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Abstract

This paper is devoted to the development of a continuum theory for materials having granular microstructure and
accounting for some dissipative phenomena like damage and plasticity. The continuum description is constructed by
means of purely mechanical concepts, assuming expressions of elastic and dissipation energies as well as postulating
a hemi-variational principle, without incorporating any additional postulate like �ow rules. Granular micromechan-
ics is connected kinematically to the continuum scale through Piola's ansatz. Mechanically meaningful objective
kinematic descriptors aimed at accounting for grain-grain relative displacements in �nite deformations are proposed.
Karush-Kuhn-Tucker (KKT) type conditions, providing evolution equations for damage and plastic variables asso-
ciated to grain-grain interactions, are derived solely from the fundamental postulates. Numerical experiments have
been performed to investigate the applicability of the model. Cyclic loading-unloading histories have been considered
to elucidate the material-hysteretic features of the continuum, which emerge from simple grain-grain interactions.
We also assess the competition between damage and plasticity, each having an e�ect on the other. Further, the
evolution of the load-free shape is shown not only to assess the plastic behavior, but also to make tangible the
point that, in the proposed approach, plastic strain is found to be intrinsically compatible with the existence of a
placement function.

1 Introduction

Approaches aimed at handling dissipation occurring in non-conservative physical systems are extensively discussed
in the scienti�c literature [15, 20, 28, 26, ?]. Damage and plasticity are complex dissipative phenomena which are
especially interesting for the engineering community, because they are occurring in many di�erent materials employed
in engineering applications [29, 30, 50], like structural steel, and concrete. Clearly, the detailed description of these
phenomena faces serious challenges, especially for complex material systems exhibiting, as an instance, lattice-type
[45, 18, 33] or granular [29, 31] microstructure. In the last years, continuum approaches to damage [1, 4] and plasticity
[11, 5, 16, ?, 17, 23, 29, 30, 40, 41] modeling have been vigorously pursued, including the development of phase �eld
models [6, 7, 8, 44, 25, 24] for shearing bands and fracture analyses. Besides phenomenological approaches, many multi-
scale approaches [19, ?, ?], linking low-scale descriptions with the continuum one, have also been proposed [10, 22]
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to incorporate complex emerging behaviors within the continuum. We here exploit a methodology for developing
continuum models of granular material systems which incorporates many of the characteristic features of granular
microstructures, which are collectively termed as micro-mechano-morphology.

Except for living tissues and purposely designed meta-materials having the capacity to self-heal [13, ?, ?, 21],
materials which are usually employed in engineering applications cannot reverse autonomously their damaged state
if only subjected to loading. This is generally accounted for by the rate in time of damage variables being required
to be positive. Clearly, also plastic deformations entail irreversible phenomena, which at continuum scale re�ects in
an irreversible change of the load-free con�guration [23, 40, 41]. This is usually taken into account with the use of
so-called plastic multipliers that, as damage variables, can only increase their value in time. Following these ideas, we
encode non-reversibility by treating plastic multipliers and damage variables as monotonically time-varying kinematic
descriptors [46] in dealing with the mechanical description of damaging solids with granular microstructure undergoing
both elastic and plastic deformations. As widely discussed in previous works, the deformation of such materials
can be e�ectively described in a coarse-grained fashion by means of the relative movements of interacting grains'
centroids/barycenters, regardless of the actual deformation distribution within the grains. Therefore, in a coarse-
grained description, the deformation energy of a material with granular microstructure can be expressed in terms of
these relative movements. The quanti�cation of the energy dissipated because of damage and/or plasticity can be
addressed similarly, without taking care of the actual sub-granular mechanisms. The volumetric deformation energy,
i.e. the deformation energy of a unit material volume, can thus be obtained as the aggregation of deformation energies
associated to grain-grain interactions occurring within the unit material volume. Mathematically, in the continuum
limit, this aggregation consists into the in�nite sum of the deformation energies associated to grain-grain interactions,
being these last identi�ed by their orientation in space. This view has proved to be a promising approach for the
description of granular systems, both at discrete and continuum levels [2, 3, 12, 27, 31, 47, 48, 49, ?]. With this view
as point of departure, we here utilize a variational approach [14, ?]. At �rst, we construct an objective and reversible
kinematic variable for measuring grain-grain relative displacements. As we make use of the continuum-scale strain, as
well as of its spatial gradient, such a kinematic variable can be easily linked to the placement function of the continuum.

As done customarily in granular micromechanics (see for example [39, 29]), we decompose the objective grain-grain
relative displacement into a component along the vector joining the grains' centroids, termed as normal component ,
and a component in the orthogonal direction, termed as tangent component . These relative displacement components
are, in turn, decomposed into elastic and plastic parts. The elastic strain and dissipation energy functionals for a
grain-grain interaction are then de�ned in terms of these components of the relative displacement (i.e. the reversible
kinematic descriptors of the grain-grain interaction) [43, 42], the damage variables and the plastic multipliers (i.e. the
irreversible kinematic descriptors of the grain-grain interaction). For each grain-grain interaction, damage is described
by normal and tangent damage variables. Only plastic relative displacement accumulated in the normal direction will
be here considered because, as shown in the sequel, for the assumptions that we have made here, no e�ects are entailed
by accounting for plastic grain-grain relative displacement accumulated in the tangent direction. On the one hand, such
a plastic relative displacement is not constrained to be non-decreasing in time. Indeed, it is not a plastic multiplier.
On the other hand, it is de�ned as a di�erence of two non-decreasing plastic multipliers representing, respectively, the
accumulated plastic relative displacement in tension and in compression. Numerical results obtained considering cyclic
loading-unloading histories will be reported later on to elucidate the hysteretic features of the continuum emerging from
such simple grain-grain interactions. The evolution of the load-free shape will be shown not only to assess the plastic
behavior, but also to make tangible the point that, in the proposed approach, plastic strain is found to be intrinsically
compatible with the existence of a placement function. It is indeed a matter of facts that in existing approaches this
property is not always guaranteed. In such a case, a supplementary arti�cial compatibility condition or other ad hoc
remedies must be conceived.

The elastic behavior of the damaged material is characterized by means of the total elastic strain energy, which
is expressed in terms of the strain energies associated to each grain-grain interaction. As a result, relationships
are obtained for standard �rst gradient (4th order sti�ness tensor), second gradient (6th order sti�ness tensor) and
�rst-second-gradient interaction (5th order sti�ness tensor) elastic moduli as functions of parameters describing the
micro-mechano-morphology, as well as functions of damage variables. Owing to plastic e�ects, two more terms come
out of the procedure, accounting for pre-stress (2nd order tensor) and pre-hyperstress (3rd order tensor). A hemi-
variational approach [9, 32, 36, 34, 37, 38, 35] is utilized to derive the Karush-Kuhn-Tucker (KKT) type conditions
leading to evolution equations for grain-grain damage and plastic kinematic variables, as well as to derive conditions, in

2



the form of Euler-Lagrange equations, for the evolution of grain-grain total relative displacement. The key advantage
of making use of a postulation scheme based solely upon a variational statement is that evolution equations for damage
and plastic variables are derived from �rst principles systematically, thus yielding robust criteria for loading-unloading-
reloading conditions, without invoking supplementary thermodynamic principles that might be potentially incompatible
with previous hypotheses. Furthermore, admissible boundary conditions are derived from the variational deduction
procedure and are not postulated, again, in a possibly inconsistent way.

It is worth noting that, for a typical granular system, grain-pairs are oriented in various directions. Hence, under
a given loading-sequence, they will experience di�erent loading histories. Therefore, di�erently-oriented grain-grain
interactions will experience di�erent damage and plastic evolution. Additionally, for each grain-grain orientation,
damage is de�ned for normal and tangential directions, and plasticity is characterized by two di�erent plastic multipliers,
i.e accumulation of normal plastic relative displacement in tension and compression. The overall macroscopic response
will thus be very complex and strongly path-dependent.

The content of this paper is organized as follows. Section 2 discusses and elaborates Piola's ansatz, linking dis-
crete and continuum descriptions. An objective measure of grain-grain relative displacement, as well as constitutive
assumptions, are introduced within a �nite deformation second-gradient framework. Section 3 deals with the de�nition
of the elastic strain energy associated to each grain-grain interaction. Section 4 is devoted to the hemi-variational
deduction procedure leading to Euler-Lagrange equilibrium equations, as well as to KKT conditions. Section 5 re-
ports the results of numerical loading-unloading tests performed on a square plate deforming both homogeneously and
non-homogeneously. Section 6 addresses some concluding remarks and future outlooks.

