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Abstract

Although the primacy and utility of higher-gradient theories are being increasingly accepted,
values of second gradient elastic parameters are not widely available due to lack of generally ap-
plicable methodologies. In this paper, we present such values for a second-gradient continuum.
These values are obtained in the framework of finite deformations using granular microme-
chanics assumptions for materials that have granular textures at some ’microscopic’ scale. The
presented approach utilizes so-called Piola’s ansatz for discrete-continuum identification. As a
fundamental quantity of this approach, an objective relative displacement between grain-pairs
is obtained and deformation energy of grain-pair is defined in terms of this measure. Expres-
sions for elastic constants of a macroscopically linear second gradient continuum are obtained
in terms of the micro-scale grain-pair parameters. Finally, the main result is that the same co-
efficients, both in the 2D and in the 3D cases, have been identified in terms of Young’s modulus,
of Poisson’s ratio and of a microstructural length.

keywords: strain gradient, 2D continua, 3D continua, granular micromechanics, stiffness tensors

1 Introduction

Materials whose textural features can be described as granular at some 'microscopic’ scale abound in
all applications of science and engineering. Many of these materials are characterized by complexity
and diversity of grain-scale mechano-morphology. Consequently, modeling approaches are needed
that are both representative and tractable to describe their mechanical behavior. Continuum mod-
els, arguably, are the most feasible [6, 18, 23, 25]. However, these models must properly account for
the granular nature of the material to be representative. To this end, it is notable that the deforma-
tion of materials with granular microstructures can be effectively described in terms of the relative
movements of the grain centroids/barycenters regardless of the location of the actual deformation
within the grains [62, 45]. The macro-scale deformation energy density of a volume of such material
can then be described as an aggregation of grain-pair deformation energy and mathematically as
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the sum of the deformation energy of all the grain pairs parameterized by the corresponding ori-
entation. Elastic properties of materials with granular microstructures can, therefore, benefit from
an identification between that of the grain-scale and the macro-scale (scales at which continuum
representation is suitable). Such identification in the past has been focused upon linearized classical
or Cauchy format of continuum mechanics theory in which infinitesimal strain is used as the mea-
sure of material deformation [63, 14, 32, 44] or for linearized Mindlin’s third-gradient (second-strain
gradient) theory [13, 42|, and for linearized micromorphic continuum of degree 1 [46].

We further note that the use of strain gradient materials in the literature is not new [24, 25, 43,
49]. The theoretical investigation of second gradient materials [23, 24, 29] in the recent past are
highlighted in [21, 40, 56] and have been complemented with preliminary identification procedures
[25, 27] for specific microstructures. However, those constitutive coefficients that emerge to be
relevant in such theories have not yet been experimentally identified [16, 17, 39, 54, 65]. The reason
is that it is difficult to experimentally [11, 10, 48] apply proper boundary conditions, e.g. within the
procedure investigated in [5, 50|, that are necessary to perform such a characterization. Besides,
in order to perform proper numerical simulations [2, 1, 55] the identification of second gradient
constant is generally done with arbitrary (a priori) simplifications that are based, regardless of the
investigated application of the model, on the sake of simplicity [4, 38, 64], although it is possible
that for describing certain phenomena only a subset of characteristic lengths may be required [36].

In this connection, it is also useful to note that [15] studies an even higher-gradient (third-
gradient of displacement) formulation for nano-objects. A formulation of the same order but with
six non-classical stiffuess parameters (three of them coupling strains and strain gradients of differ-
ent orders) and two micro-inertia parameters has also been shown in [34]. Besides completing the
stability analysis of [15], this formulation captures surface tension/compression effects and shear
effects appearing in a plane lattice structures, that interestingly, are not nano-objects. The param-
eter identification, in these aforementioned works, is based upon parameter fitting via numerical
experiments performed using fine-scale computational models (as surrogates to laboratory experi-
ments with fine-scale physical samples). Further efforts at identification of higher-gradient constants
are found in the works related to micro-architectural thin structures. For instance, to model the
small-scale bending experiments of [38] and others, it has been shown that a single non-classical
parameter is enough, in addition to the classical Young’s modulus, for capturing size effects present
in the bending of planar lattice metamaterial beam structures described by 1D generalized beam
bending model for both linear ([33, 35]) and geometrically nonlinear [61] analyses. On the other
hand, for modeling a 2D model discussed in [66] more that one non-classical parameters are needed
although there is no clarity on the which of these are most relevant. Along these lines, it hase been
shown in [36] (for linear) and [60] (for geometrically nonlinear), that at least four non-classical pa-
rameters are necessary for modeling the bending problem of cellular metamaterial plate structures.
In contrast, a single non-classical parameter appears to be sufficient for modeling the bending of
octet-truss beam structures as seen by the results of both numerical and physical experiments given
in [37]. While it is clear that the problem-type and accuracy-requirements determine the need for
classical or non-classical description and associated simplifications in terms of constitutive relations
and model dimensionality (1D, 2D or 3D), such determination may not be possible a priori, and a
general approach may be preferred.

