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Abstract

Although the primacy and utility of higher-gradient theories are being increasingly accepted,

values of second gradient elastic parameters are not widely available due to lack of generally ap-

plicable methodologies. In this paper, we present such values for a second-gradient continuum.

These values are obtained in the framework of �nite deformations using granular microme-

chanics assumptions for materials that have granular textures at some 'microscopic' scale. The

presented approach utilizes so-called Piola's ansatz for discrete-continuum identi�cation. As a

fundamental quantity of this approach, an objective relative displacement between grain-pairs

is obtained and deformation energy of grain-pair is de�ned in terms of this measure. Expres-

sions for elastic constants of a macroscopically linear second gradient continuum are obtained

in terms of the micro-scale grain-pair parameters. Finally, the main result is that the same co-

e�cients, both in the 2D and in the 3D cases, have been identi�ed in terms of Young's modulus,

of Poisson's ratio and of a microstructural length.

keywords: strain gradient, 2D continua, 3D continua, granular micromechanics, sti�ness tensors

1 Introduction

Materials whose textural features can be described as granular at some 'microscopic' scale abound in
all applications of science and engineering. Many of these materials are characterized by complexity
and diversity of grain-scale mechano-morphology. Consequently, modeling approaches are needed
that are both representative and tractable to describe their mechanical behavior. Continuum mod-
els, arguably, are the most feasible [6, 18, 23, 25]. However, these models must properly account for
the granular nature of the material to be representative. To this end, it is notable that the deforma-
tion of materials with granular microstructures can be e�ectively described in terms of the relative
movements of the grain centroids/barycenters regardless of the location of the actual deformation
within the grains [62, 45]. The macro-scale deformation energy density of a volume of such material
can then be described as an aggregation of grain-pair deformation energy and mathematically as

1

Page 1 of 20

Wiley-VCH

ZAMM - Zeitschrift fuer Angewandte Mathematik und Mechanik



For Peer Review

the sum of the deformation energy of all the grain pairs parameterized by the corresponding ori-
entation. Elastic properties of materials with granular microstructures can, therefore, bene�t from
an identi�cation between that of the grain-scale and the macro-scale (scales at which continuum
representation is suitable). Such identi�cation in the past has been focused upon linearized classical
or Cauchy format of continuum mechanics theory in which in�nitesimal strain is used as the mea-
sure of material deformation [63, 14, 32, 44] or for linearized Mindlin's third-gradient (second-strain
gradient) theory [13, 42], and for linearized micromorphic continuum of degree 1 [46].

We further note that the use of strain gradient materials in the literature is not new [24, 25, 43,
49]. The theoretical investigation of second gradient materials [23, 24, 29] in the recent past are
highlighted in [21, 40, 56] and have been complemented with preliminary identi�cation procedures
[25, 27] for speci�c microstructures. However, those constitutive coe�cients that emerge to be
relevant in such theories have not yet been experimentally identi�ed [16, 17, 39, 54, 65]. The reason
is that it is di�cult to experimentally [11, 10, 48] apply proper boundary conditions, e.g. within the
procedure investigated in [5, 50], that are necessary to perform such a characterization. Besides,
in order to perform proper numerical simulations [2, 1, 55] the identi�cation of second gradient
constant is generally done with arbitrary (a priori) simpli�cations that are based, regardless of the
investigated application of the model, on the sake of simplicity [4, 38, 64], although it is possible
that for describing certain phenomena only a subset of characteristic lengths may be required [36].

In this connection, it is also useful to note that [15] studies an even higher-gradient (third-
gradient of displacement) formulation for nano-objects. A formulation of the same order but with
six non-classical sti�ness parameters (three of them coupling strains and strain gradients of di�er-
ent orders) and two micro-inertia parameters has also been shown in [34]. Besides completing the
stability analysis of [15], this formulation captures surface tension/compression e�ects and shear
e�ects appearing in a plane lattice structures, that interestingly, are not nano-objects. The param-
eter identi�cation, in these aforementioned works, is based upon parameter �tting via numerical
experiments performed using �ne-scale computational models (as surrogates to laboratory experi-
ments with �ne-scale physical samples). Further e�orts at identi�cation of higher-gradient constants
are found in the works related to micro-architectural thin structures. For instance, to model the
small-scale bending experiments of [38] and others, it has been shown that a single non-classical
parameter is enough, in addition to the classical Young's modulus, for capturing size e�ects present
in the bending of planar lattice metamaterial beam structures described by 1D generalized beam
bending model for both linear ([33, 35]) and geometrically nonlinear [61] analyses. On the other
hand, for modeling a 2D model discussed in [66] more that one non-classical parameters are needed
although there is no clarity on the which of these are most relevant. Along these lines, it hase been
shown in [36] (for linear) and [60] (for geometrically nonlinear), that at least four non-classical pa-
rameters are necessary for modeling the bending problem of cellular metamaterial plate structures.
In contrast, a single non-classical parameter appears to be su�cient for modeling the bending of
octet-truss beam structures as seen by the results of both numerical and physical experiments given
in [37]. While it is clear that the problem-type and accuracy-requirements determine the need for
classical or non-classical description and associated simpli�cations in terms of constitutive relations
and model dimensionality (1D, 2D or 3D), such determination may not be possible a priori, and a
general approach may be preferred.