2 Discrete and continuum modeling of granular systems

2.1 Identi�cation via Piola's ansatz

Within the discrete description, the reference con�guration of the considered set of N grains is given by their positions
{X1,X2, . . . ,XN} ∈

(
E2
)N

, where E2 is the Euclidean two-dimensional space. The position xi ∈ E2, with i =
1, . . . , N . in the present (or current) con�guration, at time t, is obtained through the placement function χi (t) as
follows

xi = χi (t) = Xi + ui (t) , i = 1, . . . , N, (1)

where ui (t) is the displacement function of the i-th grain. Within the continuum description, a continuous body B,
constituted by in�nitely many particles, is considered in the reference con�guration. A generic particle occupies the
position X in the reference con�guration, i.e. X ∈ B. Such a particle is placed, in the present con�guration at time t,
into the position x through the placement function

x = χ (X, t) = X + u (X, t) , (2)

where u (X, t) is the displacement function of the continuous body B. In the continuum-discrete identi�cation, the
following relationship (Piola's Ansatz) will be assumed

χ (Xi, t) = χi (t) , i = 1, . . . , N, (3)

which means that the placements χi (t) of the N grains correspond to the placement χ (X, t) of the continuous body
B evaluated at those positions X = Xi, with i = 1, ..., N , where the grains are located in the reference con�guration.

2.2 Relative grain-grain displacement and continuum deformation measures

Let us assume that the distance between two grain centroids at positions Xn and Xp, respectively, is equal to L.
Furthermore, let the unit vector ĉ be de�ned as follows

Xn −Xp = ĉL. (4)

Therefore, the vectorial quantity ĉL in Eq. (4) is nothing but the arrow in the reference con�guration that, once
applied to the position Xn, touches and points toward the position Xp. In the current con�guration, at time t, the
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Figure 1: Graphical representation of Piola's Ansatz in Eq. (3). Discrete kinematic descriptors introduced in Eq. (1),
on the left, and continuous kinematic descriptor introduced in Eq. (2), on the right.

positions occupied by the two grain centroids at positions Xn and Xp in the reference con�guration are, respectively,
xn = χ (Xn, t) and xp = χ (Xp, t). Analogously, the vector in Eq. (4) is transformed in the present con�guration, at
time t, into

xn − xp = χ (Xn, t)− χ (Xp, t) . (5)

Following [46], an objective relative displacement is de�ned as

unp = FT (xn − xp)− (Xn −Xp) , (6)

where F = ∇χ is the deformation gradient and a justi�cation is given in the appendix 7.
Let us now assume that the two grains n and p are neighboring ones. Thus, they place similarly in the present

con�guration- The Taylor's series expansion of the function χ (Xn, t) centered at X = Xp yields

xn = χ (Xn, t) ∼= xp + LFpĉ+
L2

2
[∇pF ĉ] · ĉ, (7)

where the following second and third order tensors evaluated at X = Xp have been de�ned

Fp = (∇χ)X=Xp
, ∇pF = [∇ (∇χ)]X=Xp

.

Let us also introduce the Green-Saint-Venant tensor G and its gradient, which are, respectively, a second and third
order tensor

G =
1

2

(
FTF − I

)
, ∇G = FT∇F. (8)

Equations (7) and (8), in index notation, where superscripts denote the position at which the corresponding quantity
is evaluated, read as

xni = xpi + F pij ĉjL+
L2

2
F pij,hĉj ĉh, Gpij =

1

2

(
F paiF

p
aj − δij

)
, Gpij,h = F paiF

p
aj,h. (9)

4



Thus, making use of the index notation and taking into account Eqs. (4) and (9), the objective relative displacement
in Eq. (6) can be re-written as

unpi = 2Gpij ĉjL+
L2

2
Gpij,hĉj ĉh. (10)

We remark that, owing to Eq. (10), the objective relative displacement unp for a given grain-grain orientation ĉ is
not additive inverse of that computed for the opposite grain-grain orientation, i.e. −ĉ, when the strain gradient is
non-vanishing, i.e. ∇G 6= 0, because it is not an odd function of ĉ. This means that the strain gradient breaks the
symmetry with respect to the inversion of the grain-grain orientation. Such a feature enables strain-gradient-triggered
chiral e�ects.

The half-projection of the objective relative displacement on the unit vector ĉ is the so-called normal displacement
uη (a scalar quantity), while its projection on the unit vector orthogonal to ĉ is the so-called tangent displacement
vector

uη =
1

2
unp · ĉ, uτ = unp − (unp · ĉ) ĉ, (11)

where a justi�cation of the de�nitions (11) is given in the appendix 7. Insertion of (10) into (11) yields the normal
displacement, its square and the squared tangent displacements, in terms of the strain G, the strain gradient ∇G, the
grain-grain distance L and its orientation ĉ

uη = LGij ĉiĉj +
L2

4
Gij,hĉiĉj ĉh, (12)

u2
η = L2ĉiĉj ĉaĉbGijGab +

1

2
L3ĉiĉj ĉaĉbĉcGijGab,c +

1

16
L4ĉiĉj ĉhĉaĉbĉcGij,hGab,c, (13)

u2
τ = 4L2GijGab (δiaĉj ĉb − ĉiĉj ĉaĉb) + 2L3GijGab,c (δiaĉj ĉbĉc − ĉiĉj ĉaĉbĉc) (14)

+
L4

4
Gij,hGam,n (δiaĉj ĉhĉmĉn − ĉiĉj ĉhĉaĉbĉc) ,

where the superscript p has been omitted to simplify the notation.

2.3 Elastic and plastic objective relative displacements

The elastic part uelη of the normal displacement uη is assumed to be equal to the di�erence of the total normal
displacement uη and its plastic part uplη

uelη = uη − uplη = LGij ĉiĉj +
L2

4
Gij,hĉiĉj ĉh − uplη . (15)

Thus, its square is

(
uelη
)2

=
(
uη − uplη

)2
= L2ĉiĉj ĉaĉbGijGab +

1

2
L3ĉiĉj ĉaĉbĉcGijGab,c +

L4

16
ĉiĉj ĉhĉaĉbĉcGij,hGab,c

+
(
uplη
)2 − 2Luplη ĉiĉjGij −

1

2
L2uplη ĉiĉj ĉhGij,h. (16)

As remarked above, the tangent displacement uτ is a vector. The only objective quantity that can be derived from uτ
and ĉ is thus the square of uτ in (14). Therefore, the plastic tangent displacement is de�ned only by its square upl,2τ ,
as well as its corresponding elastic part uel,2τ , that yields,

uel,2τ = u2
τ − upl,2τ . (17)

It is worth to anticipate here that, in Section 3, the plastic tangent relative displacement will be proved to give, for
the assumptions that have been made, no contribution to the mechanical properties of the material.
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2.4 Equivalent sti�nesses

Following the same notation employed in [46], the damaged tangent sti�ness is denoted with kτ,D and the damaged
normal sti�ness is denoted with kη,D

kη,D = ktη,DΘ
(
uelη
)

+ kcη,DΘ
(
−uelη

)
, (18)

where ktη,D is the sti�ness in tension and kcη,D � ktη,D is the sti�ness in compression. Remark that, usually, for
cementitious granular materials the sti�ness in compression is much higher than the sti�ness in tension. Here, tension
and compression are discriminated through the sign of the elastic normal displacement uelη and, for this reason, we
make use of the Heaviside function Θ. Damage is modeled with two variables, i.e. the normal damage Dη, and the
tangent damage Dτ . The damage variables Dη and Dτ reduce linearly, respectively, the tension and compression
normal damaged sti�ness kη,D (18) and the tangent damaged sti�ness kτ,D. In formulas, we have

ktη,D = ktη (1−Dη) , kcη,D = kcη (1−Dη) , kτ,D = kτ (1−Dτ ) , (19)

which means that the tangent damaged sti�ness kτ,D and the normal damaged sti�ness kη,D are de�ned, respectively,
through the non-damaged tangent sti�ness kτ and the non-damaged normal sti�ness kη. For the latter case, in formulas,
we have kη,D = kη (1−Dη), where the non-damaged normal sti�ness kη has been de�ned in terms of the non-damaged
tension normal sti�ness ktη and the non-damaged compression normal sti�ness kcη as

kη = ktηΘ
(
uelη
)

+ kcηΘ
(
−uelη

)
. (20)

We hence obtain the following synthetic expression for the damaged normal sti�ness

kη,D = kη (1−Dη) = ktη (1−Dη) Θ
(
uelη
)

+ kcη (1−Dη) Θ
(
−uelη

)
. (21)

3 Elastic strain energy function

The elastic energy density function per unit surface � for the continuum � is derived starting from the one elastic
energy associated to a single grain-grain interaction, say the couple n− p considered in Section 2.2, within the discrete
description. We utilize to the scope a quadratic form of the recoverable elastic parts of the normal and tangent
components of the objective total grain-grain relative displacement

U =
1

2
kη,D

(
uelη
)2

+
1

2
kτ,Du

el,2
τ , (22)

where
(
uelη
)2

is the square of the scalar quantity uelη and uel,2τ is the squared module of the vector uelτ . The elastic
energy function is a scalar quantity and, therefore, no coupling term between uelη and uelτ is admissible. It is worth to
be noted that the damaged elastic sti�nesses in Eqs. (19)3 and (21) can be de�ned as the coe�cients of the quadratic
form of the elastic energy function in Eq. (22).

