existence of velocity gradient terms in the description of the kinetic energy has also been observed 

in gradient elasticity models to describe lattices with distributed mass properties [15] and in works 

concerning modeling the effect of micro-inertia in heterogeneous materials, e.g., in [57]. 

Moreover, velocity gradient terms have been also adopted to model wave dispersion in nonlinear 

pantographic beams and related to the distributed masses along the rigid links [58]. For the kinetic 

energy in Eq. (16) to be positive definite, the inequality 2
11 1111 111 0     must hold. This 

inequality is obtained by rewriting Eq. (16) in the form 
1
2

T  Tx Ax , where 
T

11 11,x   
 

x , 

and requiring that the matrix A  be positive definite. 



In Eq. (15), 
L

W Wdx    represents the variation of total macro-scale deformation energy, 

expressed as 

     11 11 111, 11 11 11 11 111 11, 00

x L x L
xx xxL L

W dx dx           
 


         . (18) 

Finally, the term extW  in Eq. (15) corresponds to the variation of total external energy defined as 

11 11 00

x L x L
ext xxL L

W f dx dx t T    
 


      .     (19) 

In Eq. (19), f  is the non-contact body force per unit length, t  is the contact traction,   is the 

non-contact body double force per unit length, and T  is the contact double traction. Substituting 

Eq. (16), Eq. (18), and Eq. (19) in the expression for Hamilton’s principle in Eq. (15) results in 

 

   

   

1

0

1

0

1 1

0 0

11 11 ,

11 111, 11 11 1111 11, 111 11 1111 11, 11, ,

11 11 111 11 1111 11, 111 110 0
0

t

xL
t

t

x xx xx xL
t

t t
x Lx L

xx x
t t

f dxdt

dxdt

t dt T dt

   

          

        


 

   
 

       
 

            

 

 

 

  (20) 

From Eq. (20) it follows that, after assuming zero non-contact body forces and double forces, using 

the constitutive equations in Eq. (13), and assuming spatial independence of the macro-scale 

stiffnesses, the equations of motion for the problem domain 0 x L   are expressed as 

   M m Mm m Mm
, 11,2 xx xC C C C C       ,      (21a) 

     g Mm m m
11, , 11 11 11 1111 11, 111 11 1111 11,, ,xx x xx xx x

C C C C                 .  (21b) 

From Eq. (20), the boundary conditions are stated as 

    M m Mm m Mm
, 112 0 at 0 andxt C C C C C x L         ,   (22a) 

 g
111 11 1111 11, 11, 11 0 at 0 andx xT C x L          .     (22b) 



We remark the presence of terms with time derivative in the boundary conditions in Eq. (22b). The 

existence of time derivative terms in the boundary conditions are also discussed in the analysis of 

nonlocal strain gradient rods [31]. 

In this paper, we assume that the micro-scale mass density,  , is constant in both micro- and 

macro-scale coordinate systems. Consequently, the equations of motion reduce to 

   M m Mm m Mm
, 11,2 xx xC C C C C       ,      (23a) 

 g Mm m m
11, , 11 11 11 1111 11,xx x xxC C C C           .     (23b) 

Moreover, the boundary conditions in Eq. (22) reduce to 

    M m Mm m Mm
, 112 0 at 0 andxt C C C C C x L         ,   (24a) 

 g
1111 11, 11, 11 0 at 0 andx xT C x L       .      (24b) 

2.4. Dimensionless form of the governing equations 

For further discussion, it is useful to reduce the number of parameters by nondimensionalizing the 

equations of motion in Eq. (23) to exclude the explicit physical parameters of the system. To this 

end, we first define three dynamic length scales 1l , 2l , and 3l  as 

2 3 411 111 1111
1 2 3, ,l l l  

  
   ,        (25) 

which, for the constant micro-scale mass density,  , lead to 
   

2 4
2 3 4

1 2 3, 0,
12 80
L L

l l l
 

   , 

where L’ is the VE size [45]. Additionally, we introduce the following dimensionless variables 

and parameters 

m Mm g

11 11 M M M2

M

1, , , , , , ,m Mm s
x t C C C Lx t l n

L L C C L C LL
C


    


       


. (26) 



