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Abstract

Describing the emerging macro-scale behavior by accounting for the micro-scale phenomena
calls for microstructure-informed continuum models accounting properly for the deformation
mechanisms identifiable at the micro-scale. Classical continuum theory, in contrast to the
micromorphic continuum theory, is unable to take into account the effects of complex kinematics
and distribution of elastic energy in internal deformation modes within the continuum material
point. In this paper, we derive a geometrically non-linear micromorphic continuum theory on the
basis of granular mechanics, utilizing grain-scale deformation as the fundamental building block.
The definition of objective kinematic descriptors for relative motion is followed by Piola’s ansatz
for micro-macro kinematic bridging and, finally, by a limit process leading to the identification
of the continuum stiffness parameters in terms of few micro-scale constitutive quantities. A
key aspect of the presented approach is the identification of relevant kinematic measures that
describe the deformation of the continuum body and link it to the micro-scale deformation.
The methodology, therefore, has the ability to reveal the connections between the micro-scale
mechanisms that store elastic energy and lead to particular emergent behavior at the macro-
scale.

keywords: micromorphic continuum, microstructured solids, granular micromechanics, higher-
order theories, finite deformations

1 Introduction

Micromorphic continuum models provide an approach to describe micro-scale structural and me-
chanical effects in the continuum description of material behavior [1-4]. For micromorphic models
to be representative, it is important to link the continuum fields with the micro-scale mechanisms.
For instance, when we seek descriptions of the collective behavior of a large number of grains, as
in the case in which a material’s granular microstructural effect need to be modeled, it is necessary
to describe the effects of grain and grain-grain interface deformations (termed as micromechanics),
which could be highly localized and directional, as in the case of Hertzian contacts [5,6]. These grain



deformations could be non-uniform due to the grain-shape and interfacial /surfacial characteristics or
due to the grain-neighborhood structure (termed as microstructure). The grains can also experience
rotations relative to their neighboring grains further contributing to the overall deformation of the
collective system [7,8]. These peculiarities of granular systems renders the modeling of the behavior
that emerges at the macro-scale (containing large number of grains) particularly challenging. It is
now widely accepted that the classical continuum approach (or the Cauchy format) fails woefully in
representing the true nature of the micro-structured material behavior and describe many observed
phenomena at the macro-scale, even though it serves well for a number of engineering problems.
There is growing realization that to describe the emerging macro-scale behavior of these materials
faithfully and with increasing fidelity, it is necessary to consider continuum models in which the
deformations at micro-scale are properly accounted. A key shortcoming of the classical continuum
theory is its inability to describe the effects of complex kinematics and distribution of elastic energy
in internal deformation modes within the continuum material point. In this regard, it is worth-
while to recall that in the early development of the continuum modeling of deformable media in
the works of Navier, Cauchy, Poisson and Piola, the material was viewed as composed of molecules
(particles) that attract and repel each other [9-11]. Many materials, particularly at the scale in
which granular microstructures appear, can be treated in a similar sense in which the deformation
of an interacting grain-pair can be effectively described in terms of the relative movements of the
grain centroids/barycenters regardless of the location of the actual deformation within the grains.
Indeed such a treatment can serve as a point of departure for both discrete and continuum models.
Examples of discrete models range from atomistic and molecular (see among a very large literature
base [12,13]) to more recent large grain models (see among others [14,15]). Continuum models
of these materials that proceed from this approach are traced to early part of 20th century (see
historical context in the review [16]) to more recent models such as those in [7,17,18] devised for
the case of small deformations to account for internal deformation modes.

In discrete models the key kinematic variable is the grain motion, thus by their nature, these
models describe the fate of every grain as a result of its interactions with the neighbors and by
extension the whole collection. Discrete models, therefore, can result in grain trajectories (that
can include grain translations and grain spins) and spatial distributions of deformation energies
and their potential decomposition into various deformation modes. The extensive approach is also
a principal drawback of discrete model as the detailed data is, in many cases, distinguished by
the lack of accurate knowledge of grain locations, shapes and surface type/conditions and every
possible grain-pair interaction relationships. Nevertheless, simulations using discrete models [19-29]
have been suggestive and have led to the recognition of certain micro-scale phenomena, such as
localization of energy into small zones of grain/atomic clusters [30, 31]or localization bands and
vortices [32,33], propensity of micro-rotation [34], identification of floppy modes [35], and so-called
"force-chains’ (see for example [14, 36-38]). Many of these micro-scale phenomena, particularly
those related to certain clustering of grain displacements and coherent/incoherent grain rotations,
are attested to by experimental measurements of grain motions such as [39,40]. For describing
the many relevant phenomena exhibited by grain collections detailed information regarding precise
grain trajectory is unnecessary. However, the grain-scale kinematics have profound relevance in the
macro-scale description of granular materials representing the emergent collective behavior of large
number of grains. Indeed, the practical pathway to the control of macro-scale behavior by accessing
the micro-scale lies in their representative linkages based upon predictive theories [41]. The recent
realization of metamaterials based upon pantographic motif that link to second gradient continuum
description [42-50] and chiral granular materials that link to Cosserat continuum are exemplar
of such predictive micro-macro theoretical identifications [51-54]. These works have shown that
successful efforts to link micro- to macro-scale lead to generalized continuum theories and these can,
therefore provide efficient ways for rational design of (meta)materials (as opposed to trial and error
or other ad hoc approaches, see for example the review by [55,56]). Remarkably these micro-macro
identifications indicate how the stored elastic energy can be distributed within internal deformation
modes, including second [57-69] and higher [35] gradient modes, grain rotations/spins [7], and non-
standard coupling of shear and rotations [70,71].