In the discrete description, the total energy U tot associated to the interaction of a given grain, whose centroid
occupies the position Xp in the reference con�guration, with neighboring grains is given by the summation of the
energy in Eq. (22) for all the N − 1 possible interactions

U tot =
N−1∑
i=1

[
1

2
kη,D,i

(
uelη,i
)2

+
1

2
kτ,D,i

(
uel,2τ,i

)]
, (23)

where the subscript i refers to a generic couple n − p of grains. In Eq. (23) it is therefore intended that kη,D,i and
kτ,D,i are the damaged sti�nesses, respectively normal and tangent, associated to the interaction of the i-th couple of
grains, while uelη,i and u

el,2
τ,i are the elastic relative displacements, respectively normal and squared tangent, of the i-th

couple of grains.
Continualization of Eq. (23) is performed by using the following homogenization rule. Let a be a generic quantity

de�ned within the discrete description, such that ai refers to the grain-grain interaction, identi�ed with the index i,
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between a generic grain n and a generic grain p. Let a (θ) be the continuous distribution of the quantity a over the
orientation θ of the grain-pair formed by grain n and its neighboring grains. We have that, when the number N of
grains within the discrete system tends to in�nite, the following limit holds

N∑
i=1

[ai] −→
�
S1

a (θ) , (24)

where S1 = [0, 2π] is the unit circle, namely the domain of the function a (θ), i.e. the set of all orientations. Remark
that ai = a (θi), where θi is the orientation of the grain-pair formed by grain n and grain p, namely the orientation of
the unit vector ĉ. The application of the homogenization rule in Eq. (24) to the total energy U tot in Eq. (23) gives

U =

�
S1

[
1

2
kη (1−Dη)

(
uelη
)2

+
1

2
kτ (1−Dτ )

(
uel,2τ

)]
, (25)

where kη = k̃η (θ), kτ = k̃τ (θ), Dη = D̃η (θ), and Dτ = D̃τ (θ) replace, respectively, kη,i, kτ,i, Dη,i, and Dτ,i. Remark
that these quantities are all functions of the orientation θ ∈ [0, 2π] of the generic grain-pair formed by grain n and its
neighboring grains, namely

kη,i → k̃η (θ) , kτ,i → k̃τ (θ) , Dη,i → D̃η (θ) , Dτ,i → D̃τ (θ) .

From Eqs. (16) and (17), the continuum elastic strain energy density per unit surface in Eq. (25) reads as

U =

�
S1

1

2
kη (1−Dη)

(
L2ĉiĉj ĉaĉbGijGab +

1

2
L3ĉiĉj ĉaĉbĉcGijGab,c

)
+

�
S1

1

2
kη (1−Dη)

(
1

16
L4ĉiĉj ĉhĉaĉbĉcGij,hGab,c +

(
uplη
)2 − 2Luplη ĉiĉjGij −

1

2
L2uplη ĉiĉj ĉhGij,h

)
+

�
S1

1

2
kτ (1−Dτ )

(
4L2GijGab (δiaĉj ĉb − ĉiĉj ĉaĉb) + 2L3GijGab,c (δiaĉj ĉbĉc − ĉiĉj ĉaĉbĉc)

)
+

�
S1

1

2
kτ (1−Dτ )

(
1

4
L4Gij,hGam,n (δiaĉj ĉhĉmĉn − ĉiĉj ĉhĉaĉbĉc)

)
−
�
S1

1

2
kτ (1−Dτ )upl,2τ . (26)

The previous expression can be re-written in a more compact form as

U =
1

2
CijabGijGab + MijabcGijGab,c +

1

2
DijhabcGij,hGab,c + PijGij + QijhGij,h + Pτ , (27)

where, accounting for the symmetrization induced by the symmetry of the strain tensor G, the elastic sti�nesses C, M,
D, P, Q and Pτ , are identi�ed as follows

7



Cijab = L2

�
S1

kη (1−Dη) ĉiĉj ĉaĉb (28)

+L2

�
S1

kτ (1−Dτ ) ((δiaĉj ĉb + δibĉj ĉa + δjaĉiĉb + δjbĉiĉa)− 4ĉiĉj ĉaĉb)

Mijabc =
1

4
L3

�
S1

kη (1−Dη) ĉiĉj ĉaĉbĉc (29)

1

4
L3

�
S1

kτ (1−Dτ ) ((δiaĉj ĉb + δibĉj ĉa + δjaĉiĉb + δjbĉiĉa) ĉc − 4ĉiĉj ĉaĉbĉc)

Dijhabc =
1

16
L4

�
S1

kη (1−Dη) ĉiĉj ĉhĉaĉbĉc (30)

+
1

16
L4

�
S1

kτ (1−Dτ ) ((δiaĉj ĉb + δibĉj ĉa + δjaĉiĉb + δjbĉiĉa) ĉhĉc − 4ĉiĉj ĉhĉaĉbĉc)

Pij = −L
�
S1

kη (1−Dη)uplη ĉiĉj (31)

Qijh = −1

4
L2

�
S1

kη (1−Dη)uplη ĉiĉj ĉh (32)

Pτ =

�
S1

[
1

2
kη (1−Dη)

(
uplη
)2 − 1

2
kτ (1−Dτ )upl,2τ

]
. (33)

From the previous results, we can conclude that, on one hand, the contribution of the squared tangent plastic relative
displacement upl,2τ does not have an in�uence on the mechanical behavior of the continuum, because it entails only the
additive constant Pτ in the continuum surface energy density 27. Remark that this deduction is not general and that,
in particular, it comes from the assumption that has been done in Eq. (22) on the form of the grain-grain interaction.
On the other hand, the contribution of the normal plastic relative displacement uplη appears also in the sti�ness tensors
P and Q, namely the coe�cients of the linear terms (in G and ∇G, respectively) in the continuum surface energy
density 27. These sti�ness tensors de�ne, respectively, the pre-stress and pre-hyper stress of the continuum. Hence, as
shown in the sequel, they a�ect the load-free con�guration.

Note that, in the hypothesis of small displacement gradients and small displacement second gradients, which means
approximating up to second order the continuum strain energy density with respect to the displacement gradient H
and its gradient, where H and its symmetric part E are de�ned as follows

H = ∇u, E =
1

2

(
H +HT

)
, (34)

we get

U =
1

2
CijabEijEab + MijabcEijEab,c +

1

2
DijhabcEij,hEab,c + PijEij (35)

+
1

2
PijHhiHhj + QijhEij,h +

1

2
Qijh (HkiHkj),h .

Let us �nally remark that, from the nontrivial expressions in Eqs. (29) and (32) for the sti�nessesM and Q, respectively,
which � inheriting the properties of the Taylor's series expansion in (7) � are not odd with respect to grain-pair's
orientation, it is deduced that the occurrence of damage and plasticity, as well as of high strain gradients, induce
the emergence of chiral e�ects. Note that, indeed, in the integrals (29) and (32), the unit vector ĉ appears an odd
number of times, while the domain is symmetric with respect to zero. Thus, while initially we have M = 0 and Q = 0,
the evolution of damage variables Dη and Dτ , as well as of the plastic normal relative displacement uplη , induces the
emergence of chiral e�ects characterized by the conditions M 6= 0 and Q 6= 0.
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4 Evolution of damage and plastic variables

4.1 Fundamental kinematic quantities

We evaluate the evolution of damage and plastic variables for each grain-grain interaction, namely for each orientation,
via a deductive procedure based on a hemi-variational statement. To do this, we start by the de�nition of the following
six (�ve scalar and one vectorial) fundamental kinematic quantities

uη, uτ , Dη, Dτ , λ
t
η, λ

c
η, (36)

where uη, uτ , Dη and Dτ have been already de�ned in Subsections 2.2 and 2.4. The two plastic variables λtη and λ
c
η are

both associated to the normal relative displacement and are related, respectively, to tension and compression. Their
di�erence gives the plastic normal displacement

uplη = λtη − λcη. (37)

As we have already pointed out, the tangent plastic variables do not play any role and, therefore, they will not be
considered henceforth.

