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Elastic Solution of a Polygon-
Shaped Inclusion With a
Polynomial Eigenstrain

This paper presents the Eshelby’s tensor of a polygonal inclusion with a polynomial eigen-
strain, which can provide an elastic solution to an arbitrary, convex inclusion with a con-
tinuously distributed eigenstrain by the Taylor series approximation. The Eshelby’s tensor
for plane strain problem is derived from the fundamental solution of isotropic Green’s func-
tion with the Hadmard regularization, which is composed of the integrals of the derivatives
of the harmonic and biharmonic potentials over the source domain. Using the Green’s
theorem, they are converted to two line (contour) integrals over the polygonal cross
section. This paper evaluates them by direct analytical integrals. Following Mura’s
work, this paper formulates the method to derive linear, quadratic, and higher order of
the Eshelby’s tensor in the polynomial form for arbitrary, convex polygonal shapes of inclu-
sions. Numerical case studies were performed to verify the analytic results with the original
Eshelby’s solution for a uniform eigenstrain in an ellipsoidal domain. It is of significance to
consider higher order terms of eigenstrain for the polygon-shape inclusion problem
because the eigenstrain distribution is generally non-uniform when Eshelby’s equivalent
inclusion method is used. The stress disturbance due to a triangle particle in an infinite
domain is demonstrated by comparison with the results of the finite element method
(FEM). The present solution paves the way to accurately simulate the particle-particle,
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1 Introduction

Eshelby’s solution for one particle in an infinite domain under a
far perturbation stress [1] has been a foundation for micromechanics
of composite materials [2], including the Mori-Tanaka method, the
self-consistent scheme, the differential scheme, etc. [3—5]. Based on
the Eshelby’s equivalent inclusion method (EIM), the material
mismatch between a particle and the matrix could be simulated
by an eigenstrain field within the inclusion. For a single ellipsoid
case, the eigenstrain is constant over the particle because the Eshel-
by’s tensor, derived from the volume integral of the Green’s func-
tion over an ellipsoidal source domain, is constant within the
source as well. When the entire domain is finite or multiple particles
exist or the shape of particle is arbitrary, the eigenstrain may not be
constant any more although it is continuous. Although the classic
Eshelby’s theory provided a beautiful, exact solution with the
uniform eigenstrain, it is important to determine the Eshelby’s
tensor for various shapes of inclusion for different non-uniform
eigenstrain distribution for general cases [6,7], particularly when
a particle exhibits other shapes or is close to the boundary or its
neighbor particles.

This paper focuses on the Eshelby’s tensor of a polygonal inclu-
sion with the polynomial-form eigenstrain. Several methods were
developed to investigate the polygonal and polyhedral inclusions
and its related properties of the Eshelby’s tensor. Chiu studied the
stress field caused by an initial strain in both full and half-space
for a cuboid inclusion [8-10]. Mura [11] has proved that the
Eshelby property does not hold for Jewish star or a rectangular
inclusion, and Lubarda and Markenscoff [12] extended the conclu-
sion to all inclusions bounded by a non-convex or polynomial order
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(higher than 2) surface. Ru [13] provided the analytical solution of
an arbitrary shaped inclusion and used the simple explicit expres-
sions to obtain the internal stress in a plane or half-plane. The
analytical Eshelby’s tensor for polygonal and polyhedral inclu-
sions with uniformly distributed eigenstrain were first solved by
Rodin [14] based on Waldvogel’s work of the Newtonian potential
of homogeneous polyhedra [15]. Nozaki and Taya [16,17] pro-
posed an explicit closed-form solution of the potentials, however,
the method is limited to convex inclusions. Trotta et al. [7,18]
derived an simplified analytical expression of the Eshelby’s
tensor with the coordinates of vertices on the inclusion, which
avoids the use of lengthy and complex coordinate variables. Subse-
quently, the special properties of the polygonal inclusions and its
associated average Eshelby’s tensor were investigated by Xu and
Wang [19], among others [20,21].