In this work, we consider the identi�cation of second gradient elastic constants in a more gener-
alized setting of �nite deformations of materials with granular textures. The implication of consider-
ing higher gradients for granular materials is that the deformation energy associated with grain-pair
embedded in a system of grains is intrinsically linked to its extended neighborhood and cannot be
estimated as that of a isolated grain-pair. It is notable that the grain-scale defromation mecha-
nisms can be complex due to, for example, the grain-scale structure, presence of void spaces, grain
rotations, and the wide contrast in the bulk grain sti�ness and the typically compliant interactions
[47, 53]. With this view as a point of departure, we utilize a variational approach for modeling
the elastic behavior of granular solids under �nite deformations based upon grain-pair interactions.
Consequently, as a �rst step we develop an objective kinematic descriptor for grain-pair relative
displacement in the framework of strain-gradient theory linked to the placement function in de-
formed con�guration utilizing Piola's ansatz for micro-macro identi�cation. We remark from view
point of novelty that Piola's micro-macro kinematic identi�cation utilized here provides a distinct
pathway for continuum-discrete identi�cation, which can admit not only higher-gradients but also
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Figure 1: Piola's Ansatz. On the left a scheme with the kinematical descriptors of the discrete
model. On the right a scheme with the kinematical descriptor of the continuum model.

additional kinematic measures that lead to higher-order descriptions (see for example [47]). Grain-
pair deformation energy is then introduced in terms of the objective grain-pair relative displacement
decomposed into a component along the vector joining the grain centroids of a grain-pair, termed as
normal component, and a component in the orthogonal direction, termed as tangential component.
For the present work, a quadratic form of the grain-pair deformation energy is utilized to obtain an
identi�cation for the case of linear isotropic elasticity. As a result, expressions for elastic constants of
a macroscopically linear second gradient continuum are obtained in terms of the micro-scale grain-
pair parameters. These expressions represent a �rst estimate of second-gradient linear elasticity that
generalize those available in the literature. The main new result is that these coe�cients have been
identi�ed in terms of (i) Young's modulus, (ii) Poisson's ratio and (iii) a microstructural length,
that can be interpreted as the distance of the grain-pair. The aim of this paper is a �rst attempt to
give a contribution in this regards. It is �nally worth to be noted that this method could be applied
also to those metamaterials, such as pantographic structures [9, 54, 31, 22, 20, 28, 51], for which a
preliminary guess for the identi�cation of its constitutive coe�cients is necessary [19, 58].

2 Discrete and continuous models for granular systems

2.1 Piola's ansatz for the identi�cation in space

Let us consider a discrete model consisting of g grains. In the reference con�guration the position
of the A-th grain is given by XA ∈ E2,3 with A = 1, . . . , g, where E2 (and E3) is the Euclidean
two (and three) dimensional space. The position xA in the present (or actual) con�guration of
the same grain is evaluated with the placement function χA (t) = XA + uA (t), where uA (t) is the
displacement of the A-th grain and placement χA and displacement uA are both functions on time
t. In the continuum model we have a continuous body B which, in the reference con�guration,
is constituted by in�nite particles having position X, i.e. X ∈ B. Each particle is placed, in the
present (or actual) con�guration with the placement function χ (X, t) = X+u (X, t), where u (X, t)
is the displacement function of the continuous body B.

In the continuum-discrete model's identi�cation, the Piola's Ansatz

χ (XA, t) = χA (t) , A = 1, . . . , g (1)

holds, that means that the placement χA (t) of the A-th grain is equal to the placement χ (XA, t) of
the continuous body B evaluated at the point X = XA, where the grain is located in the reference
con�guration, see Fig. 1. We note that this kinematic identi�cation is conceptually di�erent from the
Cauchy-Born type approximation often used in continuum-discrete identi�cation (such as [59, 41])
and can admit additional kinematic measures that lead to higher-gradient descriptions as well as
higher-order descriptions (a point that will be pursued in a forthcoming work).
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Figure 2: (a) On the left-hand side the reference con�guration of the grain-pair. On the right-hand
side the actual con�guration of the grain pair under the rigid body rotation (6) centered at Xp.

2.2 Piola's ansatz in orientation as the homogenization rule

Let us assume that the distance between those grain at Xn and Xp is L and the unit vector ĉ is
de�ned as follows,

Xn −Xp = ĉL. (2)

Let us consider the discrete model of N grain-pairs of the n − p type, all centered at the grain
p and each oriented as ĉ towards one of the N grains of the type n. Besides, let us be interested
in a certain quantity ai, for a given pointXp and associated to the i-th grain-pair of the type n− p
oriented as ĉ. Thus, we assume the existence of a continuum function a (ĉ) with the following Piola's
ansatz in the orientation space, ∫

S1,2

a (ĉ) =

N∑
i=1

ai, (3)

where S1 is the unit circle, domain of the function a (ĉ) in the 2D case and where S2 is the unit
sphere, domain of the function a (ĉ) in the 3D case. The homogenization rule made explicit in (3)
means that the function a (ĉ) is, per unit element of S1 or of S2, equal to quantity ai associated
to the i-th grain-pairs. This means to restrict the range of interest to those quantities ai that do
not vary too much from a grain-pair oriented towards ĉ to another grain-pair oriented towards an
orientation in the neighboring of ĉ.

2.3 Relative intergranular displacement and related continuum deforma-
tion measures

In the reference con�guration, therefore, the vector attached to the position Xp and pointing the
position Xn is ĉL and given in (2), see also Fig. 2a. In the actual con�guration the positions of the
two grains at Xn and Xp are, respectively, χ (Xn, t) and χ (Xp, t). Thus, the vector in (2) in the
actual con�guration yields

χ (Xn, t)− χ (Xp, t) . (4)

The di�erence, at time t, between the vectors in (2) and (4) is called the relative displacement δnp (t)
of the two grains n and p,

δnp (t) = χ (Xn, t)− χ (Xp, t)− (Xn −Xp) = un (t)− up (t) . (5)

It is a fundamental quantity in granular mechanics. However, it is not a measure for the deformation
of the granular assembly (it is, e.g., not objective!). Indeed, a rigid body rotation centered e.g. at
Xp,

x = χ (X, t) = Xp +Q (X −Xp) , Q ∈ Orth+, (6)

where Orth+ is the orthogonal space of rotation, of the granular assembly (that should be associated
to a null strain energy) yields both no displacement of the grain p

up (t) = χ (Xp, t)−Xp = Xp +Q (Xp −Xp)−Xp = 0,
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and, see also Fig.2b, a non-zero displacement for the grain n,

un (t) = χ (Xn, t)−Xn = Xp +Q (Xn −Xp)−Xn = −ĉL+ LQĉ.