4.2 Dissipation, external and total energies

The dissipation energy W is the energy dissipated because of irreversible phenomena. An additive decomposition of
the dissipation energy is assumed as follows

W = WD +Wpl, (38)

where WD is the energy dissipated because of damage phenomena, while Wpl is the energy dissipated because of
plasticity phenomena. The damage dissipation energy WD is, see e.g. [46], in turn decomposed additively into normal,
i.e. W η

D, and tangent, i.e. W τ
D, parts

WD = W η
D +W τ

D. (39)

The normal contribution W η
D to the damage dissipation energy is de�ned as follows

W η
D =

1

2
kcη
(
Bcη
)2

Θ
(
−uelη

) [
−Dη +

2

π
tan

(π
2
Dη

)]
+ (40)

1

2
ktη
(
Btη
)2

Θ
(
uelη
) [

2 + (Dη − 1)
(

2− 2 log (1−Dη) + (log (1−Dη))
2
)]
,

where Bcη and B
t
η are two characteristic lengths associated to normal damage dissipation in compression and in tension,

respectively. We observe that usually, for cementitious materials, we have Btη � Bcη. Indeed, a much smaller amount
of elastic relative displacement is needed in tension to activate damage mechanisms. The tangent contribution W τ

D to
the damage dissipation energy is de�ned as follows

W τ
D =

1

2
kτ

[
B̃τ
(
uelη
)]2 [

2 + (Dτ − 1)
(

2− 2 log (1−Dτ ) + (log (1−Dτ ))
2
)]
, (41)

where Bτ = B̃τ
(
uelη
)
is the characteristic length associated to tangent damage dissipation. Such a characteristic length

is assumed to depend only on the elastic part of the normal relative grain-grain displacement, whereas in [29, 30] it
is assumed to depend on the total normal displacement uη. Additionally, di�erently from [29, 30] and for the sake
of simplicity, the e�ect of the mean stress has been neglected. Following said references, the functional dependence
B̃τ
(
uelη
)
has been chosen as follows

Bτ = B̃τ
(
uelη
)

=


Bτ0 if uelη ≥ 0

Bτ0 − α2u
el
η if 1−α1

α2
Bτ0 ≤ uelη < 0

α1Bτ0 if uelη < Bτ0
1−α1

α2
,

(42)

9



where Bτ0 (Bw0 in [29, 30]), α1 and α2 are further constitutive parameters needed to express the functional dependence
B̃τ
(
uelη
)
. Such a functional dependence couples the two addends W η

D and W τ
D of the decomposition (39). We observe

that usually, for cementitious materials in elastic tension, the characteristic length Bτ associated to damage dissipation
is much lower than the one in compression. Indeed, a smaller amount of elastic relative displacement is needed in
extension to activate damage mechanisms. In formulas, referring to Eq. (42), this means either that Bτ0 << Bτ0−α2u

el
η

(which implies α2 > 0, as uelη < 0 in compression) or Bτ0 << α1Bτ0 (which implies α1 � 1).
The plastic dissipation energy function Wpl is assumed to depend linearly onto the plastic multipliers λtη and λ

c
η

Wpl = σtηλ
t
η + σcηλ

c
η, (43)

where the scalars σtη and σcη dictate the yielding conditions of the damage-elasto-plastic grain-grain interaction in
tension and compression, respectively. Recently, Placidi [34] proved that, for such a dissipation energy functional,
there is no change of the grain-grain interaction elastic range or, equivalently, the yielding conditions do not change
when the system evolves.

In conclusion, because of Eqs. (39), (40), (41), and (43), the dissipation energy functional (38) reads as

W = WD +Wpl = W η
D +W τ

D +Wpl = (44)

=
1

2
kcηΘ

(
−uelη

)
B2
c [−Dη + tan (Dη)] +

+
1

2
ktηΘ

(
uelη
)
B2
t

[
2 + (Dη − 1)

(
2− 2 log (1−Dη) + (log (1−Dη))

2
)]

+
1

2
kτB

2
τ

[
2 + (Dτ − 1)

(
2− 2 log (1−Dτ ) + (log (1−Dτ ))

2
)]

+σtηλ
t
η + σcηλ

c
η

Within the considered approach, the external world can exert forces expending power both on the scalar normal
objective relative displacement uη and on the vector tangent objective relative displacement uτ , so that the external
energy functional is

Uext = F extη uη + F extτ · uτ , (45)

where F extη and F extτ are, respectively, the external normal and tangent forces. Since we are neglecting kinetic energy
and considering quasi-static evolution, the energy functional E reads as

E =

TM�

T0

[
U +W − Uext

]
. (46)

Remark that it is a functional of the fundamental kinematical quantities (36), namely

E = E
(
uη, uτ , Dη, Dτ , λ

t
η, λ

c
η

)
. (47)

4.3 Formulation of the hemi-variational principle

The variational inequality principle can be here applied similarly to what has been done in [46], with the di�erence
that, here, an extended set of kinematic descriptors must be considered. We introduce a monotonously increasing time
sequence Ti ∈ {Ti}i=0,...,M with Ti ∈ R and M ∈ N. An initial datum on each of the fundamental kinematic quantities
must be given for i = 0, i.e. for time T0. A motion is de�ned as a family of displacements ζ = (uη, uτ ) de�ned
for each time t = T0, T1, . . . , TM . The set AMt is de�ned as the set of kinematically admissible displacements for a
given time t � we require (uη, uτ ) ∈ AMt � and the set AVt is de�ned as the corresponding space of kinematically
admissible variations � i.e. υ = (δuη, δuτ ) ∈ AVt. Admissible variations β of the irreversible kinematic quantities(
Dη, Dτ , λ

t
η, λ

c
η

)
must be positive, namely

β = δDη, δDτ , δλ
t
η, δλ

c
η ∈ R+ × R+ × R+ × R+. (48)
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The �rst variation δE of the energy functional (47) is de�ned as

δE = E
(
uη + δuη, uτ + δuτ , Dη + δDη, Dτ + δDτ , λ

t
η + δλtη, λ

c
η + δλcη

)
− E

(
uη, uτ , Dη, Dτ , λ

t
η, λ

c
η

)
. (49)

The increment of the fundamental kinematic quantities (36) at t = Ti is given by the di�erence between these quantities
as evaluated at times t = Ti and t = Ti−1, namely(

∆uη,∆uτ ,∆Dη,∆Dτ ,∆λ
t
η,∆λ

c
η

)
Ti

=
(
uη, uτ , Dη, Dτ , λ

t
η, λ

c
η

)
Ti
−
(
uη, uτ , Dη, Dτ , λ

t
η, λ

c
η

)
Ti−1

.