It is understood that the parameter m  gives the ratio of the micro-scale (relative deformation) 

stiffness to the macro-scale stiffness, Mm  represents the ratio of the cross-linking stiffness to the 

macro-scale stiffness, and sl  is the dimensionless static length scale, where it is clear that larger 

values for sl  signify more noticeable second gradient effects. Moreover, n shows how large the 

macro-scale structure length is compared to the VE length. Now, using Eq. (25) and Eq. (26), the 

dimensionless form of the equations of motion in Eq. (23) is stated as  

   , 11,1 2m Mm xx m Mm x           ,       (27a) 

 2
11, , 11 11 11,2 4

1 1
12 80s xx m Mm x m xxl

n n
            .     (27b) 

The dimensionless spatial domain of the problem is 0 1x  . We emphasize that the coefficients 

on the right hand side of Eq. (27b) are not arbitrary, but are natural consequences of the assumed 

micro-scale mass density,  , distribution. Indeed, these coefficients differ if one considers a 

different distribution for the micro-scale mass density,  , within the VE [45]. We note that the 

dimensionless material constants m  and Mm  must satisfy the positive definiteness of the macro-

scale deformation energy density. This necessitates the inequality 2 0m Mm    to hold. 

The dimensionless form of the boundary conditions in Eq. (24) is expressed as 

    , 111 2 0 at 0 and1m Mm x m Mmt x             ,    (28a) 

2
11, 11, 114

1 0 at 0 and1
80 x s xT l x

n
  

 
    

 
.      (28b) 

where M

tt
C

  and M

TT
C L

  are dimensionless contact traction and contact double traction, 

respectively. 

The governing equations of motion in Eq. (27) result from the assumption of the existence of the 

relative deformation field 11 , i.e., the macro-scale displacement gradient ,x  is different from the 

micro-scale kinematic measure 11 . They are also predicated on the assumption of the existence 



of a VE with a finite size, yet very small, compared to the macroscopic length of the structure. For 

the case of vanishing coupling stiffness Mm , if we also assume that m  , or equivalently, if 

the relative deformation measure 11  is zero, i.e., 11 ,x  , we obtain the governing equation of 

motion of the form 
2 4 2

2
,2 2 4 4 2

1 11 1
12 80 s xxl

n x n x x
 

     
      

     
. The derived equation has a 

more general form although it has similarities with the nonlocal strain gradient models presented 

in [27, 31] and the model presented in [59], where the term 1
12n

 can be considered to be the 

dimensionless typical nonlocal parameter, and the term 
2

1
80n

 is considered as an additional 

higher gradient nonlocal parameter. Note that the model presented in [31] can be deemed as a 

special case of the present model with only one term as the nonlocal parameter, and the model in 

[59] treats the dynamic length scales as independent constants without an explicit relation to the 

micro-scale mass density distribution. If we further assume 0L
L

  (equivalently, if n ), we 

recover the equation of motion of a rod based on strain-gradient elasticity of the dimensionless 

form 
2

2
,21 s xxl

x
 

 
  

 
, similar to the form reported in [30]. This approximation, in the limit as 

n , shows that for practical cases, with finite n, the small scale effects described by the 

vanishing terms cannot be assumed to be insignificant although they may not be easily detectable 

in large-scale structures. Finally, in the absence of the static length scale sl , the classical form of 

the governing equation is retrieved. 

 

3. Static behavior 

3.1. General solution 

Here we focus on the static deformation of the 1D granular rod. The governing equations in Eq. 

(27) for the static case reduce to the following balance equations 

   , 11,1 2 0m Mm xx m Mm x          ,       (29a) 



 2
11, , 11 0s xx m Mm x ml          ,        (29b) 

where the spatial domain for the problem is 0 1x  . Using Eq. (28), the boundary conditions for 

the static case are written as 

    , 111 2 0 at 0 and1m Mm x m Mmt x             ,    (30a) 

 2
11, 11 0 at 0 and 1s xT l x    .        (30b) 

Here, an analytical solution for Eq. (29) is sought. To this end, Eq. (29b) is differentiated with 

respect to the spatial variable to obtain 

 2
11, , 11, 0s xxx m Mm xx m xl          .       (31) 