Thus, a non-zero relative displacement δnp (t)

δnp (t) = L [−I +Q] ĉ 6= 0,

where I is the identity tensor.
In order to de�ne an objective relative displacement (i.e. a relative displacement that is really

a measure of the contribution of the n − p pair to the deformation of the granular assembly), we
proceed as follows. First we de�ne the deformation gradient F = ∇χ and its value Fp evaluated at
X = Xp as the gradient of the placement function. Thus, we de�ne an objective, see the analogy
with eq. (5), relative displacement as

unp = FTp (χ (Xn, t)− χ (Xp, t))− (Xn −Xp) . (7)

The proof of the objectivity of the de�nition (7) is easy. Here, it is worth to be noted only that the
rigid body rotation centered at Xp according to (6) and to Fig. 2 yields an orthogonal deformation
tensor F = Fp = ∇χ = Q and therefore

unp = QT (Xp +Q (Xn −Xp)−Xp)− (Xn −Xp) = QTQ (Xn −Xp)− (Xn −Xp) = 0,

that means that we have a null objective relative displacement for the rigid body rotation that is
pictured in Fig. 2 and de�ned in (6).

Let us now assume that the two grains n and p are neighboring ones. Thus, they place similarly
in the present con�guration and the following Taylor's series expansion is possible

χ (Xn) ∼= χ (Xp) + (∇χ)Xp
(Xn −Xp) +

1

2

[(
∇2χ

)
Xp

(Xp −Xn)
]

(Xp −Xn) . (8)

The insertion of (2) and (8) into (7) yields

unp = FT
(
F ĉL+

1

2
[∇F (ĉL)] (ĉL)

)
− ĉL = 2GĉL+

1

2
L2 [∇Gĉ] ĉ (9)

where the deformation gradient F as well as the Green-Saint-Venant tensor G and its gradient

F = (∇χ)Xp
, G =

1

2

(
FTF − I

)
, ∇G = FT∇F, (10)

have been de�ned and all evaluated at X = Xp.
The half-projection of the objective relative displacement on the unit vector ĉ, de�ned in (2), is

the so called (scalar) normal displacement uη,

uη =
1

2
unp · ĉ, (11)

where the reason of the 1/2 will be clear in the Subsection 2.4. The projection-vector of the objective
relative displacement that is tangent to ĉ is the tangent displacement uτ ,

uτ = unp − (unp · ĉ) ĉ. (12)

2.4 Example

Let us assume a frame of reference {O, ê1, ê2, ê3} oriented with the grain pair direction ê2 = ĉ and
with the origin in p , i.e. O = Xp. Thus, the column [X] is the representation, in the same frame
of reference, of the position X in the reference con�guration,

[X] =

 X1

X2

X3

 .
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Figure 3: Vertical deformation of the n − p grain pair. (a) Reference con�guration of the granular
assembly. (b) Actual con�guration with a vertical elongation along the n− p grain pair.

We �rst consider the state of tension along the horizontal direction ê1 given by a placement function
χ with the following column-representation

[χ] =

 χ1

χ2

χ3

 =

 X1 + αX1,
X2

X3

 .

Keeping this in mind the deformation gradient F , the Green-Saint-Venant tensor G and its gradient
∇G are

[F ] =

 1 + α 0 0
0 1 0
0 0 1

 , [G] =

 α+ 1
2α

2 0 0
0 0 0
0 0 0

 , ∇G = 0,

that yield a null objective relative displacement

[unp] = 2L [G] [ê2] = 2L

 α+ 1
2α

2 0 0
0 0 0
0 0 0

 0
1
0

 =

 0
0
0


and the corresponding normal and tangent measures are also null, i.e.,

uη =
1

2
[unp]

T · [ê2] =
1

2

(
0 0 0

)
·

 0
1
0

 = 0, [uτ ] = [unp]−
(

[unp]
T · [ê2]

)
[ê2] =

 0
0
0

 ,

where the transpose symbol T is used in compliance with the rows by columns rules. It is a matter
of fact that also the relative displacement δnp = 0 is null because the displacements of the grains n
and p, are null as well, i.e.un = 0 and up = 0.

We now consider a state of tension along the vertical direction ê2 = ĉ given by a placement
function χ in Fig. 3 with the following column-representation

[χ] =

 χ1

χ2

χ3

 =

 X1,
X2 + αX2

X3

 .

Keeping this in mind the deformation gradient F , the Green-Saint-Venant tensor G and its gradient
∇G are

[F ] =

 1 0 0
0 1 + α 0
0 0 1

 , [G] =

 0 0 0
0 α+ 1

2α
2 0

0 0 0

 , ∇G = 0,

that yield a non-zero objective relative displacement,

[unp] = 2 [G] [ê2]L = 2L

 0 0 0
0 α+ 1

2α
2 0

0 0 0

 0
1
0

 =

 0
2Lα+ Lα2

0


and the corresponding normal and tangent measures are

uη =
1

2
[unp]

T · [ê2] = Lα+
1

2
Lα2,

[uτ ] = [unp]−
(

[unp]
T · [ê2]

)
[ê2] =

 0
2Lα+ Lα2

0

− (2Lα+ Lα2
) 0

1
0

 =

 0
0
0

 .
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Figure 4: Shear deformation of the n − p grain pair. (a) Reference con�guration of the granular
assembly. (b) Actual con�guration with a shear orthogonal to the n− p grain pair.

Besides the relative displacement δnp is

[δnp] = [un]− [up] =

 0
Lα
0

−
 0

0
0

 =

 0
Lα
0


It is worth to be noted that for small deformation the normal displacement is equivalent to the
vertical component of the relative displacement, i.e. uη ∼= δnp · ê2 = Lα, that justi�es the presence
of the factor 1/2 in the de�nition (11).

Further, a state of shear displaced along the horizontal direction ê1 is given by a placement
function χ in Fig. 4 with the following column-representation

[χ] =

 χ1

χ2

χ3

 =

 X1 + αX2

X2

X3

 .

Keeping this in mind the deformation gradient F , the Green-Saint-Venant tensor G and its gradient
∇G are

[F ] =

 1 α 0
0 1 0
0 0 1

 , [G] =
1

2

 0 α 0
α α2 0
0 0 0

 , ∇G = 0,

that yield a non-zero objective relative displacement,

[unp] = 2 [G] [ê2]L = L

 0 α 0
α α2 0
0 0 0

 0
1
0

 = L

 α
α2

0


and the corresponding normal and tangent measures are

uη =
1

2
[unp]

T · [ê2] =
1

2
Lα2,

[uτ ] = [unp]−
(

[unp]
T · [ê2]

)
[ê2] = L

 α
α2

0

− Lα2

 0
1
0

 = L

 α
0
0

 .