The same de�nition is utilised for the increment ∆E of the energy functional

∆E = E
(
uη + ∆uη, uτ + ∆uτ , Dη + ∆Dη, Dτ + ∆Dτ , λ

t
η + ∆λtη, λ

c
η + ∆λcη

)
− E

(
uη, uτ , Dη, Dτ , λ

t
η, λ

c
η

)
. (50)

Finally, the hemi-variational principle is formulated as follows

∆E ≤ δE ∀υ = (δuη, δuτ ) ∈ AVt, ∀β =
(
δDη, δDτ , δλ

t
η, δλ

c
η

)
∈ R+ × R+ × R+ × R+. (51)

4.4 Derivation of the Euler-Lagrange equations

The variational inequality (51) must be exploited following the same procedure described in [46], which will thus be
omitted here. The results of such a procedure are the following two Euler-Lagrange equations−kη (1−Dη)

(
uη − λtη + λcη

)
− kτBτ

∂B̃τ
∂uelη

Dτ�

0

[log (1− x)]
2
dx+ F extη

 (δuη) = 0

{
−kτ (1−Dτ )uτ + F extτ

}
(δuτ ) = 0

together with the two KKT conditions for damage variables (already derived in [46])

[
(
uη − λtη + λcη

)2 −Θ
(
uelη
)
B2
t (log (1−Dη))

2 −Θ
(
−uelη

)
B2
c [tan (Dη)]

2
]∆Dη = 0, (52)[

(uτ )
2 − [Bτ ]

2
(log (1−Dτ ))

2
]

∆Dτ = 0, (53)

and two additional KKT conditions for the plastic multipliers, namelykη (1−Dη)
(
uη − λtη + λcη

)
− σtη + kτBτ

∂B̃τ
∂uelη

 Dτ�

0

[log (1− x)]
2
dx

∆λtη = 0, (54)

kη (1−Dη)
(
uη − λtη + λcη

)
+ σcη + kτBτ

∂B̃τ
∂uelη

 Dτ�

0

[log (1− x)]
2
dx

∆λcη = 0, (55)

where the following formula has been taken into account

Dτ�

0

[log (1− x)]
2
dx = 2 + (Dτ − 1)

(
2− 2 log (1−Dτ ) + (log (1−Dτ ))

2
)
.

The four KKT conditions (52), (53), (54) and (55) for irreversible descriptors can be arranged in a more compact form
as {

Dη − D̃η(uη, λ
t
η, λ

c
η)
}

∆Dη = 0 (56){
Dτ − D̃τ (uτ )

}
∆Dτ = 0 (57){

λtη − λ̃tη(uη, λ
c
η, Dη, Dτ )

}
∆λtη = 0 (58){

λcη − λ̃cη(uη, λ
t
η, Dη, Dτ )

}
∆λcη = 0, (59)
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where the auxiliary threshold functions D̃η(uη, λ
t
η, λ

c
η), D̃τ (uτ ), λ̃tη(uη, λ

c
η, Dη, Dτ ) and λ̃cη(uη, λ

t
η, Dη, Dτ ) have been

de�ned as follows

D̃η(uη, λ
t
η, λ

c
η) =

1− exp
(
−uη−λ

t
η+λcη

Btη

)
, uelη = uη − λtη + λcη > 0,

2
π arctan

(
−uη−λ

t
η+λcη

Bcη

)
, uelη = uη − λtη + λcη < 0,

(60)

D̃τ (uτ ) = 1− exp

(
−|uτ |
Bτ

)
, (61)

λ̃tη(uη, λ
c
η, Dη, Dτ ) = λcη −

σtη
kη (1−Dη)

+ uη +
kτBτ

kη (1−Dη)

∂B̃τ
∂uelη

 Dτ�

0

[log (1− x)]
2
dx

 , (62)

λ̃cη(uη, λ
t
η, Dη, Dτ ) = λtη −

σcη
kη (1−Dη)

− uη −
kτBτ

kη (1−Dη)

∂B̃τ
∂uelη

 Dτ�

0

[log (1− x)]
2
dx

 . (63)

5 Results

In this section, we intend to illustrate the properties of the model by numerical results presented for selected test cases.
Two square specimens in 2D, with side S = 10 cm (Fig. 2), are subjected to cyclic tension-compression loading, as
sketched in Fig. 3. The quantity ū in Fig. 3 is null at the initial time and then ranges within the interval [ūmin, ūmax].
The �rst specimen, without any �aw, has been chosen to assess the performances of the solution scheme in the case of a
homogeneous deformation, while the second, with a circular �aw (hole), has been chosen to address non-homogeneous
deformations under the same set of kinematic boundary conditions used for the �rst specimen.

𝑆 = 10 𝑐𝑚

𝑆

𝑆 = 10 𝑐𝑚

𝑆

𝑦ℎ =
𝑆

2

𝑥ℎ =
𝑆

2

𝑅ℎ = 0.12 ⋅ 𝑆

Figure 2: Schematics of analyzed domains, without (left-hand side) and with (right-hand side) the hole.
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ത𝑢

ො𝒆𝑦

ො𝒆𝑥

Figure 3: Schematics of the considered boundary condition: cyclic, extension (i.e. ū > 0) and compression (i.e. ū < 0)
tests.

5.1 Implementation of the numerical algorithm

The test cases were investigated numerically by means of the commercial software Matlab and COMSOL Multiphysics.
An iterative procedure was developed. It is schematized in the �owchart in Fig. 4.

BOUNDARY CONDITIONS 
PARAMETERISED ON ഥ𝒖

cv
SOLVE by the FINITE 
ELEMENT METHOD 

DISPLACEMENT FIELD

STRAIN FIELD

SOLVE KKT CONDITIONS 
FOR EACH 𝑿 ∈ 𝑩, ො𝒄 ∈ 𝑺𝟏

DAMAGE FIELDS 
FOR EACH ො𝒄 ∈ 𝑺𝟏

CONVERGENCE ? 

INITIAL ELASTICITY TENSORS

DAMAGE FIELDS AND
PLASTIC MULTIPLIERS 
FOR EACH ො𝒄 ∈ 𝑺𝟏

(PREVIOUS STEP)

ELASTIC AND 
PLASTIC TENSORS

MATERIALS
PARAMETERS

INITIAL CONDITIONS
- DISPLACEMENT FIELD FOR EACH 𝑿 ∈ 𝑩
- DAMAGE FIELDS FOR EACH 𝑿 ∈ 𝑩, ො𝒄 ∈ 𝑺𝟏

- PLASTIC MULTIPLIERS FOR EACH 𝑿 ∈ 𝑩, ො𝒄 ∈ 𝑺𝟏

REDUCE 
INCREMENT OF ഥ𝒖

NO

INCREASE ഥ𝒖

NO

YES

cvEND

YES

STORE

CONTINUE ? 

PLASTIC MULTIPLIERS 
FOR EACH ො𝒄 ∈ 𝑺𝟏

UPDATE

Figure 4: Flowchart of the numerical iterative procedure used to solve the mathematical formulation.

The steps of the procedure can be explained as follows:

1. We assume null initial conditions on the displacement �eld for all the points of the body

u (X, t = T0) = 0, ∀X ∈ B

and null initial conditions for damage and plastic irreversible descriptors; not only for all the points of the body,
but also for every orientation{

Dη = D̆η (ĉ,X, t = T0) = 0, Dτ = D̆τ (ĉ,X, t = T0) = 0

λtη = λ̆tη (ĉ,X, t = T0) = 0, λcη = λ̆cη (ĉ,X, t = T0) = 0
, ∀ĉ ∈ S1 ∀X ∈ B
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The sti�nesses kcη, k
t
η and kτ are assumed to be initially isotropic

kcη = k̃cη (ĉ,X, t = T0) =
k̄cη
2π
, ktη = k̃tη (ĉ,X, t = T0) =

k̄tη
2π
, kτ = k̃τ (ĉ,X, t = T0) =

k̄τ
2π
, ∀ĉ ∈ S1 ∀X ∈ B,

where k̄cη, k̄
t
η and k̄τ are the averaged initial sti�nesses. It is worth to observe that the e�ective (i.e. damaged)

sti�nesses kcη,D, k
t
η,D, kτ,D may change during the evolution of the system due to the non-trivial evolution of

damage descriptors, that are induced by the state of deformation, thus leading to non-isotropic distribution of
e�ective sti�ness. Material parameters of the model are: the averaged initial sti�ness k̄cη, k̄

t
η and k̄τ , the inter-

granular interaction distance L, the damage characteristic lengths Bcη, B
t
η and Bτ0 along with the non-dimensional

characteristics α1 and α2, and the plastic yielding parameters σtη and σ
c
η. Numerical values for these parameters,

employed to obtain the subsequent simulation results, are reported in Tabs. 1-2.