Substituting for ,xx  from Eq. (29a) into Eq. (31) gives 

 

2
2 2

11, 11, 2
0,

1 2
m Mm

xxx x
s m Mml

 
   

 


  

 
.      (32) 

Eq. (32) can be readily solved to obtain a solution for the micro-scale kinematic measure, 11 , 

expressed as 

   11 1 2 3cosh sinhC x C x C     ,       (33) 

where 1C , 2C , and 3C  are constants of integration. From substituting Eq. (33) in Eq. (29a) it 

follows that 

 
 

 
 1 2 5 4sinh cosh

1 2 1 2
m Mm m Mm

m Mm m Mm

C x C x C x C   
  

     

 
   

   
,  (34) 

where 4C  and 5C  are additional constants of integration to be determined. The solution for the 

macro-scale displacement   expressed in Eq. (34) bears similarities with the solution obtained 

following the strain gradient theory for a microbar in [30], and for the gradient-elastic bar in [25]. 



Substituting Eq. (33) and Eq. (34) in Eq. (29b) results in 5 3C C , thereby reducing the number of 

unknown constants from five to four. 

We here consider three possible scenarios for the applied boundary conditions in order to explore 

the static behavior of the 1D granular rod. These boundary conditions are all following the 

conventional macro-scale displacement-control experimental setup where the macro-scale 

displacement is fixed at one end and prescribed at the other end. The three considered experiments 

are different in terms of the boundary conditions imposed on the micro-scale kinematic measure 

11  where either the value for 11  (geometrical boundary condition) or the value for 11,x  (natural 

boundary condition, i.e., the double traction) is prescribed at the ends (boundaries) of the structure. 

Such experiments, although performed computationally here, may help devise experiments to 

observe and extract micro-scale phenomena for materials with granular microstructure by 

demonstrating the level of the effect of the non-classical boundary conditions on the response of 

the system in a static case. For illustration of the predicted behavior, we consider a material with 

constants 0.5m  , 0.4Mm   , and 0.05sl  , for all three scenarios. This choice of parameters 

is known to yield interesting dynamic behavior of granular structures, namely the emergence of 

frequency band gaps and negative group velocity, while the deformation energy remains positive 

definite [43, 45]. In addition, certain micro-morphologies (e.g., see structure C in [60]) yield elastic 

constants of similar type. 

3.2. Scenario 1 

In the first scenario, demonstrated in Fig. 2(a), we consider the geometric boundary conditions of 

the form 

       11 110 0, 0 0, 1 , 1r r         .      (35) 

Eq. (35) implies that on the left end of the domain, both kinematic measures are fixed, and on the 

right end, both kinematic measures have prescribed values. Imposing the boundary conditions in 

Eq. (35) results in the following system of linear equations from which the constants 

1 2 3 4, , , andC C C C  are readily calculated 
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 
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 

   

1

2
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4

0 0 1
1 2 0

1 0 1 0 0

sinh cosh 1 1
1 2 1 2

cosh sinh 1 0

m Mm

m Mm

m Mm m Mm r

m Mm m Mm r

C
C
C
C

 

  

    
 

      

 

 
       

        
     

      
            
  

.  (36) 

Moreover, the dimensionless macro-scale deformation energy density M

WW
C

  is calculated as 

   
2

2 2 2
, , 11 , , 11 11,

1 1 1
2 2 2x m x Mm x x s xW l              .     (37) 

Fig. 3(a) corresponds to the case where 0.01r   and 0r  , Fig. 3(b) corresponds to the case 

where  0r   and 0.01r  , and Fig. 3(c) shows the results for the case where 0.01r   and 

0.01r  . According to the results in Fig. 3(a), having the kinematic measure 11  fixed has 

negligible observable contribution on the behavior of the macro-scale displacement  , however, 

results in larger energy stored in the boundary layers. From the results shown in Fig. 3(b) for the 

case of zero macro-scale displacement   and imposed nonzero micro-scale kinematic measure 

11  at the right end, we observe that while macroscopically the length of the structure has not 

changed, regions undergoing compression and tension exist within the material. Also, due to the 

difference in values between the macro-scale displacement gradient ,x  and micro-scale kinematic 

measure 11 , high deformation energy concentration is observed in the right boundary layer, while 

the rest of the material experiences negligible stored deformation energy. Fig. 3(c) results are the 

superposition of the two results in Fig. 3(a) and Fig. 3(b), which in terms of the macro-scale 

displacement   shows near linear trend, and in terms of the deformation energy density reveals 

localization in the left end and uniform deformation energy density in the rest of the domain. 