Besides the relative displacement δnp is

[δnp] = [un]− [up] =

 Lα
0
0

−
 0

0
0

 =

 Lα
0
0


It is worth to be noted that for small deformation the normal displacement is null and therefore
equivalent to the vertical component of the relative displacement, i.e. uη ∼= δnp · ê2 = 0. Besides, the
tangent displacement uτ , as expected, correspond to the relative displacement δnp, i.e. uτ = δnp.
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3 Elastic energy function

3.1 Elastic energy per unit volume for a grain-pair

The elastic energy per unit volume for a given grain-pair, say the pair n − p considered in Section
2.3, Unp is assumed to be a quadratic form of normal and tangent relative displacement,

Unp =
1

2
kηu

2
η +

1

2
kτ |uτ |2 , (13)

where u2η is the square of the scalar uη, |uτ |
2 is the squared module of the vector uτ , kη is the normal

sti�ness associated to the normal displacement uη and kτ is the tangent sti�ness associated to the
tangent displacement uτ . The elastic energy per unit volume is a scalar and therefore, for objectivity
reasons, no coupling term between the scalar uη and the vector uτ is admissible. The quadratic
assumption in (13) is the easiest possible that represents linear elastic behavior of granular systems,
however, it is not the unique option. Others, such as Lennard-Jones-type potential could be used
that present asymmetry of tension-compression response which could lead to nonlinear elasticity
with evolving anisotropy and chirality when subjected to loading.

3.2 Elastic energy per unit volume related to the grain at Xp

The elastic energy per unit volume Up for a given grain at Xp is the sum of the energy per unit
volume in (13) over all the N possible interactions, i.e. between the grain p and all the N neighboring
grains n,

Up =
N∑
n=1

Unp =
N∑
i=1

[
1

2
kηiu

2
ηi +

1

2
kτi |uτi|2

]
, (14)

where the subscript i refers to a single grain-pair of the type n−p. In (14) it is therefore intended that
kηi, kτi, uηi and uτi are the normal sti�ness, the tangent sti�ness, the scalar normal displacement
and the vector tangent displacement all associated for the i-th grain-pair of the type n− p.

3.3 Continuum approximation in the orientation space

The use of the Piola's ansatz in (3) for the energy per unit volume in (14) yields

Up =

∫
S1,2

1

2
kηu

2
η +

1

2
kτ |uτ |2 , (15)

where kη = k̃η (ĉ) and kτ = k̃τ (ĉ) substitute, respectively, kηi kτi and are all functions of that
orientation ĉ. As we have already pointed out at the end of Subsection 2.2, we are assuming that
the sti�nesses kηi and kτi do not vary too much from a grain-pair oriented towards ĉi to another
grain-pair oriented towards an orientation in the neighboring of ĉi.

Insertion of (11) and (12) into the elastic energy per unit volume Up in (15), see the Appendix
6.1, yields the following expression in index notation

U =

∫
S1,2

1

2
kη

(
L2ĉiĉj ĉaĉbGijGab +

1

2
L3ĉiĉj ĉaĉbĉcGijGab,c

)
∫
S1,2

1

2
kη

(
1

16
L4ĉiĉj ĉhĉaĉbĉcGij,hGab,c

)
+

∫
S1,2

1

2
kτ
(
4L2GijGab (δiaĉj ĉb − ĉiĉj ĉaĉb) + 2L3GijGab,c (δiaĉj ĉbĉc − ĉiĉj ĉaĉbĉc)

)
+

∫
S1,2

1

2
kτ

(
1

4
L4Gij,hGam,n (δiaĉj ĉhĉmĉn − ĉiĉj ĉhĉaĉbĉc)

)
, (16)

where from now on we omit the subscript p. Eq. (16) yield, in a compact form,

U =
1

2
CijabGijGab + MijabcGijGab,c +

1

2
DijhabcGij,hGab,c, (17)
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where the elastic sti�ness C, M and D, are identi�ed in (17) as follows, with the symmetrization
induced by the symmetry of the strain tensor G,

Cijab = L2

∫
S1,2

kη ĉiĉj ĉaĉb (18)

+L2

∫
S1,2

kτ ((δiaĉj ĉb + δibĉj ĉa + δjaĉiĉb + δjbĉiĉa)− 4ĉiĉj ĉaĉb)

Mijabc =
1

4
L3

∫
S1,2

kη ĉiĉj ĉaĉbĉc (19)

+
L3

4

∫
S1,2

kτ ((δiaĉj ĉb + δibĉj ĉa + δjaĉiĉb + δjbĉiĉa) ĉc − 4ĉiĉj ĉaĉbĉc)

Dijhabc =
1

16
L4

∫
S1,2

kη ĉiĉj ĉhĉaĉbĉc (20)

+
L4

16

∫
S1,2

kτ ((δiaĉj ĉb + δibĉj ĉa + δjaĉiĉb + δjbĉiĉa) ĉhĉc − 4ĉiĉj ĉhĉaĉbĉc) .

4 Identi�cation of the isotropic case

4.1 Macroscopic elastic constants in 2D and in 3D cases

Isotropic standard representation of the 4th order sti�ness tensor for both 2D and 3D cases is

Cijab = µδiaδjb + µδibδja + λδijδab, (21)

where λ and µ are the 2D or 3D Lamè coe�cients. Thus, it is su�cient to know the following two
components of C,

C1111 = λ+ 2µ, C1122 = λ, (22)

to identify Lamè coe�cients as follows

λ = C1122, µ =
1

2
(C1111 − C1122) . (23)

Besides, the 4 independent strain gradient isotropic elastic coe�cients in the 2D case are here
reported in the nomenclature of [7], i.e.,

a11 = D111111, a22 = D221221, a12 = D111221, a23 =
√

2D221122. (24)

Finally, for the 3D case, the isotropic representation of the strain gradient elasticity sti�ness tensor
is

Dijklmn = c3 (δijδklδmn + δinδjkδlm + δijδkmδln + δikδjnδlm) (25)

+c4δijδknδml

+c5 (δikδjlδmn + δimδjkδln + δikδjmδln + δilδjkδmn)

+c6 (δilδjmδkn + δimδjlδkn)

+c7 (δilδjnδmk + δimδjnδlk + δinδjlδkm + δinδjmδkl)

Thus, it is su�cient to know the following �ve components of D,

D111111 = 4c3 + c4 + 4c5 + 2c6 + 4c7, D221221 = c4 + 2c6, (26)

D111221 = 2c3 + c4, D221122 = c3 + 2c7, D112223 = c3, (27)

to identify the �ve independent isotropic strain gradient coe�cients as follows,

c3 = D112223, c4 = D111221 − 2D112223, c5 =
1

4
(D111111 − 2D112223 − 2D221122 − D221221) ,

c6 =
1

2
(2D112223 + D221221 − D111221) , c7 =

1

2
(D221122 − D112223)
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Finally, we remark that in the isotropic case we have identically that M = 0 for the assumed
quadratic form of the grain-pair deformation energy.