In this work, we consider the identification of second gradient elastic constants in a more gener-
alized setting of finite deformations of materials with granular textures. The implication of consider-
ing higher gradients for granular materials is that the deformation energy associated with grain-pair
embedded in a system of grains is intrinsically linked to its extended neighborhood and cannot be
estimated as that of a isolated grain-pair. It is notable that the grain-scale defromation mecha-
nisms can be complex due to, for example, the grain-scale structure, presence of void spaces, grain
rotations, and the wide contrast in the bulk grain stiffness and the typically compliant interactions
[47, 53]. With this view as a point of departure, we utilize a variational approach for modeling
the elastic behavior of granular solids under finite deformations based upon grain-pair interactions.
Consequently, as a first step we develop an objective kinematic descriptor for grain-pair relative
displacement in the framework of strain-gradient theory linked to the placement function in de-
formed configuration utilizing Piola’s ansatz for micro-macro identification. We remark from view
point of novelty that Piola’s micro-macro kinematic identification utilized here provides a distinct
pathway for continuum-discrete identification, which can admit not only higher-gradients but also
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Figure 1: Piola’s Ansatz. On the left a scheme with the kinematical descriptors of the discrete
model. On the right a scheme with the kinematical descriptor of the continuum model.

additional kinematic measures that lead to higher-order descriptions (see for example [47]). Grain-
pair deformation energy is then introduced in terms of the objective grain-pair relative displacement
decomposed into a component along the vector joining the grain centroids of a grain-pair, termed as
normal component, and a component in the orthogonal direction, termed as tangential component.
For the present work, a quadratic form of the grain-pair deformation energy is utilized to obtain an
identification for the case of linear isotropic elasticity. As a result, expressions for elastic constants of
a macroscopically linear second gradient continuum are obtained in terms of the micro-scale grain-
pair parameters. These expressions represent a first estimate of second-gradient linear elasticity that
generalize those available in the literature. The main new result is that these coefficients have been
identified in terms of (i) Young’s modulus, (ii) Poisson’s ratio and (iii) a microstructural length,
that can be interpreted as the distance of the grain-pair. The aim of this paper is a first attempt to
give a contribution in this regards. It is finally worth to be noted that this method could be applied
also to those metamaterials, such as pantographic structures [9, 54, 31, 22, 20, 28, 51|, for which a
preliminary guess for the identification of its constitutive coefficients is necessary [19, 58].

2 Discrete and continuous models for granular systems

2.1 Piola’s ansatz for the identification in space

Let us consider a discrete model consisting of g grains. In the reference configuration the position
of the A-th grain is given by X, € E?3 with A = 1,..., g, where E? (and E®) is the Euclidean
two (and three) dimensional space. The position 4 in the present (or actual) configuration of
the same grain is evaluated with the placement function x (t) = X4 + ua (¢), where w4 (t) is the
displacement of the A-th grain and placement x4 and displacement u 4 are both functions on time
t. In the continuum model we have a continuous body 8 which, in the reference configuration,
is constituted by infinite particles having position X, i.e. X € 9. Each particle is placed, in the
present (or actual) configuration with the placement function x (X,¢) = X +u (X, t), where u (X, t)
is the displacement function of the continuous body 8.
In the continuum-discrete model’s identification, the Piola’s Ansatz

X(Xa,t)=xat), A=1,...,¢ (1)

holds, that means that the placement x 4 (t) of the A-th grain is equal to the placement x (X 4,t) of
the continuous body B evaluated at the point X = X4, where the grain is located in the reference
configuration, see Fig. 1. We note that this kinematic identification is conceptually different from the
Cauchy-Born type approximation often used in continuum-discrete identification (such as [59, 41])
and can admit additional kinematic measures that lead to higher-gradient descriptions as well as
higher-order descriptions (a point that will be pursued in a forthcoming work).
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Le¢
Xp Xp = x(Xp)

Figure 2: (a) On the left-hand side the reference configuration of the grain-pair. On the right-hand
side the actual configuration of the grain pair under the rigid body rotation (6) centered at X,.

2.2 Piola’s ansatz in orientation as the homogenization rule

Let us assume that the distance between those grain at X,, and X, is L and the unit vector ¢ is
defined as follows,

X, — X, = ¢L. (2)

Let us consider the discrete model of N grain-pairs of the n — p type, all centered at the grain
p and each oriented as ¢ towards one of the N grains of the type n. Besides, let us be interested
in a certain quantity a;, for a given point.X, and associated to the i-th grain-pair of the type n —p
oriented as é. Thus, we assume the existence of a continuum function a (¢) with the following Piola’s

ansatz in the orientation space,
N
a(®)=) a, (3)

where S! is the unit circle, domain of the function a (¢) in the 2D case and where S? is the unit
sphere, domain of the function a (¢) in the 3D case. The homogenization rule made explicit in (3)
means that the function a (&) is, per unit element of S! or of 82, equal to quantity a; associated
to the i-th grain-pairs. This means to restrict the range of interest to those quantities a; that do
not vary too much from a grain-pair oriented towards ¢ to another grain-pair oriented towards an
orientation in the neighboring of ¢.

