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Abstract: Particle mixing process is critical for the design and quality control of concrete and
composite production. This paper develops an algorithm to simulate the high-shear mixing process
of a granular flow containing a high proportion of solid particles mixed in a liquid. DEM is employed
to simulate solid particle interactions; whereas SPH is implemented to simulate the liquid particles.
The two-way coupling force between SPH and DEM particles is used to evaluate the solid-liquid
interaction of a multi-phase flow. Using Darcy’s Law, this paper evaluates the coupling force as
a function of local mixture porosity. After the model is verified by two benchmark case studies,
i.e., a solid particle moving in a liquid and fluid flowing through a porous medium, this method
is applied to a high shear mixing problem of two types of solid particles mixed in a viscous liquid
by a four-bladed mixer. A homogeneity metric is introduced to characterize the mixing quality
of the particulate mixture. The virtual experiments with the present algorithm show that adding
more liquid or increasing liquid viscosity slows down the mixing process for a high solid load mix.
Although the solid particles can be mixed well eventually, the liquid distribution is not homogeneous,
especially when the viscosity of liquid is low. The present SPH-DEM model is versatile and suitable
for virtual experiments of particle mixing process with different blades, solid particle densities and
sizes, and liquid binders, and thus can expedite the design and development of concrete materials
and particulate composites.

Keywords: smoothed particle hydrodynamics; discrete element method; Darcy’s law; homogeneity
metric; particle mixing process

1. Introduction

Mixing of granular materials is crucial in a broad range of industrial processes, in-
cluding constructional material production, advanced composite manufacture, mineral
processing, plastics manufacturing, ceramic component, pharmaceutical tablets, and food
products. Mix uniformity plays a critical role for the overall performance. Many exper-
imental approaches have been employed in quality control of the mixing process, such
as sampling, visual tracking, magnetic resonance imaging, rheometer measurements, etc.
Among others, Khan et al. [1] used high speed image analysis to track the tracer particles,
through which the dispersion coefficients are obtained according to fluctuating velocity
components and partial mean-free path. Although these methods provide valuable insight
of the mixing processes, their applications are limited due to the low consistency and high
labor costs [2–4].

Moreover, it is time-consuming to develop a new particulate composite through such
a trial-error method. Therefore, numerical simulation becomes an alternative to investigate
granular flow dynamics.For solid applications, Orefice and Khinast applied DEM to study
the transporting process of screw conveyors with different inclinations and filling levels [5].
And Sinaie simulated the size effects of concrete samples with DEM [6]. He et al. [7]
investigated the interesting phenomenon of axial segregation and its key factors of the
mixing process in a rotating drums. In [8], the authors extended the original DEM to an
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explicit model for identical superellipses that 2D discrete Fourier is applied to approximate
the overlapping part explicitly. Among mixing problems, liquid-solid mixing becomes
more common, and a reliable model to simulate the solid-liquid mixing process is highly
demanded. Different approaches have been proposed to tackle the liquid-solid granular
flow problems, which could be classified mainly to three categories: continuous media
models, discrete particles models, and their combination [2,4,9].

Continuous media models treat both solid and liquid phases as interpenetrating
continua. This scheme works well for problems with small deformation, but often fails in
problems with large deformation, such as mixing problems. In comparison, discrete particle
methods can simulate the dynamics of particulate mixtures and are capable of dealing with
moving boundary problems in the mixing process, such as the Molecular Dynamic (MD),
Discrete Element Method (DEM), Smooth Particle Hydrodynamics (SPH), and Dissipative
Particle Dynamics (DPD). In these methods, some specific treatments are generally required
to evaluate the coupling between solid particles and liquid particles [10–12].

Other methods combine continuous media and discrete particles, such as CFD cou-
pling DEM [13,14], where CFD is implemented to simulate fluid as a continuum medium
and DEM is applied to simulate solid particles as meshless discrete particles. For mix-
ing problems where the solid load is high, but not high enough to apply liquid bridge
models [15–17], the coupled CFD-DEM approach can be time consuming in modeling the
moving boundary and discretizing the complex geometry, and SPH provides a practical
method to simulate the liquid phase among a large number of solid particles with only a
small number of liquid particles.

To tackle mixing problems with an intermediate to high solid load, SPH-DEM coupling
is a promising approach. Cleary [12] proposed a one-way coupling SPH-DEM model to
simulate slurry transport. Sun [18] introduced pressure difference and drag forces between
liquid-solid interactions, and validated them with rotating drums filled with solid-liquid
mixtures. Jonsen [19] employed the DEM stiffness to couple SPH with DEM, and obtained
expected torque in a rotation drum; while Canelas [20] applied the SPH momentum
equation to the interactions between solid and liquid particles and demonstrated the
feasibility by comparing the simulation with the experiments in free surface solid-fluid
flows. Robinson [21] introduced the local average N-S equation into coupling methods
and validated the scheme with solid sedimentation in liquid. Robin’s scheme was later
improved and applied to a high-shear mixing problem by Kwon [22] and Qi [23].

In comparison to DEM particles added to SPH liquid, some preliminary work has
been conducted towards SPH liquid flow in porous media. Shao [24] and Zhu [25] treated
porous structures as boundaries for SPH particles, which are in a smaller size compared to
the porous structures. Jiang [26] proposed L-J potential between SPH and solid skeleton
particles and demonstrated that the scheme can reproduce Kozeny’s formula of perme-
ability. Peng [27] presented resistance interactions between solid and liquid SPH particles
based on Darcy’s law and validated the method with a porous media case study.

