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Abstract—Dynamic Information Flow Tracking (DIFT), also
called Dynamic Taint Analysis (DTA), is a technique for tracking
the information as it flows through a program’s execution.
Specifically, some inputs or data get tainted and then these taint
marks (tags) propagate usually at the instruction-level. While
DIFT has been a fundamental concept in computer and network
security for the past decade, it still faces open challenges that
impede its widespread application in practice; one of them being
the indirect flow propagation dilemma: should the tags involved
in an indirect flow, e.g., in a control or address dependency, be
propagated? Propagating all these tags, as is done for direct flows,
leads to overtainting (all taintable objects become tainted), while
not propagating them leads to undertainting (information flow
becomes incomplete). In this paper, we analytically model that
decisioning problem for indirect flows, by considering various
tradeoffs including undertainting versus overtainting, importance
of heterogeneous code semantics and context. Towards tackling
this problem, we design MITOS, a distributed-optimization
algorithm, that: decides about the propagation of indirect flows
by properly weighting all these tradeoffs, is of low-complexity, is
scalable, is able to flexibly adapt to different application scenarios
and security needs of large distributed systems. Additionally,
MITOS is applicable to most DIFT systems that consider an
arbitrary number of tag types, and introduces the key properties
of fairness and tag-balancing to the DIFT field. To demonstrate
MITOS’s applicability in practice, we implement and evaluate
MITOS on top of an open-source DIFT, and we shed light on
the open problem. We also perform a case-study scenario with
a real in-memory only attack and show that MITOS improves
simultaneously (i) system’s spatiotemporal overhead (up to 40%),
and (ii) system’s fingerprint on suspected bytes (up to 167%)
compared to traditional DIFT, even though these metrics usually
conflict.

I. INTRODUCTION

Dynamic Information Flow Tracking (DIFT), or Dynamic

Taint Analysis (DTA), systems operate by tainting various

inputs or data of interest with some metadata (called tags) and

keeping track of these tags during program or system execu-

tion. DIFT systems operate dynamically without requiring the

availability of the source code, which makes them appealing

MITOS, in Greek mythology, was a ball of thread, that Ariadne gave to
Theseus to help him escape the labyrinth of Minos kingdom. As MITOS
helped Theseus to reversely find his way back to labyrinth’s entrance by
minimizing his wandering, our framework minimizes the incoherent tag
propagations (e.g. of indirect flows), helping illuminating the information flow
from a certain output all the way back to the input.

for various types of applications, including enforcement of

security policies, forensics analysis, reverse engineering and

monitoring the flow of large distributed systems. Prior work

has attempted to leverage DIFT mainly for privacy and security

purposes. For example, some early DIFT works [1], [2],

[3], [4], [5] attempted to detect different types of malware

by following the information flow. Recently, DIFT has been

leveraged to address different privacy and security vulnerabil-

ities not only for modern computer operating systems (OSes),

commodity software and honeypot technologies [6], [7], [8]

but also for various IoT platforms [9], [10] and mobile

devices [11], [12].

Nevertheless, DIFT systems still face open challenges that

impede their widespread application in practice. One of these

challenges is the dilemma of indirect flow dependency prop-

agation. An indirect flow occurs when information dependent

on the program input determines from where and to where

information flows. For example, in the code < a = b + 1
>, there is a direct flow from b to a, and all DIFT systems

would propagate the tag of b to a. However, in the code

< a = 0; if (b == 1) {a = 1}; >, the value of a

is dependent on b, meaning that there is an indirect flow

from b to a. Not propagating tags in these cases can lead

to undertainting, where key important information flows are

missed. Propagating tags for all indirect flow dependencies

leads overtainting, where most of the taintable objects in

the system (e.g., bytes) become tainted with little useful

information being acquired.

While previous works have proposed some heuristics to

tackle the problem, they usually make unrealistic assumptions

to modern systems and have several limitations. For example,

Panorama [1] relies on a human to manually label which indi-

rect flows should be propagated. DTA++ [13] or DYTAN [14]

rely on offline analysis requiring multiple traces, which does

not scale well. RIFLE [15] and GLIFT [16] are based on

static analysis, and other works have prohibitive performance

overheads [7], [6]. While useful, these techniques can only

partially combat the problem.

Another, not well-studied, tradeoff in modern DIFT, is the

one between semantics and applicability. Most of the DIFT

systems ignore semantics, to be applicable to machine code

or to be scaled to whole live systems, including all processes



and the kernel. For example, it is difficult to properly keep

track of the flow of different semantics even after they get

inserted into the system, as they usually have heterogeneous

properties, different propagation speeds, and impact differently

the execution context. Further, ignoring them or adapting an

one-size-fits-all handling may improve the DIFT applicability,

but it usually misses important knowledge about the informa-

tion flow, putting a heavy toll on the DIFT performance and

detection efficiency for attacks [17].