2.3 Relative intergranular displacement and related continuum deforma-
tion measures

In the reference configuration, therefore, the vector attached to the position X, and pointing the
position X, is ¢L and given in (2), see also Fig. 2a. In the actual configuration the positions of the
two grains at X,, and X, are, respectively, x (X,,t) and x (X,,t). Thus, the vector in (2) in the
actual configuration yields

X(Xnvt) _X(vat)' (4)

The difference, at time ¢, between the vectors in (2) and (4) is called the relative displacement d,,,, (¢)
of the two grains n and p,

Onp (1) = X (Xnst) = X (Xp, t) — (X — Xp) = un (t) —up (t) . (5)

It is a fundamental quantity in granular mechanics. However, it is not a measure for the deformation
of the granular assembly (it is, e.g., not objective!). Indeed, a rigid body rotation centered e.g. at
Xp,

r=x(X,t) =X, +Q(X -X,), Q¢€Ortht, (6)

where Orth™ is the orthogonal space of rotation, of the granular assembly (that should be associated
to a null strain energy) yields both no displacement of the grain p

up (t) = x (Xp,t) = Xp = Xp + Q (Xp — Xp) — X, =0,
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and, see also Fig.2b, a non-zero displacement for the grain n,
Up (t) = x (Xn,t) = X =X, +Q (X, — X,) — X,, = —¢L + LQ¢.
Thus, a non-zero relative displacement 6, (¢)
5np(t) =L[-I+QJc#0,

where I is the identity tensor.

In order to define an objective relative displacement (i.e. a relative displacement that is really
a measure of the contribution of the n — p pair to the deformation of the granular assembly), we
proceed as follows. First we define the deformation gradient /' = V and its value F), evaluated at
X = X, as the gradient of the placement function. Thus, we define an objective, see the analogy
with eq. (5), relative displacement as

W = FF ( (X, t) = X (X)) = (X — X,). (7)

The proof of the objectivity of the definition (7) is easy. Here, it is worth to be noted only that the
rigid body rotation centered at X, according to (6) and to Fig. 2 yields an orthogonal deformation
tensor ' = F}, = Vx = @ and therefore

u"f = QT (Xp +Q (Xn — Xp) - Xp) — (X5 — Xp) = QTQ (X — X;n) — (X — Xp) =0,

that means that we have a null objective relative displacement for the rigid body rotation that is
pictured in Fig. 2 and defined in (6).

Let us now assume that the two grains n and p are neighboring ones. Thus, they place similarly
in the present configuration and the following Taylor’s series expansion is possible

X () 2 x (%) + (V)x, (K= Xp) 43 [(V0), (6~ Xl (K- Xa). (®)

The insertion of (2) and (8) into (7) yields
u™” = FT <F6L + % [VF (¢L)] (éL)> —¢L = 2GeL + %LQ VG é (9)
where the deformation gradient F' as well as the Green-Saint-Venant tensor G and its gradient
F=(Vx)y,, G= % (F'F-1I), VG=F"VF, (10)

have been defined and all evaluated at X = X,.
The half-projection of the objective relative displacement on the unit vector ¢, defined in (2), is
the so called (scalar) normal displacement wu,,,

1
Uy = §u"p - ¢, (11)

where the reason of the 1/2 will be clear in the Subsection 2.4. The projection-vector of the objective
relative displacement that is tangent to ¢ is the tangent displacement u.,

ur = u™ — (u"P - ¢)é. (12)

2.4 Example

Let us assume a frame of reference {O, é1, é5, é3} oriented with the grain pair direction é; = ¢ and
with the origin in p , i.e. O = X,. Thus, the column [X] is the representation, in the same frame
of reference, of the position X in the reference configuration,

Wile%-VCH
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a) b)
éz f é2
x(Xn)
1 L
.X" Xn “
Lé Lé L
0=2X, & 0=2X, é

Figure 3: Vertical deformation of the n — p grain pair. (a) Reference configuration of the granular
assembly. (b) Actual configuration with a vertical elongation along the n — p grain pair.

We first consider the state of tension along the horizontal direction é; given by a placement function
x with the following column-representation

X1 X1+ aXy,
=1 x | = Xo
X3 X3

Keeping this in mind the deformation gradient F', the Green-Saint-Venant tensor G and its gradient
VG are

l+a 0 0 at+3a® 0 0
[F] = 0 1 0], [G)= 0 0 0], VG=0,
0 0 1 0 0 0
that yield a null objective relative displacement
a+ia? 0 0 0 0
[u"P] = 2L [G] [é2] = 2L 0 0 0 1 ]1=1020
0 0 0 0 0

and the corresponding normal and tangent measures are also null, i.e.,

1 . 1 0 . A 0
m= g el =5 (0 0 0)-{ 1) =0 fur] = [u?] = (1) - [éa]) [e2] = 0]

where the transpose symbol 7" is used in compliance with the rows by columns rules. It is a matter
of fact that also the relative displacement 6, = 0 is null because the displacements of the grains n
and p, are null as well, i.e.u, =0 and u, = 0.

We now consider a state of tension along the vertical direction é; = ¢ given by a placement
function x in Fig. 3 with the following column-representation

X1 X17
X=1 x2 | = Xo+aXs
X3 X3

Keeping this in mind the deformation gradient F', the Green-Saint-Venant tensor G and its gradient
VG are

1 0 0 0 0 0
[Fl=1 0 1+a 0 |, [Gl=[ 0 a+ia® 0 |, VG=0,
0 0 1 0 0 0
that yield a non-zero objective relative displacement,
0 0 0 0 0
W] =2[G][és] L=2L| 0 a+3a*> 0 1 | =| 2La+ La?
0 0 0 0 0
and the corresponding normal and tangent measures are
1 1
up = - [u"?]" - [62] = La + - La?,
2 2
0 0 0
fur] =[] = ([w]" - o] ) [ea) = | 2La+La® | = (2La+La®) [ 1 | = 0
0 0 0

Wile)é-VCH



Page 7 of 20 ZAMM - Zeitschrift fuer Angewandte Mathematik und Mechanik

a)

Figure 4: Shear deformation of the n — p grain pair. (a) Reference configuration of the granular
assembly. (b) Actual configuration with a shear orthogonal to the n — p grain pair.