However, it is still challenging for the coupled SPH-DEM method to simulate particle
mixing with a high solid load due to the difficulty of calculating the interaction force
between SPH and DEM particles, because most previous models were built under the
assumption that solid particles are fully saturated by the liquid phase. This work aims
at the solid-liquid mixing problems with very high solid loads, say up to 90% in volume.
Here the key issue is how to calculate the interaction between liquid and solid particles.
To compute the local liquid density, solid particles are considered to be rigid without any
overlap with each other. Rather than excluding solid particles by dividing porosity in the
density computation [21], this paper includes solid particles in density computation to
avoid potential instability at a high solid load. SPH momentum equation is employed for
the interaction between solid and liquid particles, in which the effective viscosity coefficient
varies according to its local porosity following Darcy’s Law without using any artificial
drag forces. This approach considers the nature of particle interactions in mesoscale, and is
more efficient and effective for computation.
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In the following, the numerical algorithm and formulation of the two-way DEM-SPH
coupling method are introduced first. Two benchmark studies, i.e., (1) a solid particle
sedimentation among liquid and (2) liquid flow through a porous media, are presented
to verify the model for the parameter calibration. Subsequently, the present method
is applied to high shear particle mixing problems, and a series of parametric studies
are conducted. The local average mixing index is the main criterion to evaluate the
homogeneity of the mixture, which will be used to optimize the particle mixing process for
homogeneous mixtures.

2. Algorithm and Formulation
2.1. Smoothed Particle Hydrodynamics (SPH)

The Smoothed Particle Hydrodynamics (SPH) has been widely used for simulating
fluid flows, since it was first developed by Gingold [28] initially for astrophysical problems.
It was later used for simulating free surface flow [29] among other applications [30]. SPH
is a mesh-free Lagrangian method, using particles to discretize continuous fluid field.
“Smoothed” means that the property of the fluid field could be smoothed from discrete
particles using a kernel function. Even though it is a particle based method, continuous
fields of the fluid could be obtained by the weight average of neighbor particles through a
kernel function. SPH could be applied to computer visualization and animation [31,32],
as well as calculations on physical systems such as free surface flow [29], shock [33] and
violent impact flows [34].

In an SPH model, each particle has its properties such as position, velocity, mass,
pressure and energy. Pressure and temperature are functions of density and kinetic energy,
respectively. During the flow process, the mass of each particle stays constant while the
density keeps changing as the flow is assumed to be weakly compressible. For any variable
f (x) at point x, SPH discretizes the domain to particles as follows:

f (x) =
ˆ

V
f (x′)W(x − x′, h)dx′ =

ˆ
V

f (x′)W(r, h)dx′ (1)

where W(x − x′, h) is the kernel function with features of positive and monotonically
decrease with distance [35] and r = |x − x′|; h is the Kernel length which determines the
interaction domain of the kernel function; V is the material domain. In this work, Cubic
Spline kernel function [36] is implemented:

W(r, h) = A

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 1.5 × r2

h2 + 0.75 × r3

h3 if r < h

0.25 × (2 − r
h
)3 if h ≤ r < 2h

0 if 2h ≤ r

(2)

where A =
1

πh3 for 3D simulation. The larger the value of h, the more the neighboring

particles to be counted [37]. Different values of h are chosen for specific problems of interest
considering a balance between accuracy and efficiency.The value of W(x − x′, h) is zero
when the distance between x and x′ is larger than 2h, thus the effective integration domain
is the material within a sphere with radius 2h centered at x. The density of each particle in
SPH is calculated by the mass and kernel functions as follows:

ρi = ΣmjWij (3)

where Wij = W(xi − xj). The governing equation of SPH are derived from the Navier-
Stokes(N-S) equation as follows:

dv
dt

= −1
ρ
∇P + g + ν∇2v (4)
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In practice, the continuity equation is automatically satisfied due to the principle
of mass conservation of each particle [38]. Besides the N-S equation, SPH assumes that
pressure is a function of density through equation of state. Among various equations
of state, the Tait equation of state is widely used in fluid mechanics [29,35], which is
expressed as:

P(ρ) =
c2

0ρ0

7
[(

ρ

ρ0
)7 − 1] (5)

The Tait equation has a parameter of sound speed c0. This is the sound speed in the
SPH fluid. It is usually chosen lower than the physical value, depending on the specific
problem size to make the system more stable and yet maintain a low Mach number (lower
than 0.1) in an incompressible flow [34,39]. To discretize the momentum equation, the
commonly used momentum equation for particle i and particle j is applied

mi
dvi
dt

= −Σmimj(
Pi

ρ2
i
+

Pj

ρ2
j
)∇iWij + Fμ + Fb (6)

where

Fμ = Σmimj(
4ν0rij · ∇iWij

(ρi + ρj)(r2
ij + 0.01h2)

) (7)

is laminar viscosity [40], ν0 is the kinematic viscosity of the liquid, and Fb is body force that
directly added to the particle on liquid, such as gravity. Because the liquid’s viscosity is
relatively high in this work, laminar viscosity is used to represent the actual viscosity.

Notice that due to the approximation using discrete particles to represent a contin-
uous flow, the modeling parameters in a particle method will not only depend on the
fundamental material properties, but also change with particle size, modeling scale, and
neighborhood cutoff-distance, among other factors. To obtain repeatable and reliable re-
sults, a procedure for the calibration and verification of the modeling parameters should
be conducted before using the method in virtual experiments. Section 3 will demonstrate
the procedure to select appropriate parameters based on the existing theoretical results.