In this paper, we propose MITOS, a framework that analyti-

cally tackles the open problem of: when an indirect flow should

be propagated in an efficient (e.g., scalable) manner. In other

words, MITOS theoretically addresses and tackles the open

problem of indirect flow propagation encountered in practical

DIFT systems, by unifying the two, usually conflicting, worlds

of theory and practice. To the best of our knowledge, this is

the first work in that direction, namely to analytically study

this practical problem that remains open since the past decade.

Specifically, our contributions are:

(1) We model the open problem of optimal decisioning for

indirect flow dependencies, by considering various tradeoffs

encountered in practical DIFT systems such as the under-

taining vs. overtainting, importance of heterogeneous code

semantics and context, and we show that the complete problem

is NP-hard.

(2) We relax the problem and by leveraging distributed op-

timization we propose an algorithm that converges to an

approximately optimal solution. Specifically, it decides about

the propagation of the indirect flows by weighting the above

tradeoffs, is of low-complexity, scalable, flexibly adapts to

different scenarios and security needs of large distributed

systems.

(3) To the best of our knowledge, we are the first to introduce

the fairness and tag balancing properties to the DIFT field,

which control the balancing among the propagations of dif-

ferent tags. It matches information-theoretic intuitions about

how tags should be propagated: e.g., flipping a coin that has a

50%−50% chance of heads-tails carries more information than

a coin that is biased in one direction [18]. Similarly, when tag

propagation becomes unbalanced towards one tag (e.g., due

to the considered semantics), every object is tagged and we

show that little information is gained.

(4) To assess MITOS potential in real DIFT systems, we

implemented and evaluated MITOS on top of FAROS, an

existing open-source DIFT system [7]. We investigated the

complex tradeoffs involved in the indirect flow dilemma and

we performed a case-study scenario with a real in-memory

attack and showed that MITOS improved simultaneously (i)

system’s time and memory overhead (up to 40%), and (ii) sys-

tem’s fingerprint on suspected bytes (up to 167%) compared

to standard DIFT, even though these metrics usually conflict.

The rest of the paper is organized as it follows. Section II

provides basic background on DIFT. Section III discusses

MITOS assumptions. Section IV details the analytical model

for the indirect flow propagation problem and the correspond-

ing solution. Section V discusses MITOS implementation and

evaluation on an existing DIFT system. Section VI summarizes

MITOS key findings, limitations, and future work. Section VII

presents related work. Section VIII concludes the paper.

II. DIFT - BACKGROUND

Dynamic Information Flow Tracking (DIFT), or Dynamic

Taint Analysis (DTA), a fundamental concept in computer and

network security, is a promising method to make systems

transparent and to enable a wide variety of applications,

such as enforcement of security policies, real-time forensics

analysis, and reverse engineering. The main idea is based to

tag certain inputs or data (tag insertion), and then, propagating

these tags as the program or system runs (tag propagation) with

the goal of illuminating the flow of information.

Tag insertion is usually straight-forward, as the bytes being

involved in certain system activities get tagged with some

metadata. For example, in MINOS [3], an early DIFT system,

all data coming from network were tagged with an extra bit

indicating if the byte was suspicious. There are two types of

tag propagation flows: direct and indirect.

Direct flow propagations (DFP) come from copy and com-

putation dependencies. In a copy dependency, a value is copied

from one location (e.g., from a byte, word of memory, CPU

register) to another. To track this information flow, DIFT

systems propagate the tag from the source to the destination.

In computation dependencies, tags must be combined, e.g.,

after the computation of a sum between two variables, the tag

of the result should contain both tags of variables.

Indirect flow propagations (IFP) occur when information

dependent on program input determines from where and to

where information flows. There are two types of indirect

flows: address and control dependencies, with several ex-

amples available in the literature [6], [4]. Figure 1 provides

an address dependency example in C that converts an array

of tainted input from one format to another using a lookup

table. There, as the string InputString is tainted, the string

OutputString should also be tainted, since they carry the

same information. To ensure that OutputString is properly

tainted we check the taintedness of the address used for the

load with LookupTable as its base, and propagate this

taint. This example appears in special handling of ASCII

control characters to ASN.1 encodings. Generally, indirect

flows are expected to be the rule rather than the excep-

tion in modern systems, occurring in operations such as in

compression/decompression, encryption/decryption, hashing,

switch statements, string manipulations. Indirect flows can

create blindspots for practical DIFT analysis or vulnerabilities

in security applications e.g., Trojans embedded in PDF docu-

ments or attacks that use encryption mechanisms are common,

but cannot be tracked without tracking indirect flows.