In the spirit of developing such micro-macro identifications in a generalized setting of finite de-
formations that account for geometric nonlinearity, we focus in this paper upon a micromorphic
continuum description of materials in which granular microstructural effects need to be modeled. In



these cases, Taylor expansion of only conventional macro-scale kinematic descriptor is not represen-
tative and additional kinematic descriptors may be introduced to accurately describe the response as
in Cosserat or micromorphic media [17,18,51,72-83]. To this end we utilize neighboring grain-pair
deformation as the fundamental building block and develop objective kinematic descriptors for rela-
tive displacements following Piola’s ansatz for micro-macro identification. Micro-scale deformation
energy is then introduced in terms of the developed objective relative displacement decomposed
into a component along the vector that represents the directors of generic grain-pairs centroids
in the system, termed as normal component, and a component in the orthogonal plane, termed
as tangential component. For the present work, a quadratic form of the micro-scale deformation
energy is utilized to obtain an identification for the case of geometrically non-linear isotropic elas-
ticity. As a result, expressions for elastic constants of a linear novel micromorphic continuum are
obtained in terms of the micro-scale parameters. The plan of the paper is the following. Subse-
quent to this introduction, in Sec. 2, the discrete and continuous models describing a granular
system are presented. Particularly, the discrete model, whose kinematics is ultimately specified
in terms of a position and a micromorphic deformation gradient for each subsystem — a granular
aggregate — termed here as sub-body is introduced first. The continuum model is then introduced
and discrete-continuum kinematic bridging is performed through the Piola’s ansatz. Specialization
of the proposed approach to Cosserat and strain-gradient continua through proper restrictions of
the micromorphic deformation gradient is subsequently discussed. Section 3 builds on the previous
sections, which are exclusively concerned with the kinematics of the studied systems, by introducing
the elastic strain energy for the discrete model and the corresponding one for the continuum model
as the result of a homogenization procedure based on the Piola’s ansatz. More specifically, relative
deformation measures are introduced followed by the definition of the elastic strain energy function
in the nonlinear case. Special emphasis is given to the nonlinear 3D isotropic case for no intergran-
ular micromorphic deformation effects and to the linear 3D isotropic case for general intergranular
micromorphic deformations. Finally, conclusions are briefly presented.

2 Discrete and continuous models for granular systems

2.1 Discrete model

For a material with granular microstructure, the discrete granular model is illustrated, as a general
example, in Fig. 2.1. In the reference configuration we have N sub-bodies. Each sub-body is
composed by many grains and is assumed to be a continuum, one point of which is labeled X,, € B,
with n = 1,...N. All other points of the sub-body are labeled X! € B,. When this material
undergoes deformation, the point X, is placed, in the present configuration, at z,, via the placement
function x,, i.e.,

Tn=xn(t), VtER, VYn=1,...,N, (1)

where t is the time variable. While all the other points X/, € B,, of the grain n are placed, in the
present configuration, at 2}, via a different placement function x/,, i.e.,

2 =x.(X.,t), VteR, VX, €B, VYn=1,...,N, (2)

n

in such a way that, evaluating this second placement function at X; = X,,, we have
Xo (Xnst) =xn (t), VteER, Vn=1,...,N.

The sub-body B,, is assumed to be sufficiently small that a Taylor’s series expansion of x/, centered
at X/, = X, can be truncated at the first order, i.e.,

=X, (X ) =xn(t)+ P, (t) (X, — X)), VteER, ¥Yn=1,....N (3)

n n

where deformation gradients are defined,




Figure 1: Discrete model. Each sub-body B, with n = 1,... N in the reference configuration is
represented with black boundaries and is composed by many grains. Each grain is represented with
blue boundaries. For each sub-body B,, two placements are defined. The placement of the point
X, belonging to one of the grain of the sub-body B,,, is xn (¢), according to (1). The placement
of the point X/, belonging eventually to another grain of the sub-body B,,, is x/, (X, t), according
to (2).

and the truncation is equivalent to assuming an affine deformation of each sub-body B,,.
Thus, the kinematics of the discrete model is completely described, for each sub-body B,,, by
the following two functions

Xn(t), Py (t), VteR, V¥n=1,...,N.