Besides the relative displacement 6y, is

0 0 0
[(Snp] = [un] — [up] = La - 0 = Lo
0 0 0

It is worth to be noted that for small deformation the normal displacement is equivalent to the
vertical component of the relative displacement, i.e. u, = 0y - €2 = Lo, that justifies the presence
of the factor 1/2 in the definition (11).

Further, a state of shear displaced along the horizontal direction é; is given by a placement
function x in Fig. 4 with the following column-representation

X1 X1+ aXs
[X] = X2 = Xo
X3 X3
Keeping this in mind the deformation gradient F', the Green-Saint-Venant tensor G and its gradient
VG are
1 o O 1 0 o O
[Fl=| 0 1 0 |, [G]:§ a o 0], VG=0,
0 0 1 0 0 O
that yield a non-zero objective relative displacement,
0 o O 0 a
[ =2[G][é2] L=L| a a® 0 1 | =L o?
0 0 0 0 0
and the corresponding normal and tangent measures are
1. T 1a 1
uy = 5 [ o] = 5 Lo?,
o 0 o
] = [u™] ([W]T [ég]) o)=L o | —La?| 1 |=L]| 0
0 0 0
Besides the relative displacement 6y, is
La 0 La
[Onp) = [un] — [up] = 0 -0 |= 0
0 0 0

It is worth to be noted that for small deformation the normal displacement is null and therefore
equivalent to the vertical component of the relative displacement, i.e. u, = ,;,-é> = 0. Besides, the
tangent displacement u,, as expected, correspond to the relative displacement 6,,, i.e. u, = dpp.
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3 Elastic energy function

3.1 Elastic energy per unit volume for a grain-pair

The elastic energy per unit volume for a given grain-pair, say the pair n — p considered in Section
2.3, U, is assumed to be a quadratic form of normal and tangent relative displacement,

1 1
Unp = Qkﬂu% + ikT |u7'|2 ) (13)

where u,% is the square of the scalar u,, \uT\2 is the squared module of the vector u,, k,, is the normal
stiffness associated to the normal displacement u, and k. is the tangent stiffness associated to the
tangent displacement u,. The elastic energy per unit volume is a scalar and therefore, for objectivity
reasons, no coupling term between the scalar u, and the vector u, is admissible. The quadratic
assumption in (13) is the easiest possible that represents linear elastic behavior of granular systems,
however, it is not the unique option. Others, such as Lennard-Jones-type potential could be used
that present asymmetry of tension-compression response which could lead to nonlinear elasticity
with evolving anisotropy and chirality when subjected to loading.

3.2 [Elastic energy per unit volume related to the grain at X,

The elastic energy per unit volume U, for a given grain at X, is the sum of the energy per unit
volume in (13) over all the N possible interactions, i.e. between the grain p and all the N neighboring
grains n,

N N 1 ) 1 )
Up = Z Unp = Z §knium + 5]{,‘7-% |u7i| 5 (14)
n=1 =1

where the subscript i refers to a single grain-pair of the type n—p. In (14) it is therefore intended that
kni, kri, up; and u,; are the normal stiffness, the tangent stiffness, the scalar normal displacement
and the vector tangent displacement all associated for the i-th grain-pair of the type n — p.

3.3 Continuum approximation in the orientation space

The use of the Piola’s ansatz in (3) for the energy per unit volume in (14) yields
1, 1 4
Up = /‘\8112 §knun + 5]{]7— |U7—| 5 (15)

where k, = En (¢) and k, = ET (¢) substitute, respectively, k,; k,; and are all functions of that
orientation ¢. As we have already pointed out at the end of Subsection 2.2, we are assuming that
the stiffnesses k,; and kr; do not vary too much from a grain-pair oriented towards ¢; to another
grain-pair oriented towards an orientation in the neighboring of ¢é;.

Insertion of (11) and (12) into the elastic energy per unit volume U, in (15), see the Appendix
6.1, yields the following expression in index notation

1 1
+ / —k, (L‘*Gij,hGamm (8:08ChemCn — éiéjéhéaébéc)> , (16)
si22 7\ 4
where from now on we omit the subscript p. Eq. (16) yield, in a compact form,

1 1
U= §(CijabGijGab + MyjabeGiiGap,e + §]Dijhachij,hGab,C7 (17)

Wile)é-VCH
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where the elastic stiffness C, M and D, are identified in (17) as follows, with the symmetrization
induced by the symmetry of the strain tensor G,

(Cijab = L2 /Sl ) knéiéjéaéb (18)

