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SCALAR AUXILIARY VARIABLE SCHEMES FOR DISSIPATIVE
SYSTEMS: APPLICATIONS TO KELLER-SEGEL AND
POISSON-NERNST-PLANCK EQUATIONS*
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Abstract. We propose a new method to construct high-order, linear, positivity /bound pre-
serving and unconditionally energy stable schemes for general dissipative systems whose solutions
are positivity /bound preserving. The method is based on applying a new scalar auxiliary variable
approach to the transformed system with a suitable function transform. The resulting schemes enjoy
remarkable properties such as being positivity /bound preserving and unconditionally energy stable
and able to achieve high-order and with computational complexity similar to a semi-implicit scheme.
We apply this approach to Keller—Segel and Poisson—Nernst—Planck equations and construct efficient
numerical schemes which, in addition to being positivity/bound preserving and energy dissipative,
also conserve mass. Ample numerical results are presented to validate our theoretical claims.
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1. Introduction. Many problems in sciences and engineering require their so-
lutions to be positive or remain in a prescribed range, such as density, concentration,
height, population, etc. Oftentimes, violation of the positivity or bound preserving
in their numerical solutions renders the corresponding discrete problems ill posed,
although the original problems are well posed. For these types of problems, it is of
critical importance for the numerical schemes to be positivity or bound preserving. A
particular class of such problems is the Wasserstein gradient flows which are gradient
flows over spaces of probability distributions according to the topology defined by
the Wasserstein metric [22, 29]. Important examples of Wasserstein gradient flows
include the Poisson-Nernst—Planck (PNP) equations [27, 10] and Keller—Segel equa-
tions [23, 18]. For these problems, in addition to positivity or bound preserving, it
is also important for the numerical schemes to obey a discrete energy law. Many at-
tempts have been made over the years in developing numerical schemes for the PNP
and Keller—Segel equations.

For the PNP equations, a quite complicated entropy-based scheme with regular-
ized free energy is constructed in [28] along with rigorous numerical analyses for a
set of finite-element approximations; a mass-conservative finite difference scheme is
constructed in [14]; a arbitrary-order energy dissipative schemes are constructed using
a a discontinuous Galerkin method for one-dimensional PNP systems [24]; and most
recently a fully discrete positivity preserving and energy-dissipative finite difference
scheme was developed in [20]. On the other hand, There exist a large number of nu-
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merical works for the PNP equations in the electric and medical engineering literature;
see, for example, [16, 26, 19] and the references therein.

For the Keller—Segel equations and related models, a finite volume scheme is de-
veloped with convergence proof in [13]; a second-order positivity preserving central-
upwind scheme is constructed in [6] (see also [12, 11]); finite volume methods for
a Keller—Segel system are considered with discrete energy dissipation and error es-
timates in [37]; and a positivity preserving and asymptotic preserving method is
constructed for a reformulated Keller-Segel system in [25] [37, 7]. We refer to the
aforementioned papers and the references therein for more details on existing numer-
ical schemes for Keller—Segel equations.

Some of these numerical schemes preserve positivity and/or some form of energy
dissipation under certain conditions and specific spatial discretization. Oftentimes one
needs to solve nonlinear systems at each time step. Very recently, an interesting ap-
proach was proposed to construct unconditionally energy stable and positivity /bound
preserving for Keller—Segel equations in [31] and for PNP equations in [32]. How-
ever, these schemes require solving, at each time step, a nonlinear system which is
a unique minimizer of a strictly convex functional. The question we would like to
address in this paper is, For PDEs which preserve positivity or bound and satisfy an
energy dissipation law, how do we construct numerical schemes which are linear, pos-
itivity /bound preserving, and unconditionally energy stable for any consistent spatial
discretization?

The recently proposed scalar auxiliary variable (SAV) approach [33, 34] is a pow-
erful tool to design unconditionally energy stable, linear schemes to a large class of
gradient flows and has been applied successfully to many challenging problems. How-
ever, it does not have a mechanism to preserve bounds or positivity. On the other
hand, a common strategy to enforce solutions to preserve bounds or positivity is to use
a suitable function transform. A drawback of this approach is that the transformed
equation becomes very complicated so that it is very difficult to construct efficient
and energy stable schemes for the transformed equation.

In this work, we propose a new class of bound/positivity preserving and en-
ergy stable schemes by combining the SAV approach and the function transform
approach:

e make a suitable function transform to ensure positivity or bound preserving;

e use a recently proposed SAV approach [21] to design linear and uncondition-
ally energy stable schemes for the transformed equation.

Our new schemes will enjoy the following remarkable properties:

e they can be used with high-order semi-implicit (i.e., IMEX) schemes;

e they are positivity or bound preserving;

e they are unconditionally energy dissipative;

e they require solving only one set (instead of two in the original SAV approach)
decoupled linear equations with constant coeflicients at each time step, so
the coding and computational complexity are similar to that of semi-implicit
schemes;

e for problems with mass conservation as in PNP and KS equations, they also
conserve mass.

The rest of the paper is organized as follows. In section 2, we describe our
approach for a general semilinear or quasi-linear dissipative system. In section 3, we
construct new schemes for the PNP equations, followed by the schemes for Keller—
Segel equations in section 4. In section 5, we present numerical examples to validate
our schemes. Some concluding remarks are given in section 6.
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2. Bound/positivity preserving schemes through transform and SAV
approaches. In order to clearly describe our idea, we consider a semilinear or quasi-
linear parabolic system in the form

ou

(2.1) i

Au+g(u) =0
with either periodic or homogeneous Neumann boundary condition, where g(u) is a
nonlinear function. The following discussions are still valid if we replace —A in (2.1)
with more general or higher-order linear elliptic operators.

We assume that the above system satisfies a dissipation law in the form

dE(u)

(2.2) =

= —(Gu,u),

where E(u) is a typical energy functional given by

(2.3) B = /Q (;/Lu cut F(u)> dz = Fo(u) + Bx(u),

G is a nonnegative operator, and L is a self-adjoint, linear, nonnegative operator. We
also assume that E[u] is bounded from below, and without loss of generality, we can
assume E[u] > 0 Vu.

Note that the above framework includes, as special cases, the L? gradient flows
for which g(u) = F’(u) where F(u) is a given nonlinear function, L = —A, and
(Gu,u) = (—Au + g(u), —Au + g(u)).

Solutions of (2.1) are often bound/positivity preserving. It is desirable, and
sometimes necessary such as in the case of PNP and Keller—Segel equations, for the
numerical solutions to be also bound/positivity preserving. While it is possible to
construct some fully discrete numerical methods which preserve the bounds/positivity
using finite differences or piecewise linear finite elements for a class of (2.1) satisfying
a maximum principle, it is in general very difficult to construct higher-order finite
elements or spectral methods which preserve bounds/positivity as well as energy dis-
sipation.