2.2 Continuum model

The continuum model is described in Fig. 2. In the reference configuration we have a continuum
body C*. Each point of this continuum is called X € C*. The same point X is the representative
of a micro-structure at a different, smaller scale, and may be another continuum. Any point within
this micro-structure is called X’. The point X is placed, in the present configuration, at = via the

placement function Yy, i.e.,
r=x(X,t), VteR, VX el (4)

Further, the points X’ of the micro-structure are placed, in the present configuration, at =’ via a
different placement function x’, i.e.,

¥ =x(X,X"t), VteR, VX eC* (5)
in such a way that, evaluating it at X’ = X, we have
X (X, X, t)=x(X,t), VteR, VXeC* (6)

The micro-structure is assumed to be sufficiently small that a Taylor’s series expansion of the
placement function x’ (X, X', t) centered at X' = X can be truncated at the first order, i.e.,

o =X (X, X' t) =y (X,t) + P(X,t) (X' = X), VteR, VXeC* (7)
where the micromorphic deformation gradient P = P (X, t) of each micro-structure is defined,

ox’

P:P(th): )
OX' | xi=x

VteR, VX € C*. (8)

and where (6) has been considered. The truncation of (7) at first order is equivalent to assume
an affine deformation of each micro-structure. Thus, the kinematics of the continuum model is
completely described by the following couple of functions

x(X,t),P(X,t), VteR, VXeC



The deformation gradient, in this case, is defined by two gradients: the gradient Vy of the placement
function, and the gradient VP of the micromorphic deformation gradient
195% oP

F=F(X,t)=Vxy=—-~, VP

X’ =X 9)

Thus, the Green-Saint-Venant tensor G (or non-linear macro-strain) and the micromorphic Green-
Saint-Venant tensor M are defined as in (10)

G=>(F'F-1), M=%(7’T7’—I)v (10)

| —

In addition, a relative micro-macro Green-Saint-Venant tensor (or non-linear relative deformation)
is defined as
YT=(I-P'FT). (11)

Note that the tensor Y defined in (11) vanishes when P = F, i.e. when the micromorphic deforma-
tion gradient P equals the deformation gradient F. Such a tensor is nothing but a strain measure
taking into account the differential deformations of the continuum element and the microstructure.
Further, considering that a polar decomposition holds for both the micromorphic deformation gra-
dient and the macro deformation gradient, it can be concluded that the tensor T takes into account
also the differential rotation between the micro- and macro-scale. Remark that, as it will be shown
in the sequel, the definition of T in (11) is only one of the possible non-linear generalizations of the
relative deformation v defined in Mindlin’s work [1]. It is also worthwhile to define the following
third order tensors, the so-called first and second non-linear micro-deformation gradients

A= (Flvp)", AT = (PTvP)™

(12)
where the transpose operator T3 refers to the first and to the third indices of the third order tensors
A and A" as better defined in index notation as follows,

VP)

ha ( aji = ‘Fft_alpajai7 (13)

Aijn = ([f_lvp]m)ijh = (F7'VP),, = (F )

b= ([PTVP]"™) = (PTVP), = (P), (VP)y: = PanPaj (14)

hji ha aji

We remark that the tensors defined in (10), (11) and (12) are objective as shown in the following.
Let @ be a general orthogonal matrix giving a change of the frame of reference, let [F] be the matrix
representation of the deformation gradient F, [P] be that of the micromorphic deformation gradient

P and [V P] be that of its gradient. This leads to
[Fl=@Q[Fl. [Pl=QI[P]. [VP]=Q[VF],

where [F], [P] and [VP] are the matrix representations of the same tensors F, P and VP,
respectively, in the rotated, via @, frame of reference. It is straightforward to show that the matrix

representation [G] of the Green-Saint-Venant tensor in this rotated frame of reference is the same
as that in the initial frame of reference, denoted by [G],

1 1 1

@] =5 (A" F-m) =5 (F Q" - 1) = 5 (F"F - 1) = (€],

where [I] is the identity matrix. The same frame indifference can be demonstrated for the micro-
morphic Green-Saint-Venant tensor M, using the matrix representations [M ] and [M] as

] =5 (P17 [P] - 1) = 5 (11" @* QP - ) = 5 (PI" (P~ 11]) = (M),

for the relative micro-macro Green-Saint-Venant tensor Y, using the matrix representations W] and
[T] as

M =m-P" [F " =P QI " —1=P" F " —1=[1],



C*

XX X', t)

Figure 2: Continuum model. The reference configuration of the continuum body is C*. Each point
of it is called X € C* and its placement is x (X,t). Such a point X is the representative of a
micro-structure, e.g. the cube in the figure. Within the micro-structure (thus, within the cube in
the figure) two placements are defined. The first, according to (4), is the same placement x (X, t) of
the point X. The second, according to (5), placement y’ (X, X’,t) define that of any other points
X' of the micro-structure.

for the first relative micro-deformation gradient using with the matrix representations [A] and [A]

. . T
(or with that of its transpose 1 — 3 counterparts [A 13} and [AT32]) as

] =77 VP = 171 QTQ VP = [} [VP] = [AT].

and, for the second relative micro-deformation gradient, using the matrix representations mr] and

[A;] (or with that of its transpose 1 — 3 counterparts [KTTIS} and [AT:2]) as,

5] =[P [VP] = [P/ Q7QIVP] = [PI" [VP) = [AT].

2.3 Identification via Piola’s ansatz

In the continuum-discrete models identification, we follow Piola’s ansatz, such that
X (X5, t) = x: (¢), P(X;,t)=P;(t), Vi=1,..,N, VteR. (15)

The (15) implies that the placements x; (¢) and the micro-deformation P; (t), with ¢ =1, ..., N, of the
N sub-bodies B,, in the discrete model illustrated in Fig. 2.1 correspond to the placement y (X, t)
and the micro-deformation P (X,t), evaluated respectively at the points X; with ¢ = 1,..., N, of the
body C* in the continuous model given in Fig. 2. With this in mind, we will utilize the discrete
model only as a guiding justification for the constitutive assumptions postulated in the following
Section 3. Needless to say, the content of this paper refers to the continuous model of Fig. 2.
The connection with the discrete model is only suggestive of possible micro-scale mechanism that
could be revealed through the Piola’s ansatz (15) and is useful for the introduction of the indicated
constitutive assumptions. We note that no attempt is made here to give an evolution equation of
each grain as one would for a completely discrete description.