Rodin [14], Nozaki and Taya [16,17] and other pioneers [7,18]
have developed the Eshelby’s tensor for arbitrary polygonal inclu-
sions with a uniformly distributed eigenstrain field, which is consis-
tent with the classic Eshelby’s problem. It provides elegant exact
elastic solution for an infinite domain with an inelastic strain,
namely eigenstrain, in the inclusion, which exhibits the same elas-
ticity as the matrix. Besides the application to the physical problem
for an inclusion with a uniform eigenstrain field, the most signifi-
cant application of Eshelby’s tensor is to solve for inhomogeneity
problems in which the particle with a different elasticity to the
matrix is subjected to a uniform far field stress field. Eshelby’s
equivalent inclusion method (EIM) simulates the material mismatch
by an inclusion with an eigesntrain but the same elasticity as the
matrix. For an ellipsoidal inhomogeneity, because the Eshelby’s
tensor is a constant inside the particle, the EIM provides the exact
solution with the Eshelby’s tensor. However, for a polygonal
inhomogeneity, this feature does not exist due to the non-uniform
Eshelby’s tensor. Therefore, the EIM with a uniform eigenstrain
is not sufficient for an accurate solution. Similar problems also
exist in the size effects caused by either microstructure [22] or
surface energies of the nano-inclusions [23].
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To improve the accuracy of solutions, two general approaches
were proposed, (1) increase the order of eigenstrain field [24,25]
or strain field through combination of the strain gradient theory
with the classic Eshelby’s solution [6,22]; (2) discretize the inclu-
sion domain with multiple small/basic elements [26,27]. As for
the first approach, Moschovidis and Mura [24] and Mura [25] sug-
gested the use of polynomial form eigenstrain by the Taylor expan-
sion, which could not only address the size effect of the inclusion,
but also the interactions between particles. The strain gradient
theory, introduced by Toupin [28] and Mindlin [29], was developed
to overcome the deficiencies of classic elasticity [30,31]. In differ-
ent versions of the strain gradient theory, to accommodate the size
effect, one (at least) or more characteristic length parameters are
involved to describe the elastic fields. In the literature, Sharma
[32], Zhang and Sharma [33] modified the classic Eshelby’s
tensor to model the inclusion problems of small-scale elastic phe-
nomena and isotropic chiral solids. Ma and Gao [6] and Liu and
Gao [22] extended the concept for the plane strain problem with
elliptical and polygonal inclusions, respectively. For the second
approach, Nakasone et al. [26] discretized the inclusion domain
and utilize the shape function to distribute the eigenstrain field
without an explicit Eshelby’s tensor. While Zhou et al. [27]
enforced a uniform distribution of eigenstrain in each of the
element, which may arise problems of discontinuity of both eigen-
strain and elastic fields in post-process. Eshelby’s tensor for polyg-
onal inclusions with high-order terms of eigenstrain has not existed
in the literature yet.

One goal of the paper is to extend the previous work of Rodin
[14] to polynomial eigenstrain distributions following Mura’s
work [24,25]. Using the polynomial eigenstrain could reach a
tailorable accuracy for the solution of polygonal inhomogeneity
problems. This is the first time in the literature to extend the EIM
to a polygonal inhomogeneity although it is not the exact solution
as the classic Eshelby’s problem for an ellipsoid. Section 2 provides
the derivation of the explicit expression of harmonic potential
through the direct integral [14,22]. Section 3 presents the scheme
to derive Eshelby’s tensor with a high order polynomial form of
eigenstrain and provides the explicit forms of Eshelby’s tensor for
linear and quadratic cases. Section 4.1 conducts numerical case
studies to verify the formulation with the existing results for circular
inhomogeneity. Section 4.2 investigates the accuracy of solving the
Eshelby’s EIM of a triangular cylindrical inclusion with different
aspect ratio of width to height and various stiffness ratio of the par-
ticle to matrix.

2 Eshelby’s Tensor for a Uniform Eigenstrain
on a Polygon Inclusion
Consider an infinite long arbitrary cylindrical inclusion Q embed-

ded in the infinite homogeneous isotropic elastic domain D, then the
Eshelby-type problem could be simplified as a plane strain one.

The classic Eshelby’s tensor for displacement (g;,;) and strain
(Syw) [1,25] in 3-dimensional (3D) space is derived from the
volume integral over the inclusion domain Q in Eq. (1), and it
could be split into biharmonic ¥, harmonic @ potentials.

1
W= W — 206D, — 2(1 —
giki 871'(1—1/)[ ikl — 200 @ — 2(1 —v)
X (0; Dy + 6y D@ )]
) ()
S = [ i — 205D — (1 —
ik 871'(1—1/)[ wtij — 200 P ;i — (1 —v)

X (0i®@ ji + 0,4 @ ji + 6P ik + 6D )]

where the integrals of the potential functions are written as ¥ =
[oIx—X/|dxX' and @ = fgﬁdx’. Explicit form solution of the
integrals over ellipsoidal inclusions can be found in Mura’s work
[25]. Based on the assumption for the plane strain problem, the
volume integrals, ¥, @, could be further reduced to the area inte-
grals through the Hadmard regularization [6,22,34], thus the two
potentials can be rewritten as:

Inx-x? -1
\P:j —|x—x/|2%+C dAKX)
“ )

q):j —Injx —x|? dAKX)
Qc

where C is an integral constant and it could be eliminated by partial
differentiation in the process to obtain the Eshelby’s tensor.