2.2. Discrete Element Method (DEM)

Discrete Element Method (DEM) is a numerical method to simulate the motion and
interaction of granular materials as discrete particles. The major physical law is the
momentum conservation, i.e., Newton’s second law. The governing equations of DEM
could be written as:

dr I

dt
= V I , mI dV I

dt
= F I , I I dωI

dt
= T I

r (8)

where I I , ωI , and T I
r stand for momentum of inertia, rotation speed, and torque of particle

with index I, respectively. DEM particles have radius, and thus can have torque. He and
Bayly coupled DEM and SPH to simulate interactions of liquid with solid phase [41]. In the
methodology part, they considered the torque only for solid phase. Luding listed equation
of DEM particles with absence of torque, and both of them obtained reasonable results [21].
Following the second one, the torque of DEM particles is not considered. Generally, DEM
models could be classified to two types: hard-sphere and soft-sphere models. In the
hard-sphere model, movements of particles are determined by momentum conservation.
Only one collision is permitted at one time and it happens instantaneous; forces between
particles are normally not explicit, and the hard-sphere model is mainly used in rapid
granular flows [42]. The soft-sphere model allows small overlap (or deformation) of parti-
cles to calculate the elastic, plastic and frictional forces between them. The computational
framework follows the similar way to the molecular dynamics (MD) simulation.
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Among the existing soft-sphere models, there are various approaches proposed to
solve the relation between particle overlap and interaction forces. The most common
method is the linear spring-dashpot (LSD) model, in which the interaction between two
particles is expressed by a normal spring and dashpot, a tangential spring and dashpot, and
a torque [43]. It could be further simplified by only considering the spring force based on the
relative velocity between particles to simulate the dashpot force [44]. The spring force part
can resist against contraction and expansion of particle interactions, and the dashpot force
part introduces friction and damps out the numerical scheme divergence. In DEM model,
the underlying assumption is that all the particles are rigid sphere, and no deformation or
bending is considered. Since the size of all particles are small and their shape is sphere, this
assumption is reasonable. The damping force is used to stablize the numerical scheme and
is the standard approach in DEM method. Other contact models for DEM simulations have
also been proposed, such as Hertz [45], Mindlin and Deresiewicz theories [46]. Although
the LSD model is the most widely used one in DEM simulations because of its simplicity
and computational efficiency compared to those non-linear models, the selection of force
parameters in LSD DEM formulation is crucial to the success of simulation results.

In the LSD modeling, there are two types of forces: normal (F I J
n ) and tangential forces

(F I J
t ), which can be decomposed to a spring and a dashpot for elastic and dissipative forces,

respectively, as follows

F I J
n = knΔrI J

n nI J − CnV I J
n (9)

F I J
t =

{
−ktΔrI J

t t I J − CnV I J
t if |F I J

t | ≤ μ|F I J
n |

−μ|F I J
n |t I J if |F I J

t | > μ|F I J
n | (10)

where ΔrI J
n = |Δr I J

n | and ΔrI J
t = |Δr I J

t | are normal and tangential displacements, respec-
tively; kn, Cn, and kt, Ct are spring stiffness and dashpot damping coefficients along normal
and tangential directions, respectively, and μ is friction coefficient.

To reflect the physics correctly, it is important to use appropriate DEM parameters,
and there are various approaches to predict these parameters analytically [47]. The normal
damping coefficient Cn can be determined analytically by normal spring stiffness kn and
restitution coefficient e, as well as the friction coefficient μ, which are normally the inputs
to the DEM simulation [48,49].

Cn = 2
√

me f f kn
ln en√

ln2 en + π2
(11)

where me f f = mImJ/(mI + mJ) is the effective mass of particle I and J, and en = 1 means
pure elastic collision, while en = 0 is for perfectly inelastic collision. Several existing
works have been proposed to determine normal spring stiffness by matching the maximum
strain energy [50], maximum normal overlap [47], and dimensionless contact duration [51]
to the non-linear models. And μ and en could be determined by directly applying their
physical properties.

The tangential spring stiffness kt and damping coefficient Ct can also be determined
as follows [48]:

kt =
2
7

kn, Ct = 0.5Cn (12)

Although the parameters in the above force units have clear physical meaning, it is
not straightforward to identify the appropriate value in the DEM simulation due to the sig-
nificant simplification in material modeling, time integration, and geometric consideration.
Therefore these parameters are also determined through comparing numerical results with
classic contact mechanics models, such as the Hertz model, the Johnson-Kendall-Roberts
(JKR) model, the Derjaguin-Muller-Toporov (DMT) model, etc., or calibrated by the experi-
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ments. For example, in many cases, the normal spring stiffness kn, restitution coefficient
e, and the friction coefficient μ are directly calibrated by the experimental results [47].
Therefore, a virtual experiment shall be set up with those parameters being calibrated and
validated by the physical experiments.

2.3. Coupling between SPH and DEM

When liquid and solid particles coexist and interact with each other, the coupling force
should be considered. In this work a two-way SPH-DEM coupling method is introduced.
In contrast to one-way coupling where only one kind of particles exert force on the other,
the two-way coupling means that both SPH particles and DEM particles exert forces on
each other. Prior to computing the coupling force, the density of SPH particles needs
to be revised to prevent overlap between DEM and SPH particles. To this end, one can
introduce the concept of porosity, and then the volume fraction of liquid and solid phase
are specified [21]. For an arbitrary particle i, its porosity Po is computed as below:

Poi =
ΣliquidV

ΣallV
(13)

Then the density of the SPH liquid particle is calculated by the weighted sum of its
neighbor particles divided by its porosity:

ρi =
ΣmjWij

Poi
(14)

In this way, when a DEM particle enters the neighborhood of a SPH particle, the
porosity of this SPH particle decreases, and its density increased, generating repulsive
forces between its original neighbor SPH or DEM particles (since pressure is an increasing
function of density, as mentioned before). When these neighbor particles reach balance
again, the number of SPH or DEM particles in the SPH particle’s region is decreased,
thus making room for the entering DEM particle and no particles are overlapped during
this process.