+ L2 / kr ((0iaCjCp + 0ivCjCa + 0jaCiCh + 0pCiCq) — 46 €jCaCyp)
S1.2

L s f ...
Mjabe = ZL?’/ ky€i¢jéq e (19)
S1,2
L3 R . R N
+I kr ((8iaCjép + 0in€jCq + 0jaCiCy + 85pCiCq) Ec — 46;¢€4CpCc)
S1,2
T o ..
Dijhabe = T6L4 /sl . kyCiCjCncalyCe (20)
Lt R . R o
+1—6 kr ((8iaCjép + 0in€jCq + 0jaCiCy + 0;pCiCq) Ence — 4E;€5EnCqCrCe)
S1,2

4 Identification of the isotropic case

4.1 Macroscopic elastic constants in 2D and in 3D cases

Isotropic standard representation of the 4th order stiffness tensor for both 2D and 3D cases is
Cijab = 10ia05p + dindjq + Adijdap, (21)

where A and p are the 2D or 3D Lameé coefficients. Thus, it is sufficient to know the following two
components of C,

Ci111 = A+ 24, Cri22 = A, (22)
to identify Lameé coefficients as follows
1
A= Ci129, m= 5 ((C1111 2 (C1122) . (23)

Besides, the 4 independent strain gradient isotropic elastic coefficients in the 2D case are here
reported in the nomenclature of [7], i.e.,

a11 = D111, @22 = Dagiagt, @12 = Dingoer,  asz = V2Dag1199. (24)

Finally, for the 3D case, the isotropic representation of the strain gradient elasticity stiffness tensor
is

Dijklmn = c3 (5ij5kl5mn + 5in5jk5lm + 5ij5km5ln + 5ik5jn51m) (25)
+C46ij6kn6ml

+¢5 (6:1010mn + 0im0ik0in + 0ik0jmOin + 0i10;50mn)

+¢6 (610 jmOkn + 0im0;i0kn)

+c7 (5il(5jn5mk + 5im5jn51k + 5in5jl6km + 5in5jm5kl)

Thus, it is sufficient to know the following five components of D,

D111111 = 4e3 + ¢4 +4es + 2c6 + 4er,  Daoio1 = ¢4 + 2c6, (26)

Di11221 = 2¢3 + ¢4, Dagi122 = 3 +2¢7, Di12203 = c3, (27)

to identify the five independent isotropic strain gradient coefficients as follows,

1
c3 = D112223, 1 = Di11221 — 2112223, ¢5 = 1 (D111111 — 2D112223 — 2D991122 — Dag1221) ,
1 1
=3 (2D112223 + Da21221 — Di11201), ¢r = 3 (D221122 — D112223)
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Finally, we remark that in the isotropic case we have identically that M = 0 for the assumed
quadratic form of the grain-pair deformation energy.
Thus, it is straightforward to show that insertion of M = 0, (21) and (25) into (17) yields,
1 1
U= uGijGij + iAGiiij + QCgGiidehﬁ + §C4Gii7kG117k
+2¢5Gi5,iGjm,m + c6Gij kGij i + 267Gk Grij

and, comparing with eq. (2.5) and with the fifth definition of (1.1) of Mindlin and Eshel 1968 [43],
we have the following identities,

A A Cq A A A
a; = 263, a9 = Z, az = 265, a4 = Cg, as — 207. (28)

4.2 Elastic constants in the 2D case in terms of micro-stiffness
In the 2D case, a standard representation of the unit vector ¢ is

¢1 = cosf, ¢y = sinb, (29)

where 6 is the anti-clockwise angle from the first unit vector é; of the frame of reference to n. The
components Cy111, Ci122, Di11111, Daz1221, D111221, D221122, are, from (18), (20) and (29),

2 . L2 _ _
Cyy1y = L2 /o [kn (0) cos* 0 + 4k, () (0082 0 — cos* 9)} =T (31<:77 + 4kT) (30)
2m - L2 _ _
Cyyo0 = L? /0 [kn (0) sin® @ cos® 0 + 4k () (— sin® 6 cos® 9)} =3 (ky — 4k-), (31)
L4 21 '1~ 6 \y 4 6 L4 _ _
Di11111 = — —ky () cos® 0 + k- (6) (cos™ 0 — cos® 0) | = — [Bky + 4k, | (32)
1), |4 256
L* m [1~ .4 2 T s 2 2 c 4 2
Dooy99] = Z/ an (0) sin” 6 cos® 6 + k- (0) (sin? 6 cos® § — sin” 6 cos” §) (33)
o L
4 — —
= oo [y + 4] (34)
L4 2m (1~ . A _ /. A L4 _ _
Di1122] = — ~ky (0)sin” f cos® 0 + k- (0) (—sin® @ cos* §) | = [y — 4k, (35)
1), |2 256
L o (1~ s 4 2 7 L. 2 2 s 4 2 L*
Dosii99 = — —ky (6) sin® 0 cos® 0 4 k, (6) | = sin” 0 cos” 6 —sin® O cos” 0 ) | = —K36)
1), |4 2 256

where the isotropic condition has been imposed by assuming no dependence of k, and k, with
respect to ¢ (or to 6),

where l_cn and k, are the integrated stiffness over the set of possible orientations, that are defined in
the general anisotropic case as follows,

27 2
lén:/o ey (0) d), ET:/O %y (0) do.