In the following, the integrals over polygonal inclusions will be
derived. Without the loss of any generality, consider a Ng-sided
cross section of the cylindrical inclusion in the x; —x, plane. Let
x and x' denote the observing and source points, respectively.
Following Rodin’s [14] work, transformed coordinates (TC) are
constructed on each of the edge in Fig. 1. The base vectors of the
™ TC, namely the unit tangent, outward normal vectors of the f*
edge in the right-hand basis, are written as n? and Ag, respectively.
And the variables of the TC at the fh edge are given as function of
observing point x and two vertices Vi, v;r [14,22],

by = () =¥k IF = () — %)) 3)

where by is the perpendicular distance between the observing point
to the edge. The vector between observing point x and the source
point X" is written as X — X' = —bf/l}) - 7111}’, where 5 = 11/9()(’ —X) is
the position of the source point on the edge. To derive the Eshelby’s
tensor, partial derivatives of the potentials are required; therefore,
Green’s theorem could be utilized to simplify potentials as
contour integrals. However, this work uses an alternative scheme
to solve the potentials through direct integral over the source
domain. Shown in Fig. 1(b), the integral of any arbitrary piece-wise

Fig. 1
ing point and the f
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Schematic Elot of the geometry construction of the transformed coordinates: (a) observ-

triangle of the polygon and (b) transformed coordinates at the " edge
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smooth function F(|x — x'|) could be performed as follows:

Nr tan"(l}'/hf) br/ 1+tan? [6]
J j Fp)p dpdo

I= J F(x=x'|dAKX) =
Q =1 Jtan=t @7 /mp Jo
“
Let Fo = In|x —x/|?, the analytical solution of the integral of the
harmonic potential is obtained

Nr I l+
b= [Z_;bf{__(lf_ - l;) +bf<tan_l (;:—f) — tan™! (gf))

+% [ In(b7 + (7)) - %l;fln(bj% + (1;)2)} )

Let Fy = —|x —x'|*In|x —x'|*> — 1/2, the integral of the finite part
of the biharmonic potential is also obtained

N
~ 1 27— —\3 2 3
T:fz;mbf{—ﬁbflf — 1307 + 516707 +13(1F)

I I
2463 tan™" (L) — 2483 tan™" (L
+ ; tan (bf ; tan bf

+ 617 (207 + (I))in(b + (7))
= 61£ 25} + ([)))In(b} + (1)) ©)

3 Eshelby’s Tensor for a Higher-Order Eigenstrains
in a Polygonal Inclusion

Following Moschovdis and Mura’s [24] and Mura’s work [25],
the continuous eigenstrain field (¢) could be expanded in
the polynomial form of a Taylor series:

ef(xX) =€l +x el +xx e +.... The elastic field caused by
the elgenstraln can be calcufated w1th the superposition of the con-
tribution of each order of the eigenstrains. Accordingly, the Eshel-
by’s tensor can be calculated for each order of the polynomial
series. For example, similarly to Eq. (2) for constant eigenstrain,
the eigenstrain term of x/ x' x' €2* will lead to the following inte-

mepTq -ympq
grals:
_ 1
8iklmpg--- = 87[(1 — U)

X (5i[q)mpq---,k + 5ikq)mpq___7[)}

1
8x(l —v)
X (5,'1(1),,1,,4“,1,'1( + éikq)mpqm,jl + 5]‘1(Dmpqm,ik + 5_,'1((19,”,,,1.“,,'1)}

)
where the Sjmpg.. i the polynomial series of the Eshelby’s
tensor; @y = [, —Infx —x |2x’mxpx; dAKX); Wopg=[o—
Ix—x'|?In|x—x'|? —1/2)dmx;,)dq dA(X'). Since only the partial
derivatives of the above potentials are of interest, the area integral
can be transferred to the boundary by using the Green’s theorem.
Shown in Fig. 1(b), the integral variable X' moves along each
edge; thus, the distance between observing and source points, Ix —

{q"m,,qu.q,'kl — 21/5/([@,,,,,@.",' - 2(1 - IJ)

S,jklmpqu = {lpmpqu-,kltj - Zl/éklcbmpqm,,j - (1 - I/)

x| is written as /bjz-+772 when the source point is on the f™ edge.