While the SAV approach [34] provided a powerful approach to design numerical
schemes which preserve energy dissipation, it does not have a mechanism to preserve
bounds or positivity. A common strategy to enforce solutions to preserve bounds or
positivity is to use a suitable function transform. More precisely, given a prescribed
range interval I which could be open, closed, or half open, we can construct an
invertible mapping 7' : R — I and make the function transform u = T'(v) in (2.1),
leading to

(2.4) % —Av— T((;’)) IVo[? 4+ T,tv) g(T(v)) =0

with either periodic or homogeneous Neumann boundary condition, since % =T'(v) %
After we solve v from the above, we get u = T'(v) whose range is included in I. Two
typical cases are
e I = (a,b)—a suitable choice is T'(v) = 25% tanh(v) + 5% so that the range
of u="T(v) is still in T;
e [ = (0,00)—a suitable choice is T'(v) = exp(v/M), where M is a tunable
parameter to prevent T'(v) from increasing too fast, so that u = T'(v) is
always positive.
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The main difficulty with this transformed approach is that the transformed equation
(2.4) is much more complicated than (2.1), and it is difficult to design efficient and
energy dissipative schemes. Fortunately, the recently proposed SAV approach [21] can
provide a satisfactory solution as we show below.

As in the usual SAV approach we introduce a SAV to enforce energy dissipation
(2.2). More precisely, we set 7(t) = [, F(u)dz+Cy with Cy > E[u"] and expand (2.4)
with (2.2) as

v _T"(v) 9 1
2. — —Av T =
(2:52) = Ty |V + o T) =0
(2.5b) u=T(v),
dEy(u)  dr Eo(u) +r(t)
2. 2 O
(2.5¢) o 7 BEu)+Cy (Gu,u),
with 7( fQ u(zx,0))dz+Cp; it is clear that the above system is equivalent to

(2.4) w1th (2.2). However discretizing the above will allow us to easily construct
schemes which are energy dissipative, in addition to bound/positivity prerserving,
which is built into the system. We construct below kth order backward difference
formula (BDF) Adams-Bashforth SAV schemes for (2.5) in a uniform setting: treat
the linear term Aw implicitly and use Adams—Bashforth extrapolation to deal with
all nonlinear terms.

More precisely, given r™ and (u’,v7) for j =n,...,n—k+1, we find (v" 1, u"+1,
rntl ¢ntl) such that
apo™tt — Ap(v™) N

ot
T”( ( )) 1 n

(27) ,an—i-l _ T( n+1),

(2.6)

1/1
(2.8) 5 (5 / (Eﬂn-i-l St e a")dx + Jntl 7“”)
Q
- 3 Jo Lumtt -t de 4 ! (Gar+t, an+h)
B E[’U,”‘H]_*_CO U U )
(20) entt = Jogfu W dr 4
. —_ E[ﬂn+1]+C0 ?

k+1 if k is odd,

(210) W™ =g with gt =1 (1 gt o=
k if k is even,

where the constant aj and operators Ay, By are defined by
first-order scheme,

(2.11) ap =1, A;(v™) =", By(h"™) = h"™

second-order scheme,

3

2

third-order scheme,
11

3
(2.13) a3z = G Az(v") = 30" — iv”_l +

1
(2.12) g = Ag(v™) = 20" — 51;"—1, Bo(h™) = 2n™ — A"

v"7%, Bs(h™) =3h" —=3h" 1+ h" 3

Q| =
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fourth-order scheme,

25
127
By(h™) = 4h™ — 6h" " 4 4h"72 — pn73,

4 1
(2.14) oy = Ay(v™) = 40" — 30" + gv"ﬂ — ZU”*?Z

The formulae for k¥ =5 and k = 6 can be derived similarly.

Several remarks are in order:

e Since we assume 7' is invertible, T7'(v) # 0 so the above scheme is well defined.
The range of the approximate solution #"** = T'(v"*1) is obviously included
in 1.

e (2.6) is a kth-order approximation to (2.5a) with kth-order BDF for the linear
terms and kth-order Adams—Bashforth extrapolation for the nonlinear terms.
Hence, v"*! is a kth-order approximation to v(t,1).

e (2.8) is a first-order approximation to (2.5c). Hence, r is a first-order
approximation to Ej(u(:,t, 1)) which implies that £"*! is a first-order ap-
proximation to 1. Hence, nf™! = 1 + O(6t)™ which implies that both @™+
and u"! are kth-order approximation of u(t,41).

e The above scheme can be efficiently implemented as follows:

— determine v"™*! from (2.6);
— set a" Tt =T (v"H1);
— with @**! known, determine r
&t from (2.9);
— update u™! using (2.10), goto the next step.
The main cost is to solve v™*1 from (2.6) which is a linear equation with
constant coefficients.

The above scheme looks similar to the scheme in [21], but there are some subtle
differences, particularly in the choice of 772"’1. As we show below, this choice allows
us to obtain a uniform bound on (Lu™,u™), which in turn will play a crucial role in
the error analysis as in [30].

n+1

"+l explicitly from (2.8), and compute

THEOREM 1. Without loss of generality, we assume ab < 0 if I = (a,b). Assume

ut with range in I, v' = T~ (u%), and r* fori = 0,1,...,k — 1. The scheme (2.6)—
(2.10) admits a unique solution satisfying the following properties unconditionally:
1. Positivity or bound preserving: i.e., the range of @™*! and u™t' isin I.

2. Unconditionally energy dissipative with a modified energy defined by E™ =

fQ %Eﬂ" -adx 4+ r™: More precisely, if E™ > 0, we have E"1 >0 and

_ _ En+1
(2.15) E" _E" < —5tE

W(gan—kl,an—&-l) S 0.

3. Furthermore, if E\(u) = [, F(u)dx is bounded from below, then for the kth-
order schemes, there exists constant My, such that

(2.16) (Lu™, u™)Y? < My, Vn.

Proof. By construction, the scheme is obviously positivity or bound preserving
for a™*1.
We derive from (2.8) that

ot

Bl = B (14—
[+ Famre,

(gﬂnJrl, anJrl)).
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Hence, if E™ > 0, we have E"*! > 0, and (2.15) follows directly from (2.8). It follows
from (2.9), (2.15), and Cy > E[u°], E[a"*!] > 0 that

E[UO] + Co

2.17 O<emtl < L - 2 <2

( ) ¢ - E[a"“] + Cy ’
which together with (2.10) implies

(2.18) 0< (- <1, 0<nptt < 1.