2.4 Cosserat and strain-gradient continua obtained by proper restrictions
of the micro-deformation P

We note that restrictions on the micro-deformation P = P (X, t) define different type of microstruc-
tural continua. First of all, no restriction on P defines a micromorphic continua, but (i) an orthogonal
micro-deformation P define from (10) Cosserat continua,

P € Orth, = M =0,



and (ii) second gradient continua are obtained when the micro-deformation P is identified with the
deformation gradient F,
P=F=(Vx),

that implies (iia) zero non-linear relative deformation Y from (11), (iib) identification of the Green-
Saint-Venant tensor G' and of the micromorphic Green-Saint-Venant tensor M from (10),

T=0, G=M,

(iic) identification of the 13-transpose second relative micro-deformation gradient A” and non-linear
macro-strain-gradient tensor VG,

(A" =PTVP = FTVF = VG,

and (iid) the following relation between the first relative micro-deformation gradient A and the
non-linear macro-strain-gradient VG,

(M) =PTVP =F 'VF=F 'FTF'VF =C7'VG,
where the left Cauchy-Green deformation tensor C is defined,

C=F"F.

3 Elastic strain energy

3.1 Relative deformation measures

Let us now assume that two sub-bodies, n and p, respectively placed in the reference configuration
at X, and X, are neighboring ones, that their distance is L in the reference configuration and that
the unit vector ¢ is defined as follows,

X, — X, = ¢L. (16)

In the reference configuration, therefore, the vector attached to the position X,, and pointing to the
position X, is éL and given in (16). Further, let us restrict the present model to the case in which
the sub-bodies, n and p, place and deform similarly in the present configuration, and therefore the
following Taylor’s series expansions are possible and yield

X(Xnvt) gX(Xpﬂt) +(VX)XP (Xn 7X;D) :X(Xp7t)+]:(Xn 7Xp)' (17)
P (Xn,t) 2 P (Xp,t) + (VP)x (X — Xp). (18)
F(Xp,t) 2 F(Xpt). (19)

We can now define the following 3 objective tensors that may be utilized to represent the material
deformation that are traceable to the micro-scale grain-pair relative displacements

g (0 = 5 [F7 (X 0) F (X )~ 1], (20)
m"P (t) = % [PT (Xp,t) P (X,,t) — 1], (21)
V() =1 = P (Xp, t) F7T (X t), (22)

where the superscripts n and p refers to the microstructures placed at X,, and at X,. We call the
tensor ¢ in (20) the macro deformation, the tensor m™ in (21) the micro deformation and the
tensor v in (22) the micro-macro deformation. The proof of their objectivity is analogous with
that derived at the end of subsection 2.2.



By insertion of the Taylor’s series expansions (18-19) into the 3 definitions (20-21-22), yield,
respectively,

9 (1) = 5 [FT (X 1) F (X, 0) ~ 1) = L [F7 (X, 1) F (X,,0) 1], (23)

m"? (t) = % [PT (Xp,t) P (X, t) — 1] =
= % [PT (Xp,t) P(Xp,t) — 1] + %PT (Xp, 1) (VP) ., (Xn = Xp), (24)
’an (t) =1-pr" (Xnvt) FT (Xpat) =

=1 - PT (X, t) F~T (Xp,t) — [(VPT) (X - Xp)] FT(X,1). (25)

X

The use of objective Green-Saint-Venant tensors in (10), (11) and (12) into (23), (24) and (25),
yield,

gt =a (26)
L 1o, L . .7

m"”:M—&-iP VPc:M—i-E(cA) (27)

YP =T - L[(VP")¢] F~T =7 — LeA (28)

The last two equations are derived easily in index notation as follows
np L, r . L . L. ..
mij = Mij + 5 (P )ia (Vp)ajk Cp = Mij —+ gpaiPaLka = Mij —+ §Akjick,

VP =" —L(VP), , & (F*T)aj =Yij — LPaipéuF;," = YTij — LF; ' Pai vé = Yij — Léy Ay,

where the definitions (13) and (14) have been considered.
Thus, we define the objective relative displacement, i.e. the macro-relative displacement, with
(26),
u"P =2Lg"P¢ = 2LGé, (29)

the micro-macro-relative displacement, with (28),
d"? = Ly"Pé = L (Y — LéA) é (30)
and the micro-relative displacement, with (27),
7P = 2Lm"P¢ = 2LMé 4 L2¢ (éA”) (31)
that, in index notation, are
ui? = 2LGi 5, dT = LYy¢5 — LPApijéney, P = 20My¢;5 + LPAjyéq6y

The half projection of the objective relative displacements on the unit vector ¢, defined in (16),
is the so called normal displacements u,,. In the same way d,, is defined as the normal micro-macro-
relative displacement and r,, is defined as the normal micro-relative displacement,