The detailed differentiation process and analytical solution to the
uniform Eshelby’s tensor can be found in the previous work
[7,22], which will be used in the following derivation.

3.1 Linear Eshelby’s Tensor for the Polygonal Inclusion.
Similarly to Egs. (5) and (6), the components of the linear Eshelby’s
tensor can be written as follows:
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L nx=x2 =1 , ,
¥, =j <—|X—x |2%> [x, + X, — x,]dAX))
Q

Injx-x*-1
=xp\“+j (_|X_X/|zw
Q

5 )[x; —x,] dAKX)

®,= jg(—ln|x —x'1))[x, +x,—-x,] dAKX)
=x,® +L(-ln|x-x’|2)[x; —-x,] dAKX) ®)

where W, @ are defined in Eq. (5). The integral limits are determined

aslf = 11? (v —=x)and [y = ;1;’ (v; — x). Following the chain rule
of derivatives, the piece- w1se smooth function ’P(bf, l ) could
be differentiated as follows:
oP opP oOP
=—(A0), — 9
G g = 1 [al+ a,f} ©)

and the higher order differentiation formulas are presented in
Appendix A similarly. Notice that, in Fig. 1(b), the source
point X’ exists in the area, and to apply the Green’s theorem, the dis-
tance vector at the /" edge x' —x is simplified as bfl}) + 1711}). Thus,
the derivatives of the two above linear potentials, which will be
used in the fourth-rank linear Eshelby’s tensor, are written as
follows:

\Pp,ijkl = 5pi\PJkl + 51,]‘\{”,‘1{1 + 51,/{\1’,,‘/'1 + 5p1\P’,'jk

Nr
+ 2 OGN,
f=1

— DD 11+ DD (P (10a)

— (¥ — Ok

(Dp,ij = 51,,‘(DJ' + (Squ)yi + x,,CD,ij
Nr )
+ D ODOD, L= )] + br(@)) 1+ D)), (@),
f=1
(10b)

where ‘11{,' , ‘P{ , d)(’; , and CI>{ denote the contour integrals in the
following:

I+

; In(? + 1) — 1
=j (R o A

_ B -1
- 2 6
:

S’ ~ @1 | 26} [tan,l <g>

18 3 by
—tan (L)) 41 l(b + () bl*+g
an bf n ¥ rbr 3
e R 2l
_Eln(bf +(lf) ) bflf +T (11a)

lpl =j ’1(192 )
7

+3U7)" = 267 + )i} + (1))

ln(bf +77) -1

1 4 201—\2
5 dn =72 126} + 6bj (17

1
= 1¢ 267 + 6b7UFY + 3U1)! = 2067 + (1)) Ity + ()]

(11b)
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and

i It Iz
o/ = J In(? + ) dn=2b -[tan" (L) — tan™! (iﬂ
R PR ! by by

f

+ I In(b; + (IF)) = I7 In(b} + (7)) (12a)

o 1
of = jf nin(bj +n*) - dn =3 () = (bf + E)HInb; + (7))
.

f
S = B} + @0} + ) (120)

The derivatives of the potentials ¥ and ® (Appendix B) could
be derived through Eq. (5), ie., ¥ u = Z?’i, (A}?)i(‘l‘g) ju by the
Green’s theorem. Notice that the linear Eshelby’s tensor for the dis-
placement field contains 6,,®, which requires the analytical solution
to the harmonic potential in Eq. (5). Finally, the substitution of ®,
and ¥, potentials into Eq. (1) yields the linear Eshelby’s tensor.

3.2 Quadratic Eshelby’s Tensor for the Polygonal
Inclusion. As previously shown in Sec. 3.1, the derivation of
linear Eshelby’s tensor uses the observing points and the distance
vector, x,+ (x, —x,), to express the first-order source term x;, in
the contour integrals. Similarly, the second-order term ., x, can
be expressed as (x,—x,)(x;—X,) —X,X;+ XX, +X,x,; thus, the
potential components are written as

L nx—x12 -1
qu:j <_|X—X|2f
Q.