However, at mixing cases where the solid load is as high as 80% to 90%, the porosity
of SPH particles is inevitably low, which makes the computation of liquid density sensitive
to the changes of its position and easy to become unstable. To solve this problem, a new
method to compute the SPH particle’s density is proposed as below:

ρi = ΣliquidmjWij + ΣsolidmjWij (15)

where the mass of solid particles is included in the computation of SPH particle’s density
because the solid particles play a dominant role for the mix at a high solid load. Note
that the mass of solid particles in the above equation is not exactly the solid mass, but the
mass of liquid in the same amount of the solid’s volume. In other words, solid particles
are treated as liquid while computing SPH particles’ density. In this approach, no overlap
between solid and liquid particles will appear, and the scheme is still stable for even high
solid loads, because there is no large fluctuations of SPH particle’s densities during the
simulation process.

As for the coupling forces between DEM and SPH particles, one common approach
is to apply buoyancy or pressure gradient forces and drag forces on DEM particles, and
then apply the counteractive forces on SPH particles to attain two-way coupling. This
approach is based on the assumption that solid particles “float” in liquid, in which liquid
take the majority of the space. However, when the solid load is high, the assumption that
solid particles are fully saturated by liquid particles does not hold anymore. In this work,
a more fundamental formulation is derived and the coupling forces are still comprised
of two parts, i.e., pressure gradient force and viscous force. For the pressure gradient
force, the formula is the same as the SPH pressure gradient force, i.e., treating part of the
solid-liquid interaction as SPH pressure gradient forces. Pressure gradient forces make
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SPH and DEM particles stable and do not overlap, while the essential coupling mechanism
is the viscous force.

In flows among porous media, when the solid portion of the porous media is high, its
macroscopic behavior can be described by Darcy’s Law [52]:

v =
k
μ
∇P (16)

where v is the velocity of the flow, k is the permeability of the porous media, μ is the
viscosity of the flow, ∇P is the pressure gradient. Darcy’s Law describes a fluid flow
through a porous medium, which was formulated by Henry Darcy based on the results
of experiments [53]. SPH is a Lagrangian fluid dynamics method as it traces motion of
certain coordinates of particles. In Equation (4), the Lagrangian time derivative become
0 due to its weakly compressible feature. The viscous force in SPH depends on the local
density and distribution of neighbor particles, and it changes linearly with the velocity
difference, which matches Darcy’s law. Since pressure gradient force is proportional to ∇P,
at equilibrium state it could be seen that the viscous force Fd follows:

Fd ∼ vμ

k
(17)

In this scheme, since permeability k is a function of porosity, the viscous force between
DEM and SPH particles is a function of porosity. When the liquid load is high enough in
the simulation, the interactive viscous force between DEM and SPH particles will be close
to the viscous force between the SPH particles. Depending on the porosity of the target
particles, the coupling viscous force will be multiplied by a coefficient, which is a function
of porosity, and satisfies the classical Darcy’s Law [25,26,52]:

f d
ij = λ f d,SPH

ij (18)

where

λ = 1 +
CΦ2

(1 − Φ)3r2
(19)

in which Φ is the volume fraction of the solid. Φ is calculated for all the liquid particles,
and for a liquid particle i, its Φ is calculated as

Φ =
ΣsolidmjWij

ΣliquidmjWij + ΣsolidmjWij
(20)

and f d,SPH
ij is the drag force between particles i and j that calculated using Equation (7), the

SPH viscous equation. When Φ is 0 it is pure liquid, λ = 1. When Φ is high, λ >> 1, and

the value of λ is approximately proportional to
Φ2

(1 − Φ)3r2
, which is the classical result

observed in experiment [27]. And C is a parameter to be determined by experiments too.

2.4. Boundary Conditions

For DEM particles, their interactions with boundary could be simulated using the LSD
model, where the forces are computed through the overlap between particles and boundary.
The relevant parameters could be determined analytically or through experiments.

For SPH particles, it is not straightforward to set boundary conditions in particle
dynamic simulations, because when SPH particles approach a rigid boundary, the support
domain of the SPH particles in the kernel function is cut off by the boundary [54]. Periodic
boundary condition can avoid this problem. For fixed boundary conditions, one way
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is to set dummy particles to approximate the interface between the fluid phase and the
boundary. The dummy particles will be counted to update normal particle’s density, but
their position and velocity will not be updated. They are predefined to be fixed at the
boundary. In this study, to be consistent, SPH particles share the same boundary conditions
as DEM particles.

2.5. Stability

For DEM particles, the critical time step, or the collision duration is expressed
as below:

tc,n = π

(
kn

me f f
− C2

n

4m2
e f f

)
(21)

In convention, the time step is chosen as Δt = min(tc,n/50) to maintain the stability
of the simulation. To approach the physical values, the time step Δt has to be very small,
which makes the simulation very time consuming. On the other hand, sometimes the
normal spring stiffness does not play a crucial role towards the simulation results so it
could be reduced to increase the critical time steps. Considering these two aspects, usually
kn is determined in the scenario when the maximum overlap between two solid particles
is less than 1% of their diameter, and in this way the computation efficiency of DEM
simulation is substantially improved [55,56].