Thus, it is straightforward to show that insertion of M = 0, (21) and (25) into (17) yields,

U = µGijGij +
1

2
λGiiGjj + 2c3Gii,jGjh,h +

1

2
c4Gii,kGll,k

+2c5Gij,iGjm,m + c6Gij,kGij,k + 2c7Gij,kGki,j

and, comparing with eq. (2.5) and with the �fth de�nition of (1.1) of Mindlin and Eshel 1968 [43],
we have the following identities,

â1 = 2c3, â2 =
c4
4
, â3 = 2c5, â4 = c6, â5 = 2c7. (28)

4.2 Elastic constants in the 2D case in terms of micro-sti�ness

In the 2D case, a standard representation of the unit vector ĉ is

ĉ1 = cos θ, ĉ2 = sin θ, (29)

where θ is the anti-clockwise angle from the �rst unit vector ê1 of the frame of reference to n̂. The
components C1111, C1122, D111111,D221221,D111221,D221122, are, from (18), (20) and (29),

C1111 = L2

∫ 2π

0

[
k̃η (θ) cos4 θ + 4k̃τ (θ)

(
cos2 θ − cos4 θ

)]
=
L2

4

(
3k̄η + 4k̄τ

)
(30)

C1122 = L2

∫ 2π

0

[
k̃η (θ) sin2 θ cos2 θ + 4k̃τ (θ)

(
− sin2 θ cos2 θ

)]
=
L2

8

(
k̄η − 4k̄τ

)
, (31)

D111111 =
L4

4

∫ 2π

0

[
1

4
k̃η (θ) cos6 θ + k̃τ (θ)

(
cos4 θ − cos6 θ

)]
=

L4

256

[
5k̄η + 4k̄τ

]
(32)

D221221 =
L4

4

∫ 2π

0

[
1

4
k̃η (θ) sin4 θ cos2 θ + k̃τ (θ)

(
sin2 θ cos2 θ − sin4 θ cos2 θ

)]
(33)

=
L4

256

[
k̄η + 4k̄τ

]
(34)

D111221 =
L4

4

∫ 2π

0

[
1

4
k̃η (θ) sin2 θ cos4 θ + k̃τ (θ)

(
− sin2 θ cos4 θ

)]
=

L4

256

[
k̄η − 4k̄τ

]
(35)

D221122 =
L4

4

∫ 2π

0

[
1

4
k̃η (θ) sin4 θ cos2 θ + k̃τ (θ)

(
1

2
sin2 θ cos2 θ − sin4 θ cos2 θ

)]
=

L4

256
k̄η(36)

where the isotropic condition has been imposed by assuming no dependence of kη and kτ with
respect to ĉ (or to θ),

k̃η (θ) =
k̄η
2π
, k̃τ (θ) =

k̄τ
2π
,

where k̄η and k̄τ are the integrated sti�ness over the set of possible orientations, that are de�ned in
the general anisotropic case as follows,

k̄η =

∫ 2π

0

k̃η (θ) dθ, k̄τ =

∫ 2π

0

k̃τ (θ) dθ.

It is worth to be noted that positive de�niteness of the elastic energy per unit volume for a given
grain-pair in (13) is, from (65) and (67) and neglecting the strain gradient contribution

Unp =
1

2
kηu

2
η +

1

2
kτ |uτ |2 =

1

2
kηL

2ĉiĉj ĉaĉbGijGab +
1

2
kτ4L2GijGab (δiaĉj ĉb − ĉiĉj ĉaĉb) , (37)

that is a quadratic form of G11, G12 = G21 and G22. The number of eigenvalues of the Hessian of
such a quadratic form, with the insertion of (29), are found to be three. One of the eigenvalue is
null λ3 = 0 and the other two λ1,2 are

λ1,2 =
1

4

[
f (kη, kτ , x)±

√
[f (kη, kτ , x)]

2 − g (kη, kτ , x)

]

10

Page 10 of 20

Wiley-VCH

ZAMM - Zeitschrift fuer Angewandte Mathematik und Mechanik



For Peer Review

where

f (kη, kτ , x = cos 4θ) = kη (5− x) + 4kτ (3 + x) , g (kη, kτ , x = cos 4θ) = 32kηkτ (7 + x) .

In order to have both non-zero eigenvalues to be positive, we have

kη > 0, kτ > 0. (38)

4.3 Isotropic micro-macro identi�cation for the 2D case

By comparing (23), (30) and (31), we obtain the following identi�cation of the 2D Lamè coe�cients
in terms of normal and tangent sti�ness

µ =
L2

8

(
k̄η + 4k̄τ

)
, λ =

L2

8

(
k̄η − 4k̄τ

)
. (39)

In the 2D model, Young's modulus Y2D and Poisson's ratio ν2D are derived in the Appendix 6.2.1
and in (74), i.e.,

Y2D = 4µ
λ+ µ

λ+ 2µ
, ν2D =

λ

λ+ 2µ
, (40)

Thus, insertion of (39) into (40) yield an identi�cation of 2D Young's modulus and Poisson's ratio
in terms of integrated sti�ness k̄η and k̄τ as follows,

Y2D = L2k̄η
k̄η + 4k̄τ
3k̄η + 4k̄τ

, ν2D =
k̄η − 4k̄τ
3k̄η + 4k̄τ

(41)

The inversion of (41) is

k̄η =
2Y2D

L2 (1− ν2D)
, k̄τ =

Y2D (1− 3ν2D)

2L2 (1− ν2D) (1 + ν2D)
. (42)

Positive de�niteness condition in (38) implies the following

Y2D > 0, ν2D ∈
(
−1,

1

3

)
.