Propagating all indirect flows can lead to overtainting,

where most of the objects become tainted with little being be

learned about the information flow. Conversely, not propagat-

ing indirect flows can lead to undertainting, where important

knowledge about the information flow might be lost, which can
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describe the number of copies of the tag t1, 1, while nt1,2 of

the tag t1, 2. The control vector n is:

n =






nt1,1 nt1,2 nt1,3, ...

nt2,1 nt2,2 nt2,3, ...

... ... ...
. . .




 (1)

The number of dimensions of n changes dynamically as

the system runs, since new tags are born/deleted due to

the continuous creation/ termination of processes, network

connections, etc.

(B. Cost function: cα,β(n)). We now define our cost

function cα,β(n) that dynamically weights the cost of α-fair

undertainting and the cost of β-steep overtainting.

cα,β(n) =

cost of undertainting
︷ ︸︸ ︷

cunderα (n) + τ
︸︷︷︸

weight

·

cost of overtainting
︷ ︸︸ ︷

coverβ (n) (2)

In the next two paragraphs (see B.1 and B.2) we elaborate

on the costs cunderα (n) and coverβ (n) and the meaning of α, β.

τ ∈ R
+ is input and dynamically weights the tradeoff between

over- and under- tainting. When τ = 0 the cost of overtainting

disappears (0 · coverβ (n) = 0) and, thus, the undertainting cost

dominates, and all tags are propagated. As we increase τ the

emphasis moves towards the overtainting, which limits tag

propagation. This weighting parameter is often used in multi-

criterion optimization problems [19], [20], [21].

(B1. Cost function of undertainting: cunderα (n).) Now,

we model the undertainting cost function. We introduce the

fairness parameter α ∈ R
+ that is input and balances the

number of propagations for different tags, and the parameter

ut ∈ R
+ that weights the importance of different tag types.

cunderα (n) =
∑

t

ut

∑

i

(nt,i)
1−α

α− 1
. (3)

In the following, we discuss the properties of our considered

cost function. Figure 3(a) depicts this function for different

values of α. When α = 1, the above function is not defined

(as α−1 → 0) and log (nt,i)
−1

is used instead. Note that, the

proposed α-fair fairness function was inspired by the fairness

in resource allocation for wireless networks [22], [23], [19].

It is monotonically decreasing on ni,t. This means that the

more the copies of a tag, the lower the undertainting cost for

that tag. Thus, the slope of undertainting cost is continuously

decreasing, meaning that it has negative gradient.

As α → ∞ tag-balancing is achieved through max-min

fairness. As we increase α the slope becomes more and

more steep. As α → ∞ the slope maximizes and thus our

function attempts to maximize the propagation of tags with

fewer copies, i.e. max-min fairness. The latter maximizes the

entropy of the system from an information-theory perspective.

This fairness has interesting implications for DIFT systems.

For example, assume that a stack pointer is tainted by variable-

sized arrays on the stack, or the stack pointer being popped

or set from a register while the program counter happens to

be tagged. Then, everything on the stack becomes tainted and

starts overtainting all taintable objects in the system because

the stack is heavily accessed. Slowinska and Bos [17] provide

more examples with different semantics that might lead to

overtainting. In such scenarios, MITOS will adjust the tag

propagations to prevent deterioration of system entropy.

Tag-balancing alone may not be sufficient for a good

propagation decision. Different tag types carry heterogeneous

information (e.g., network, pointer, file) and potentially prop-

agate differently in the system. This calls for schemes that

are able to weight the propagation speed for different tag

types, based on e.g. the application, the system workload, or

the security policies implemented. Our cost function flexibly

overcomes this obstacle by using ut ∈ R
+, which weights the

importance of different tag types and can boost or decelerate

their propagation respectively. We define u to be the vector

weighting the different tag types: u = [ut1;ut2; ...]. One could

even consider a tag confluence (when two or more tags come

together) to control the tag propagation of the involved tags

based on a certain run context.

(B2. Cost function of overtainting: cover(n)). If R is

the memory capacity of the system in bytes (e.g., main

memory, register bank, Ethernet card memory) and Mprov

is the maximum size of the provenance list, then the total

tag space in the provenance lists is NR = R · Mprov . For

example, if R = 4GB and for each byte we keep a list up to

10 elements, there are in total NR = 40 ∗ 109 provenance list

elements. We introduce the input parameter β that dictates the

slope, namely steepness, on the overtainting cost. Then,

coverβ (n) =

(∑

t ot
∑

i nt,i

NR

)β

(4)

In the following, we discuss the properties of our considered

cost function. Figure 3(b) depicts the function of Eq. (4).