X[, = 2,) (X, = Xg) = XpXg + XX, + x,x,]  dAKX)

=—x,x, ¥ + x, ¥, +x,¥,

I 12 _ 1
¥ Lz (_|X - qu%)(x; = x)(x, — xg) dAKX')

(13a)

®,,= IQ (—In|x—x' |2)[(x;, = Xp) (X[, = Xg) = XpXg + XX, + %X, ] dAKX)

=—x,,quD+x,,<Dq+xq<D,,+Lz (=Inx =X ), = x,)(x, — X,)

X dA(X') (13b)

where the terms x,x, and x,x, with the integrals are simplified to
X,(®/¥), and x,(P/¥),, respectively. Since the uniform/linear
potentials have been derived in the previous sections, the analytical
solution to the last term in Eq. (13b) lead to the closed-form
expression of the quadratic Eshelby’s tensor. The derivatives of
the two quadratic potentials, which will be used for the quadratic
Eshelby’s tensor, are presented:

Wit = [8pi%qut + 6/ gt + 6 pi Py iji + 6 ¥ ik + %P jjua]
+ (64 pjuar + 64 p.int + Oqi¥ piji + Ot¥ p ik + Xg¥ p it
= [6i0gj + 64i0 pi1¥ p1 — [0 piOgi + 046 pic ] ju
= [6i041 + 6 pi0gi1¥ jx — [0 pixy + Xp04i1¥ jia
= [6pj0qk + 0 piOgi ¥ i1 — [6 pjOqi + 6 pigi 1P ik
— [6pjxg + %p0i 1Y ikt — [0 pk Ot + O piOgrc 1Y jj
= [0 pxxy + X001 ij — [0 pixg + X0 ] ik — Xpxg Y ijna
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+ ) OGP O 20NN + 2000,
f=1

= 2Pl + 200000 — 2,9 = 26, (AN

+ B 1 + DD, )y + AD D =D,(P])

= O] 1 = GO i+ bp(¥]) ]

+ U ) (P i (14a)
Dpaij = [6piPqj + 6pPqi + %Py ijl + [64iPpj + 8gjPp.i + X4 P p ]

= 8i0gj® — [6pixg + O4i%p 1D j — [6 g + X041 D
Nr

=12, @+ Y (DD, ), [=2by (A + bi @]
f=1

+ DL, D) + D), =)0 + by @]

+ DD, ) (@), (14b)

where ‘I‘}; and <I>,f1 denote the contour integrals as follows:

: 1[-4pt: 190215 747 4 Iz
‘P{1=——|: ff+ f(f) + (f) b_;tan_l(f>

2| 15 45 25 15 by

1 1
=3B Inb] + U)) = 5 () Inby + (1;)2)]

4 2(15)3 >
JL[A 1R TG
2 G 45 25 1577 by
] I
=3B I} + A = 5 (Y inb} + (lf+')2)] (150

1 If
@)= o [ObF 17 +2()° + 6b7 () = 2()° + 6b7 tan™! (i)

i
— 6b} tan™" (ff) =37 In(b} + (7))

+ 37 In(b} + ()] (15b)

The same procedure can be extended to derive Eshelby’s tensor
for higher-order eigenstrains.

4 Results and Discussion

The above analytical solution can be used to predict the elastic
field caused by a continuously distributed inelastic strain or eigen-
strain in the polynomial form over a polygonal inclusion, which
exhibits the same stiffness of as the infinite domain. Using Eshelby’s
equivalent inclusion method, it can be used to study the elastic field
of a particle or inhomogeneity embedded in an infinite domain, in
which the particle is simulated by an inclusion with an eigenstrain.
In the following, we demonstrate some interesting results of the
inclusion problem and inhomogeneity problem with the present
analytical formulation.

4.1 Polygonal Inclusion Problem. A N side polygon with an
equal side length is considered in this subsection. When Ny
increases, the polygon can converge to a circular (radius a =1m)
domain which recovers Eshelby’s classic solution. Consider a
homogeneous infinite domain with the Young’s modulus Ey=70
GPa and Poisson’s ratio vo=0.3 subjected to a local temperature
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< 3-side-uniform
«B-side-uniform
- 9-side-uniform
4 18-side-uniform
& ~=720-side-uniform

—Classic circular

a,, (MPa)

~+3-side-uniform
=B-side-uniform
~¢ g-side-uniform
18-side-uniform -
-~+-720-side-uniform
—Classic circular

Fig. 2 Variation of stresses (a) o1 and (b) o, along x, for different N-side polygonal and circular inclusions subjected to a

uniform thermal strain 10~

" 3-side-lincar
= G-side-linear
- 9-gide-linear
18-side-linear
~720-side-linear
—Cilassic circular