Hence, the range of u"*! is also in I as u™*! =y '@+ for I = (0,00) or I = (a,b)
with ab < 0.

If E1(u) = [, F(u)dz is bounded from below, without loss of generality, we
assume Fi(u) > 1. Denote M := E[u(-,0)]; then (2.15) implies E™ < M Vn. Now, it
follows from (2.9) and the assumption of Ej(u) > 1 that

En+1 2M

2.1 " = < -
( 9) |£ | E[’(]”‘H] +Cy — (£HWL+17ﬂn+1) +2

Since 77,’:+1 =1—(1—¢&t)Ix there exists a polynomial Pj of degree I, — 1 and a
constant M} > 0 such that
My,
(Lantl antl) +2°
Therefore, by the fact VA< A+2VA > 0, we have

(221) (ﬁun+1’un+1)1/2 — 772+1(£ﬂn+1,ﬂn+1)1/2 < M. O

(2.20) [ = 1€ P (e <

The above scheme can be directly applied to bound /positivity preserving L? gra-
dient flows, including in particular the Allen—Cahn equation. In the following two
sections, we shall extend the approach presented in this section to construct posi-
tivity preserving and energy stable schemes for PNP and Keller—Segel equations for
which it is essential to preserve positivity.

Remark 1. We emphasize that both @”*! and u"*! are kth-order approximation
to u(-, tpy1)-

We only considered the time discretization in this section. However, it is clear
from the proof of the above theorem that, as long as the spatial approximations of
G and L are still positive definite, the results of Theorem 1 also hold for the fully
discrete schemes.

3. Positivity preserving schemes for the PNP equation. We consider in
this section the PNP equation which describes the dynamics of IV species of charged
particles driven by Brownian motion and electric field (cf. [2, 15, 9] and the references
therein). To simplify the presentation, we will focus on the two-component system
(N = 2). The schemes can be easily extended to more general PNP system with N
components.

3.1. PNP equation. We consider a two-component PNP system in the follow-
ing form:

9]
(3.1a) % =DV - (Ve + x121¢1V o),
9]
(3.1b) % = D,V - (Vea + x12262V ),
(3.1c) —A¢ = xa2(z101 + 2202),
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in an open bounded domain 2 C R? (d = 1,2,3) and supplemented with either a
periodic boundary condition or no flux boundary conditions

801- 8(,1)
on on
It is also possible to use the Dirichlet boundary condition ¢|sq = 0 or a Robin type
boundary condition (a¢ + 5%”69 =0.

In the above, the unknown are ¢;, the density of the ith species, and ¢, the internal
electric potential, D; > 0 is the diffusion constant of the ith species (i = 1,2), z; are
the valence constant, and 1, x2 are dimensionless parameters. To make the formulas
below more concise, in the following we fix z1 =1, 2o = —1, and x; = x2 = 1.

Using the identity Vi = )V log 1, we can rewrite (3.1) as a Wasserstein gradient
flow

(3.2)

|BQ:O7 Z:]-aza ‘BQ:O

(3.3a) T D1V - (e1Vogey + 1 Vo),
(3.3b) % = DV - (e;Voges — Vo),
(3.3¢) —A¢p =c1 —c,

with the free energy

(3.4) E(ci,c0,¢) = /

1
c1(loger — 1) + ca(logeg — 1) + §|V¢\2dm.
Q

Indeed, taking the inner product of (3.3a) with log ¢; + ¢ and of (3.3b) with log ca — &,

summing them up along with (—Ad,¢ = 9¢(c1 —¢2), ¢), we obtain the following energy
law:

dE(Ch C2, ¢)

(3.5) o

- _/ (D1 e1|V(loger + ¢)[2 + Dy ea|V(log ez — ¢)[?)da.
Q
Note that the form of the free energy, as well as the well-posedness of (3.3), requires
c1,c2 > 0. Therefore, it is of critical importance that numerical schemes for the PNP
system preserve positivity.
On the other hand, we also derive from (3.3) and (3.2) that

d
(3.6) 7 /Q cdr =0, 1=1,2,

i.e., the mass for each component is conserved.

3.2. Positivity preserving SAV schemes. As explained in section 2, we can
preserve the positivity using suitable function transforms. Since only c;, co are pos-
itivity preserving, we only make function transform for c;, ca. More precisely, we
introduce two new functions p; and p, through

(3.7) ci =T (p;) == exp(pi), 1 =1,2,

which implies in particular ¢; > 0,7 =1, 2.
Substituting (3.7) into (3.3a)—(3.3b), we obtain

0

(3.82) S = Di(Ap1 +|Vpi [ + Vpr - V6 + A9),
0

(3.8b) =7 = Da(Ap2 +|Vpal’ = Vps - V6 — Ag).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/29/21 to 128.210.126.199. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

BOUND/POSITIVITY PRESERVING SCHEMES A1839

Note that for this transform, we have T"(p;) = T"(p;) = T(p;), so the transformed
equations are not too complicated.

Next we split the free energy E(c1,ca,¢) into the sum of Ey(¢) := %(VQS,V(;S)
and Ej(cq,c) = fQ c1(logey — 1) 4+ ca(logeg — 1)dz. Tt is clear that Ej(ep,cq) is
convex and bounded from below in the admissible set D := {(¢1,¢2) : ¢1,¢2 > 0}, so
we assume that for some Cy > 0,

(39) El(cl, 82) Z —C() + 1,

and define a SAV r(t) = Ei(c1,¢2) + Cg > 1. Then, the total free energy E and its
time derivative can be rewritten as

(3.104) B(ex, 2, 6) = 5(V,Y6) +(t) = Fo(6) + r(0),
dE  dE,

Denoting puy = logey + &, ps = logco — ¢, we can reformulate (3.3) and (3.5) as

B
(3.11a) % = D1(Ap1 + [Vpil* + Vp1 - Vo + Ag),

B
(3.11b) % = Da(Ap2 + [Vpa|* — Vp2 - Vo — Ag),
(3.11c) c1 = exp(p1), c2 = exp(p2),
(3.11d) ~A¢ =c1 —ca,

dEy Eo(¢) + (1) / 2 2
11 S0y = D D da.

(3.11¢) ar E(cy,c2,0) + Co Q( vl Vil + DeeslVpal)do

We remark that since the above system is equivalent to the original system (3.3), the
masses of ¢; are still conserved, but that of p; are not.

We now construct kth-order SAV schemes (1 < k < 6) for the above system in a
uniform setting.