3.3. Scenario 2 

In the second scenario with results given in Fig. 4, we consider the following boundary conditions  



       11, 11,0 0, 0 0, 1 , 1x r x r         ,      (38) 

which, in addition to the macro-scale displacement boundary conditions, imposes zero double 

traction on the left end, and a prescribed double traction on the right end. Such boundary conditions 

lead to the following system of linear equations for the constants 1 2 3 4, , , andC C C C , 

 

 
 
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 
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1
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4
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sinh cosh 1 1
1 2 1 2
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 

  



    
 

      
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 
       

        
     

      
            
  

.  (39) 

Fig. 4(a) corresponds to the case where 0.01r   and 0r   , Fig. 4(b) corresponds to the case 

where  0r   and 0.01r   , and Fig. 4(c) shows the results for the case where 0.01r   and 

0.01r   . According to the results in Fig. 4(a), having the double traction zero at both ends results 

in a solution equal to a classical continuum. The macro-scale displacement   is perfectly linear 

and there is no contribution of energy due to the relative motion and second gradient deformation. 

Specifying a nonzero double traction on the right end, for which case the results are shown in Fig. 

4(b), follows the same behavior as of the one in Fig. 3(b). For the superposition of the cases in Fig. 

4(a) and Fig. 4(b), shown in Fig. 4(c), except for the right boundary layer, the energy content 

within the structure is equal to the classical case and the macro-scale displacement   follows an 

almost linear regime. 

3.4. Scenario 3 

In the third scenario with results presented in Fig. 5, we consider the mixed boundary conditions 

expressed as 

       11, 110 0, 0 0, 1 , 1x r r         .      (40) 



Similar to the approach taken in previous scenarios, the constants 1 2 3 4, , , andC C C C  are obtained 

by solving the following system of linear equations 
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  

.  (41) 

Fig. 5(a) corresponds to the case where 0.01r   and 0r  , Fig. 5(b) corresponds to the case 

where  0r   and 0.01r  , and Fig. 5(c) shows the results for the case where 0.01r   and 

0.01r  . A fixed micro-scale kinematic measure at the right end in Fig. 5(a) results in large 

deformation energy stored in the right boundary layer and uniform energy density distribution in 

the rest of the domain. This stored energy can be attributed to the difference in value between the 

imposed macro-scale displacement gradient ,x  and the micro-scale kinematic measure 11  at the 

right end. The results in Fig. (5b) are qualitatively similar to those in Fig. 3(b) and Fig. 4(b) and 

follow the same discussion. Interestingly, the results in Fig. 5(c) are similar to the ones in Fig. 4(a). 

This case corresponds to a zero double traction at the left end and a prescribed value for the micro-

scale kinematic measure 11  equal to the macro-scale strain at the right end. In this case, similar 

to the one in Fig. 4(a), the macro-scale displacement   is linear and the deformation energy 

density due to the macro-scale displacement gradient is the sole contributor to the total deformation 

energy density. 

Based on the observations from the results in Figs. 3-5, the following conclusions can be drawn. 

First, imposing fixed and prescribed macro-scale displacements   at left and right ends of the 

structure, respectively, one observes a classical-like behavior only if at each end, the contact 

double traction is held to be zero, or the micro-scale kinematic measure 11  is assigned a value 

equal to the macro-scale displacement gradient ,x  (macro-scale strain). For the cases where the 

macro-scale displacement gradient ,x  and micro-scale kinematic measure 11  have non-equal 



values on the boundary, localized deformation energy density of finite thickness near that 

boundary is observed, while the deformation energy density in the rest of the domain of the 

problem is rather uniform. Second, for fixed macro-scale displacement   applied at both 

boundaries and imposed double traction or micro-scale kinematic measure 11  at one end, we 

notice both compression and tension (negative and positive macro-scale displacement gradient ,x

) induced within the granular structure. Third, the gradients appearing because of the imposed field 

variables   and 11  at both ends only exist close to the outer boundaries of the structure, thereby 

signifying the existence of boundary layers. Finally, one notices the small change in the macro-

scale displacement   in response to the alterations in the imposed non-classical boundary 

conditions. Nevertheless, such small changes have large influence on the energy localization near 

the boundaries, and such energy localization becomes even more noticeable as the size of the rod 

shrinks. 