2. The elasticity tensors (Cijab,Mijabc,Dijhabc), as well as the plasticity tensors (Pij ,Qijh) and Pτ , are calculated
according to Eqs. (28-33). All these quantities, together with boundary conditions, are then given as input to a
�nite element subroutine consisting on a COMSOL Multiphysics run. The weak form of the equilibrium problem
de�ned by the elastic energy per unit surface in Eq. (27) is solved by means of the weak form package. In order
to ensure C1 continuity across element's boundaries, Quintic Argyris polynomials are used as shape functions. A
Delaunay-tessellated triangular mesh is employed;

3. The increment of the displacement �eld with respect to the previous step is node-wise compared with a tolerance.
When such a tolerance is not respected, then the displacement parameter ū is reduced to re-initialize the �nite
element subroutine;

4. When the increment of the displacement �eld with respect to the previous step compares positively with the
above-mentioned chosen tolerance, then the displacement �eld is computed;

5. The strain and the strain gradient �elds [G]j and [∇G]j are calculated at time t = Tj and then used, by means
of Eqs. (11), to compute normal [uη]j and tangent [uτ ]j displacements, for every position X and for every
orientation ĉ. Such displacements are then given as input to the KKT conditions in Eqs. (56-59), taking into
account the de�nitions (60-63). The damage [Dη]j and [Dτ ]j and plastic

[
λtη
]
j
and

[
λcη
]
j
descriptors at time

t = Tj are recovered as an output of KKT conditions as follows. We proceed by calculating �rstly the damage
descriptors by using the plastic multipliers

[
λtη
]
j−1

and
[
λcη
]
j−1

at the previous time step t = Tj−1 and normal

[uη]j and tangent [uτ ]j displacements at the current step t = Tj

[Dη]j = max
{
D̃η

(
[uη]j ,

[
λtη
]
j−1

,
[
λcη
]
j−1

)
, [Dη]j−1

}
, [Dτ ]j = max

{
D̃τ

(
[uτ ]j

)
, [Dτ ]j−1

}
. (64)

Subsequently, each plastic descriptor is computed using the other plastic descriptor at the previous time step
t = Tj−1 and normal [uη]j and tangent [uτ ]j displacements and damage [Dη]j and [Dτ ]j at the current step
t = Tj ,[
λtη
]
j

= max
{
λ̃tη

(
[uη]j ,

[
λcη
]
j−1

, [Dη]j , [Dτ ]j

)
,
[
λtη
]
j−1

}
,
[
λcη
]
j

= max
{
λ̃cη

(
[uη]j ,

[
λtη
]
j−1

, [Dη]j , [Dτ ]j

)
,
[
λcη
]
j−1

}
(65)

Clearly, the order chosen to compute the above quantities is arbitrary and may be changed without causing,
for small loading steps, relevant di�erences in the solution. Remark that the present computational scheme is
explicit. In future works we intend to develop implicit schemes.

6. The load parameter ū is increased or decreased depending on the phase (loading or unloading) of the numerical
experiment.

The instructions above (from point 2) are repeated for the index j ranging from 1 to Nit until a termination criterion
is not veri�ed, i.e. the maximum number of cycles is reached. It is worth to mention that, aimed at smoothing the
constitutive assumption in Eq. (20) we replace the Heaviside function Θ (x) by the following smooth one

1

2
+

1

π
arctan

(x
α

)
, (66)
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so that the non-damaged normal sti�ness is replaced by a smooth function of the elastic normal displacement

kη =
1

2

(
ktη + kcη

)
+

1

π

(
ktη − kcη

)
arctan

(
uelη
α

)
, (67)

which, in turn, gives the damaged normal sti�ness as a smooth function of the elastic normal displacement

kη,D =
1

2

(
ktη + kcη

)
(1−Dη) +

1

π

(
ktη − kcη

)
arctan

(
uelη
α

)
(1−Dη) . (68)

The quantity α can be tuned to modulate the regularization. Large values of α enhance the convergence of the
algorithm. A value for α is considered, see Tabs. 1-2, as to give a su�ciently smooth and non-sti� problem while not
being detrimental to the congruence of Eqs. (20, 67) and Eqs. (21, 68), so that the physical meaning of α can be
overlooked.

5.2 Homogeneous deformations

5.2.1 Preliminaries to the homogeneous case

It can be easily seen that, when the �awless (i.e. no hole) specimen is considered, then boundary conditions in Fig.
3 imply homogeneous deformations. Thus, strain gradient terms in the deformation energy are not activated, i.e.
∇G = 0. The reason is that we have

u1 =
ū

S
X1, u2 = 0, ⇒ F =

(
1 + ū

S 0
0 0

)
, ⇒ G =

(
1
2

(
ū
S

)2
+ ū

S 0
0 0

)
, ⇒ ∇G = 0, (69)

and, from (12) and (14), normal and squared tangent displacement are

uη = L

[
1

2

( ū
S

)2

+
ū

S

]
(c1)

2
= L

[
1

2

( ū
S

)2

+
ū

S

]
cos2 θ, (70)

u2
τ = 4L2

[
1

2

( ū
S

)2

+
ū

S

]2 (
(c1)

2 − (c1)
4
)

=
(
L
ū

S

)2
[
1 +

( ū
S

)
+

1

4

( ū
S

)2
]

sin2 2θ, (71)

where the angle θ characterizes the orientation of the unit vector ĉ according to the following polar representation in
an orthonormal frame of reference (O, ê1, ê2)

ĉ = c1ê1 + c2ê2 = cos θê1 + sin θê2. (72)

First of all, we observe an elastic non-linear contribution in the strain tensor G, because it is not equal to the symmetric
part of the displacement gradient, namely the tensor E de�ned in (34), but it is the non-linear Green-Saint-Venant
strain tensor de�ned in (8), see also [?]. Besides, it is worth to be noted that, in the present uni-axial case (69), normal
displacement (70) is maximum for horizontal grain-pair orientations (θ = iπ, with i ∈ N) and minimum for vertical
grain-pair orientations (θ = (1 + 2i)π/2, with i ∈ N) and the tangent displacement uτ (71) is zero only for horizontal
and vertical (θ = iπ/2, with i ∈ N) grain-pair orientations, being maximum for oblique orientations (θ = (1 + 2i)π/4,
with i ∈ N). Finally, according to the sti�ness matrix evolution (28-33), we observe that homogeneous and initially
isotropic sample becomes anisotropic due to damage and plastic evolution.

5.2.2 Plastic condition in tension, i.e. ū ≥ 0

From (70), in the case of tension, the normal displacement uη is positive for every grain-pair orientation ĉ. Thus, we
have not only that the plastic compression multiplier is null, i.e. λcη = 0, but also that the tangent damage characteristic
length does not depend on the elastic normal displacement uelη , i.e.

∂Bτ
∂uelη

= 0.
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Thus, the KKT conditions for the plastic tension multiplier λtη and those for the damage descriptors, for the loading
condition (∆λtη ≥ 0, ∆Dη ≥ 0 and ∆Dτ ≥ 0) are

kη (1−Dη)
(
uη − λtη

)
− σtη = 0, Dη = 1− exp

(
−
uη − λtη
Btη

)
, Dτ = 1− exp

(
−|uτ |
Bτ

)
,

thus giving

exp (X) = XA, X > 0, (73)

where the elastic normal displacement and the variables X and A are de�ned as

uelη = uη − λtη + λcη = uη − λtη, X =
uelη
Btη

, A =
kηB

t
η

σtη
.

As a consequence, activation of plastic tension multiplier can be achieved only if Eq. (73) has roots, namely when the
following condition is met

A =
kηB

t
η

σtη
> e, (74)

where e = exp(1) is Euler's (or Napier's) number. This fact has been investigated in Fig. 5, where the homogeneous
case is calculated with di�erent values of A. The employed constitutive parameters are reported in Tab. 1 and results
are shown in terms of force/displacement diagrams.

L[m] kcη[J/m4] ktη[J/m4] kτ [J/m4] Bcη[m] Bτ0[m] α1[1] α2[1] σtη[J/m3] σcη[J/m3] α[1]

0.01 14 · 1014 14 · 1013 3 · 1013 1.5 · 10−7 5 · 10−8 10 14 4 · 106 4 · 107 0.5 · 10−9

Table 1: Parameters' values employed for homogeneous tension tests and cyclic loading tests. Employed values of the
normal characteristic damage length Btη in homogeneous tension tests, used to control the parameter A in Eq. (74),
are reported in the corresponding �gures. For cyclic loading tests, some of the parameters have di�erent values from
those reported in this table. For these test, the correct values are reported in Tab. 2.