1
un = §u”p -6 = LGijéiéj, dn =d".¢= LT”éJéZ - L2Aabcéaébéc7 (32)
Ty =1 &= 2LM;;¢;¢; + LPAL, CaCle. (33)

abc
Their squares are
uy = (LGij¢ic;) (LGapCals)
dyy = (LYi5¢5¢; — L Nyjnéicsen) (LT apéaly — L* NapeCalole) ,

17 = (2LM;;¢;¢; + LPAJ;,6:¢56n) (2LMapéale + L* Ay Calole) |

abce

2
n



and therefore

u% = LQGijGabéiéjéaéb, (34)
d7 = L2035 apitéaly — 2L°YijAapelitjCahle + L*AjjnAapelit;énialyle, (35)
17 = AL? M Mayéijéaly + AL Mij ALy 2i65¢qCole + LAY Ny Ciéiinéalole, (36)
Uydy = L*Gij T ap6i¢iéaly — LPGijMapeCitjCnéabple, (37)
wyry = 212Gy Mayéi€j¢aby + LPGij N}y Ci6j6nEathee, (38)
Tydy = 207 M;; Y 0p@:¢60Cy + LPY 15 A0y 8161 CnCalhle (39)
— L3 M5 Aapeticjénéatyle — LAY Aapelicjénéalyle.
The tangent displacement w. is defined
ur = u"? — (u"? - ¢)é. (40)
as well as its square
uZ = u" u" —ul = AL*Gi;Gap (6ialiCh — EiCjCaly) (41)

The tangent micro-macro-relative displacement d, and the tangent micro-relative displacement
are defined
d. =d" — (d" - ¢)é.

rr=1r"" — (r"P . ¢)¢. (43)

o}
~~
H~
N
~

Thus, their squares are calculated as follows

d2 = LYY ap [¢j¢00ia — CiCjCaly) (44)
=213 Aape [65Cabebip — €:6jCatple] + L*NijnAabe [€i08nCale — 6i6iCnEatple] s
72 = AL*M;; Moy [65600i0 — €i¢jEa) (45)
FALP M}y, [656aebiy — Ei8Catle] + LA ALy, [6808nCale — Ei€jeniatyie]

3.2 Definition of the elastic strain energy function in the nonlinear case

The elastic energy function for a given couple of sub-bodies, say the couple n — p considered in
Section 3.1, is assumed to be a quadratic form of normal and tangent components of the macro-
relative displacement (29), of the micro-macro-relative displacement (30) and of the micro-relative
displacement (31),

Une — % k2 + %kTuz + %kdnd% + %k(hdz + %kmrg + %k”rz + yaundy + KurtnTy + krarydy,, (46)
where k,, k7, Kay, Kdry Kryy Krry Kud, kur and k,q are 9 elastic constitutive coefficients of the present
formulation. In principle, in the anisotropic case they all are a function of the unit vector ¢, i.e. they
are 9 orientation distribution function of the stiffness of the continuum. In particular, k, and &,
are the normal and tangent stiffness defined and used in [84]. Here the kinematic characterization
of the material is more complicated and we have also the normal kg4, and tangent kg, micro-macro-
relative stiffness and the normal k., and tangent k,, micro-relative stiffness. Besides, the presence
of three scalar invariants w,, d, and 7, makes possible three kinds of elastic interactions, i.e. the
displacement-micro-macro-relative interaction with the homonymous stiffness &, 4, the displacement-
micro-relative interaction with the homonymous stiffness k., and the micro-macro-micro-relative
interaction with the homonymous stiffness k,.;. We also note that the quadratic assumption in (46)
is a first step. Other potential functions can be introduced that can lead to material nonliearity,
and for the case of asymmetric tension-compression response evolving anisotropy (see for example

[85]) and chirality [84] can emerge at the macro-scale when subjected to loading. Insertion of
(34-41-35-44-36-45-37-38-39) into (46) and integrating over all the orientations of the unit circle S!
in the 2D case or over the unit sphere S? in the 3D case, yields
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or, in a compact form we have

1 1 1
U= §(Cijleiijl + §BijabTijTab + §AijhabcAijhAabc (47)

FDi5k1m YijArim + FijrimAijrGim + Gijr YijGra,
1
+§(C:jklMiijl + D7k Mig M, + Dkt (Tig A — MijAgim)

ijklm ijklm

1
+§AgjhabcAgjhAgbc + GluMijGri + Fiinim A Gim + B Mij Tap

where the elastic stiffness C, B, A, D, D", D", F, F", G, C", A" and B" are identified in (47) as
follows, with the symmetrization induced by the symmetry of the strain tensors G and M

Cijr = L? /S ] (ky — 4kr) Ei¢je18) (48)
+L? - kr (8inCiér + 6ucjr + Ojuiy + 05¢:Ck) |
Bijy = L2 /S Uiy — bar) i+ barbial €300, (49)
Ajjhape = L* /$1~2 [(Kan — Ear) ¢ + kardjp] €iCnlale, (50)
Dijabe = —L° /51,2 [(Kan — Ear) CiCy + kardip] ¢jCale, (51)
viabe = 2L° /S (Kpy — kpr ) €656 + %k” (€50 + Ci0jp)] Cales (52)
e = L /S  FraitjCatule, (53)
Fijhim = —L3 /S . kuaCiCiCréilm, Flipm =L /S - hurticilrticm, (54)
Giji = L? /S kuaCitjéués, Gy = L? /S Kurijérén, (55)
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ikl = 4L2/ . (kry — krr) Gi6jC06 + (56)
S

