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1. Introduction

Motivic homotopy theory, introduced by Voevodsky and Morel [52], [54], [55], [69]—[72], is
a successful application of abstract homotopy theory to solve problems in number theory
and algebraic geometry (see [57], [67], [73], for example).

Over SpecC, one may view the p-completed stable motivic homotopy category as
a deformation of the p-completed classical stable homotopy category. The parameter
of the deformation is given by an element 7 in 7y _; of the p-completed motivic sphere
spectrum, which can be intuitively viewed as the standard coordinate t—e2™ on G,,.
Formally speaking, following Hu-Kriz—Ormsby [28], the element 7 is the inverse limit
of the Bockstein preimages of the Morel classes [53] of roots of unity. Dugger—Isaksen
[14] have identified the generic fiber “7=1" with the classical stable homotopy category,
and the first main result of this paper identifies the special fiber “r=0" with the derived
category of BP,BP-comodules that are concentrated in even degrees, which is entirely
algebraic in nature. Moreover, under this identification, the motivic Adams—Novikov
spectral sequence for the motivic sphere spectrum corresponds to the 7-Bockstein spectral
sequence. This deformation induces a deformation of motivic Adams spectral sequences.
The second main result of this paper identifies the motivic Adams spectral sequence
for the motivic sphere spectrum at the special fiber “7=0" with the algebraic Novikov
spectral sequence for the classical sphere spectrum, which is again entirely algebraic.
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This deformation makes it possible for Isaksen, the second and third authors [32], [33]
to compute classical stable homotopy groups of spheres at least to the 90-stem, with

ongoing computations into even higher dimensions.

1.1. Main results

In this paper, we prove two results in the stable motivic homotopy theory over Spec C,
with connections to chromatic homotopy theory and applications to classical homotopy
theory.

The first result identifies the special fiber “T=0" of the motivic deformation with the
derived category of BP,BP-comodules. We prove an co-category version of a conjecture
due to the first author and Isaksen in 2016 [19]. The derived category in the following
Theorem 1.1 is understood as a stable oco-category in the sense of Lurie in the book
Higher Algebra [41, §1.3.2].

THEOREM 1.1. (Theorem 1.13) At each prime p, there is an equivalence of stable

oco-categories equipped with t-structures,
D*(BP,BP-Comod®) ~ S°0 /- Mod?, .,

between the bounded derived category of p-completed BP,BP-comodules that are con-
centrated in even degrees, and the category of harmonic motivic left-module spectra over
500 /7, whose MGL-homology has bounded Chow-Novikov degree, with morphisms the

S50.0 /7 -linear maps.

Here, 50.0 /7 is a motivic Eoo-ring spectrum, which is also known as the cofiber of 7.
The motivic spectrum MGL is the algebraic cobordism spectrum introduced by Vo-
evodsky [69] and studied by Levine-Morel [39], Panin-Pimenov-Rondigs [58] and many
others. A motivic left-module spectrum over 500 /T is harmonic, if it is 500 /T-cellular
and the map to its MGL-completion induces an isomorphism on 7, .. See Definition 1.6
for a precise definition. The Chow—Novikov degree is the topological degree minus twice
the motivic weight.

The derived category of p-completed BP,BP-comodules that are concentrated in
even degrees is also known as the derived category of quasi-coherent sheaves on the
moduli stack of formal groups over Z,-algebras. This connection is foundational to
chromatic homotopy theory, and is due to Quillen [61] and Morava [51] (see also Goerss—
Hopkins [20], [23]). Our theorem further connects these categories to motivic homotopy
theory.

The equivalence of stable co-categories in Theorem 1.1 is in fact symmetric monoidal.
See Remark 4.15 for more details.
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By an Ind-object argument, we have an unbounded version of Theorem 1.1 that
connects to Hovey’s [24] derived category Stable(BP,BP). Since every BP,.BP-comodule
splits into its even-graded and odd-graded parts, the underlying stable co-category of
Hovey’s unbounded derived category Stable(BP,BP) splits accordingly:

Stable(BP,BP) ~ Stable(BP,BP-Comod®") x Stable(BP,BP-Comod°%).
COROLLARY 1.2. There is an equivalence of stable co-categories at each prime p,
Stable(BP.BP-Comod®") ~ S/Ov\O/T—Modcen,

between Hovey’s unbounded derived category of BP.BP-comodules that are concentrated

in even degrees and the category of cellular motivic left-module spectra over @/7,

After the announcement of Theorem 1.1, alternative proofs of certain versions of
Corollary 1.2 have appeared in work of Krause [35] and Pstragowski [60].

The second result identifies the motivic Adams spectral sequence at the special fiber
“r=0” with the algebraic Novikov spectral sequence. It can be used to systematically
compute a huge number of classical Adams differentials that are hard to obtain by other
methods.

It is known to Isaksen [29, Proposition 6.2.5] and the first author [18, Corollary 3.14]
that there is an isomorphism between the motivic homotopy groups of 50.0 /7 and the
classical Adams—Novikov Es-page. Our second result shows that there is an isomorphism

of spectral sequences that converge to them.