It is monotonically increasing on ni,t, i.e. the larger the

number of tags in the system, the higher the cost. Thus,

its slope is continuously increasing with positive gradient.

Following the standard penalty functions, it should have at

least quadratic penalty on the memory pollution, thus we keep

β ≥ 2, ensuring also that it is twice differentiable [24]. As β

increases the cost of overtainting gets steeper.

Similarly to the undertainting cost, different tag types may

impact memory pollution differently. Our cost function flexibly

takes memory pollution into account by using o = [ot1; ot2; ...]
that weights the partial pollution of different tag types and

adapts their impact on the total pollution.

(C. Optimization Problem). Based on the defined control

variables and cost function we formulate our problem.

Problem 1. The problem formulation for the indirect flow (IF)

dilemma at hand is:

min .
n

∑

t ut

∑

i

(nt,i)
1−α

α−1
+ τ ·

(∑

t

ot
∑

i

nt,i

R

)β

(5)

NR −
∑

t

∑

i

nt,i ≥ 0 (6)

R− nt,i ≥ 0, ∀t ∈ T, i ∈ N
+ (7)
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Fig. 3. Considered cost functions for under/over tainting.

We now explain the physical meaning of our optimization

problem. Our control variable is the vector n that determines

the decision of propagating the tags coming from indirect

flows. Specifically, if a tag in such a scenario is worth

propagating (i.e., it improves the information flow), e.g. due

to the semantics or context priorities, we propagate it and

increase the corresponding value of n, otherwise we do not

(see A. Control Variables). This will become more clear in

the next subsection where we describe how n should be

best derived: n is updated, by leveraging the marginal costs

dictated by the considered cost function (see B. Cost Function)

and the considered linear constraints, every time our system

encounters an indirect flow leveraging distributed optimization

techniques. The marginal cost will take into consideration all

the tradeoffs discussed above. Constraint Eq.(6) states that the

total number of tag copies should not exceed the total tag space

in all lists. Constraint Eq.(7) ensures that each tag should not

have more copies than the total number of memory bytes (i.e.,

no byte is allowed to have more than one copy of a tag).

This problem has two main challenges at hand. First,

the control variables nt,i of the considered vector n takes

integer values, i.e. nt,i = 1, 2, 3, ..., since a tag can be

propagated to one or several bytes. Thus, this is a NP-hard

integer optimization problem, which is hard to solve optimally.

Second, the number of control variables nt,i can experience

sharp increases and decreases in very short intervals (e.g., a

video game reads data from files and downloads content from

Internet, thus generates hundreds of file and network tags in a

few milliseconds), thus continuously changing the dimensions

of n. This further complicates the problem since the system

dynamics change continuously as the system runs.

B. Solution: Distributed Optimization Algorithm and Policies

We now tackle Problem 1. We start by discussing how we

are going address the two major challenges discussed earlier:

the problem is NP hard and the number of dimensions of the

control variable change continuously.

Similarly to various works, we first propose to consider

the continuous relaxation of the problem to obtain a closed-

form real-valued solution [25], [26]. Specifically, we relax the

allowed values for nt,i ∈ N
+ to nt,i ∈ R

+. This relaxation

will allow us to tackle the relaxed problem fast with distributed

optimization techniques.

Lemma 1. The relaxation of nt,i ∈ N
+ to nt,i ∈ R

+ in

Problem 1 transforms it in a convex optimization problem.

Proof. The cost function is a sum of two convex functions

(both second derivatives are positive), and further it is convex

at the R
+. The constraints are linear, and further convex. To

this end, the relaxed problem is convex [24].

This relaxed problem can be solved analytically using the

method of Lagrange multipliers and Karush Kuhn Tucker

(KKT) conditions [24], to derive the optimal vector n
∗. 2

Note that, this solution might not scale well: (i) since new

tags are created, deleted and propagated very frequently as

the operating system runs posing a prohibitive overhead when

centralization (e.g., tag propagation updates) and system dy-

namics modifications (e.g., due to the change of the control

variable dimension) might need to happen too often, (ii) since

the global picture (system dynamics) of all subsystems is not

easily visible (accessible), especially in large distributed sys-

tems. In the following, we propose a distributed-optimization

solution that scales well to all these scenarios.