(a)°

(b) & : —
+3-side-linear
= 6-side-linear
; -> 9-side-linear
41 A 18-side-linear

=720-side-linear
FER —Classic circular

2 \ 1

Fig. 3 Variation of stresses (a) 611 and (b) o, along x, for different N--side polygonal and circular inclusions subjected to a linear

thermal strain 10~ x,

change AT in the polygonal inclusion only, which can be repre-
sented by an eigenstrain or thermal strain ¢jf = aAT6;;, where a
denotes the thermal expansion coefficient. Shown in Fig. 2(a), let
Nrequal 3,4, 6,9, 18, 720 and centers of the polygonal inclusions
locate at the origin point O. Fix one of the vertex at (0, 1), and
the other vertices are evenly distributed on the circle with the
radius a=1m. Beginning at the fourth-rank uniform Eshelby’s
tensor, the strain field at the neighborhood of the vertices has loga-
rithm singularity issues [16], the comparison at the vertex ((0, 1)
and (0,—1)) is not exactly showed for Np=4, 6, 18, 720. In
Egs. (10b) and (14b), the linear and quadratic Eshelby’s tensors
have the components of the uniform tensor; thus, the singularity
issue also exists in linear, quadratic strain field too. Let A=

aAT=10"*and assign uniform (Ad;), linear (Ax,6;), and quadratic
(Ax38;) thermal strain to the polygonal inclusion, respectively.
Figures (2)—(4) show the variation of stresses along the x, axis.
The following features of stress distributions can be observed:

(1) When Np increases, the results for polygonal inclusions
approach the classic solution for the circular inclusion,
which verifies the consistency and accuracy of the present
formulation of polygonal inclusions.

(2) The stress variation is concentrated in the neighborhood of
the inclusion with singularity on the vertices, and the far
field stress approaches zero quickly.

Ty (MPa)

3 - — ; — 3
(a) ! ' ! = 8-side-quadratic (b) 0 R S o
= 6-side-quadratic ” 3
\ -o 9-side-quadratic 2 ven e
\ 18-side-quadratic AR . 2N i
~720-side-quadratic oo
—Glassic circular
i ¥
-2+ -
/ © 3-side-quadratic
s = 6-side-quadratic
w o 9-side-quadratic
1 a -3F 18-side-quadratic
= e \ ~720-side-quadratic
. o ; " Vil —Classic circular
e 4 B
b x A
5F 2 w, L -
] X 4 :
N s i
- 6 W B i -
¢
1 I | L I
2 3 3 2 1 0 1 2

Fig.4 Variation of stresses (a) o411 and (b) o2, along x, for different Nside polygonal and circular inclusions subjected to a qua-

dratic thermal strain 10~4x3
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(3) Except the case of the triangle (Ny=3), the stress variations
on the inner zone of the inclusions follow the similar trend of
the temperature distributions, namely uniform, linear, and
quadratic distributions, but exhibit bigger differences close
to the boundary of the inclusion.

By the combination the polynomial terms of eigenstrain
distribution, the present formulation can be used to predict
the elastic field caused by continuous eigenstrain on polygo-
nal inclusions with the Taylor expansion of the eigenstrain.

4.2 Polygonal Inhomogeneity Problem. In the Sec. 4.1, a
verification of the linear and quadratic Eshelby’s tensors is provided
by the comparison with a circular cylindrical inclusion. Although
the Eshelby’s tensors are not uniform as the classic case for circular
inclusions, because polynomial eigenstrains can be considered,
Eshelby’s equivalent inclusion method can still be used to solve
the polygonal inhomogeneity problem. This section will use trian-
gular inhomogeneities to demonstrate the solution.

Consider one isosceles triangular cylindrical inhomogeneity
embedded in an infinite domain with a uniform far field stress.
The stress in the neighborhood of the inhomogeneity will be dis-
turbed by its material mismatch with the matrix. In the following,
an air void (Young’s modulus taken as FE;=0)/stiffer fiber
(Young’s modulus E,=210GPa and Poisson’s ratio v,=0.3) is
embedded in a homogeneous infinite matrix (Young’s modulus
Ey =70 GPa and Poisson’s ratio v = 0.3). The height of the triangle
is 1 m, and the width of it varies from 0.5, 1, and 2 m. Consider two
cases of the far-field uniform stress load: (i) 032 =—1MPa and
(i) 69, = =1 MPa.