Given (¢!, pl, ¢, r7,&7), i =1,2, j=n,n—1,...,n —k+ 1, such that

(3.12) /cg'dx:/c?dx, i=1,2 j=nn—1,....n—k+1,
Q Q

we determine (¢!, pr Tt NPT i = 1,2, and (¢, L €711 as follows:

arpi ™t — Ap(p})

ot _DiAp;H_l :gi(Bk(p?)’Bk(d)n))v 1= 1727

—n+1
G

(3.13)
(3.14)
(3.15) )\?Jrl/ﬂakéfﬂdx—/ﬂAk(c?)dx:0, i=1,2,
(3.16)
(3.17)

= exp(p?“), 1=1,2,

nHl = artEntt i =1, 2,

=

i
n+l _ n+l n+1
— A" =T — ey,

1 (EO(Q_SHJFI) o EO(Q_STL) 4 ,r,nJrl o Tn)

ot
B18) =~ 5, a1 g 1 Gy /Q (D e V™2 4 Do e 9y P dar
1 » &2 b
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Eo(qgnqu) _|_Tn+1

B, 7, 67 + Co.

(3:20) ¢+ =P EmH with gt = 1 (1 gL,

(3.19) &t =

together with homogeneous Neumann boundary conditions

apn+1 ¢n+1

=0
a'f'—i ‘BQ )

(321) |6Q = 0 1= 1 2

where 7t =log it 4 ¢t it =log Tt — ¢t g, Ay, and By are the same
as in the last section, and

91(p1,90) = D1(|Vp1|> + Vp1 - Vo + Ag),

92(p2,®) = D1(|Vp2|* — Vp2 - Vo — Ad).

Similar to the last section, we have the following remarks:

e Clearly, (3.13) is a kth-order semi-implicit scheme for (3.11a)—(3.11b). We
then derive from (3.14)(3.17) that A\"*' is kth-order approximation to 1,
C?H and ¢"*! are kth-order approximations to ¢;(t,41) and ¢(t,41).

e (3.18) is a first-order approximation to (3.11e), so r™*! is a first-order ap-
proximation to Ej(cf™h cht) and €' = 1 + O(6t) which implies that
771?“ = 1+ O(dt*). Therefore, ¢! is also a kth-order approximation of
P(tnt1)-

e The scheme (3.13)—(3.20) can be efficiently implemented by the following
steps:

1. solve p*t* from (3.13);
2. compute &/ & from (3.14) and compute A" explicitly from (3.15);
3. update c”+1 ”+1 from (3.16) and solve ¢ from (3.17);
4. compute r”“ exphmtly from (3.18) and then obtain £"! from (3.19);
5. update ¢"*! from (3.20), goto next step.
The main computational cost is to solve the linear equations with constant
coefficients in (3.13) and (3.17).

We have the following results.

THEOREM 2. Given C’Z > 0, pg = logc{, @&, and v such that chZd:z: = fQ Adx
fori=1,2andj=nn—1,...,n—k+1. The scheme (3.13)—(3.20) admits a unique
solution satisfying the following properties unconditionally:

1. Positivity preserving: c"Jrl ”“ > 0.

2. Mass conserving: [ "+1dx = Jodx fori=1,2. B

3. Unconditionally energy dissipative with a modzﬁed energy defined by E" =
Eo(o") +r™: More precisely, if E™ >0, we have E"* >0, €T >0 and
(3.22)

Entl _ fno— _£n+1/ (Dy VP + Dy Vgt ) da < 0.
Q

4. There exists constant My, such that

(3.23) VEo[¢"] < My, Vn.

Proof. From (3.14), we obviously have ¢}, 3™t > 0.
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We derive from the assumption that [, cldr = Jocddx for i = 1,2 and j =
n,n—1,...,n—k+ 1, and the definition of coefficients o, and Ay in section 2 that

/Ak(c?)da::ak/ Adx.
Q Q
It then follows from (3.12) and (3.15) that

(3.24) ak)\?ﬂ/ artlde = ak/ Adz,
Q Q
which, along with E?H > 0, implies that )\?H > 0. Hence, we have ¢}, it >0,

and we derive from the above and (3.16) that [, ¢} dx = [, ¢)dz for i = 1,2.
It follows from (3.18) that

E0(¢n) =+ r’" >0
Jo (D1 Vg 24Dy e Vg R ) de
E(cpt et ont1)+Co

(3.25) Eo(¢"h) +r"tt =
1+ ot

Therefore, we derive from (3.19) that ¢! > 0, which, together with (3.18), implies
(3.22). i ]

Denote M := E°; then (3.22) implies E" < M Vn. It follows from (3.18) and
(3.9) that

Entl M

3.26 ) = - < _ )
(326) A E(ei™t, et ¢n ) + Co — Eo(¢" ) 41

Since n,?“ =1— (1 —¢thH% there exists a polynomial Py_; of degree k — 1 and a

constant M} > 0 such that

My,

(3.27) It = €M P (67| < Folom ) + 1

Therefore, by the fact that vA < A+ 1VA > 0, we derive
Eo[¢mt1] = [t/ Eol¢n 1] < M. 0

Remark 2. We emphasize that both E;H'l (resp., é?“) and C?H (resp., ¢" 1)
are kth-order approximation to ¢;(,tn11) (resp., ¢(-,tnt1)), i = 1,2.

Obviously, the positivity of ¢; will be preserved with any spatial approximation
of the schemes (3.13)—(3.20).

It is clear from the proof of the above theorem that the mass conservation and
the energy dissipation (3.22) still hold for any fully discrete schemes.

4. Bound preserving schemes for Keller—Segel equations. We first intro-
duce the Keller—Segel equations, followed by the construction of bound preserving
schemes for one particular case of the Keller-Segel equations whose solution is bound
preserving.

4.1. Keller—Segel equations. To fix the idea, we consider the following Keller—
Segel system with only one organism and one chemoattractant in a bounded domain
Q:
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(1.12) S = DU~ XV - (1(w)V5)).
(4.1b) T% = pA¢ — agp + xu,

with either periodic boundary conditions or no-flux boundary conditions on w and the
Neumann boundary conditions on ¢,
(4.2) 'y% - Xn(u)% =0, % =0 on 0Q.
Here, the unknown are u, the concentration of the organism, and ¢, the concentration
of the chemoattractant. The parameters D, v, x, T, 4, @ are all positive. The function
n(u) > 0 describes the concentration-dependent mobility. It is a smooth function with
n(0) = 0.

The model is a parabolic-parabolic system when 7 > 0 and a parabolic-elliptic
system when 7 = 0.