Solution roadmap: We start with Indirect Flow Propagation

(IFP) Scenario 1, where we assume that the destination’s list

has enough space in its provenance list to accommodate the

coming tags. Then, we generalize it to IFP Scenario 2 where

we investigate the problem when the space is limited, making

the problem more complex.

IFP Scenario 1: Single tag propagation with sufficient

space at the destination provenance list.

Assume an indirect flow scenario in a particular instruction

where (i) the source operand has only one tag for poten-

tial propagation. Also, (ii) the destination has (at least) one

available space in its provenance list, e.g., see Fig. 4. The

store word instruction in Fig. 4 copies data from a register

to memory. In our example, it attempts to store a word

from register t0 to the memory location corresponding to

7FFFFF0 + t3 = 7FFFFF0 + 8 = 7FFFFF8, given

that the value of t3 = 8. This is an address dependency, since

the value of t3 will dictate the memory address location that

the data of register t0 will be stored, and further the system

execution. Note that, there is a direct flow too from t0 to

7FFFFF8 that will be propagated following the basic DIFT

rules (see Section II) and is out of the scope of this paper.

Our objective is to answer the following question: should

the DIFT system propagate the red tag C? Alg. 1 shows our

proposed method towards answering this question. The main

idea is to take the indirect flow propagation decision based on

the first-order optimization criterion [24]. In the following two

paragraphs we elaborate on the two-steps of Alg. 1.

First, we derive the direction of the gradient towards the

dimension we are interested in. In our case, this dimension

refers to the control variable that is associated with the tag

2Note that in practice, one could round these values to the closest integer
to get an approximately optimal solution.
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First, we derive all the partial derivatives of all tags involved

in the considered indirect flow at the source using Lemma 2.

(line 1, Alg. 2). Then, we sort the partial derivatives in

an increasing order, such that the first tag (j=1) has the

lowest marginal cost (line 2, Alg. 2).Then, we set (i) the

first tag to be considered for propagation to the one with

lowest marginal cost i.e. j=1, and (ii) the tags that have been

successfully propagated to 0, #props = 0 (line 3-4, Alg. 2).

The while loop that follows keeps propagating the tags while

the available space in the destination provenance list is not

exceeded (#props ≤ A) and while the marginal cost of the

current tag is negative (∆(nTj ,Ij ) ≤ 0). More precisely, if

the above two conditions hold true, we propagate the tag and

increase by +1 the counter of propagations (line 6-7, Alg. 2).

Then, we move the pointer to the next tag (line 8, Alg. 2) and

recalculate the partial derivative of the next tag since the cost

of overtainting might have changed (line 9, Alg. 2).

Since the tags are ranked according to their marginal cost,

and the propagation decision is based on them, during each

indirect flow the improvement in c(n) is maximal among all

feasible directions (a variable nt,i cannot change during an

indirect flow propagation, if the tag {T, I} is not present in the

list of the source); given the convexity of our cost function, this

method is shown to correspond to a distributed implementation

of a gradient decent algorithm [25], [24]. However, note that,

the rule proposed might make decisions that are optimal at a

given point in time, but that might push the system into a local

optimum from which it cannot get out easily later. Further, the

solutions of Alg. 1 and Alg. 2 do not necessarily correspond to

the global optimum points of Problem 1, as they are heuristic

solutions of the relaxed problems.

We now discuss various properties of our proposed rule in

Lemma 2 and of our generic Algorithm 2.

1) Our proposed rule derives the gradient of our cost

function by properly weighting all the involved tradeoffs

(e.g., undertainting versus overtainting, semantics prior-

ities) and system dynamics (e.g., memory pollution) and

then it best decides about the propagation of an indirect

flow.

2) Our rule for the IFP is of low-complexity. The time

complexity is O(1), since every time MITOS needs

to make an IFP decision it only needs to sum two

real numbers (see Eq. (8)). For the space complexity,

we need (i) O(NR) space for the submarginal cost of

undertainting (left part of Eq. (8)), as our policy is byte-

level attributable. Also, we only require (ii) O(1) space

for the overtainting cost, as we keep a single estimation

of the memory pollution (right part of Eq. (8)).

3) It is scalable. MITOS only needs to retrieve a local

value about how undertainted the tag is, for the IFP

decisioning (and use it along with a globally available

estimation of memory pollution, see e.g. Eq. 8). This

keeps MITOS scalable as its complexity doesn’t change

on the number of tags in the system.

4) It is flexible, since by changing the input parameters

one can flexibly weight the involved tradeoffs differently

and capture different performance degrees based on the

application scenarios and security needs. It is also α-

fair, since α captures different degrees of tag balancing.