By comparing (24), (32), (33), (35) and (36), we obtain the following identi�cation of the four 2D
strain gradient coe�cients in terms of normal and tangent sti�ness,

a11 =
L4

256

[
5k̄η + 4k̄τ

]
, a22 =

L4

256

[
k̄η + 4k̄τ

]
, a12 =

L4

256

[
k̄η − 4k̄τ

]
, a23 =

√
2L4

256
k̄η. (43)

or, by insertion (42) into (43), we have an identi�cation of the 4 2D isotropic strain gradient
sti�nesses not only in terms of the characteristic length L but also in terms of 2D Young's modulus
and Poisson's ratio

a11 = Y2DL
2 3 + ν2D

(1− ν2D) (1 + ν2D)
, a22 = Y2DL

2 1

64 (1 + ν2D)
, (44)

a12 = Y2DL
2 ν2D

32 (1− ν2D)
, a23 = Y2DL

2

√
2

128 (1− ν2D)
. (45)

4.4 Elastic constants in the 3D case in terms micro-sti�ness

In the 3D case, a standard representation of the unit vector ĉ is

ĉ1 = cosϕ sin θ, ĉ2 = sinϕ sin θ, ĉ3 = cos θ, (46)

where ϕ and θ are the longitude (the angle from the unit vector ê1 to the projection of ĉ on the
plane generated by ê1 and ê2) and co-latitude (the angle from the unit vector ê3 to ĉ), respectively,
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of the unit sphere S2. The sti�ness tensor C in the 3D case is the same of (18) but the integral is
extended to the unit sphere S2

Cijab = 4L2

∫
S2

[kη ĉiĉj ĉaĉb + kτ (δiaĉj ĉb − ĉiĉj ĉaĉb)] , (47)

so that the components C1111 and C1122 are, from (47) and (46),

C1111 = 4L2

∫ π

0

sin θ

{∫ 2π

0

[
(kη (θ, ϕ)− kτ (θ, ϕ)) cos4 ϕ sin4 θ + kτ (θ, ϕ) cos2 ϕ sin2 θ

]
dϕ

}
dθ =(48)

=
4

15
L2

[
3

4
k̄η + 2k̄τ

]
(49)

C1122 = 4L2

∫ π

0

sin θ

{∫ 2π

0

[
sin2 ϕ cos2 ϕ sin4 θ

](1

4
kη (θ, ϕ)− kτ (θ, ϕ)

)
dϕ

}
dθ = (50)

=
4

15
L2

[
3

4
k̄η + 2k̄τ

]
(51)

The strain gradient sti�ness tensor in the 3D case is the same of (20) but the integral is extended
to the unit sphere S2

Dijhabc =
1

16
L4

∫
S2

kη ĉiĉj ĉhĉaĉbĉc

+
1

4
L4

∫
S2

kτ

(
1

4
(δiaĉj ĉb + δibĉj ĉa + δjaĉiĉb + δjbĉiĉa) ĉhĉc − ĉiĉj ĉhĉaĉbĉc

)
The 5 independent components in (26) and (27)

D111111 =
1

4
L4

∫ π

0

sin θ

{∫ 2π

0

[[
1

4
kη (θ, ϕ)− kτ (θ, ϕ)

]
cos6 ϕ sin6 θ

]
dϕ

}
dθ

+
1

4
L4

∫ π

0

sin θ

{∫ 2π

0

[
kτ (θ, ϕ)

[
cos4 ϕ sin4 θ

]]
dϕ

}
dθ =

D111111 =
1

140
L4

(
5

4
k̄η + 2k̄τ

)
(52)

D221221 =
1

4
L4

∫ π

0

sin θ

{∫ 2π

0

[[
1

4
kη (θ, ϕ)− kτ (θ, ϕ)

]
cos2 ϕ sin4 ϕ sin6 θ

]
dϕ

}
dθ

+
1

4
L4

∫ π

0

sin θ

{∫ 2π

0

[
kτ (θ, ϕ)

1

4

[
4
(
sin4 θ sin4 ϕ

)
cos2 ϕ sin2 θ

]]
dϕ

}
dθ =

D221221 =
1

420
L4

(
3

4
k̄η + 4k̄τ

)
(53)

D111221 =
1

4
L4

∫ π

0

sin θ

{∫ 2π

0

[[
1

4
kη (θ, ϕ)− kτ (θ, ϕ)

]
cos4 ϕ sin2 ϕ sin6 θ

]
dϕ

}
dθ =

D111221 =
1

140
L4

(
1

4
k̄η − k̄τ

)
(54)

D221122 =
1

4
L4

∫ π

0

sin θ

{∫ 2π

0

[[
1

4
kη (θ, ϕ)− kτ (θ, ϕ)

]
cos2 ϕ sin4 ϕ sin6 θ

]
dϕ

}
dθ

+
1

4
L4

∫ π

0

sin θ

{∫ 2π

0

[
kτ (θ, ϕ)

1

4

[
2
(
cosϕ sinϕ sin2 θ

)
cosϕ sinϕ sin2 θ

]]
dϕ

}
dθ =

D221122 =
1

840
L4

(
3

2
k̄η + k̄τ

)
(55)

D112223 =
1

4
L4

∫ π

0

sin θ

{∫ 2π

0

[[
1

4
kη (θ, ϕ)− kτ (θ, ϕ)

]
cos2 ϕ sin3 ϕ sin5 θ cos θ

]
dϕ

}
dθ =

D112223 =
1

420
L4

(
1

4
k̄η − k̄τ

)
(56)
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where the isotropic condition has been imposed by assuming no dependence of kη and kτ with
respect to ĉ (or θ and ϕ),

kτ (θ, ϕ) =
k̄τ
4π
, kη (θ, ϕ) =

k̄η
4π
,

where k̄τ and k̄η are the new averaged sti�ness over the unit sphere S2, that are de�ned in the
general anisotropic case as follows,

k̄τ =

∫ 2π

0

[∫ π

0

kτ (θ, ϕ) sin θdθ

]
dϕ, k̄η =

∫ 2π

0

[∫ π

0

kη (θ, ϕ) sin θdθ

]
dϕ.