+L2/ krr (0iCj€p + 641856k + 0k CiC + 6516:¢k) ,
St.2

tiap = 2L / g kyatiCjCrly. (58)
St,

3.3 Nonlinear 3D isotropic case in absence of micro deformation m"”

Let us assume that the micro deformation m™ do not have a role in contributing to the elastic
deformation energy (47). In this case, we can see from (31) that the micro-relative displacement r"?
does not contribute to the elastic deformation energy (47). The consequence is that micro-relative
displacement 7, and r, play no role in the elastic energy expression (47), as seen from (33) and (43).
Therefore, we assume that the corresponding stiffness constants with subscript r, are null, that is

Thus from (52), (53), (54)2, (55)2, (56), (57) and (58) we have that the corresponding stiffness
tensors with superscripts r,

D=0, D=0 F =0, G =0, C =0, A"=0, B =0,

are null and therefore the elastic energy (47) is reduced to be in a form that is the analogous of that
in eq. (5.1) in Mindlin [1],

1 1 1
U= §(Cijleiijl + §BijabTijTab + §AijhabcAijhAabc (59)

+Ds500m YijAkim + FijrimAijnGim + Gijra Tii Gra-

We will prove in Subsection 3.4 that (59) is nothing else than a possible non-linear geometric
generalization of eq. (5.1) in Mindlin [1]. Besides, in the isotropic case Mindlin [1] in eq. (5.4) has
given, among the isotropic identification D = 0 and F = 0 (at the end of page 15 in Mindlin [1]),
the following representations

Cijrr = A0ijOrt + p10ik0j1 + p20i16k, (60)
Bijri = 01035081 + b20ikdj1 + 3651051, (61)
Gijki = 910:0k1 + 920ik051 + 930410k, (62)
Ajjrimn = a10i0110mn + a20i0kmOnt + a30:j0kndim (63)

+a4010:10mn + a5610imOni + a60;10in0im
+a70ki610mn + a86ki0jmOni + a90ki0jnOim
+a100310m 0kn + @110510km Oin + @120k10im0jn
+a130:10jn0km + a14610kn0im + @150k10in0jm,

with those conditions that are made explicit at the end of page 16 in Mindlin [1], i.e.,
H1=p2 =, G2=¢g3 @1 =40 G2 =40a9, G5 =0a7, Gi1 = Gi2. (64)

Insertion of (64) into (60), (61), (62) and (63) into the compact form of the strain energy (59) we
have

1 1 1
U= 5)\51'3'5sz¢ij1 + §M5ik5leiijl + §M5iz5jkGiijl

1 1 1
+§b16ij5leikal + §b26ik5leikal + §b36i16jkTikal
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1 1 1
+§a15ij5kl677LnAijkAlvnn + §a25ij5km5nlAijkAlmn + §a35ij5kn5lmAijkAlmn

1 1 1
+§a45jk6il§mnAijkAlmn + §a55jk5im6nlAijkAlmn + ialajkainélmAijkAlmn

1 1 1
+§as5ki5jl5mn1\ijk/\1mn + §as5ki5jm5nl/\z‘jk1\lmn + §a25ki5jn5lmAijkAlmn

1 1 1
+§a1o5u5jm5kn/\ijk/\lmn + §a115jl5km5m/\ijk1\lmn + §a115kl5im5jn/\ijk/\1mn

1 1 1
+§a135il5jn5kmAijkAlmn + §a145jl5kn5imAijkAlmn + §a155kl5in5ijijkAlmn

+916:5001 Y i5Gri + 92051051 Vi Gy + 92040055 i G
or, expanding the Kronecker symbols, it yields a geometrical non-linear generalization of eq. (5.5)
in Mindlin [1],
1 1 1
U = 5)\Giiij + /,LGijGij + iblTiiTjj + ibQTijTij (65)
1
+§b3TijTji + 1 G+ 92 (T +15) Gij
1 1
+a1 N Apmm + a2 NiigAjr; + §a3AiikAjjk + §a4Aijinkk
1 1
+asNij; Agir + §a8AijiAkjk + ialoAijkAijk + a1 A
1 1 1
+§al3AijkAikj + §a14AijkAjik + §a15AijkAkji-

The aim of this Subsection is to identify the corresponding 18 isotropic micromorphic constitutive
coefficients, i.e., A, p, b1, b, b3, g1, 92, a1, a2, as, as, as, as, aio, ai1, @13, a14 and ay5. To do this,
we impose the isotropic condition by assuming no dependence of the 5 elastic stiffness ky,, k-, kay,
kqr and k.4 with respect to the orientation ¢ (or, in the present 3D case, to the co-latitude 6 and
to the longitude ), i.e.,

= kn — ]}T _ kdﬂ _ I_Cd‘r
kﬂ (Ga QO) - 47__‘_a kT (97 QO) - 471'7 kd'f] (07 gp) - Ar ) de (0, QO) - A ) (66)
kua (0,0) = %:_i, ¢1 =cosfcosy ¢y =cosfsing ¢z =sinb, (67)

where l_cn, l_cT, l_fdn, kqr and kg are the averaged stiffness over the unit sphere 52, that are defined
in the general anisotropic case as follows,