The system (4.1) with (4.2) can be interpreted as a gradient flow about (u,¢).
To this end, we choose f(u) such that f”(u) = 1/n(u), and define the free energy

(4.3 Bl = [ (20 = xuo+ §1Vol? + §02) o
Then writing Au =V - (f,%(u)Vf’(u)), we can rewrite (4.1) as
ou 1 , B 1 oE
(4.4a) i DV - (f”(u)vﬁf (u) — X¢)) =DV (f,,(u)véu> ,
0 )
(4.4b) Ta—f = pAd — ag + xu = s

Taking the inner products of (4.4a) with ‘%, and of (2.5) with %,
the results, we obtain the energy dissipation law:

an) SO [ (V) e (5 e

We now consider several typical choices of n(u) and the corresponding function
f(w).

(i) The classical Keller—Segel system: n(u) = u. We can choose f(u) = ulogu—u
with the domain of definition (0,+o00). In this case, it is known that its
solution can blow up in finite time if the initial mass is large enough [3, 4, 5].

(ii) Keller-Segel system with a bounded mobility: A typical choice [35, 36] is
n(u) = 175, (k> 0). In this case, we can choose f(u) = ulogu —u + ku?/2
with the domain of definition (0, 4+00).

(iii) Keller-Segel system with a saturation concentration: n(u) = u(l — u/M),
where M > 0 is the saturation concentration, and the mobility tends to
zero when it is near saturation [8, 17]. In this case, we can choose f(u) =
ulogu + (M — u)log(1 — u/M) with the domain of definition (0, M).

Hence, the solution of the Keller—Segel system is positivity preserving in cases (i) and
(ii) and bound preserving in case (iii). Furthermore, we observe from (4.1) that

and summing up

d
4. — dx = 0.
(4.6) i udx =0
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To simplify the presentation, we shall only consider the third case where the
solution is bound preserving. For the first- and second-order cases, the solution is
positivity preserving, so one can construct positivity preserving schemes for these two
cases similarly by replacing the mapping below with Y (v) = exp(v) as in the last
section.

4.2. Bound preserving SAV schemes. We set n(u) = u(l—u/M) and f(u) =
ulogu + (M — u)log(1 —u/M), and split E[u, ¢] into two parts as follows:
(4.7)

Blu.o] = [ (v = xuo+ §67) ot [ (51968 + ) da = Eafuool + Eulel.

Note that f(u) = ulogu + (M — u)log(l — u/M) implies that v € (0, M). Along
with > 0 and f is strictly convex, it is easy to see that E; is bounded from below.
Hence, there exists Cy > 0 such that

(48) E1 [u, ¢] Z _CO + 1.

Due to the form of f(u), it is necessary that the range of numerical solutions is
also in (0, M). To this end, we consider the transform

M M
(4.9) u="T(v):= - tanh(v) + -
As tanh(z) € (—1,1)Vz € (—o00,400), then for v € (—o0, +00), we have u € (0, M).
Since ¢ is not bound preserving, we do not need to transform ¢.
Substituting (4.9) into (4.1a), we obtain the equation for v

1
(4.10) ov = DvyAv + D'ym
tanh'(v)

‘2 2DX
ot

Vol - 22X
Vo M tanh’(v)

V- (n(w)Ve).

Noting that tanh’(z) = 1 — tanh?(z), we know tanh’(v) # 0 and (4.10) is well defined.
We introduce r(t) = E1(u, ¢) + Co > 1. Then, we have

(4.11a) Elu, ¢] = g(‘ﬁ? _A¢)Q + %(Q(ﬁ)g +r = Eo(¢) +,
d d
(411b) %E[Uﬁ (ZS] = /U‘(d)ta _A(b)g + %((bh ¢)Q +7ry = Edot(¢) “+ 7y

We can reformulate (4.1) and (4.5) as

ov tanh” (v) 2Dy
4.12 — = DvyA Dy———= 2_ A y.
@iz) 5 = Dyaw+ (D1 PV - L2 w9s)).
(4.12b) wu= % tanh(v) + %,
(4.12¢) T% = ulA¢p — ad + xu,

dEo(¢) .~ Eo(g) +r(t)
(4.12d) dot +”__E(()u7¢)+co/g

1 SE\? 06\ *
D (v&) +(8t) ]da:.

We now construct kth-order schemes for (4.12) in a uniform setting.
Given (vi,ut, ', 7)), i =n,n—1,...,n —k+ 1, we find (v"H, u"Tt gntl prtl)
as follows:
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(4.13)
(4.14)

(4.15)
(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

FUKENG HUANG AND JIE SHEN

apv™tt — A (v™)
ot

M M
’[Ln+1 = ? tanh(v"'H) =+ ?,

AL / apu" T tde — [ Ap(u™)dx =0,
Q o

— DyAv™t = g(Bi(v"), Br(u"), Be(¢")),

n+l _ )\n-',-lan-',-l
)

u
Toqu/)n—s-l — Ar(o™) — WA — agnt 4yt

ot ’
1 Eo(én—&-l) +Tn+l

(Bo(@"+) = Eo(é") ! o) = =

),

St Elant1, ¢n 1] + C

2 n+1l _ In 2
e (V) () ]dm’

Eo(d_)n+1) + 7,.'rLJrl

et = —
B+, 67 + Co’
¢n+1 _ n£+1¢’5n+1 with nz-i-l —-1— (1 _ §n+l)k,

where the constant aj and operators Ag, By are defined in section 2, and

(4.21)

tanh” (v)

2Dx
tanh (v) 2
tanh’(v) |

g(u,v,qﬁ) = Dy - m

Vo V- (n(u)Ve).

Essential properties of the above schemes are as follows:

(4.13) and (4.17) are kth-order semi-implicit schemes for (4.12a) and (4.12c),
(4.15) is a kth-order approximation to (4.6), which imply that v™+1 \n+t
u™tl ¢"*1 are kth-order approximations to v(tn11), 1, u(tni1), @(tns1)-
(4.18) is a first-order approximation to (4.12d), which implies that r"*1 is
a first-order approximation to 7(t,11). Then, (4.19) implies that "t =
1+ O(6t), which in turn implies 7 ™' = 1 + O(6t)* and ¢"*+! is a kth-order
approximation to @(t,11).

e The above scheme can be efficiently implemented as follows:

1. solve v" T from (4.13);

compute 4"t from (4.14) and compute A\"*! explicitly from (4.15);
update u™*! from (4.16);

with 4" *! known, solve ¢"**! from (4.17);

with @"*1, ¢"*+1 known, determine r"*! explicitly from (4.18);
compute "t from (4.19) and update ¢" ! from (4.20), goto the next
step.