Following Mura and Moschovidis [24], the origin will be set at
the centroid of the triangle, and the stress caused by a polynomial

Fig. 5 FEM mesh example for a small triangle embedded in a
large domain

eigenstrain can be written in the form of the Taylor expansion
over the inhomogeneity, so that the stress equivalent condition
can be used to derive the eigenstrain terms as follows:

1 0 0% 1x 2% 0 0% _
(Cijrr = Cijp)Skiav€ gy + SkiabpC gty + Skiabpq€appq) + Ciju€a =0

1 0 O 1% 2% 0 1k _
(Cijkl - C,‘jkl)(sklabreab + Sklabpreabp + Sklabpqreabpq) + Cijkleklr =0

1
1 O 1x 2%
E (Cijkl - C,'Ojkl)(sklabrweab + Sklabprweabp + Sklabpqrweabpq)
0 2% _
+ Cijkleklrw =0 (16)

This paper provides the accuracy up to the quadratic term of
eigenstrain but it can be straightforwardly extended to higher-order
terms by adding higher order stress equivalent equations in the
above. If the Eshelby’s tensor is uniform over the inhomogeneity,
which is the case of circles, uniform eigenstrain and stress on the
inhomogeneity can be obtained, and the linear or higher order
eigenstrain terms will be zero. However, unlike the circular case,
the stress field in the triangular inhomogeneity is not uniform.
Using only the constant term will cause the loss of accuracy.
When higher orders of eigenstrain are applied, it could better
describe the actual solution. The finite element method (FEM) is
used to evaluate the accuracy of the stress variation along the
xp-axis under the aforementioned two cases of load with different
shapes of isosceles triangular inhomogeneities. To address the
singularity, very fine mesh has been used in the neighborhood
of the triangle’s vertices. Figure 5 shows one example of width
w=0.5m. The total domain dimension is 20 times as the triangle
to mimic an infinite domain.

Notice that in the following case studies, the EIM is applied at the
centroid of the triangular inhomogeneity, which means the local
Taylor expansion is based on the centroid. The accuracy will
reduce with the distance from the centroid in general. Although
other points on the inhomogeneity can be used to conduct the
stress equivalent conditions, overall the centroid can be the most
representative, so that this paper focuses on this case. To illustrate
the stress distribution, the observing points are evenly distributed
along the x,-axis in the range of 3 m higher/lower to the centroid of
the triangle. To avoid the singularity issue at the top vertex (0, x5),
two close neighbor points (0, x} + 107%) are used for demonstration.

Figures 6 and 7 show the stress variations along x, under two far-
field stresses, respectively. The following features of stress distribu-
tions can be observed:

(1) The stress variation is concentrated in the neighborhood of
the inclusion, and the far field stress approaches the
applied load quickly.

(2) Stress singularity occurs at the top vertex but not at the mid-
point of the bottom edge.

(3) Overall, the uniform, linear, and quadratic cases asymptoti-
cally approach the finite element results although the trend

a J ! ! I >-Uniform b 1 T T T
(@)of ] @
-0 quadratic
2 FEM o
ol E ¥/
Ak k / 4
= -3r 1 = / < Uniform
a a | = linear
=3 S o / o quadratic
- -4 -] e ~FEM
N S afy = —1MPa
sr T 3+ = X3 4
-6} - =l
X1
-4k r— N B
-Tr N «— >
1
-8 ' ! L ‘ ' 5 \ : ‘ s s
k- 2 g g ! 2 8 -3 2 -1 0 1 2 3

Fig. 6 Variation of stresses (a) o411 and (b) o2, along x, for triangular void with the width and height at 1 under 5, = —1 MPa
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Fig. 7 Variation of stresses (a) #11 and (b) o2, along x, for triangular void with the width and height at 1 under 3, = —1 MPa
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Fig.8 Variation of stresses (a) 641 under 69, = —1 MPa and (b) 2, under 63, = —1 MPa along x, for triangular void/stiffer fiber with
the width and height at 1
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is not 100 % consistent. It confirms the present formulation
can provide tailorable accuracy by using higher-order terms
of eigenstrain.

(4) When a horizontal compressive stress is applied in Fig. 6,
both 61, and oy, are in the compressive range; whereas the
vertical compressive stress produces tensile horizontal
stress at the bottom of the triangular void in Fig. 7, which
may lead to open-mode cracking by compression.

(5) Although the stress vector around the air void surface is
relaxed, the internal stress in the neighborhood of the void
can be higher with the disturbed stress flow. However, no
stress concentration factor can be defined due to the
singularity.