THEOREM 1.3. (Theorem 1.17) For each prime p, there is an isomorphism of spec-
tral sequences between the motivic Adams spectral sequence for S%9 /71 and the algebraic

Nowikov spectral sequence for the classical sphere spectrum SO.

Based on Theorem 1.3, Isaksen, the second and third authors [32], [33] have com-
puted classical stable stems at least to the 90-stem, with ongoing computations into even
higher dimensions. Computations of many historically difficult differentials in the range
up to the 45-stem are included in the appendix.

In contrast to the original motivations of motivic homotopy theory, Isaksen and
his collaborators [29]-[30], [34] have recently begun to reverse the information flow and
applied stable motivic homotopy theory to obtain computational results in the classical
stable homotopy theory. Our Theorems 1.1 and 1.3 have the same spirit and further
deepen the connections to chromatic homotopy theory. Using motivic homotopy theory,
we build up a new connection between the classical Adams spectral sequence and the
Adams—Novikov spectral sequence, that allows us to compute stable stems in a much
larger range than was previously possible.
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Remark 1.4. Our Theorems 1.1 and 1.3 actually hold for any algebraically closed
field of characteristic zero. In fact, it was clear in Dugger—Isaksen [14] that all related
computations in algebraic closed field of characteristic zero work in the same way as
over C, which are based on Voevodsky’s computation of the motivic Steenrod algebra
(see [72, Theorem 4.47] and [70, §11]).

1.2. The stable oco-category of motivic spectra over .5707’/7'

We work with the stable co-category of motivic spectra over Spec C, denoted by
C-mot-Spectra.

This is a symmetric monoidal oo-category in the sense of Lurie [41, §2.1.2].

There are several approaches for the construction of this category C-mot-Spectra.
For example, we can take the category of S-modules constructed by Hu [26], which is a
symmetric monoidal model category, and we take C-mot-Spectra as the underlying oco-
category of Hu's model category. There is another construction entirely in co-categorical
terms by Robalo [63]. In fact, any symmetric monoidal stable co-category satisfying the
universal properties of Corollary 2.39 in [63] would serve our purposes.

For a fixed prime p, Voevodsky (see [72, §3]) constructed the mod-p motivic
Eilenberg-Mac Lane spectrum that represents the mod-p motivic cohomology. We de-
note it by HIE"glOt. By arguments in Dundas—Rondigs—@stveer [15, Example 3.4], H]F;;1Ot
is an F-algebra in C-mot-Spectra.

Its value at a point is

(HED™). . = F,[7],

where 7 is in bi-degree (0, —1).

We denote by S the motivic sphere spectrum. For the grading, we denote by S1:°
the suspension spectrum of the simplicial sphere S', and by S''! the suspension spectrum
of the multiplicative group G,,=A\{0}.

Let S5% be the HFE‘Ot—completed motivic sphere spectrum in bi-degree (s,w). It
is a theorem of Hu-Kriz—Ormsby [27], [28] that S99 and the usual p-completion of the
motivic sphere spectrum have isomorphic motivic homotopy groups. Moreover, 500 i
an F.-algebra in the symmetric monoidal co-category C-mot-Spectra. See §7 for more
details regarding this fact and discussion on the HIF;“Ot—COmpletion.

We denote by

50.0-Mod

the stable co-category of motivic module spectra over 590,
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The class 7 can be lifted to a map between HFg’Ot—completed motivic sphere spectra
T: Sﬁ*\l 5500

that induces a non-zero map on mod-p motivic homology. The reader should be warned
that 7 does not further lift to a map between uncompleted motivic sphere spectra. See
Dugger-Isaksen [14] and Hu-Kriz—Ormsby [28] for more details. We denote by 500 /T
the cofiber of 7:

—_— T —_— —_— —_—
§0,-1_T, 800 4 G0.0/r 3 §l,—1

Convention 1.5. All smash products without subscript A in this paper are under-
stood taken over the HIF;“O”—completed sphere spectrum S%Y. We may still write A g

in a few places to emphasize that the smash product is taking over 50,0,

We have suspension functors
Esﬁw(f) — Ss,w /\S/O_,\O _

in the category $0.0-Mod for any s, w€Z. In particular, the suspension functor -0 gives
the translation automorphism (in the sense of Lurie [41, §1.3.2]) of the stable co-category
§0.0-Mod.

Given an F-algebra Re STOB—Mod, denote by

R-Mod

the stable co-category of left modules over R in 50.0-Mod.

Following Dugger—Isaksen [13, Definition 2.10], denote by
R‘MOdcell

the smallest stable subcategory containing R that is closed under arbitrary small colimits
and suspension by Ssw for all p,q€Z. We say that an object in R-Mod is R-cellular if
it is contained in R-Modce.

Recall from Lurie [41, Definition 1.1.3.2] that a stable subcategory of a stable oo-
category is a full subcategory containing a zero object and stable under the formation
of fibers and cofibers. We warn the reader that not all motivic spectra in 50.0-Mod are
weakly equivalent to a cellular object.
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It is a theorem of the first author [18] that S/OB/T is an Foo-algebra in $00.-Mod at
all primes p. In fact, the first author carried out all details in [18] for the p=2 case, using
the vanishing regions of 71'*,*5/0E /7. Tt is straightforward to use the same arguments for
all primes p. See [18, §1.2, Theorem 1.1 and explanations| for more details.