3.5. Parametric study 

To further explore the effect of the material constants m , Mm , and sl  on the behavior of the field 

variables   and 11 , a parametric study is performed. We consider two cases of boundary 

conditions for this investigation. Fig. 6 shows the results for the following applied boundary 

conditions 

       11 110 0, 0 0, 1 0.01, 1 0       ,      (42) 

and Fig. 7 shows the results for the following boundary conditions 

       11 110 0, 0 0, 1 0, 1 0.01       .      (43) 

In both studies, the baseline material constants are taken as 0.5m  , 0.4Mm    and 0.05sl  . 

In Fig. 6(a) and Fig. 7(a) the material constant m  is varied, in Fig. 6(b) and Fig. 7(b) the material 

constant Mm  is varied, and in Fig. 6(c) and Fig. 7(c) the material constant sl  is varied. We here 



recognize that a growth in the material constant sl  can be interpreted as either an increase in the 

second gradient stiffness of the material, or as a decrease in the size of the rod under study. 

For the case of boundary conditions in Eq. (42) with the results shown in Fig. 6, a change in the 

values of the parameters m , Mm , and sl  has small effect on the solution for the macro-scale 

displacement  . However, it is evident that increasing m  or Mm  alters the solution for 11  

significantly. Moreover, increasing m  and Mm , decreases and increases the size of the boundary 

layer, respectively. An increase in the value of sl  reduces the maximum for 11  and increases the 

size of the boundary layer. The change of the size of the boundary layer due the value of the 

parameter sl  may be explained using the definition of the parameter  . A larger value for the 

parameter sl  results in smaller value for   which consequently leads to larger boundary layer.  

For the case of the boundary conditions in Eq. (43) with the results shown in Fig. 7, increasing m  

results in a change from positive to negative sign for the macro-scale displacement  , which 

switches the regions of compression and tension (see Fig. 7(a)). According to Fig. 7(a), the micro-

scale kinematic measure 11  follows the same trend, although the sign of the solution for 11  

becomes negative as m  increases while the boundary layer thickness decreases somewhat. Fig. 

7(b) shows the results for the change in the value of Mm . Increasing Mm  also changes the sign 

of the macro-scale displacement  . Furthermore, as the value of Mm  increases, the boundary 

layer size increases by a small amount. Fig. 7(c) shows that increasing sl  results in an increase in 

the magnitude of the macro-scale displacement   as well as an increase in the size of the boundary 

layer. 

The size effect of the rod can be observed in Fig. 6(c) and Fig. 7(c), where a decrease in the size 

of the sample (increase in the value of sl ) results in a larger boundary layer which implies that the 

localization zone of the strain energy has grown and spread towards the center of the rod. In this 

case, the average deformation energy density absorbed by the material has increased compared to 

the same material with larger size, thus suggesting a stiffening effect. 



4. Free vibration behavior  

4.1. General solution 

In this section, we analyze the free vibration characteristics of the 1D granular rod. The 

dimensionless form of the governing equations of motion are stated in Eq. (27) with the boundary 

conditions expressed in Eq. (28). For small harmonic vibration, the following form of solution 

(plane wave solution) is assumed 

       11, , ,i t i tx t x e x t x e    ,       (44) 

where   and   are the dimensionless space parts of the solutions and   is the dimensionless 

angular natural frequency. Substitution of Eq. (44) into the governing equations of motion in Eq. 