The main requirement for the time step in SPH is that particles do not travel through
its neighbor particles in one time step [38], which leads to a criterion as

t1 = min

√
(

h
fk
) (22)

where fk stands for the resultant force associated with particle k.
In addition, during each time step a wave does not travel out of the domain [57],

which leads to another criterion as follows:

t2 = min
h

cs + h max
uk,l xk,l

x2
k,l

(23)

where cs is the speed of sound in simulation, xk,l and uk,l are position and relative velocity
between particles k and l.The condition for global stability constraint is the combination of
both criteria:

Δt = C min(t1, t2) (24)

where C is the Courant number, chosen in the range of 0.1 to 0.3. For a coupling problem,
the time step should satisfy both DEM and SPH requirements.

2.6. The Mixing Index

During the mixing process, the particle distribution keeps changing until a relatively
uniform distribution is achieved. It is therefore necessary to quantify the mixing state. In
this work the local average index is implemented to test the homogeneity of the mixture.
In this method, a 3D grid will be constructed over the chosen domain. The size of each cell
in the 3D grid, i.e., the Representative Volume Element(RVE) should be at least five times
of the average particle diameter [55] so that the local averages of a selected properties,
such as mass, density, diameter, etc., are statistically meaningful. Then the local average
values will be calculated using all the particles within the cell, so that the probability
distribution for the local averages can be constructed. Afterwards, the mean, standard
deviation, and coefficient of variation η (defined as mean divided by standard deviation)



Materials 2021, 14, 2199 9 of 24

will be computed over the entire domain of local cells at each time step. In this work, the
number fraction of certain type of particles in each RVE is chosen as the target value to test,
and its value in each RVE and its variance among all the RVEs are calculated. If the mixture
is homogeneous, the number fraction of any type of particles will be similar in each RVE
and the variance among all the RVEs is low. Two ideal limits will also be calculated for
η for the fully segregated ηs and fully mixed states ηr, so that η can be normalized to the
range of 0–1 to characterize the quality of particles mixing which is expressed as

ξ = (η − ηr)/(ηs − ηr) (25)

where ξ = 0 indicates a fully mixed states; while ξ = 1 suggests a fully segregated state.
The local average index is not only a good indicator of the homogeneity of the final mixture,
but also a natural measure of the mixing rate. Moreover, this method is also very effective
in the experiment perspective. Depending on the sizes of the particles in the mix design,
different RVEs could be chosen to test the mixing quality.

2.7. Particle Dynamics Parallel Simulator (PDPS)

The simulation in this work is done by software package Particle Dynamics Parallel
Simulator (PDPS), developed in the Pao Sustainable Engineering and Materials Laboratory
(Pao Lab) of Columbia University. It was inspired and designed based on the structure
from the open source molecular dynamics software LAMMPS (http://lammps.sandia.
gov/index.html, version: 16 March 2018). When observing the lack of available sources
to conduct particle dynamics simulation with various particle based potentials, such as
SPH, DEM, dissipative particle dynamics (DPD) [58], etc., we were motivated to provide
a general platform for researchers interested in particle dynamics simulation and virtual
experiments of large particle systems.

PDPS is written in C++, and it uses Message Passing Interface (MPI) to conduct
the parallel computing in a distributed memory environment. It can be run on both a
single processor or multiple processors machine which can compile C++ and support the
MPI library. The parallelism is fulfilled by using the domain decomposition technique,
which has been demonstrated as one of the most efficient parallel algorithm towards
molecular dynamics simulation [59]. A schematic illustration of the domain decomposition
is shown in Figure 1, in which the entire domain is discretized into 3D grids and each grid is
assigned to a processor. Only particles inside the local domain belongs to the corresponding
processor, and every few time steps the particle list is updated as certain conditions are
triggered. In high shear mixing problems, most of the particles are packed uniformly at
the bottom of the mixer container because of gravity, which makes the decomposition of
subdomains easy and MPI parallel scheme is efficient.
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Figure 1. A schematic illustration of the domain decomposition technique.

Similarly to LAMMPS, the architecture of PDPS includes the following modules: (1)
initialize the computational model; (2) build the list of neighbor particles; (3) calculate
pairwise forces between particles based on the neighbor list (4) time integration (i.e.,
velocity-Verlet algorithm) to update particle position and velocity; (5) repeat step (2) if
simulation is not finished. Pairwise force computation is the most time consuming part,
thus the time complexity of the particle dynamics simulation problem is O(n × k), where n
is the total number of particles simulated, and k is the average number of neighbor particles
that each particle has, typically around 100. A flow chart is provided in Figure 2.

Figure 2. A flow chart of the computational steps with PDPS.

3. Benchmark Studies

One major concern of particle dynamics methods is how to choose simulation pa-
rameters correctly. In this work, the parameters in simulation is chosen from classical
benchmark studies. Parameters used in the SPH-DEM model are chosen to match some
classical solid-liquid two phase flow problems, and these parameters will be applied to
solid-liquid mixing problems.



Materials 2021, 14, 2199 11 of 24

3.1. A Single DEM Particle Falling in a Fluid

In this case, a single DEM solid particle falling in a fluid of many SPH particles is
investigated. This test is the first step to validate the feasibility of the DEM-SPH coupling
method. As shown in Figure 3, the simulation domain is a cylinder tank with radius 20 cm,
height 30 cm.