S U W

We have the following results.

THEOREM 3. Assume u?, ¢¢, v¢, and r® such that

(4.22)

/uidac:/uodx, i=nn—1,....,n—k+ 1.
Q Q

Then, the scheme (4.13)—(4.20) admits a unique solution satisfying the following prop-
erties unconditionally:

1.
2.

Bound preserving for w"*1: i.e., the range of u™* is in (0, M).
Mass conservation: i.e., [u™tde = [, u’dzx.
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3. Unconditionally energy dissipative with a modified energy defined by E™ =

Eo(o"tY) +r™: More precisely, if E™ > 0, we have E"1 >0, "1 >0, and
(4.23)

~n—+1 on n+1 1 6£ —n+1 2 ¢n+1 - (Z)n :
E™ —-E"=-¢ /Q |:f//(ﬁn+1) (Véu(u )) +T< 5t ) ]da:go.

4. There exists constant My, such that

424)  VE ] = \/ /Q (51vonP + F(67)2) do < My ¥n.

Proof. The proof is essentially the same as that of Theorem 2. For the readers’
convenience, we still carry it out below.

We derive from (4.14) that the range of @"*! is in (0, M).

Noting the definition of coefficients oy, and Ay, in section 2, it follows from (4.22)
and (4.15) that

(4.25) akA’L+1/a’L+1dx:ak/ u’dz,
Q Q

which implies A"+ > 0, and consequently u"*! > 0. Furthermore, along with (4.16),
it also implies [, u"™'dz = [, u’dz.
It follows from (4.18) that

Eo(¢™) +r"

_ 2 gntl_gn\2
5t fol gl (V4B (@) 47 (245574 ) do
B .57 Co

Eo(¢" 1)+ = > 0.

1+

Therefore, we derive from (4.19) that ¢"*! > 0, which, together with (4.18), implies
the energy dissipation.

Denote M := E°; then ((4.23)) implies E™ < M Vn. Now, it follows from (4.19)
and (4.8) that

Entl M
(4.26) e p— < .
E(artl, ¢nt) + Cy — Ep(¢ntl) +1
Since 77,?Jrl =1— (1 —¢"tH* there exists a polynomial Py_; of degree k — 1 and a

constant M} > 0 such that

M
427 n+1 _ n+1P B n+1 < _ k .

Therefore, by the fact that v/ A < A+ 1VA > 0, we obtain

VEo[¢n+1] = \771?+1|\/ Eo[¢n+1] < M. 0

We only consider the semidiscretization in time in this paper. As for full dis-
cretizations, we have the following remarks.

Remark 3. We emphasize that both "' (resp., ¢I'") and u™*! (resp., ¢"+1)
are kth-order approximations to u(:,t,+1) (resp., ¢(-,tn+1)). While only the range of
u™*! is guaranteed in (0, M), the range of u"*! is in (0, M + O(t¥)).
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The positivity of @"+! and ©™*+! will be preserved with any spatial approximation
of the schemes (4.13)—(4.20).

It is also clear from the proof of the above theorem that the mass conservation
and the energy dissipation ((4.23)) still hold for any fully discrete schemes.

One can easily extend these schemes to deal with Keller—Segel equations with
multiple organisms. We leave the details to the interested reader.

5. Numerical examples. In this section, we provide some numerical examples
to validate our numerical schemes.

5.1. Allen—Cahn equation with a singular potential. We first use the
schemes presented in section 2 to solve the Allen—-Cahn equation with a singular
potential. In all examples for the Allen—Cahn equation, we consider problems with
periodic boundary conditions and use a Fourier-spectral method to discretize in space.

Ezample 1. We consider the Allen-Cahn equation [1]
SE
(5.1) 8tu:—%=6 Au~+ A —In(1 + u) + In(1 — w),

where € > 0, A > 0, and

(5.2)  E(u) = /Q (’32|v¢|2 — gqﬂ + 1+ @) In(1+u)+ (1 —u)ln(l - u)) dx

is the free energy with a singular potential. The well-posedness of the above equation
requires that u € (—1,1).

We use the transformation u = tanh(v) in the scheme (2.6)—(2.10).

We first test the accuracy with the following exact solution and the corresponding
external forcing f:

u(z,y,t) = (exp(—sin®(rz)) — exp(—sin®(ry))) sin(t),

du
The parameters are chosen as € = 0.1, A = 3 and the computational domain is
(0,2) x (0,2). A fourier-spectral method with 96 x 96 modes is used for special
discretization. We plot in Figure 1(a) the errors of the first- and second-order schemes
at t,, = 1 and in Figure 1(b) the errors of the third- and fourth-order schemes at ¢,, = 1.
Expected convergence rates are observed for all cases.

Next, we consider the spinodal decomposition of a homogeneous mixture into
two coexisting phases governed by the Allen—-Cahn equation. The parameters are
chosen as € = 0.005, A = 3 and the computational domain is (0,1) x (0,1). The time
step is set to 0t = 0.001. A fourier-spectral method with 256 x 256 modes is used
for space discretization. The initial condition is chosen as a random variable with
uniform distribution in [—0.05,0.05]. We plot the evolution of energy, the evolution
of max u, minwu, and four snapshots in Figure 2.

5.2. Two-component PNP system. We present here numerical results of us-
ing the scheme (3.13)—(3.20) to solve the two-component PNP system (3.1).
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—O6— AC-BDF1 —O6—AC-BDF3
—h— AC-BDF2 ——AC-BDF4
—— 1stRef
fffff 2nd Ref

L2-error
L2-error

107
10* 10° 102 107
dt

(a) BDF1 and BDF2 for Allen-Cahn (b) BDF3 and BDF4 for Allen-Cahn

Fic. 1. (Ezample 1.) Accuracy test for the Allen-Cahn equation using the new SAV/BDFk
schemes (k =1,2,3,4).

T=10

0

-0.05
8

-0.15

-02

-025 Y

200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
t t
(d) T =100 (e) evolution of origina energy (f) evolution of umaesz and

Umin

Fic. 2. Ezxample 1. Spinodal decomposition by the Allen—Cahn equation. The simulation is
obtained with §t = 0.001 using the scheme (2.6)—(2.10).

FEzample 2. We test accuracy by considering the two-component PNP system
(3.3), e, we fix 21 = 1, 20 = —1, and x1 = x2 = 1 in (3.1). We first consider the
following manufactured exact solutions in = (—0.5,0.5) x (—0.5,0.5) with suitable
external forcing:

(5.3a) c1(z,y,t) = 1.1 + sin(wx) sin(my) sin(t),
(5.3b) ca(z,y,t) = 1.1 — sin(wx) sin(ny) sin(t),
(5.3c) o(x,y,t) = % sin(7a) sin(7y) sin(t).