(27) results in the following equations 

    2
, ,1 2m Mm xx m Mm x             ,      (45a) 

 
2 2

2
, , ,2 412 80s xx m Mm x m xxl

n n
 

             .     (45b) 

The above equations can be uncoupled to obtain two fourth order homogenous linear ordinary 

differential equations with constant coefficients as follows 

1 , 2 , 3 0xxxx xxz z z      ,         (46a) 

1 , 2 , 3 0xxxx xxz z z      ,         (46b) 

where 
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    (47) 

The general solutions for the differential equations in Eq. (46) can be presented as 

       1 1 2 1 3 2 4 2cos sin cosh sinhk x k x k x k x     ,    (48a) 



       1 1 2 1 3 2 4 2cos sin cosh sinhk x k x k x k x     ,    (48b) 

where 
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.     (49) 

In Eq. (48), 1k  and 2k  are the dimensionless angular wavenumbers, and are functions of the 

material parameters and the angular frequency  . Also, , , 1, ,4i i i    are constant to be 

determined by the appropriate boundary conditions, which, using Eq. (45a), are related as 
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In what follows, we study the free vibration characteristics of the 1D granular rod subjected to four 

types of boundary conditions. The first three types of boundary conditions are examined following 

the same motivation discussed in the static case: for identical classical boundary conditions, how 

does a change in the non-classical boundary conditions affect the response of the system. The 

fourth type of boundary conditions is investigated to have a more complete comparison with the 

results of the models found in the literature. For the analyses to follow, we consider the same 

material constants as for the static case, namely, 0.5m  , 0.4Mm   , 0.05sl  , and 100n  , 

and compare the resulting natural frequencies and mode shapes with the solutions of a classical 

rod problem. We note that, in the following results, the mode shapes of the classical rod have been 

scaled such that they have the same amplitude as the macro-scale displacement   amplitude for 

the mode shapes of the present model. 

4.2. Clamped strained-clamped strained (CS-CS) 

The boundary conditions associated with the CS-CS case are defined as 

       0 0, 0 0, 1 0, 1 0        .      (51) 



Eq. (51) enforces that the macro-scale displacement   and the micro-scale kinematic measure 11  

are identically fixed at both ends. Enforcing Eq. (51), and by using Eq. (50), the following set of 

algebraic equations result from Eq. (48) 
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.    (52) 

The necessary condition to have non-zero solutions for Eq. (52) is that the determinant of the 

coefficient matrix is zero, i.e. 

          2 2
1 2 1 2sin sinh 2 cos cosh 1 0k k k k      .     (53) 

Eq. (53) is a transcendental equation denoting the general characteristic equation for the CS-CS 

boundary conditions and is equivalent to the characteristic equation for the clamped-clamped case 

of the nonlocal strain gradient rod in [31] for 1k   and 2k  . 

Fig. 8(a-c) show the first three mode shapes and natural frequencies. The mode shapes 

corresponding to the macro-scale displacement   are similar to that’s for the classical one-

dimensional continua for the material parameters considered here. Denoting by i  and c
i , 

respectively, the ith natural frequency of the current model and the classical continuum model, the 

first three natural frequencies in the CS-CS boundary condition case for the chosen material 

parameters are smaller than their classical continuum counterparts and are evaluated as 

1 10.8283 c  , 2 20.8290 c  , and 3 30.8300 c  . 

4.3. Clamped strained-clamped forcing (CS-CF) 

The boundary conditions associated with the CS-CF case are obtained by having the macro-scale 

displacement   at both ends fixed, the micro-scale kinematic measure 11  fixed at the left end, 

and the double traction zero (free) at the right end. Explicitly, the boundary conditions are stated 

as 



       ,0 0, 0 0, 1 0, 1 0x        ,      (54) 

where the last condition is obtained by introducing the solution in Eq. (44) into the boundary 

condition in Eq. (28b). Enforcing Eq. (54), and by using Eq. (50), the following set of algebraic 

equations result from Eq. (48) 
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.  (55) 

The characteristic equation corresponding to Eq. (55) is 

         1 2 1 2 1 2cos sinh sin cosh 0k k k k k k        .     (56) 

Eq. (56) is the general characteristic equation for the CS-CF boundary conditions and for 1k   

and 2k   it becomes equivalent to the characteristic equation for the clamped-simply supported 

case of the nonlocal strain gradient rod described in [31]. 