It is worth to be noted that positive de�niteness of the elastic energy per unit volume for a given
grain-pair in (13) is, from (65) and (67) and neglecting the strain gradient contribution the same
of (37) but this time is a quadratic form of G11, G12 = G21, G13 = G31, G22, G23 = G32 and G33.
Positive condition for the eigenvalues of the Hessian of such a quadratic form, with the insertion of
(46), give the same restrictions (38) of the 2D case.

4.5 Isotropic micro-macro identi�cation for the 3D case

By comparing (22) and (48) and (50), we obtain

λ+ 2µ =
1

15
L2
(
3k̄η + 8k̄τ

)
, λ =

1

15
L2
(
k̄η − 4k̄τ

)
that yields an identi�cation of Lamè coe�cients that has similarity with that of the 2D case (39)
but di�erent expressions, i.e.,

λ =
1

15
L2
(
k̄η − 4k̄τ

)
, µ =

1

15
L2
(
k̄η + 6k̄τ

)
. (57)

Thus, in the 3D model Young's modulus Y3D and Poisson's ratio ν3D are derived in the Appendix
6.2.2 and in (77) in terms of Lamè coe�cients as follows, i.e.,

Y3D = µ
3λ+ 2µ

λ+ µ
, ν3D =

λ

2 (λ+ µ)
, (58)

and vice-versa we have,

λ = Y3D
ν3D

(1 + ν3D) (1− 2ν3D)
, µ = Y3D

1

2 (1 + ν3D)
.

Thus, insertion of (57) into (58) yield, see also [12], the Young's modulus Y3D and Poisson's ratio
ν3D in terms of normal and tangential sti�ness,

Y3D =
1

6
L2k̄η

k̄η + 6k̄τ
2k̄η + k̄τ

, ν3D =
k̄η − 4k̄τ

4
(
k̄η + k̄τ

) . (59)

The inversion of (59) is

k̄η =
3Y3D

L2 (2ν3D − 1)
, k̄τ =

3Y3D (4ν3D − 1)

4L2 (2ν3D − 1) (ν3D + 1)
. (60)

By comparing (26)1-(52), (26)2-(53), (27)1-(54), (27)2-(55) and (27)3-(56) we obtain

4c3 + c4 + 4c5 + 2c6 + 4c7 = 1
560L

4
(
k̄η + 8k̄τ

)
,

c4 + 2c6 = 1
1680L

4
(
3k̄η + 16k̄τ

)
,

2c3 + c4 = 1
560L

4
(
k̄η − 4k̄τ

)
,

c3 + 2c7 = 1
1680L

4
(
3k̄η + 2k̄τ

)
,

c3 = 1
1680L

4
(
k̄η − 4k̄τ

)
,
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that yields an identi�cation of the 5 isotropic strain gradient coe�cients

c3 = 1
1680L

4
(
k̄η − 4k̄τ

)
,

c4 = 1
1680L

4
(
k̄η − 4k̄τ

)
,

c5 = 1
1680L

4
(
k̄η + 3k̄τ

)
,

c6 = 1
1680L

4
(
k̄η + 10k̄τ

)
,

c7 = 1
1680L

4
(
k̄η + 3k̄τ

)
.

(61)

By assuming the identi�cation in (60) we therefore have,

c3 = Y3DL
2 ν3D
112(1+ν3D)(1−2ν3D) = L2

112λ,

c4 = Y3DL
2 ν3D
112(1+ν3D)(1−2ν3D) = L2

112λ,

c5 = Y3DL
2 7−8ν3D
2240(1+ν3D)(1−2ν3D) = L2

1120 (7µ+ 3λ)

c6 = Y3DL
2 7−18ν3D
1120(1+ν3D)(1−2ν3D) = L2

1120 (7µ− 4λ)

c7 = Y3DL
2 7−8ν3D
2240(1+ν3D)(1−2ν3D) = L2

1120 (7µ+ 3λ)

(62)

that means, in terms of the Mindlin's coe�cients from (28), we have,

â1 = Y3DL
2 ν3D
56(1+ν3D)(1−2ν3D) = L2

56 λ,

â2 = Y3DL
2 ν3D
448(1+ν3D)(1−2ν3D) = L2

56 λ,

â3 = Y3DL
2 7−8ν3D
1120(1+ν3D)(1−2ν3D) = L2

560 (7µ+ 3λ) ,

â4 = Y3DL
2 7−18ν3D
1120(1+ν3D)(1−2ν3D) = L2

1120 (7µ− 4λ) ,

â5 = Y3DL
2 7−8ν3D
1120(1+ν3D)(1−2ν3D) = L2

560 (7µ+ 3λ) .

It is worth to be noted that the following Aifantis' [4] identi�cation of the 5 strain gradient consti-
tutive parameters

c3 = 0, c4 = λL2 = Y3DL
2 ν3D

(1 + ν3D) (1− 2ν3D)
, c5 = 0, c6 = µL2 = Y3DL

2 ν3D
2 (1 + ν3D)

, c7 = 0,

with a single characteristic length is not compatible with that present in (62). Such expedient
simpli�cations of second gradient elastic parameters, with single characteristic length, can often
overlook complete characterization of problems since it is not possible a priori to determine what
phenomena could be signi�cant in a given case, particularly when considering problems with evolving
microstructures [52]. In this regard, it is worth mentioning that even the so-called weak nonlocality
assumption is a restricting assumption as pointed out in [36], where it is shown that for transverse
isotropy weak nonlocality assumption involving only two independent characteristic lengths fails
to describe the di�erent deformations modes of plate bending and a more general consideration is
necessary.