In Section V we elaborate more on this.

MITOS can be generalized to capture different types of

flows, processes and objectives (we discuss such a scenario

in Section V-C). Due to space limitations and as the problem

formulation stay the same in all cases we skip the details.

Finally, bearing these in mind, MITOS is highly efficient

on large distributed systems that might need to often exchange

their local information about tag propagations e.g., to detect or

keep track of potential attacks that infect different subsystems,

by using our low-complexity, scalable and flexible rules.

V. APPLYING MITOS TO AN EXISTING DIFT

To evaluate MITOS applicability in practice we im-

plemented it in an existing, open-source DIFT system,

FAROS [27], [7]. We start by detailing our implementation

(Section V-A), and then we evaluate MITOS’ performance

under various tradeoffs encountered in different indirect flow

scenarios, such as undertainting vs. overtainting, tag type

importance, and different fairness degrees in tag balancing

(Section V-B). Finally, we evaluate MITOS in a study case,

where FAROS is detecting stealthy in-memory-only attacks

(Section V-C). We show how the application of MITOS for all

types of flows can not only improve FAROS’ spatiotemporal

performance, but also its detection accuracy, in terms of

recognizing the bytes that are part of an exploit. In the

following, if not explicitly mentioned, we assume α = 1.5,

β = 2, ut = ot = 1 ∀t ∈ T, τ = 1, and that all τ values are

normalized up to the power of 106. We varied the parameters

in our evaluations and reached similar conclusions.

A. Implementation Details

Figure 6 illustrates our architecture which consists of five

layers: (i) the host Ubuntu 14.04 machine, (ii) the QEMU

virtual machine (VM) with the PANDA plugin, (iii) the open-

source DIFT tool FAROS, (iv) MITOS implemented as a

FAROS extension for the IFP problem, (v) Windows 7 as

guest OS 3. PANDA is built upon the QEMU whole-system

emulator adding to it capabilities for instruction level analysis

including recording and replaying a system run. FAROS was

implemented as an PANDA plugin extension leveraging direct

flow propagations for malware analysis and we refer the

interested reader to [7] for details.

We now describe the implementation of MITOS along

with its interaction with PANDA and FAROS in Fig. 6.

PANDA provides access to all instructions emulated in a pre-

viously recorded run (steps (1)-(2)). Then, FAROS component

is_DFP filters and processes the instructions that involve a

direct flow propagation (DFP) (step (3)), and propagates all

the DFPs by inspecting and modifying the shadow memory

3FAROS was implemented for Windows 7. As discussed in Section VI, the
type of OS does not affect the nature of the indirect flow propagation problem
considered in this paper, thus the OS choice is not expected to (directly) impact
the insights offered by MITOS.

7





the number of copies of different tags. The sharp deviations

of the tags can be alleviated by adapting α, thus improving

tag balancing performance, and entropy, up to 2×. This is

important as traditional DIFT systems tend to overpropagate

tags in multiple scenarios, consequently hurting their overall

performance and wasting memory resources from the prove-

nance lists [7].

Message: MITOS input parameter α flexibly captures dif-

ferent fairness degrees, in terms of tag-balancing. We envision

this to have immense impact on modern DIFT systems, since

these systems experience situations where they tend to over-

propagate certain tags, especially in large distributed systems

that the global picture is not easily visible.
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Fig. 9. unetflow vs. propagated net-
flow tags.

Tag type importance. We now focus on the tradeoff arising

when tags of different tag types compete for propagation.

Modern DIFT systems might include different tag types with

different properties, importance, and propagation speeds [7].

As discussed, there are many reasons that warrant dynamic and

somewhat personalized strategies to determine the weight of

over vs under tainting based on tag type, through ut. In Fig. 9

we consider different values of unetflow (by keeping the remain-

der parameters fixed and equal to 1). For each value we plot

in blue (netflow line in the legend) the percentage of netflow

tags, encountered at the end of each replay, normalized by the

maximum value taken when unetflow = 100. Increasing unetflow

monotonically boosts the netflow tag propagation speed. The

boosting of certain tag type propagation speed impacts how

MITOS handles other tag types, because a speed boosting

means an increase in memory pollution (export table tags have

higher undertainting cost and further are mildly decelerated).

Message: MITOS introduces a flexible way to dynamically

fine-tune the propagation speed of different tag types through

ut, to accommodate the inherently heterogeneity of tag prior-

ities for a particular system.

Finally, we also ran CPU and file-system benchmarks, and

we noticed similar behaviors. We skip the results for those

benchmarks due to space limitations.