It is worth to be noted that positive definiteness of the elastic energy per unit volume for a given
grain-pair in (13) is, from (65) and (67) and neglecting the strain gradient contribution

1 1 1 1
Upp = iknu% + ke lur? = §kanéiéjéaébGijGab + 5k74L2GijGab (8:a6iCh — CiCiéaly),  (37)
that is a quadratic form of G117, G123 = G271 and Gao. The number of eigenvalues of the Hessian of

such a quadratic form, with the insertion of (29), are found to be three. One of the eigenvalue is
null A3 = 0 and the other two A; > are

M= £ )1 (g ) = g by )

Wilei/(-)VCH
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where
[ (ky kr o =cosdl) =k, (5 —x) + 4k, 3+ ), g(ky kr,x = cos40) = 32kyk, (7T+ ).
In order to have both non-zero eigenvalues to be positive, we have

k, >0, k> 0. (38)

4.3 Isotropic micro-macro identification for the 2D case

By comparing (23), (30) and (31), we obtain the following identification of the 2D Lamé coefficients
in terms of normal and tangent stiffness

L2, 2,
= (Fy+4k), A= (ky —4k;). (39)

I
In the 2D model, Young’s modulus Y,p and Poisson’s ratio vop are derived in the Appendix 6.2.1
and in (74), i.e.,

A4 p A
2R =
)\ ¥ ZM, 2D )\ ¥ 2M,

Thus, insertion of (39) into (40) yield an identification of 2D Young’s modulus and Poisson’s ratio

in terms of integrated stiffness k, and k, as follows,

Yop =4u (40)

— ky +4k k, — 4k
Yop = LPky——r, S B 41
2D "3k + 4k, 2P 3k, + 4k, (41
The inversion of (41) is
_ 2Y. _ Yaop (1-3
o 2D - 2D ( VaD) (42)

T IL2(1—wp) 7 2L2(1—wep) (1 +vap)

Positive definiteness condition in (38) implies the following

1
Yop > 0, Vap € (—1, 3) .

By comparing (24), (32), (33), (35) and (36), we obtain the following identification of the four 2D
strain gradient coefficients in terms of normal and tangent stiffness,

L4 - _ L4 _ B L4 ~ B \/§L4
= 556 [5]%, + 4kr] , Q22 [kn + 4k7-] o012 = o [kn = 4k7} , 23 = o

= o5 k. (43)

ai
or, by insertion (42) into (43), we have an identification of the 4 2D isotropic strain gradient
stiffnesses not only in terms of the characteristic length L but also in terms of 2D Young’s modulus
and Poisson’s ratio

3+ vap 1

ajy = YapL? TSRS age = EDLZM7 (44)
ayp = Y2DL2ﬁ, a3 = Y2DL2128(1\/§VM' (45)
4.4 Elastic constants in the 3D case in terms micro-stiffness
In the 3D case, a standard representation of the unit vector ¢ is
¢1 = cospsinf, ¢o =sinpsind, ¢z = cosb, (46)

where ¢ and 0 are the longitude (the angle from the unit vector é; to the projection of ¢ on the
plane generated by é; and é5) and co-latitude (the angle from the unit vector és to ¢), respectively,
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of the unit sphere S2. The stiffness tensor C in the 3D case is the same of (18) but the integral is
extended to the unit sphere S?

Cijap = 4L* / [kn€iCicaly + kr (0iaCiCp — CiCjEalyp)], (47)
52
so that the components Cq111 and Cy1922 are, from (47) and (46),

T 2m
Cyiinp = 4L / sin @ {/ [(ky (0,0) — k- (0,¢)) cos* psin 0 + k; (0, ¢) cos® psin® §] d@} df48)
0 0

4 .03

_ 453 4
=L _4k:,,—|—2k:7_ (49)

™ 27 1

Ci122 = 4L2/O sin 6 {/0 [Sin2 @ cos? psint 0] (41677 0,¢) — k, (6, (p)) dnp} df = (50)
4 5,3 -]

_ 453 1
51 |3 2| (51)

The strain gradient stiffness tensor in the 3D case is the same of (20) but the integral is extended
to the unit sphere 52

1
4 | 7 A A A A oA oA
Dijhape = —= L kpnCiCjChalyCe
167 Jge

The 5 independent components in (26) and (27)

1 ™ 2m 1
Dllllll = ZL4/0 Sin9 {/O |:|:4k71 (0, QD) ~ kT (9, (p):| Cos6 SpSiHG 0:| d(p} de

T 27
Jri[/l/ sin 6 {/ [kT 0, 9) [0034 @sin® 0” dgo} df =
0 0
1 5.
D =—1*(= 2%k, 52
1111 = e <4k,, k ) (52)

_|_
1 4 .
Dogio21 = —L sin 0
4 0
Loy [T o 1 s A4 2 2
+ZL sin 0 kr (9,90)1 [4 (sm 0 sin <p) cos” @ sin 9] dy p df =
0 0

1 _ _
Dooioor = —~L* (kn + 4k7‘> (53)

2m
/0 Héllk" 0,p) — k- (6, @)] cos? psin? psin® 0] dgp} de

1 T 27 1
Diq129; = - L4 sin 6 —kn(0,0) — k- (0,0 cos4<psin2 Lpsin69 dy pdf =
1 4(1= _
Di11221 = —=L an — k-, (54)

27
Dos1122 = iL‘l/O sin 6 {/0 Hikn (0,0) — Kk, (6, cp)] cos? psin® ¢ sin® 9] dgo} df

1 3- .
D110 = =——L* (kn + kT) (55)
T 27
D112223 = iL‘l/ Sin9 {/ |:|:ikn (0, QD) - kT (9, (p):| C052 QDSin?) (pSiHS 0COS 0:| dgﬁ} d9 =
0 0
afls 7
Di12223 = ==L an —k; (56)
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where the isotropic condition has been imposed by assuming no dependence of k, and k, with
respect to ¢ (or 6 and ¢),

k- k
kT (97@)257 kn (&@)Zﬁa

where k, and l_cn are the new averaged stiffness over the unit sphere S2, that are defined in the
general anisotropic case as follows,

2m 27
k / [/ k, sm@d@} do, ky, —/ [/ ky (6, ¢) sin6de | de.