2 ™ 2 ™
ky = / [/ ky, (0, @) sin 9d9} de, k., = / [/ kr (6, ¢)sin gdg} do,
0 0 0 0
_ 27 ™ B 2m s
Kan = / { / kan (0, ¢) sin edﬂ} dp,  kir = / [ / Ear (0, ¢) sin ede} do,
0 0 0 0
2 ™
kua = / [/ kvua (0, ) sin 9d9} dep.
0 0

Insertion of (66-67) into (48), (61), (62) and (63) yield the following and desired identification:

2, I
A=Cun=1r (ky —4k;), p=Cioz= = (ky + 6k,) (68)
. 2 _
by = Bi1g2 = B1oo) = b3 = I (kany — kar), Biaiz =by = I (Kay + 4kqr) (69)
L2
Gri22 =91 = G212 =92 = ﬁkuda (70)
* - -
At12233 = a1 = Aq12323 = a2 = Aj12332 = a3 = 105 (k?dn - de) ) (71)
* - -
Aq20133 = a4 = Aq22313 = a5 = Aq21303 = ag = 105 (kay — kar) (72)
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4

Aj23231 = a11 = A123132 = a13 = A123213 = a14 = ﬁ (l%dn - EdT) (73)
L* -
A123123 = a10 = A123321 = a15 = 105 (kdn + 6kd7’) . (74)

3.4 Linear 3D isotropic case for general micro deformation m™

From the definition of the deformation gradient F' = Vyx in (9); and of the micromorphic defor-
mation gradient P in (8), we define the displacement gradient H and the transpose micromorphic
displacement gradient W,

F=I1+H, P=I+9". (75)

Thus, the first non-linear micro-deformation gradient, for small displacement approximations, is
simplified from (13),

ANijn = Fil Paji 2 (Oha — Hia) Pajii 2 6naPajii = Prji = Vjni = Kijh, (76)

and the second non-linear micro-deformation gradient, for small displacement approximations, is
simplified from (14),

Aiin = PanPaji = (Oan + Yha) Paji = 6anPaji = Prji = Yjni = Kijn, (77)

that means that, in the linear approximation, the first A and the second A" non-linear micro-
deformation gradients are the same third-order tensor x, that is called the micro-deformation gra-
dient. Besides, the Green-Saint-Venant tensor G (or non-linear macro-strain), the micromorphic
Green-Saint-Venant tensor M and the micro-macro Green-Saint-Venant tensors T (or non-linear
relative deformation), for small displacement approximations, are simplified from (10) and (11)

G:%(H+HT+HTH)%%(H+HT):€7 (78)

Tl (I+0)(I-HT)=HT — ¥ =, (79)
1 1 1 1

M= (U+ 07 +007T) = o (U4 07) = S (HT —y+ H—9") =e— 5 (v+797). (80)

that means from (80) that, in the linear approximation, the micromorphic Green-Saint-Venant tensor
M depends upon the Green-Saint-Venant tensor G and upon the micro-macro Green-Saint-Venant
tensor Y and it is not anymore an independent strain measure. Besides, the non-linear macro-strain
G is simplified from (78) in the macro strain e and the non-linear relative deformation Y is simplified
from (79) in the relative deformation . Thus, the three strain measure from (78), (79) and (76)
are the same defined in Mindlin [1] respectively in eqns. (1.10), (1.11) and (1.12), viz.,
1
€ij = 5 (wij tuga) Yig =g = Vijs Kijk = Uy (81)

Insertion of the linear approximations (76-80) into the general form of the elastic energy (47), yields

1 1 1
U= §C?jkz€ij6kl + §B?jkl’)’ij’7kl + §A?jhabc“z‘jh“abc (82)
D kim Yij Skim + FiipimKijk€im + GijuYijem (83)
j j j

where new constitutive tensors (with the super-script n) are defined in terms of that defined in
(48-58),

o)
~

Ciirt = Cijr + Cijry + 2G5,
Bk = Bijrr + Clijyery + 2Bijymes

oo oo
(=2

n o r
ijhabc — Aijhabc + Aijhabc?

oo
~J

vikim = Dijkim + Diiyeim + D eim.

oo
oo

n .. T _mnrr T
iikim = Figkim + Diijp imijk + Fijkim
noo__ r r r

ikt = Gkt + Cly + Glijym + Bijrrs

o~~~ o~ o~ o~

oo
e
N D D T
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where the symmetrization and skew-symmetrization rules

1

1
Auj) = 3 (Aij + Aji) Apj = 3 (Aij — Aji),

have been used in (84-89). Insertion of (48-58) into (84-89) yields the explicit identification of the
new constitutive tensors,

n =L /S k= Ak + Ak — Ay + 2kr) 885000 (90)
—|—L2/ (kr + krr) (03Cj¢1 + 031CjCk + 051CiC + 0518:¢k)
82
BY,, = L7 /S (ki = e Ay = Ak + Aha) 564161 (91)
+L2/ (krr + kar) (0ik€€) + kpr (6486, + 066 + 016:6k) ,
82
. , 11 » 1 o
ijhabc — L < kdn - kd‘r + §kr17 - ikm‘ - krd CjCp + kd‘r + ikr‘r 5jb cichcacca(gz)