Figure 3. Sedimentation of a single DEM particle among SPH liquid particles.

Properties of DEM and SPH particles are listed in Table 1. In Table 1, h is the smoothing
length of SPH particles, and it is considered as the radius of SPH particles. The smoothing
length is defined the same way in the following case studies. Since the Re number in this
case is less than 1, it could be considered as a Stokes flow.

Table 1. Parameters of the DEM and SPH particles in the sedimentation case study.

Parameter Solid Liquid

density 5000 kg/m3 1000 kg/m3

radius 0.5 m h = 1 m
viscosity 30.8 m2/s 10 m2/s
numbers 1 30,740
velocity 0.218 m/s 0

Based on the Stokes flow equation, the velocity of this single DEM particle could be
expressed as:

V =
2ΔρgR2

9μ
= 0.218m/s (26)

Since the coupling forces between DEM and SPH particles have a range of interaction
domain rather than stay on a distinct radius, a multiplier is applied to the viscosity forces
between DEM and SPH particles to get the correct Stokes flow velocity. It is found when the
multiplier is around 3.08, the Stokes flow could be reproduced as shown in Figure 4. Since
the particle drops from above and hits its neighbor particles at the beginning, it is reasonable
that the dropping velocity exhibits some oscillations. The oscillation will be smoothed out
when all the neighbor particles get stable. Notice the fundamental material parameters
at the continuum level need to be tuned at the coarse grain level [58]. Kumar et al. [60]
provided a detailed explanation on the coarse-grained parameter mapping. This paper
follows the common procedure to use established analytical solution to tune the parameters
for partice mixing simulation.
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Figure 4. Sedimentation velocity of a single DEM particle among SPH particles.

In this example for sedimentation of a single DEM particle among SPH liquid particles,
the coupling force can effectively capture the physics of the interaction between liquid and
solid particles. Notice that the surface toughness and surface tension of the particle may
play an important role for the particle sedimentation [61], this benchmark case considers
the perfectly smooth surface without surface tension.

3.2. Liquid Flowing through a Porous Media

The second case study evaluates the effectiveness of the present method on a more
complicated scenario, liquid flowing through a porous media. In this case a U-tube with a
square width of 10 m and a horizontal length of 60 m is generated, as shown in Figure 5.
The vertical height is different between the two sides. In the middle of the tube filled in a
cubic porous media with DEM particles accounting for 52.3% of the total volume of the
cubic media.

Figure 5. SPH liquid flow through porous media.

The properties of SPH and DEM particles are listed in Table 2.
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Table 2. Parameters of particles in the case of a liquid flowing through a porous media case.

Parameter Solid Liquid

density 5000 kg/m3 1000 kg/m3

radius 0.5 m h = 1 m
viscosity depend on porosity 0.01 m2/s

volume fraction 52.36% 47.64%
numbers 1000 7479

As the liquid flowing from one side of the U-tube to the other side, the flow speed and
the height difference between the two sides depend on the porosity of the porous media
and viscosity of the liquid. Based on previous studies [27], the height difference between
two sides will show an exponential trend:

ΔH = ΔH0exp(−2Kht
L

) (27)

Kh =
ρgk
μ

(28)

k =
Cr2(1 − φ)3

φ2 (29)

where φ is the volume fraction of the solid phase, and C is a problem dependent parameter
to be determined. As shown in Figure 6, the height difference between two sides of the
U-tube follows an exponential curve in simulation, which shows that the present model
catches this physics. Here C = 8.07× 10−7 is determined by matching the simulation results
with the analytical solution, and this value is used in the following simulation studies. The
unstable value of particle velocity is caused by the movement of its neighbor particles,
since the target particle is dropping from above. It becomes stable along with time.

Figure 6. Height difference of a SPH liquid flow through a porous media.
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4. Numerical Simulation and Results
4.1. Simulation Setup

After the successful demonstration of the present method in the two case studies, it is
applied to the simulation of a solid-liquid mixing process in a high shear mixer with four
blades. As shown in Figure 7, in a cylinder mix container, four rectangular plane blades are
placed at the bottom with uniform angles. The geometry of this mixer is listed in Table 3.
To visualize these four blades, particles are created along the boundaries of these blades.
The interaction of particles with the four blades is the same as their interaction with the
cylinder container, which is Linear Spring-Dashpot (LSD) method with given stiffness and
dashpot parameters.

Figure 7. Snapshot of the high shear mixing simulation mixer.

Table 3. Geometric parameters of the high shear mixer.

Parameter Value

Vessel diameter 400 mm
Vessel height 400 mm
Blade length 192 mm
Blade height 45 mm
Blade rake angle 135◦
Rotation speed 10 rad/s
Simulation time 20 s
Acceleration time 0.5 s
Time step 5 × 10−5 s

In the simulation conducted below, two types of solid particles and one type of liquid
particles are employed to investigate the mixing performance of solid-liquid two-phase
flow. The properties of the two types of solid particles are the same except color, which
is used to demonstrate the mixing process. Their properties are listed in Table 4. As
mentioned before, the sound speed here is chosen as 30 m/s to increase the time step, while
maintaining a low Mach number (The velocity at the tip of the blades is around 2 m/s, and
the maximum velocity of particles could not exceed that, so the Mach number is below 0.1).
It is a common practice to choose the sound speed as 5–20 times the maximum velocity of
particles in the simulation [62,63].
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Table 4. Parameters of solid and liquid particles in high shear mixing simulation.