It is worth to be noted that positive definiteness of the elastic energy per unit volume for a given
grain-pair in (13) is, from (65) and (67) and neglecting the strain gradient contribution the same
of (37) but this time is a quadratic form of G11, G12 = Ga21, G13 = G31, Gag, Gag = G32 and Gss.
Positive condition for the eigenvalues of the Hessian of such a quadratic form, with the insertion of
(46), give the same restrictions (38) of the 2D case.

4.5 Isotropic micro-macro identification for the 3D case
By comparing (22) and (48) and (50), we obtain

A2u = %51;2 (3ky +8k-), A= %LQ (ky — 4k;)

that yields an identification of Lameé coefficients that has similarity with that of the 2D case (39)
but different expressions, i.e.,

2 7. _i 2 (7. 7
A= 1—5L (ky — 4k.) | p= gL (ky + 6k7) . (57)

Thus, in the 3D model Young’s modulus Y3p and Poisson’s ratio v3p are derived in the Appendix
6.2.2 and in (77) in terms of Lameé coefficients as follows, i.e.,

3\ + 24 A

Yap = , U3p=———0, 58
3D M)\+M 3D 2(/\+M) ( )
and vice-versa we have,
A=Y YD Vi
TP 0 ) (1 —2up) T PO tump)

Thus, insertion of (57) into (58) yield, see also [12], the Young’s modulus Y3p and Poisson’s ratio
v3p in terms of normal and tangential stiffness,

1 o k,+6k k, — 4k
Ysp = = L%k, 2~ T =2 "7 59
3D 6 ann+kT V3D 4(kn+k‘r) ( )
The inversion of (59) is
- 3Y- - 3Ysp (4 -1
kn _ 3D _ 3D ( Vsp ) (60)

L2 (21/3D—1)7 T 412 (21/3D—1) (V3D+1).
By comparing (26)1-(52), (26)a-(53), (27)1-(54), (27)o-(55) and (27)5-(56) we obtain

4es + cq + 4es + 2c + 4oy = 5é0L4 (k + 8k )
1+ 2c6 = 15 Lt (3ky + 16k, ),

2c3 + ¢4 = zeg L* (ky — 4k7)

c3 + 207 = 16180L4 (3/€ + 2k )

¢3 = 1eao Lt (ky — 4k7)
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that yields an identification of the 5 isotropic strain gradient coefficients

cs = 1eg Lt (ky — 4k;)
c1 = 1o Lt (ky — 4k7)
¢s = oL (ki + 3k , (61)
6 = tagg L* (ky + 10k,)
o7 = 1omg Lt (ky + 3k, ) .
By assuming the identification in (60) we therefore have,
c3 =YspL? 112(1+V3VD3)D(172V3D) = 1LT?2)"
¢y =YspL? 112(1+u3y;§)(172u3[,) = %)"
¢ = YapL? 2240(14—7u_3iu)3(]:1)—2yw) = % (T +3X) (62)
¢ = Y3pL? 1120(11;3151)’(31D—2yw) - % (T —4X)
cr = YspL? 2240(1+7;3iy)3(ﬂf—2u3[,) = % (Tp+3X)

that means, in terms of the Mindlin’s coefficients from (28), we have,

a1 =Y3pL? 56(1+V31§3)L()172V3D) = %)\7

Gz = Y3pL? 448(1+U3VD3)D(1—2V3D) = é%/\’

as = YspL® 1120(1:;;;)3(?—2%,3) = % (Tr+3X),

ag = Y3pL? 1120(11;313)/?1[)—2%[)) = % (Tu—4X),
a5 = Y3pL? 1120(1+7;3?3V)3(El)72u313) = % (Tr+3X).

It is worth to be noted that the following Aifantis’ [4] identification of the 5 strain gradient consti-
tutive parameters

V3D

- =A\L? =Y;pL?
c3=0, c4 3D (4 v50) (1= 2s0)"

5 =0, cg=pl?=Yspl2— 20
5 6 = M 3D 2(1 + vsp)

with a single characteristic length is not compatible with that present in (62). Such expedient
simplifications of second gradient elastic parameters, with single characteristic length, can often
overlook complete characterization of problems since it is not possible a priori to determine what
phenomena could be significant in a given case, particularly when considering problems with evolving
microstructures [52]. In this regard, it is worth mentioning that even the so-called weak nonlocality
assumption is a restricting assumption as pointed out in [36], where it is shown that for transverse
isotropy weak nomnlocality assumption involving only two independent characteristic lengths fails
to describe the different deformations modes of plate bending and a more general consideration is
necessary.