Fig. 8(d-f) show the first three mode shapes and natural frequencies. Similar to the results for the 

CS-CS case, the mode shapes corresponding to the macro-scale displacement   for the CS-CF 

case are approximately same as the mode shapes of classical 1D bar. The first three natural 

frequencies in the CS-CF boundary condition case are smaller than their classical continuum 

counterparts for the material parameters considered here, and have values of 1 10.8267 c  , 

2 20.8278 c  , and 3 30.8292 c  , respectively. 

4.4. Clamped forcing-clamped forcing (CF-CF) 

The boundary conditions associated with the CF-CF case are expressed as 

       , ,0 0, 0 0, 1 0, 1 0x x        .      (57) 



Enforcing the boundary conditions in Eq. (57), the following set of algebraic equations result from 

Eq. (48) 
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.  (58) 

The characteristic equation corresponding to Eq. (58) is 

     
2

1 2 1 2sin sinh 0k k k k   .        (59) 

Eq. (59) is the general characteristic equation for the CF-CF boundary conditions, and for 1k   

and 2k  , it becomes of similar form to the characteristic equation for the simply supported-

simply supported case of the nonlocal strain gradient rod in [31], the nonlocal strain gradient rod 

in [27], and the strain gradient rod in [30]. 

Fig. 8(g-i) show the first three mode shapes and natural frequencies. Similar to previous cases, the 

mode shapes corresponding to the macro-scale displacement   for the CF-CF case are similar to 

that of the classical 1D continua. The first three natural frequencies in the CF-CF boundary 

condition case are smaller than their classical continuum counterparts for the material parameters 

chosen in this study, and have values of 1 10.8252 c  , 2 20.8266 c  , and 3 30.8283 c  , 

respectively. 

4.5. Clamped forcing-free strained (CF-FS) 

The boundary conditions associated with the CF-FS case are expressed as 

       , ,0 0, 0 0, 1 0, 1 0x x        .      (57) 

With regards to Eq. (57), Eq. (48) results in the following set of algebraic equations 
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.    (58) 

The characteristic equation corresponding to Eq. (58) is 

      1 2 2 1 1 2cos cosh 0k k k k k k      .      (59) 

Eq. (59) is the general characteristic equation for the CF-FS boundary conditions and for 1k   

and 2k   it becomes of similar form to the characteristic equation for the CF-FS case of the 

nonlocal strain gradient rod in [27].The first three natural frequencies for the CF-FS case are 

1 10.8247 c  , 2 20.8258 c  , and 3 30.8275 c  , respectively, which are lower than classical 

continuum predictions for the material parameters considered. In addition, the macro-scale 

displacement   mode shapes are close to the classical continuum predictions. 

Based on the results of the four different examples studied above, several observations and 

conclusions can be made. Firstly, the mode shapes of the macro-scale displacement   are similar 

to that of a classical continuum, although for a different choice of material parameters (for example 

if we had 0Mm  ), small deviations from the mode shapes of classical rod are observed (results 

not shown). Such a deviation is the result of the presence of terms containing the second 

wavenumber 2k  in Eq. (48), which, for the problems studied here, had negligible amplitude 

compared to the leading term containing 1k . Moreover, one concludes from the first three visited 

examples that even when the double traction is prescribed as zero on the boundaries, the 

microstructural effects alter the natural frequency of the system. This is in contradistinction to the 

results from the static problem where a classical form of solution is obtained if the non-classical 

terms are not excited. This distinction in the behavior of the system in static and dynamic problems 

are due to the presence of the terms containing dynamic length scales in the governing equations 

of motion. 

4.6. Parametric study 



In order to study the effect of different material constants on the dynamic behavior of one-

dimensional materials with granular microstructure, we have plotted the ratio of the first three 

natural frequencies for the three CS-CS, CS-CF, and CF-CF cases to their classical counterparts 

for different material parameters with the base material constants at 0.5m  , 0Mm  , 0.05sl 

, and 100n   in Fig. 9. Based on the results in Fig. 9, the following conclusions can be drawn. 