Parameter Solid

Diameter 10 mm
Density 1000 kg/m3

Mass 0.5236 g
Number 19,440
Normal Stiffness 7 × 107 N/m
Tangential Stiffness 2 × 107 N/m
Normal Damping Coefficient 8000 N· s /m
Tangential Damping Coefficient 4000 N· s /m
Coefficient of restitution 0.8
Friction coefficient 0.5

Parameter Liquid

Diameter 10 mm
Density 1000 kg/m3

Mass 1 g
Number 1060
speed of sound 30 m/s
viscosity coefficient 0.2 m2/s

Prior to mixing, the solid particles are classified into two groups (the orange and tan
colors, respectively), with each group filling half side of the container, as shown in Figure 8.
The two types of particles are first created and then released to fill up the space in the
container, so there are a few particles scattered into the other type of particles during the
falling process.

Figure 8. Initial state of mixing problem.

Then liquid particles are generated at the top of these solid particles. After these
particles reach stable, the blades start to rotate with a constant acceleration rate until a
given velocity is reached. Then the two groups of solid particles together with liquid
particles are mixed towards homogeneous distribution until the rotation of the blades
stopped. The liquid acts like a binder to make two groups of solid particles bound together.
It is similar to the cohesive effects in liquid bridge model, but here SPH liquid particles
could deal with a high liquid portion (>10%). In the following parts, the mixing process
is analyzed in detail, and the effects of different variables such as the amount of liquid
content, viscosity of liquid on the mixing performance are investigated.
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4.2. Mixing Process Analysis

Since at the beginning two kinds of solid particles are placed in symmetry, the radial
distribution and height distribution of the two types of solid particles are expected to be
comparable after certain time of mixing as shown in Figure 9a. However, there are still
some small aggregates in the mixture, which is caused by the strong viscous force of the
liquid particles inside, shown in Figure 9b.

Figure 9. Topview of particle distribution after mixing (a) solid particles and (b) liquid particles.

In addition to the top view, the distribution of liquid at different height of the cylindri-
cal container is expressed in Figures 10 and 11. Figure 10 shows the distribution of different
types of particles at different height levels, and the sum of all the distributions of certain
type equals to 1. Figure 11, on the other hand, shows the volume fraction of different types
of particles at certain height level, and the sum of all the volume fractions at every height
level equals to 1.

Figure 10. Liquid distribution on height.
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Figure 11. Particle volume fraction on height.

Notice that while the solid particles are distributed homogeneously along the vertical
direction of the cylinder, the liquid mainly stays in the middle range. Therefore, the liquid is
unable to be mixed well vertically within the solid particles in the current configuration. In
Figure 12 the distribution of liquid particles in the whole mixture during the mixing process
is illustrated. Solid particles that are in orange and tan are plotted smaller purposely to let
those blue liquid particles easy to identify. It is shown that liquid particles mainly lie in the
middle of the mixture vertically at the end of the mixing process. Due to resolution issue,
it looks like some part of the mixture is not covered by liquid particles. If enough liquid
particles are used in the simulation, those parts will be covered by liquid particles.

Figure 12. Liquid distribution evolution during mixing process.

4.3. The Effect of Liquid Content on Mixing Property

In this part, the effect of liquid amount on mixing performance is studied. To test the
mixing quality, local average mixing index is adopted here to examine the homogeneity
of the particles with a cubic RVE of size 30 mm × 30 mm × 40 mm. In the following case
studies, the mixing index is defined the same way. In this part, the effect of liquid amount
on mixing performance is studied and the corresponding results are shown in Figure 13.
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Figure 13. Mixing index at different liquid amount.

Top view of the distribution of liquid particles is shown in Figure 14. Generally, as the
liquid content decreases, the distribution of liquid particles is similar, and the mixing of
solid is not influenced much at the viscosity value 0.2 m2/s. However, when the liquid
amount is as high as 28.9% the mixing process is slightly slower than other cases, and it
thus takes a longer time for the mixing index to reach the asymptotic value).

Figure 14. Liquid distribution comparison of different liquid contents (a) 28.9% liquid (b) 11.9%
liquid (c) 4.5% liquid.

4.4. The Effect of Liquid Viscosity on Mixing Property

The viscosity of liquid has a significant effect on the mixing performance. Three
different kinematic viscosity 0.04 m2/s, 0.2 m2/s and 1 m2/s are applied while other
parameters keep the same. The evolution of mixing indices with time in these simulations
is listed in Figure 15 below.

Figure 15. Mixing index at different viscosity.

A high viscosity inhabits the mixing process. When the viscosity of liquid is low, its
effect on the mixing performance is not obvious, but when the viscosity of liquid is high,
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the viscous force between liquid and solid is also high. The liquid particles act like binders
and bind solid particles together as local aggregates, which makes it hard to mix the solid
particles completely. It is found that when the viscosity coefficient is small (0.004 and 0.2),
the effect of viscosity on mixing index is not material. When the viscosity coefficient is
1 the mixing index curve differs significantly from the other two. The specific viscosity
coefficient value for the mixing index curve to change dramatically should be explored in
future. At the initial period, the mixing index is the same for all three cases, it is because
at the initial stage the rotation speed of the blades is low and viscosity has not started to
show its impact. In Figure 16, the three curves do not diverge until after a few seconds.
The reason is that at the initial stage the rotation speed of the mixer is not very high and it
also takes some time for the viscosity to shown its impact on the mixing index. However,
even though a high viscosity decelerates the mixing progress, solid particles will mix well
eventually given an enough mixing time.