C. Case study: Flagging In-Memory-Only Attacks

We now apply MITOS in FAROS while it is flagging

stealthy in-memory attacks and show the substantial im-

provement MITOS brings in spatiotemporal performance and

detection efficiency. In particular, we study how much time

FAROS MITOS Improvement

Time (sec) 837 509 1.65×

Space (Mbytes) 2.21 1.99 1.11×

Detected bytes 543 1449 2.67 ×

TABLE II
TIME, SPACE COMPLEXITY, AND NUMBER OF BYTES THAT WERE

SUCCESSFULLY DETECTED IN AN IN-MEMORY ATTACK.

MITOS/FAROS needs to replay the attack compared to the

standard FAROS (time complexity), how much memory is

used (space complexity), and how many bytes can successfully

be detected as suspicious (detection efficiency) in each case.

In an in-memory-only attack, the attacker, usually through

a shell, injects a payload inside a legitimate process address

space. The hallmark of the in-memory-only attack is the fol-

lowing. The payload comes from the Internet and is associated

with netflow tag. Then, these bytes are written into the kernel

memory area where linking/loading operations occurs and are

also associated with the tag export-table. FAROS flags the

attack when these two tags (netflow and export-table) come

together on a byte.

We implemented the in-memory attacks using the Meter-

preter module from Metasploit in a way similar to that done

for FAROS [7]. We set up the attacker’s VM (Linux Kali) and

generated a shell code that ran in the victim’s VM (Windows

7). This opened a session for the attacker and we then perform

a remote reflective DLL injection targeting the victim process

calculator.exe. As explained earlier, we consider two systems

and attempt to compare their performance: (i) [FAROS] prop-

agating aggressively all direct flows and no indirect flows as

suggested in various DIFT systems including FAROS, and

(ii) [MITOS] propagating all flows (direct and indirect) at the

MITOS level. For (ii) we generalize MITOS to also consider

direct flows, as explained in Sections V-A.

The spatiotemporal complexity and the detection perfor-

mance of both systems is depicted in Table II. We ran six

Metasploit shells (reverse https, reverse https proxy, reverse tcp

rc4 dns, reverse tcp rc4, reverse tcp) and show the average per-

formance. While FAROS aggressively propagates all tags [7],

MITOS propagates only the tags that are important based

on our considered objective that measures the information-

flow (see Alg. 2). We note that MITOS achieves the following

improvements simultaneously (even though they usually come

in an antagonistic fashion): (i) it propagates fewer tags than

FAROS by further alleviating the space and time needed for

the tracking analysis 1.65× and 1.11× respectively, and (ii)

it can successfully detect 2.67× times more bytes that were

involved in the in-memory attack.

Message: MITOS opens new horizons of how information

flow can be measured and optimized in modern and large

systems where spatiotemporal complexity emerges as a key

performance bottleneck.

VI. DISCUSSION AND FUTURE WORK

MITOS consists of an analytical algorithm and set of

policies for the open problem of indirect flow propagation
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in modern DIFT systems. From a theoretical viewpoint, MI-

TOS is novel as it analytically models the tradeoffs between

undertainting and overtainting and between the importance

of heterogeneous code semantics and context, and designs

a solution algorithm using distributed optimization. It also

introduces fairness and tag-balancing: two key properties for

the success of modern DIFT, and investigates the impact

of different α-fair degrees on system performance. From a

systems viewpoint, MITOS is distributed, scalable, flexible, of

low complexity, applicable to large distributed systems. In our

extensive performance evaluation we demonstrated that it can

be easily applied to an existing software-based DIFT system,

and then shed some light on the various dimensions of the open

problem. Additionally, we performed a study case scenario

with an in-memory-only attack. There, we showed that MITOS

can improve simultaneously spatiotemporal complexity up to

40% and the detection efficiency up to 167%, compared to

traditional DIFT. Summing up, MITOS analytically studies and

addresses a problem of DIFT systems that has been open for

the last decade: the problem of whether indirect flows should

be propagated or not; a dilemma that impedes the application

of DIFT to practice. Then, we demonstrate our decisioning

framework under an existing DIFT system.

Scheduling management in the lists. In our evalation,

we followed FAROS assumptions [7] and assumed that the

provenance lists follow a First-In-First-Out (FIFO) queue: we

drop the head of the list if the list is full and an additional

tag attempts to enter. We defer to future work the design of a

proper tag scheduling and dropping decisioning using penalty

functions for indirect flows, as Matzakos et al. did for delay

tolerant networks [25].

MITOS in Hardware. To ensure implementation flexibility

for different hardware platforms, MITOS can be implemented

as a configurable component in a System on Chip (SoC).