It can be observed that for Btη = 3.5 · 10−8 and Btη = 0.75 · 10−7, i.e. when A < e, force/displacement diagrams
show no plasticity at all, because the condition in Eq. (74) is not ful�lled. In such a case, the plastic multiplier λtη
remains equal to zero. By increasing Btη, we are able to change such a qualitative behavior. When Btη = 0.8 · 107, we
have A = 2.8 > e and the condition in Eq. (74) is satis�ed. In such a case, we have null reaction force for non-zero
displacement. Increasing the value of the damage tension characteristic length, i.e. with Btη = 3.5 · 10−7, accumulation
of plastic residual deformation is even more evident. It is worth to be noted also that the change of the slope of the
force/displacement curve in the unloading part of the curve in Fig. 5 is governed by the change of normal sti�ness
from ktη to k

c
η when we pass from elastic tension (uelη > 0) to elastic compression (uelη < 0). This behavior it is expected

for the plastic case, where the plastic deformation may imply that the tension case (uelη > 0) does not always imply
the sign of the elastic normal displacement.

5.2.3 Cyclic loading with initial tension and with initial compression conditions

In this subsection, we investigate the plastic response under cyclic loading with initial tension condition and with
initial compression condition. The �rst case is analyzed in Fig. 6, where the number of cycle Ncycle is Ncycle = 1 but a
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Figure 5: Force vs displacement diagrams for homogeneous tension test obtained for di�erent tension normal charac-

teristic damage lengths Btη. By changing A =
kηB

t
η

σtη
, we observe di�erent material responses. Yellow and purple curves

correspond to the case when the condition A > e is satis�ed. Red and blue curves, for which the condition A > e is
not ful�lled, end at the origin, namely zero reaction force corresponds to null prescribed displacement.

convergence analysis is done with respect to the time-step, and the second case in Fig. 7, where the number Ncycle of
cycles is Ncycle = 10. In this second case, the �rst cycle starts with compression, decreasing the imposed displacement
ū from 0 to ūmin < 0. When the minimum value ū = ūmin of the imposed displacement is hold, we increase ū from
ūmin < 0 to ūmax > 0. After that we �nish the cycle decreasing the imposed displacement ū from ūmax > 0 down to
zero value ū = 0. Thus, the cycle is repeated a number Ncycle of times. In Fig. 7 force/displacement diagram for the
case of Ncycle = 10 is presented. In order to make plasticity more evident we chose the highest value for the tension
damage characteristic length Btη that was investigated in Fig. 5, and, in order to emphasize the damage growth, we
reduce the tangent damage characteristic length Bτ0 according to the Tab. 2. In the tension parts of the curve that
is shown in Fig. 7 we reach maximum plastic deformation already at the end of the �rst cycle and it does not change
anymore in subsequent cycles. However, in the compression parts of the curve the situation is di�erent. In fact, we
have that up to the 5th cycle, the reaction force is less than that of the previous cycle. This di�erence between tension
and compression parts of the curve is due to the fact, that ∂Bτ/∂uelη 6= 0 in compression activating the last term in
Eqs. (62, 63). We �nally remark that, after the 5th cycle, the maximum reaction force in compression remains the
same till the end of the simulation and the reason is that plasticity has completely inhibited damage.

Figs. 8 and 9 show polar plots of the irreversible descriptors. In this homogeneous case, on the one hand they
are uniform over the domain, but on the other hand they are a function of the grain-pair orientation ĉ (or, because
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Btη[m]
Bτ0[m] Ncycle Nθ ūmin[m] ūmax[m] α[1]

uniform non-uniform uniform non-uniform

3.5 · 10−7 1 · 10−7 1 · 10−6 10 2 120 −1.2 · 10−6 4 · 10−7 1 · 10−9

Table 2: Values of parameters used only for the cyclic loading tests. The quantity Nθ is the number of elements
employed to discretize the orientation range [0, 2π].

Compression

Tension

start

end

Figure 6: Force vs displacement diagram for homogeneous cyclic loading test with Ncycle = 1 and initial tension for
di�erent numbers Nit of iterations.

of (72), of the angle θ) and evolve with time. The dependence with respect to the angle θ is represented by the polar
plot and the evolution with time is shown by the black arrows. The horizontal grain-pair orientation (θ = 0 or θ = π)
corresponds to the direction of the applied load, which gives the fastest normal damage (left-hand side of Fig. 8) and
plastic multipliers (Fig. 9) growth rate. Tangent damage (that is shown on the right-hand side of Fig. 8) evolves
with (61). Thus, its evolution is a�ected both by the tangent displacement in the form of (71) and by the normal
displacement via the de�nition of the shear damage characteristic length Bτ in Eq. (42). It is worth to be noted from
polar plots of plastic multipliers, that are presented in Fig. 9, we estimate the number of cycles simply by following how
curve density is changing with increasing ū. Finally, in the present homogeneous case, strain gradient is null, ∇G = 0,
that means from eqns. (12) and (11), a symmetry of normal and tangent displacement with respect to the grain-pair
orientation inversion ĉ→ −ĉ, that imply the non-chiral behavior of the homogeneous case. The same symmetry holds
for damage and plastic descriptors.
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Compression

Tension start

the end of each cycle

Figure 7: Force vs displacement diagram for homogeneous cyclic loading test with Ncycle = 10 and initial compression.

𝐷𝜂 𝐷𝜏

Figure 8: Homogeneous cyclic test with Ncycle = 10. Polar plots of normal Dη (left) and tangent Dτ (right) damage.
Black arrows indicate directions of increasing loading time-step.
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𝜆𝜂
𝑡 𝜆𝜂

𝑐

Figure 9: Homogeneous cyclic test with Ncycle = 10. Polar plots of plastic multipliers in tension λtη (left) and in
compression λcη (right). Black arrows indicate directions of increasing loading time-step.

At the top of Fig. 10 we show the plastic relative displacement

ūplη (t) =
1

2π

�
S1

(
λtη − λcη

)
(75)

averaged over all grain-pair orientations and as a function of time. At the bottom of the same Fig. 10 we show
the plastic dissipation energy Wpl de�ned in (43). We observe that eventhough the plastic relative displacement is
reversible in time, the dissipation energy, as expected, is a non-decreasing time-function.

Figure 10: Homogeneous cyclic test with Ncycle = 10. Evolution of the averaged plastic displacement ūplη (t) (on the
top) and of plastic dissipation energy Wpl (on the bottom) with the loading time t.
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5.3 Non-homogeneous deformations under cyclic loading

We now proceed considering a non-uniform sample with a �aw under cyclic loading. Due to numerical costs we limit
ourselves to a low number of cycles, i.e. Ncycle = 2.

Compression

Tension
𝑁𝑖𝑡 = 0 (start)

𝑁𝑖𝑡 = 161 (end of 1st cycle);
𝑁𝑖𝑡 = 322 (end of 2nd cycle)

𝑁𝑖𝑡 = 140; 𝑁𝑖𝑡 = 301

𝑁𝑖𝑡 = 60;𝑁𝑖𝑡 = 221

Figure 11: Force vs displacement diagram for non-homogeneous cyclic loading test with Ncycle = 2.

Figs. 12-13-14-15 show the polar plots of damage and plastic descriptors at di�erent points of the specimen (at the
external boundary in Figs. 12-14 and in the neighborhood of the �aw in Figs. 13-15) for the non-homogeneous cyclic
test.

The heterogeneity of this case is shown by the fact that these polar plots are di�erent in di�erent points. Besides,
strain-gradient ∇G is di�erent from zero and becomes more and more relevant during the test especially for those
points in the neighborhood of the �aw. It is therefore there that strain gradient e�ects is more evident. First of all
the chiral symmetry ĉ → −ĉ does not hold for normal and tangent displacement in the neighboring of the hole and
therefore also for damage and plastic descriptors, that yields the chiral behavior of the non-homogeneous case, that is
evident for the internal points of Figs. 13 and 15.
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Figure 12: Normal Dη (top) and tangent Dτ (bottom) damage polar plot for external points in the non-homogeneous
case.
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Figure 13: Normal Dη (top) and tangent Dτ (bottom) damage polar plots for internal points in the non-homogeneous
case.
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Figure 14: Tension λtη (top) and compression λcη (bottom) plastic multipliers polar plots for external points in the
non-homogeneous case.
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Figure 15: Tension λtη (top) and compression λcη (bottom) plastic multipliers polar plots for internal points in the
non-homogeneous case.
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Fig. 16 shows the contour plots of the average plastic displacement ūpl de�ned in (75) for di�erent time-loading
steps. It is clear that plasticity is evident at the points around the �aw. As for the results in Fig. 10 for the
homogeneous case, eventhough the plastic descriptors λtη and λcη are monotonically increasing functions, as expected,
their di�erence upl = λtη − λcη is not and the plastic displacement upl, according to (37), can decrease its value. Thus,
we observe that the accumulated plastic displacement change its sign according to the loading phase of the test.