5 Conclusion

This paper has presented an approach for micro-macro identification of elastic constants of materials
with ’microscopic’ granular texture. In contrast to previous excursions of similar micro-macro
identification, the present work develops the approach in finite deformation framework and considers
the contributions of second gradient of placement. In addition, an energy approach is utilized
such that clear meanings can be attached to the conjugates of the kinematic measures of relative
displacements (needless to say the strain measure and its gradient), and therefore, to the stiffness
measures. The key result of this work are the expressions for second-gradient elastic parameters
in (41) and (43) for the 2D case and in (59) and (61) for the 3D case in terms of the grain-scale
stiffnesses. As a consequence, these expression give an estimate of second-gradient elastic parameters
in (44-45) for the 2D case and in (62) for the 3D case in terms of the first gradient parameters
(i.e. in terms of the Young’s modulus and Poisson’s ratio) and a microstructural characteristic
length without recourse to ad hoc prescriptions or a priori (over)simplifications. In these first
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estimates the characteristic length is on the order of grain-size. We note, that the approach can
be generalized to admit additional grain-scale micro-mechanisms that can lead to more than one
characteristic lengths which can be multiples of grain-size of relevance to a material system. These
micromechanisms may include those akin to a pantograph, e.g. analyzed in [3, 57, 8], or in plate
bending as discussed in [36], or other mechanisms that require additional kinematical descriptors
to capture the deformation energy of grain-pair [30, 47, 53, 26]. In these cases, the material can
be characterized by multiple elastic characteristic lengths and their derivations will be presented
in future works. It is further noted that these elastic parameters that incorporate characteristic
lengths have vast applications to practical problems in which classical analyses lead to infinitesimal
localizations and other singularities for materials in which microstructure plays a clear role, such as
those ranging from natural rocks to woven fabrics.

Acknowledgement

AM is supported in part by the United States National Science Foundation grant CMMI -1727433.

6 Appendix

6.1 Derivation of objective relative displacement (16)

The (9) in index notation is
1
u?p = 2G”éjL + iGij,héjéhL2- (63)
Insertion of (63) into (11) yields
|- o 1 5 A
Uy = §’UJZ C; = LGijCZ‘Cj + ZL Gij,hCiCjCh. (64)
Its square is
2 AA 1., AA A oA 1y A A4
U, = LGyj¢:¢; + ZL GijnCijch LG ypCoCp + ZL Gap,cCalplec

or

Insertion of (63) into (12) yields

u? = (u™ — (" - &) é) - (U — (u"P - ¢) ¢) = u"P - u"P — (u"P - 6)2 (66)

or, in index notation,
2 . 1 A oA 72 . 1 A oA T2 2
u; = 2GijCjL + §Gij’thChL 2G ;L L + gGimﬂcman - 4:’LL777
that means
2 2 2 . 3 O A
u; + 4un =4L GijGiijCk + 2L GijGim’anCan + KL Gij,hGimyanChCan

or, taking (65) into account,
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6.2 Derivation of Young modulus and Poisson’s ratio in the 2D and 3D
cases

By assuming horizontal u; and vertical uo affine displacement fields and the following constant
external actions along the horizontal and vertical directions,

Uy = O[Xl, Ug = /BX27 Se1 = F, Seg = 0, (68)
we define Young modulus Y and Poisson ratio v,
F Eoyo
Y=—, v=-—-"=,
En Ey
where the Piola stress tensor S is defined
oUu
S = e 2uG + \TrG = 2uF + \TrE (69)
for small deformation )
G=E=[Vu+t (Vu)T] . (70)

Thus, Young modulus Y and Poisson ratio v are linked with the external action F' and to the
components « and 3 of the deformation

F
Y = —, V:—é. (71)
a fe!
6.2.1 The 2D case
In the 2D case, from strain (70), displacement (68) and stress (69) definitions, we have
a 0 2ua+ A (a+ B) 0
E= TrE = = . 2
(0 5)’ tE=a+h 8 ( 0 2B+ A(a+ B) (72)
By insertion of (72) into (68) we obtain the relation between the deformation components o and g,
Se; =F =2 A A
Ses =0=2uB+A(a+p) A+2pu

that gives, by insertion of (73) into (71), the relation between Young modulus Y and Poisson ratio
v with Lameé coefficients in the 2D case,

A >()\+2u)2—)\24 A+ p B A

— = = - = 4
A+2u A+ 2u 'u)\+2u’ v2p a  A+2u (74)

F
Yop = — 2‘Ll,+)\<].
«
6.2.2 The 3D case

In the 3D case we further assume, for the third direction, the same behavior of the vertical direction
of the 2D case

ug = X2, Sez=0, (75)
so that strain and stress are modified as follows
a 0 0 2ua+ A (a+28) 0 0
E=(0 8 0|, TTE=a+23 S= 208 + A (o + 28) 0
0 0 g 0 0 2uB + X (a+28)
and the relation between the deformation components o and g are different
Se; = F =2ua+ A (a+2p) B Ao (76)
Ses =0=2uB+ \(a+28) 2(A+p)’

and different is relation between Young modulus Y and Poisson ratio v with Lamé coefficients,

Py T

F 2 -2 2
Y3D:a:2ﬂ+>\(1 A ) A42u) (A +p) — A 3A+2u Ié] A

_)\+u =
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