When the inhomogeneity becomes stiffer, the stress on the inho-
mogeneity can be higher. Figure 8 shows the comparison of the
stress distribution for an air void and a stiffer inhomogeneity
(fiber). As Figs. 6 and 7 confirm the accuracy of the uniform,
linear, and quadratic cases, and the quadratic order performs the
best among them, in the following, only the quadratic case is
shown.The following features can be observed:

(1) Unlike the void case with zero stress, the stress on the stiffer
inhomogeneity exhibits the same sign as the far-field load,
i.e., compressive stress caused by compressive load for
both 6%, and ¢%. Moreover, the stress value on the inhomo-
geneity is higher than the far-field load.

(2) Although stress singularity still exists at the top vertex, the
EIM uses two points to approximate the stress field and the
results are close to that of FEM. The agreement between
EIM and FEM is better for the case of a stiffer inhomogeneity
because the deformation of the inhomogeneity can be
approximated better with a quadratic eignestrain.

(3) In both cases of the uniform horizontal and vertical far-field
load conditions, the stress distribution along x, reverses the
trend of the void case, which could be well explained with
Eq. (16). Changing the material properties of the inhomoge-
neity affect the sign of Cjy, — Cfy;, which produces series of
eigenstrains with opposite signs.

When the aspect ratio (AR) (AR =width/height) of triangle
changes, the stress distribution could also be significantly different.
Figures 9(a) and 9(b) show the variation of the stress comparison
along the x, with different width 0.5, 1, and 2m of a triangular
void; however, Figs. 9(c) and 9(d) show the case for stiffer inhomo-
geneity (fiber). The following features can be observed:

(1) Under a horizontal compressive far-field stress, o7, at the mid
of the bottom edge increases with a shorter width, which
could be caused by the higher influence by two bottom
vertices.

(2) For the air void case, when a vertical compressive far-field
stress is applied, the stress 65, around the top vertex increases
significantly with the aspect ratio. It even causes a tensile
stress for AR =2.

(3) When AR is far from 1, the difference between the FEM and
EIM results becomes larger. Because the selection of equiv-
alent stress point is the centroid of the triangle, the irregular-
ity of the triangle may lead to the loss of the accuracy of
eigenstrain approximated by the Taylor expansion. Higher
order terms of eigenstrain may provide better results.

(4) The stiffer inhomogeneity cases still exhibit reverse trend of
the void cases.

FPr P

_ P N
ObyOlf ~ ObyOly

P,ij—@

i) + (
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Overall, the EIM with quadratic eigenstrain on a single inhomo-
geneity provides very accurate results in comparison with the
FEM that use a large number of elements, which will lead to a
high-efficient, high-fidelity numerical method for simulation of
multiple polygonal particles in a composite. This fundamental
work also serve as a foundation of our software package, the
inclusion-based boundary element method (iBEM) for virtual
experiments with many arbitrary shaped particles in a finite
domain with various loading conditions [35-37].

5 Conclusions

The integral scheme of the linear, quadratic, and higher order
terms of eigenstrain for the isotropic elastic arbitrary-shaped polyg-
onal inclusion has been presented. Rather than using the Green’s
theorem converting the area integrals into the contour integrals,
this paper uses the direct integral to derive the finite part of the
biharmonic and harmonic potentials. The analytical closed-form
solutions to the linear/quadratic Eshelby’s tensors are obtained by
assembling the potential components for different orders of eigen-
strains. Numerical verification of the circular inclusion was per-
formed, and the present solution approaches the classic solution
for the circular inclusions. The formulation has been used to
study the stress concentration caused by an isosceles triangular
hole, which approaches the FEM results when higher-order terms
of eigenstrain are used. When a compressive load is applied along
the height direction, tensile stress may be induced along the
bottom; while a compressive load is applied along the width direc-
tion, the normal stresses along the symmetric axis are compressive.
Parametric studies show the stress disturbance caused by the
Young’s modulus, aspect ratio of the inhomogeneity. It is observed
that when quadratic terms of eigenstrain were used, the EIM could
provide fairly accurate solution for most cases of polygonal
inhomogeneity.
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Appendix A: Differentiation Rule of the Functions
Plty. 17 1))

Based on the Rodin and Liu’s work [14,22], the differentiation
chain rule utilize the geometry construction of the variable
by, lf_-, l;’ as shown in Eq. (9). Here, the second/third differentiation
procedures are attached,
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Since the upper and lower limits of the integral are I;r and [;, respectively. Hence, the derivatives with respect to /; and l;f
(@™ Ja(I7 Yol )™) are discarded.

Appendix B: Derivatives of the Potential Components
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The derivatives with respect to [; are similar to Eqs. (B5b),
(B5¢), and (B5d).

Derivatives of ‘I’{,
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The derivatives with respect to I; are similar to Eq. (B6b).
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