?jabc - Lg/ [<_kdn + de + 2k7‘n - 2kr‘r) ézébé] + (kr‘r - kd‘r) 611)6] + krTéi(Sjb] éaéw (93)
S2

G?jkl =17 / (kud + kur + 4k‘r,7 — 4k, + Qde) C;CjCrCy, (95)
S2

In the isotropic case, among (66) and (67), we assume also the independence of the remaining
stiffness with respect to the unit vector ¢, i.e.,

ol

]_fr rT
kTT] (9390) = T;a kT’T (9390) = AT 9 kUT (0750) = Ar )

]_'Cur lzjrd
kva (6, 0) = 2rd.
i0.9) =724 (90)

In this case the Lame’s constant in (68) are differently identified from insertion of (66-67-96) into
(90)

1 _ _ _ _ _

A=CPy = BL2 (ky — 4k + 4kyy — Akyr + 2ky,) (97)
1 _ _ _ _ _

p=Clyy = 1—5L2 (ky + 6kr + 4kyy) + 6kpr + 2Ky, ) (98)

so that the Young’s modulus and the Poisson’s ratio,

3+ 2u A
- , v=— 99
Xy " 200+ (99)
are identified as

1o, = - . (5ky + 20k + 10ky,)
Y = —L? (k, + 6ky + 4kyp + 6kpr + 2Ky ) ———— T . 100
15 (Fkn K )2(kn+k7+4km+k”+2kw) (100)

]_C - 4];77- 4]_9,« - 4];:7*7- 2]_91“”

, — (Fn + A  2hur) (101)

A (ky + Er + Ak + K + 2k

These expressions for the stiffness parameters in 90 to 95 provide an essential seed for an initial
estimation of all the elastic parameters that characterize a micromorphic continuum. It is remark-
able that these first estimates indicate that such materials are described by several characteristic
lengths, which can be multiples of relevant grain-size, and represent the influence of grain-scale
micro-mechanisms on the emergent behavior at the macro-scale. These micromechanisms may in-
clude those that resemble the floppy behavior of pantograph, best described by second-gradient
macro-scale continua analyzed in [35,86], or other mechanisms that require additional kinematical
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descriptors to capture the deformation energy of grain-pair [7,17,51,71]. It is also noteworthy that it
is possible to estimate the elastic parameters a micromorphic continuum in terms of a few parameters
that link to the micro-mechanisms without recourse to ad hoc prescriptions or a priori (over) simpli-
fications. For certain, relatively simple micro- mechanisms and structures, such linkages can indeed
be identified, synthesized and experimentally characterized as discussed in [51,52]and [42-50,87-90].

4 Conclusion

For accurate and tractable description of the mechanical behavior of a large class of materials which
at some spatial scale possess granular microstructure, refined models, such as the micromorphic
models, are needed. Such models are particularly significant for bridging, in a heuristic way, across
spatial scales ranging from that at grain interactions to collective behavior of large numbers of grains.
At meso-scales of few grains to tens of thousands of grains, discrete simulations can be conceived
that provide the trajectories and distribution of grain-scale deformation energies. It is worthwhile
to note here that although discrete models have proliferated over the past several decades, their
systematic validation through experimentally measured particle trajectories and grain-scale energy
distributions have been characteristically sparse (absent to the knowledge of these authors). At the
macro-scales consisting of large number of grains of various sizes, interfaces/surfaces, composition
and arrangement (collectively micro-mechano-morphology), discrete models could be intractable. In
these cases, micromorphic continuum models can serve as effective reduced-order models that can
capture many essential aspects of the grain-scale mechanisms. This paper describes an approach to
construct such micromorphic models in the framework of finite (geometrically nonlinear) deforma-
tions using the concepts of granular micromechanics. The key aspect of the described approach is
the identification of the appropriate kinematic measures that describe the macro-deformation and
link it to the micro-deformation, formulation of the deformation energies in terms of these measures
and the application of energy methods to identify the constitutive relations. Such an approach
permits potential identification of inner deformation modes that store elastic energy contributing
to the emergent behavior at the macro-scale, and indicates the pathway to access these modes with
the view of rational design of (meta) materials.

Furthermore, we would like to identify a number of potential outlook of the presented approach.
First, the isotropic identification we have shown can be extended to an anisotropic one by the use of
proper non constant orientation distribution function instead of (66-67-96). Second, the truncation
of the Taylor’s series expansions (18-19) up to the first order in terms of the kinematic descriptors
results in a first-grade continuum theory. Such a limitation can be removed to obtain higher order
gradient continuum theories without unduly augmenting the number of the constitutive coefficients
that need to be experimentally identified. Third, the quadratic assumption (46) can be generalized,
such as with Leonard-Jones type potential to take into account elastic-hardening effects and tension-
compression asymmetry that can lead to emergence of anisotropy. Fourth, dissipative phenomena
such as damage [84] and plasticity [91] can be included by using for example an hemivariational
approach or by assuming dissipation energy in terms of additional entropic irreversible kinematical
descriptors. It is further remarkable that plastic deformation in the present micromorphic form can
give rise to inelastic microstructural rotation.
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