First, an increase in the micro-scale (relative deformation) stiffness, m , leads to larger natural 

frequencies (Fig. 9(a)). This result is expected as additional stiffness increases the natural 

frequency of the system. Second, contrary to the trend observed for the effect of the parameter m

, an increase in the cross-linking stiffness Mm  is accompanied by an initial increase in the value 

of the natural frequencies, followed by a decrease (Fig. 9(b)). Therefore, the effect of the parameter 

Mm  can be either softening or stiffening. Third, increasing the length scale parameter sl  results in 

an increase in the value of the natural frequencies (Fig. 9(f)), hence implying stiffening of the 

material when either the second gradient stiffness becomes larger or when the rod size becomes 

smaller. For sl  values large enough, an asymptotic value for the natural frequencies are obtained. 

Similar observation has been made for the rod modeled using nonlocal strain gradient theory [31]. 

Fourth, the natural frequencies can be smaller or larger than their classical counterparts, depending 

on the material constants. Fifth, one observes that the effect of different boundary conditions on 

the natural frequencies is rather small for a wide range of material parameters. For higher modes, 

however, the effect of different boundary conditions on the results becomes increasingly 

significant. Finally, it is interesting to note that the higher mode frequencies are not integer 

multiples of the fundamental mode, which is a departure from the results for classical 1D elastic 

rod under the considered boundary conditions, and seems to suggest an apparent internal damping. 

 

5. Conclusion and Summary (prognosis towards experimental design) 

Mechanical response of materials with granular microstructures are known to be influenced by the 

grain-scale mechano-morphology. Here we have utilized the granular micromechanics approach 

(GMA) based continuum theory to reveal certain peculiar aspects of the mechanical behavior of a 

material with granular microstructure. To keep the development tractable and understandable, we 



have focused upon a 1D rod composed of granular materials. To this end, the governing equations 

of motion and the variationally consistent boundary conditions for a one-dimensional material with 

granular microstructure were obtained using the principle of least action. Closed-form solutions 

for both the static and dynamic problems were obtained and the effect of different boundary 

conditions and material parameters on the response of the material were investigated. The key 

findings of the presented work are: 

1. That micromorphicity due to micro-mechano-morphological properties has a significant 

influence on the static and free vibration response of rods with granular microstructure. 

2. In the static case, we observe that the dependency of the structural response on the imposed 

boundary conditions is most obvious near the boundaries of the structure where gradients 

of strain are large. In addition, the size-dependency effects are manifested in the width of 

the emergent boundary layers. 

3. In the dynamic case, the length scale parameter has stiffening effect, i.e., as the size of the 

structure shrinks, the behavior is predicted to be stiffer, a finding which classical theory 

does not predict. 

4. The mode shapes corresponding to the micro-scale kinematic measure 11  are not identical 

to that of the macro-scale displacement gradient ,x , as distinct from that for a second 

gradient model and account for the energy due to the relative deformation in macro- and 

micro-scales. 

5. Additional kinematic constraints and simplifications imposed on the presented model leads 

to several (nonlocal) strain gradient models introduced in the literature, and therefore, the 

current model, encompasses such models as special cases. 

6. While the cases studied in the static problem show microstructural effects of the system 

under certain boundary conditions, the effect of the microstructure is always present in the 

dynamic problem for any form of applied boundary conditions. 

7. The dynamic length scale parameters (referred to as nonlocal parameters in the literature) 

in the current model are directly linked to the micro-scale mass density distribution of the 

system under study and do not take arbitrary values. 

8. The model predicts measureable effects such that experimental approaches/protocols can 

be designed to detect these effects. 



9. While a 1D system is helpful in understanding the underlying physics behind the observed 

phenomena, many engineering applications are concerned with higher dimensional 

systems. GMA based micromorphic model of degree one presented here can be 

systematically expanded to include 2D and 3D systems [41], or to model deflection in 

beams [61]. 

To conclude, appreciating the complexity of the materials with granular microstructure and the 

limitations on the current experimental prescriptions to observe and extract microstructural effects, 

the results of the current paper can promote the understanding of such complex systems and what 

to expect if experiments are to be devised. Furthermore, the results of the current paper will serve 

as a prelude to our future work on static deformation, vibration and elastic wave propagation 

simulations of initial/boundary value problems for structures made of granular media. 
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