5 Conclusion

This paper has presented an approach for micro-macro identi�cation of elastic constants of materials
with 'microscopic' granular texture. In contrast to previous excursions of similar micro-macro
identi�cation, the present work develops the approach in �nite deformation framework and considers
the contributions of second gradient of placement. In addition, an energy approach is utilized
such that clear meanings can be attached to the conjugates of the kinematic measures of relative
displacements (needless to say the strain measure and its gradient), and therefore, to the sti�ness
measures. The key result of this work are the expressions for second-gradient elastic parameters
in (41) and (43) for the 2D case and in (59) and (61) for the 3D case in terms of the grain-scale
sti�nesses. As a consequence, these expression give an estimate of second-gradient elastic parameters
in (44-45) for the 2D case and in (62) for the 3D case in terms of the �rst gradient parameters
(i.e. in terms of the Young's modulus and Poisson's ratio) and a microstructural characteristic
length without recourse to ad hoc prescriptions or a priori (over)simpli�cations. In these �rst
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estimates the characteristic length is on the order of grain-size. We note, that the approach can
be generalized to admit additional grain-scale micro-mechanisms that can lead to more than one
characteristic lengths which can be multiples of grain-size of relevance to a material system. These
micromechanisms may include those akin to a pantograph, e.g. analyzed in [3, 57, 8], or in plate
bending as discussed in [36], or other mechanisms that require additional kinematical descriptors
to capture the deformation energy of grain-pair [30, 47, 53, 26]. In these cases, the material can
be characterized by multiple elastic characteristic lengths and their derivations will be presented
in future works. It is further noted that these elastic parameters that incorporate characteristic
lengths have vast applications to practical problems in which classical analyses lead to in�nitesimal
localizations and other singularities for materials in which microstructure plays a clear role, such as
those ranging from natural rocks to woven fabrics.
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6 Appendix

6.1 Derivation of objective relative displacement (16)

The (9) in index notation is

unpi = 2Gij ĉjL+
1

2
Gij,hĉj ĉhL

2. (63)

Insertion of (63) into (11) yields

uη =
1

2
unpi ĉi = LGij ĉiĉj +

1

4
L2Gij,hĉiĉj ĉh. (64)

Its square is

u2η =

(
LGij ĉiĉj +

1

4
L2Gij,hĉiĉj ĉh

)(
LGabĉaĉb +

1

4
L2Gab,cĉaĉbĉc

)
or

u2η = L2ĉiĉj ĉaĉbGijGab +
1

2
L3ĉiĉj ĉaĉbĉcGijGab,c +

1

16
L4ĉiĉj ĉhĉaĉbĉcGij,hGab,c. (65)

Insertion of (63) into (12) yields

u2τ = (unp − (unp · ĉ) ĉ) · (unp − (unp · ĉ) ĉ) = unp · unp − (unp · ĉ)2 (66)

or, in index notation,

u2τ =

(
2Gij ĉjL+

1

2
Gij,hĉj ĉhL

2

)(
2Gik ĉkL+

1

2
Gim,nĉmĉnL

2

)
− 4u2η,

that means

u2τ + 4u2η = 4L2GijGik ĉj ĉk + 2L3GijGim,nĉj ĉmĉn +
1

4
L4Gij,hGim,nĉj ĉhĉmĉn

or, taking (65) into account,

u2τ = 4L2GijGab (δiaĉj ĉb − ĉiĉj ĉaĉb) + 2L3GijGab,c (δiaĉj ĉbĉc − ĉiĉj ĉaĉbĉc)

+
1

4
L4Gij,hGam,n (δiaĉj ĉhĉmĉn − ĉiĉj ĉhĉaĉbĉc) . (67)
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6.2 Derivation of Young modulus and Poisson's ratio in the 2D and 3D
cases

By assuming horizontal u1 and vertical u2 a�ne displacement �elds and the following constant
external actions along the horizontal and vertical directions,

u1 = αX1, u2 = βX2, Se1 = F, Se2 = 0, (68)

we de�ne Young modulus Y and Poisson ratio ν,

Y =
F

E11
, ν = −E22

E11
,

where the Piola stress tensor S is de�ned

S =
∂U

∂G
= 2µG+ λTrG ∼= 2µE + λTrE (69)

for small deformation
G ∼= E =

1

2

[
∇u+ (∇u)

T
]
. (70)

Thus, Young modulus Y and Poisson ratio ν are linked with the external action F and to the
components α and β of the deformation

Y =
F

α
, ν = −β

α
. (71)

6.2.1 The 2D case

In the 2D case, from strain (70), displacement (68) and stress (69) de�nitions, we have

E =

(
α 0
0 β

)
, TrE = α+ β, S =

(
2µα+ λ (α+ β) 0

0 2µβ + λ (α+ β)

)
. (72)

By insertion of (72) into (68) we obtain the relation between the deformation components α and β,{
Se1 = F = 2µα+ λ (α+ β)

Se2 = 0 = 2µβ + λ (α+ β)
⇒ β = − λα

λ+ 2µ
, (73)

that gives, by insertion of (73) into (71), the relation between Young modulus Y and Poisson ratio
ν with Lamè coe�cients in the 2D case,

Y2D =
F

α
= 2µ+ λ

(
1− λ

λ+ 2µ

)
=

(λ+ 2µ)
2 − λ2

λ+ 2µ
= 4µ

λ+ µ

λ+ 2µ
, ν2D = −β

α
=

λ

λ+ 2µ
(74)

6.2.2 The 3D case

In the 3D case we further assume, for the third direction, the same behavior of the vertical direction
of the 2D case

u3 = βX2, Se3 = 0, (75)

so that strain and stress are modi�ed as follows

E =

 α 0 0
0 β 0
0 0 β

 , TrE = α+2β, S =

 2µα+ λ (α+ 2β) 0 0
2µβ + λ (α+ 2β) 0

0 0 2µβ + λ (α+ 2β)


and the relation between the deformation components α and β are di�erent{

Se1 = F = 2µα+ λ (α+ 2β)

Se2 = 0 = 2µβ + λ (α+ 2β)
⇒ β = − λα

2 (λ+ µ)
, (76)

and di�erent is relation between Young modulus Y and Poisson ratio ν with Lamè coe�cients,

Y3D =
F

α
= 2µ+ λ

(
1− λ

λ+ µ

)
=

(λ+ 2µ) (λ+ µ)− λ2

λ+ µ
= µ

3λ+ 2µ

λ+ 2µ
, ν3D = −β

α
=

λ

2 (λ+ µ)
.

(77)
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