In this example, we use the Legendre spectral-Galerkin method and (N, N,) =
(40,40). Other parameters are D; = Dy = 1. Defining the L2-error at t, as
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—6—PNP-BDF1 —6—PNP-BDF3
—— PNP-BDF2 —sk— PNP-BDF4
o 1st Ref 10° 3rd Ref
07— ondRef | || 4th Ref
10%
= 10° =
e 2
¢ @ 1070
N ™~
— 10 4
1072
1070 1014
102 1078
10° 10 10° 10* 10 10° 10” 107
dt dt
(a) BDF1 and BDF2 for PNP with known exact (b) BDF3 and BDF4 for PNP with known exact
solution solution
107 10”
—6— PNP-BDF1 —6—PNP-BDF3
—e— PNP-BDF2 = —e— PNP-BDF4
10° : E 10
10* 10°
- -
2 2
3 10° 6 10°
~ ~
— —
10°® 1071°
1074 10"
105 L 1044 L L
10 10° 10% 10 10% 10?2 107
dt dt
(c) BDF1 and BDF2 for PNP with unknown ex- (d) BDF3 and BDF4 for PNP with unknown ex-
act solution act solution

Fic. 3. Example 2. Accuracy test for PNP equation using the SAV/BDFk schemes (k =1,2,3,4).

Ve —ei(tn)]]? + |8 — c2(tn)]|?, we plot in Figure 3(a) the errors of the first- and
second-order schemes at ¢, = 1 and in Figure 3(b) the errors of the third- and fourth-
order schemes at t,, = 10. Expected convergence rates are observed for all cases.

Next, we test the accuracy in the computational domain 2 = (0,27) x (0, 2m)
with periodic boundary condition and the initial conditions are given by

(5.4a) c1(z,y,0) = 1.1 4+ sin(z) cos(y),
(5.4b) ca(z,y,0) = 1.1 — sin(z) cos(y).

In this example, we use a Fourier-spectral method to discretize in space and (N, N,) =
(128,128). Other parameters are D; = Dy = 1. We generate the reference solution
by the fourth-order scheme with §¢ = 0.0001. Defining the L2-error at t,, as above, we
plot in Figure 3(c) the errors of the first- and second-order schemes at ¢,, = 0.1 and in
Figure 3(d) the errors of the third- and fourth-order schemes at ¢, = 0.1. Expected
convergence rates are observed for all cases.

Ezample 3. In this example, we test the so-called Gouy—Chapman model [14],
which is used to describe the evolution of the distributions of the ions.
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We consider the PNP system (3.1) in (—1, 1) with the following parameters: Dy =
Dy =12 =1, 20 = —1, and x; = 3.1, x2 = 125.4. The boundary conditions for ¢;
and ¢ are given as

(55) Gzci + zixlci8m¢> = O, 1= 1, 27

(56) Oé(b(t, _1) - ﬂ(bw(ta _1) = f*17 O[d)(t, 1) + B¢w(t7 1) = f17 t Z 03

witha =1, 8 =463 x 107°, f_; =1, and f; = —1. For space discretization, we
use the Legendre spectral-Galerkin method. We set 6t = 0.001 and use 80 nodes in
space. The initial condition on ¢; are ¢;(z,0) =1,i =1,2,V—1 <z < 1. The profiles
of ¢1, co, and ¢ at different times are plotted in Figure 4 and are consistent with
the results in [14]. In Figure 4(d), we also plot the mass evolution of ¢; and p; with
ci = exp(p;),i = 1,2. We can see the masses of ¢; are well conserved, but those of p;
are not.

5.3. Keller—Segel equations. In this subsection, we present numerical results
of using scheme (4.13)—(4.20) to solve the Keller-Segel equations (4.1).

Ezxample 4. We test the accuracy of the scheme. First consider the one-species
parabolic-elliptic (7 = 0) Keller—Segel equations (4.1) in Q = (—0.5,0.5) x (—0.5,0.5)
with external forcing such that the exact solutions are given by

20 20
— =0 — =0
= =t=0.01 = =t=0.01
t=0.05 t=0.05
15 [ =1 sy e =1
20 1 ~
e ———i, ~
15 0.8 ~ N
S 10 i SV 10 N
4 0.6 \‘ \
0 s %
v 04 \
5 k¢
5 et 5 02 X
e !
0 i 0
0.94 0.96 0.98 1 i 0.6 0.7 0.8 0.9 1
A\
E
0 0
-1 05 0 05 1 1 05 0 05 1
X X
(a) a1 (b) c2
1 25
—t=0
A = =t=0.01 2
~ ~ t=0.05
~
05t O, =1 |
1 e 151
1 ~
“l SO e mass C.
\ 3 . 1 "
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° 0 — & P
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X N \ 0.5 mass
~ Y Py
~ 1
N !
~ i 0
o N > ! \\“‘M
~ ~
\ 051
v
-1 A
-1 05 0 05 1 0 0.2 0.4 06 0.8 1 12
X t
(c) ¢ (d) mass evolution

Fic. 4. Ezample 3. Gouy—Chapman model: profiles of c1,ca, and ¢.
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(5.7a) u(z,y,t) = sin(mz) sin(ny) sin(t) + 1.1,

1
(5.7b) (x,y,t) = 21

Other parameters are D = v =y = a = x = 1, M = 5. We use the Legendre
spectral-Galerkin method and (N, N,)) = (40, 40) in space. Defining the L2-error as
Vi —uty,) |2 + [[¢" — é(t,)||%, we plot in Figure 5(a) the errors at ¢, = 1 for the
first- and second-order schemes and in Figure 5(b) the errors at ¢,, = 10 for the third-
and fourth-order schemes.

Next, we test the accuracy in Q = (0,27) x (0,27) with periodic boundary con-
dition and the initial conditions are given by

(5.8) u(z,y,0) = sin(z) sin(y) + 1.1.

sin(mz) sin(7y) sin(t) + 1.1.