Configuration parameters for the MITOS algorithm can be

saved in newly added model specific registers, allowing an

interface to a trusted OS module or platform loader to set

up the interfaces. Information flow during execution, tag

information can be stored in dictionary-like structures that

reside in a segmented portion of main memory. Segmentation

can be performed during platform initialization, such as the

Pre-EFI Initialization (PEI) portion of Unified Extensible

Firmware Interface (UEFI), much like the enclave page cache

is reserved for usage in Intel’s Software Guard Extensions.

Recently accessed information can be stored in a MITOS-

specialized series of caches to mask memory latency. We move

the computational process employed by MITOS to decide tag

propagation to specialized hardware. We extract data flow

information directly from the CPU as code executes. For out

of order cores, we look at the commit stage in the CPU, as to

capture the proper architectural state and not violate execution

model. The decision on whether to propagate tag information

is then performed by hardware. Because the segmented portion

of memory is limited in size, it may need to be swapped. We

can perform this action by relying on the OS to swap the

information for us, in which case it must be stored encrypted

and cryptographically signed, or through trusted service into

a trusted storage area.

Limitations. Note that, as our implementation was based on

FAROS and PANDA, we encountered several limitations in the

performance evaluation. For example, FAROS poses a large

overhead on the host machine: e.g., the memory required to

replay a record increases exponentially on the record duration,

prohibiting us to run scenarios longer of one minute. Also,

PANDA restricts the size of the record and further the system

activities that can be recorded simultaneously. The latter

prevented us from running complex evaluation scenarios, e.g.,

run multiple attacks of benchmark scenarios jointly. Finally,

note that FAROS runs on Windows 7, restricting our OS choice

for our case study analysis. While the OS itself does not affect

the nature of the open IFP problem and the insights offered by

MITOS, we plan to also apply MITOS in more modern OSes

in our future work.

VII. RELATED WORK

DIFT in the context of detecting attacks was co-introduced

by Costa et al. and Suh et al. [4], [29]. TaintBochs [30]

was another early application of taint analysis to analyze data

lifetime in a full system. Other early DIFT works include [3],

[2], [31] that explore policy tradeoffs for DIFT schemes and

higher-level systems issues, vulnerabilities in commodity soft-

ware and honeypot technologies. Malware analysis [1], [32],

network protocol analysis [33] and data flow tomography [7],

[34], full-system recovery after memory corruption attacks

and protecting kernel integrity against rootkits [35] are other

directions that DIFT is leveraged.

Most past work on DIFT focused on software implemen-

tation and did not satisfactory address indirect flows. The

earliest DIFT papers that identified the problems with address

and control dependencies include [4], [3]. For Minos, it is

claimed that (i) address dependencies are propagated for 8-

and 16-bit loads and stores, and blocked for 32-bit loads and

stores. More details and analysis of these issues followed [36],

[5], including a quantitative analysis of full-system pointer

tainting [17]. More recent DIFT systems that are designed for

flexibility [15], [1] enable address and/or control dependencies

to be tracked based on a user-provided policy, but provide

no satisfactory policy for doing so in practice. As discussed

earlier, Panorama [1], DTA++ [13], DYTAN [14],RIFLE [15],

and GLIFT [16] suffer from several limitations when it comes

to indirect flow propagation and overtainting. Panorama [1]

relies on a human to manually label which address and control

dependencies tags should be propagated. Address and control

dependencies arise from common program structures, such as

conditional statements, for loops, and arrays. DTA++ [13] or

DYTAN [14] rely on off-line analysis, which does not scale

to full systems. Systems designed with correctness as the

primary goal, such as RIFLE [15], and GLIFT [16], propagate

all tags all the time unless a compiler statically analyzes the

information flow. While there are attempts at implementing

DIFT in hardware [37], [38] they do not handle indirect flows

and taint analysis performance overheads.Other recent DIFT
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schemes include FAROS [7] and V-DIFT [6] that approximate

a quantitative information flow at the price of overhead, not

scaling to large systems. DDIFT [39] considers generic direct

and indirect tag propagation policies for IoT.

VIII. CONCLUSION

In this paper we analytically study the problem of indi-

rect flow propagation encountered in practical DIFT systems,

by unifying two, usually conflicting, worlds of theory and

practice. After modeling the open problem, we propose MI-

TOS, an iterative, scalable and distributed algorithm to tackle

it, implementable in large systems. We then evaluate it in

an existing software-based DIFT by shedding light on the

problem of indirect flow propagation, investigate the complex

tradeoffs involved, and we show the significant performance

improvement (e.g., 167% in our case scenario).
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