𝑁𝑖𝑡 = 1 𝑁𝑖𝑡 = 30 𝑁𝑖𝑡 = 60

Compression (1 - 60)

𝑁𝑖𝑡 = 100 𝑁𝑖𝑡 = 140 𝑁𝑖𝑡 = 161

Tension (61 - 141) Compression (142 - 161)

𝑁𝑖𝑡 = 162 𝑁𝑖𝑡 = 191 𝑁𝑖𝑡 = 221

Compression (162 - 221)

𝑁𝑖𝑡 = 261 𝑁𝑖𝑡 = 301 𝑁𝑖𝑡 = 322

Tension (222 - 302) Compression (302 - 322)

−3.73 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 0.81
× 10−7

Figure 16: Non-homogeneous cyclic test. Contour plots, for di�erent loading time steps, of the average plastic dis-
placement ūpl as de�ned, in each point of the domain, by Eq. (75).

Figs. 17 and 18 show the contour plots of elastic and dissipated energy densities for di�erent loading time-steps,
according to the de�nition, respectively (27) and (44). It is worth to be noted that the elastic energy in Fig. 17 is,
as expected, reversible in time and the dissipated energy in Fig. 18 is not. Moreover, concentration of elastic and
dissipated energy, because of the strain gradient contribution in the elastic energy, is not concentrated in one element,
but its size is due to the inter-granular distance L, that is a constitutive parameter of the problem.
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𝑁𝑖𝑡 = 1 𝑁𝑖𝑡 = 30 𝑁𝑖𝑡 = 60

Compression (1 - 60)

𝑁𝑖𝑡 = 100 𝑁𝑖𝑡 = 140 𝑁𝑖𝑡 = 161

Tension (61 - 141) Compression (142 - 161)

𝑁𝑖𝑡 = 162 𝑁𝑖𝑡 = 191 𝑁𝑖𝑡 = 221

Compression (162 - 221)

𝑁𝑖𝑡 = 261 𝑁𝑖𝑡 = 301 𝑁𝑖𝑡 = 322

Tension (222 - 302) Compression (302 - 322)

0 5 10 15 20 23

Figure 17: Non-homogeneous cyclic test. Contour plots of the elastic energy density for di�erent loading time steps.
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𝑁𝑖𝑡 = 1 𝑁𝑖𝑡 = 30 𝑁𝑖𝑡 = 60

Compression (1 - 60)

𝑁𝑖𝑡 = 100 𝑁𝑖𝑡 = 140 𝑁𝑖𝑡 = 161

Tension (61 - 141) Compression (142 - 161)

𝑁𝑖𝑡 = 162 𝑁𝑖𝑡 = 191 𝑁𝑖𝑡 = 221

Compression (162 - 221)

𝑁𝑖𝑡 = 261 𝑁𝑖𝑡 = 301 𝑁𝑖𝑡 = 322

Tension (222 - 302) Compression (302 - 322)

0 50 100 150 200 224

Figure 18: Non-homogeneous cyclic test. Contour plots of the dissipated energy density for di�erent loading time
steps.

Finally, in Fig. 19 we show the evolution of the load-free con�guration, that is calculated, for each time step, by
means of an elastic simulation of the same domain, with sti�nesses computed as in (28-33) at the current time step, by
removing the external loads, and making use of a set of kinematic boundary conditions that only eliminates the rigid
body motion. Clearly, in these simulations, only the pre-stress sti�ness (31) and the pre-hyper stress sti�ness (32) will
play a role. From an experimental point of view, this shape is easy to measure and it is due to the accumulated plastic
deformation.

28



𝑁𝑖𝑡 = 1 𝑁𝑖𝑡 = 30 𝑁𝑖𝑡 = 60

Compression (1 - 60)

𝑁𝑖𝑡 = 100 𝑁𝑖𝑡 = 140 𝑁𝑖𝑡 = 161

Tension (61 - 141) Compression (142 - 161)

𝑁𝑖𝑡 = 162 𝑁𝑖𝑡 = 191 𝑁𝑖𝑡 = 221

Compression (162 - 221)

𝑁𝑖𝑡 = 261 𝑁𝑖𝑡 = 301 𝑁𝑖𝑡 = 322

Tension (222 - 302) Compression (302 - 322)

Figure 19: Non-homogeneous cyclic test. Evolution of the load-free con�guration for di�erent loading time steps. The
scale factor is equal to 2.2 · 104.

6 Conclusion

This paper is devoted to the development of a continuum description for a special class of dissipative phenomena con-
sisting in damage and plasticity. Strong emphasis has been put to the case of materials having granular microstructure.
The present contribution extends a previous work [46], where only damage was taken into account. In the current
work, we introduce plasticity by de�ning two independent kinematic descriptors, namely the plastic multipliers, for each
position, time and grain-grain-orientation. Governing equations have been derived starting from a hemi-variational
principle, from which we have derived Karush-Kuhn-Tucker (KKT) type conditions, specifying the evolution of damage
and plasticity associated to each grain-grain interaction, and Euler-Lagrange equations for the objective total relative
displacement.

A series of numerical simulations for homogeneous and non-homogeneous deformations shows that grain-pairs
oriented in di�erent directions have di�erent loading histories, leading to complex anisotropic spatial patterns for
damage evolution and accumulation of plastic deformation. These simulations also show the evolution of competing
dissipative mechanisms, that is damage and plasticity, with loading. We observe that for certain set of parameters,
plasticity can arrest growth of damage. The converse is also possible and the presented model a�ords the �exibility of
modeling responses characterized by competing e�ects of damage and plasticity. For non-homogeneous deformations,
every material point of the continuum evolves di�erently. Plasticity and damage are concentrated in vicinity of the
�aw, as expected.

The key contribution of the presented model is the incorporation of simple local plastic interactions contributing to
an overall complex plastic response of the material. Except for the plastic dissipation energy, there are no additional
assumptions, such as �ow rules, needed to specify the plastic behavior. Cyclic loading-unloading histories have been
considered to elucidate the hysteretic features of the continuum, which emerge from simple grain-grain interactions.
The evolution of the load-free shape has been shown not only to assess the plastic behavior, but also to make tangible
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the point that, in the proposed approach, plastic strain is found to be intrinsically compatible with the existence of a
placement function.
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7 Appendix: justi�cation of normal and tangent relative displacement

de�nitions

Let us assume that the grain p is at the origin (Xp = 0) and the grain n at Xn = Lĉ.
For the placement �eld indicating an elongation along the intergranular axis ĉ,

χ (X) = X + α (X · ĉ) ĉ,

from the one hand, the grain p does not displace (χ (Xp) = 0 = u (Xp)), the grain n places at χ (Xn) = Lĉ+αLĉ with
a displacement u (Xn) = αLĉ. Thus, the displacement of one grain with respect to the other along the intergranular
axis ĉ is

[u (Xn)− u (Xp)] · ĉ = αL,

and no relative displacement occurs in the transverse direction. From the other hand, the deformation gradient,

F = ∇χ = I + αĉ⊗ ĉ = FT

is symmetric and the objective relative displacement yields,

unp = [I + αĉ⊗ ĉ] (Lĉ+ αLĉ)− Lĉ = 2αLĉ+ α2Lĉ.

Thus, for small deformation the de�nition (11)1of the normal displacement is justi�ed, i.e. uη = 1
2u

np · ĉ.
For the placement �eld indicating a shear deformation transverse (e.g. in a direction d̂) to the intergranular axis ĉ,

χ (X) = X + α (X · ĉ) d̂, ĉ · d̂ = 0,

from the one hand, the grain p does not displace (χ (Xp) = u (Xp) = 0), the grain n places at χ (Xn) = Lĉ + αLd̂

with a displacement u (Xn) = αLd̂. Thus, the displacement of one grain with respect to the other along the direction
d̂ orthogonal to the intergranular axis ĉ is

[u (Xn)− u (Xp)] · d̂ = αL,

and no relative displacement occurs along ĉ. From the other hand, the deformation gradient

F = ∇χ = I + αd̂⊗ ĉ

is not symmetric and the objective relative displacement yields,

unp =
[
I + αĉ⊗ d̂

] (
Lĉ+ αLd̂

)
− Lĉ = Lĉ+ αLd̂+ αĉαL− Lĉ = αLd̂+ α2Lĉ.

Thus, for small deformation the de�nition (11)2 of the tangent displacement is justi�ed, i.e., uτ = unp − (unp · ĉ) ĉ.
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