In this example, we use a Fourier-spectral method to discretize in space and (N, N,) =
(128,128). Other parameters are D = v =p =« = x = 1, M = 3. We generate the
reference solution by the fourth-order scheme with 6¢ = 0.0001. Defining the L2-error
as above, we plot in Figure 5(c) the errors at ¢, = 0.1 for the first- and second-order
schemes and in Figure 5(d) the errors at ¢, = 0.1 for the third- and fourth-order

—6—KS-BDF1 —6—KS-BDF3
—#— KS-BDF2 —%—KS-BDF4
. 15t Ref 7 ol 3rd Ref 3
107 - 2nd Ref L 4th Ref
,/"’ *
5 10° R . 5 108
= =
9 9
o~ ™~
- 10® — 10710 F
10710 1072+
L=
1072 107
10° 10 10° 10% 10° 10 107
dt dt
(a) BDF1 and BDF?2 for Keller-Segel with known (b) BDF3 and BDF4 for Keller-Segel with known
exact solution exact solution
102 10
—6—KS-BDF1 A —6—KS-BDF3
—h—Ks-BDF2| - - —— KS-BDF4
- sl 3rd Ref
10 4th Ref
Y
= 5 10°
e 2
9 10° ¢
N ™~
- - 1040
103 12
] 10
107" 10
10 10° 10* 10 10° 10” 107
dt dt
(¢) BDF1 and BDF2 for Keller-Segel with un- (d) BDF3 and BDF4 for Keller-Segel with un-
known exact solution known exact solution

Fi1G. 5. Ezample 4. Accuracy test for Keller-Segel equations using the SAV/BDFk (4.13)—(4.20)
(k=1,2,3,4).
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schemes. As in the Allen-Cahn case and the PNP case, the expected convergence
rates are observed for all cases.

Ezample 5. In this example, we consider the one-species parabolic-elliptic (7 = 0)
Keller—Segel equations with the initial condition

(x—L/2)° + (y - L/2)2)
4

(5.9) u(zx,y,0) = 4exp (—

such that the total mass is large enough that chemotaxis happens, in (0, 27) x (0, 27)
with the homogeneous Neumann boundary conditions. We use the Legendre spectral-
Galerkin method with (N, N,) = (64, 64) nodes to discretize in space, and the second-
order scheme with time step ¢ = 0.001. The parameters are chosenas D =y = pu =1,
x=1, M =100, « =0.1, and L = 27.

We carry out simulation until the system reaches steady state at t = 8. Several
snapshots of concentration at different times are shown in Figure 6, where we plot
the snapshots by using smaller time steps and more nodes in the right-hand side, and
evolutions of max u, mass of u, mass of v and energy are shown in Figure 7. These
results agree well with those in [31] computed with a nonlinear scheme. In particular,
the energy is dissipative at all time, and the mass of u is conserved up to machine
accuracy.

Ezxample 6. We consider the one-species parabolic-elliptic system with an initial
condition with two bulges, given by
(5.10)

u(z,y,0) = 2exp (—

(z —3L/8)° * (y— 3L/8>2) + 2exp (_ (z —5L/8)° * (y— 5L/8)2>

with L = 47w. We take M = 50 while all other settings are the same as in Example 5.
We use the third-order scheme, and plot the evolution of energy, maximum concentra-
tion, and four snapshots of u in Figure 8. We observe that the energy is dissipative at
all times, and the maximum of u increases while the support of u shrinks to maintain
the mass conservation.

Example 7. In this example, we consider the parabolic-elliptic Keller—Segel sys-
tem with two species:

9]
(5.11a) % = Di(mAur —xaV - (m(u1)Ve)),
9]
(5.11b) % = Da(728uz — x2V - (12(u2) V),
(5.11¢) 0 = pulA¢ — ad + x1u1 + x2us,

with the initial conditions

(5.12)  wi(z,y,0) = uz(w,y,0) = ¢(z,y,0) = 4exp ( — (z=L/2) l_(y —L/2) )-

The parameters are chosen as D1 = Dy =71 = v = p = x1 = 1, a = 0.1 with
all other settings the same as in Example 5. We use the first-order scheme for this
example. The results with two different chemotactic sensitivities with xo = 0.1 and
X2 = 0.01 are plotted in Figures 9 and 10, respectively.

In both cases, we observe accumulation for uy, while for us, it diffuses first and
then accumulates in the case x2 = 0.1, and it keeps diffusing in the case xo = 0.01.
These results are consistent with the results in [31].
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dt=1e-3,Nx=Ny=64 dt=1e-4,Nx=Ny=80

(a) T=0 (b) T=0

dt=1e-3,Nx=Ny=64 dt=1e-4, Nx=Ny=80

(c) T=1 (d) T=1

dt=1e-3,Nx=Ny=64 dt=1e-4, Nx=Ny=80

(e) T=2 (f) T=2

dt=1e-3,Nx=Ny=64 dt=1e-4, Nx=Ny=80

(g) T=8 (h) T=8

Fic. 6. Example 5. Simulation of Keller—Segel equations with chemotaxis.
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G164 NA=Ny=80,mass 0
di=16-3 Nx=Ny=64,mass u
\\m:m 3 Nx=Ny=64,mass v

Mass

200 Tm—
25 ‘
o 1 2 3 4 5 6 7 8
t t
(a) max u evolution (b) energy evolution (c) mass evolution
FiG. 7. Example 5. Simulation of Keller—Segel equations with chemotaxis.
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(a) Max u evolution (b) Energy evolution

(f) t=18

Fi1G. 8. Ezample 6. Simulation of Keller-Segel equations with initial condition ((5.10)),
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FiG. 9. Example 7. Simulation with x2 = 0.1.

6. Concluding remarks. For PDEs whose solutions are required to be positive
or in a prescribed range, it is of critical importance to construct numerical schemes
which are positivity or bound preserving. If the PDEs are also energy dissipative
and/or mass conservative, it is important that the numerical schemes be energy dis-
sipative and/or mass conservative at the discrete level.

In this paper, we proposed a new approach to construct linear, positivity/bound
preserving, and unconditionally energy stable schemes for general dissipative systems
whose solutions are positivity /bound preserving. The essential ideas of this new
approach are (i) to first make a function transform so that the solution will always be
positivity /bound preserving, and (ii) apply a new SAV approach presented in [21] to
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FiG. 10. Ezample 7. Stmulation with x2 = 0.01.

the transformed system and the original energy dissipation law to construct efficient
and accurate time discretization schemes.

The resulting schemes enjoy remarkable properties such as being positivity /bound
preserving and unconditionally energy stable and able to achieve high-order and with
computational complexity similar to a semi-implicit scheme. We applied this approach
to an Allen—Cahn equation with a singular potential and to Keller—Segel and PNP
equations which can be classified as Wasserstein gradient flows with an additional
property of mass conservation.

While we only discussed semidiscretization in time in this paper, we pointed out
that the energy dissipation, positivity or bound preserving, and mass conservation
can all be naturally carried over to consistent full discretizations.
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