In this part, a group of figures of liquid particles distribution are shown in Figure 16
from top view. When the viscosity of liquid particles is high, the viscous liquid will
shrink towards the center first because of the rotation of the mixtures as in Figure 16b, and
then extend to the rim gradually, eventually reach an almost homogeneous distribution
horizontally, as in Figure 16c. On the other hand, when the viscosity of liquid is too
low, all the liquid particles are distributed to the rim immediately and remain along the
boundary for the rest of the simulation process. One can tell that there is no significant
difference from Figure 16e–f. Appeared in the middle of the domain is a little liquid trapped
by the blades, and the majority is distributed on the rim of the container. As shown in
Figure 9 the distribution of solid particles is uniform in the radial direction, the case studies
demonstrated that the liquid particles are hard to mixed homogeneously with the solid
particles if the viscosity is too low.

Figure 16. Liquid distribution comparison of high viscosity and low viscosity at different time
(a) ν =1 m2/s t = 0 (b) ν =1 m2/s t = 2 s (c) ν =1 m2/s t = 5 s (d) ν =0.04 m2/s t = 0 (e) ν =0.04 m2/s
t = 2 s (f) ν =0.04 m2/s t = 5 s.

4.5. The Effect Fluid Revolution on Mixing Behavior

In this section,we change the fluid resolutions to observe its effects on mixing Behavior.
The smoothing length h has the physical meaning of constructing list for neighboring
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particles. Robinson and Rosswag pointed out that [64,65], there is an adaptive formula for
selecting the smoothing length as Equation (30),

h = η × (
mi
ρi

)1/d (30)

where η is a parameter with range of [1.2, 1.5]; d is the dimensionality of the simulation
problem; mi is the mass of the particle; and ρi is local density. Combining Equations (15)
and (30) and Table 4, smoothing length h could be simplified as Equation (31),

h = η(
1

∑liquid Wij + ∑solid
mj
mi

Wij
)1/3 (31)

Based on the situation that the solid load is high, therefore one can estimate by
assigning the solid particles full influence, which yields h = [1.49r,1.86r], where r is the
radius of the solid particle. Because the estimation is based on the solid particles occupy
entire domain, and the h is constant during simulation, h beyond above range is expected.
To investigate how smoothing length h influence the mixing index, a study is made with
three different smoothing length, h = [1.5r, 2r, 3r]. Consistent with previous sections,
materials with same properties in Table 4 are applied except the smoothing length. As
Figure 17 shows, varying the smoothing length h will cause some fluctuations during the
mixing process, however, it does not have strong effect on the final state. Therefore, one
can conclude that under rational estimation with density, mass and DEM particle radius,
the smoothing length h can be selected without affecting results.

Figure 17. Mixing index at different smoothing length h.

5. Conclusions

The two-way SPH-DEM coupling method that covers the full spectrum of solid loads,
especially for a high solid load, is presented to study high shear particle mixing problems.
In this coupling scheme, a porosity is introduced for each SPH particle to calculate its
density. The coupling force between SPH and DEM particles includes two parts: SPH
pressure gradient equation is implemented to compute the pressure gradient force between
DEM and SPH particles; whereas the viscous force is related to particles’ porosity by
Darcy’s Law. In virtual experiments, two types of solid particles and one type of liquid
particles are mixed in a four-bladed mixer. The mixing index measured by local average
method is the main criterion to quantify the quality of the mixing status. The mixing
processes with different proportions and viscosity values of the liquid are investigated. The
virtual experiments with the present algorithm show the following aspects of the particle
mixing process with high solid loads:
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1. Adding more liquid can slower down the mixing process for a high solid load mix, and
increasing the viscosity of the liquid will slow down the mixing process tremendously.

2. When visicosity of liquid reduces, although the solid particles can be mixed well
eventually, the liquid distribution is not homogeneous, but concentrates at the edge
due to the centrifugal effect.

3. A smoothing length at 1.5–2 times of the particle radius can provide convergent
results of mixing index for virtual experiments.

Overall, the present SPH-DEM coupling method is stable and reasonable when the
solid load is high, and this method could be applied to many kinds of solid mixed with a
liquid. Particularly, for concrete production, fine aggregate, cement, and admixture pow-
ders are mixing with water. To obtain homogeneous mixture, as the physical experiments
are expensive and time-consuming, replacing some physical tests with virtual experiments
on computer may expedite the design process of concrete. Although the present method
requires the calibration of parameters, it can reproduce the physical experiments on com-
puter and advance the understanding of particle mixing. The model can be extended
to other applications of particle systems.The present method can be extended to virtual
experiments of particle mixing process with different mixer blades, solid particle densities
and sizes, and liquid binder. One can use the method to formulate the mixing process and
thus significantly expedite the material development cycles.
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Abbreviations

W, h Kernel function, length width
m, ρ mass and density
g gravity acceleration
ν Kinematic viscosity
P Pressure
Fμ, Fb Viscous damping force and body force
c0 Speed of the sound
I, ω, Tr Momentum of inertia, rotation speed and torque of particle
Fn, Ft Normal and tangential forces
kn, kt Spring stiffness along normal and tangential directions
Cn, Ct Damping coefficients along normal and tangential directions
Δrn, Δrt Normal and tangential displacements
me f f Effective mass of particle
en Collision coefficient
Po, V Porosity and volume
Fd Viscous force
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Φ Volume fraction of the solid
f d,SPH
ij Drag force between particles i and j

uk,l , xk,l Relative velocity and position between particles k and l
Δt Time step
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