We therefore have defined stable co-categories
$00/r-Mod and S90/7-Mod..

We can view the ring map
500y §00 /7

to exhibit SO0 /7 as the special fiber of the deformation parameterized by 7. The generic
fiber of this deformation is 71500,

Let MGL be the cellular motivic algebraic cobordism spectrum introduced by Vo-
evodsky [69] and studied by Levine-Morel [39], Panin—Pimenov-Réndigs [58] and many
others. It is an F..-algebra in C-mot-Spectra (See [26, Theorem 14.2] for example).
We define

MU™° .= MGLAgo.0 SO0

It is therefore an F-algebra in ,STO’\O—Modceu. There is a natural map
MU = MGLAg00 5%0 — MGLijzpon

to the HIFg“)t—completion of MGL. As we will explain in Proposition 7.2, this map induces
an isomorphism on 7, .. Their motivic homotopy groups are computed by Hu-Kriz—
Ormsby [28] and Dugger—Isaksen [14, §8.3]:

W*y*MUmOt = W*,*MGLﬁFg‘Ot = Zp[’r] [.’tl, T2y ... ]

Here, Z, is the p-adic integers and x; is in bi-degree (2i,4). Since m, ,MGL is much more
complicated, we will mostly work with MU™°" instead of MGL in our paper.
For any X €5%9-Mod..j, we define the MU™°*-homology of X as

MU' X =7, (MU A o X).

By adjunction, it is clear that the MU™°*-homology of X equals to MGL, X when
taking X as its underlying motivic spectrum in C-mot-Spectra.

The spectrum MUmOt/TZ:@/T/\S’g}] MU™ is an F..-algebra in @/T—Modcen.
Its motivic homotopy groups are

e (MU /1) = Z, [1, 29, ... ] = MU /7.

Forgetting the motivic weight, the bigraded ring MUZ}T/ 7 can be identified as the
singly graded ring MU, completed at the prime p.
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Definition 1.6. Let X be a motivic spectrum in @/T—Mod. We say that X is

harmonic, if X is 500 /7-cellular and the map
X — XL
induces an isomorphism on , .. We denote by
500 /7-Modparm

the full stable oo-subcategory of harmonic 50.0 /T-module spectra.

Here the MGL-nilpotent completion X{jqq, is understood taken in C-mot-Spectra.
For a precise definition, see §7 and [14], [28]. One could also define the MU™°*-completion
X{iymer in §%0-Mod for any X in S%0-Mod.en. By adjunction, it is clear that the two

completions X and X{jjme are equivalent:
A = A
XMGL — XMUmot .

So we may equivalently define a cellular 50,0 /7-module to be harmonic, if the map to its
MU™*-completion induces an isomorphism on 7, ..

It is clear that the spectrum MU™®"/7 is harmonic. See §4.1 for more examples and
non-examples.

We will define ¢-structures on certain stable co-categories of motivic spectra, such as
MU™°"/7-Mod.ep and @/T—Modharm. Recall that, by Lurie’s [41, Definition 1.2.1.4],
a t-structure on a stable co-category is a t-structure on its homotopy category, which is a
triangulated category. To describe these t-structures, we define the Chow—Novikov degree

of an element that belongs to the bigraded homotopy groups of a motivic spectrum.

Definition 1.7. For any motivic spectrum X, consider its bigraded motivic homotopy
groups
g wX.

Here, s is the topological degree under the Betti realization, and w is the motivic weight.
The Chow-Novikov degree of an element in 7, ,, X is defined as s—2w.

We say that 7, X is concentrated in Chow—-Novikov degrees I, where I is a set of
integers, if all non-zero elements in , ,X are concentrated in Chow-Novikov degrees

belonging to I.

For example, the homotopy groups of MU™"/7 are concentrated in Chow-Novikov
degree zero, while the homotopy groups of MU™°" are concentrated in non-negative even
Chow—Novikov degrees.
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Definition 1.8. (1) We define

MU™/7-Mod"

cell

as the stable full subcategory of MU™°"/7-Modj spanned by objects whose homotopy
groups are concentrated in bounded Chow—Novikov degrees.
(2) We define

MU™/7-Mod”="

cell »

MU™t/7-Mod’:$°

cell >

MU™ /7-Mod

cell

as the full subcategories of MU™?/ T—Modgen spanned by objects whose homotopy groups
are concentrated in non-negative, non-positive and zero Chow—Novikov degrees, respec-
tively.

(3) We define

@/T_M()dflarm

as the stable full subcategory of 50.0 /T-Modparm spanned by objects whose MU™"-
homology groups are concentrated in bounded Chow—Novikov degrees.
(4) We define

S/OB/T-ModbgO

harm>

S0.0 /7-Mod?:<°

harm>

STOB/T—ModQQ

harm

as the full subcategories of 50.0 / T—Modiarm spanned by objects whose MU™°*-homology
groups are concentrated in non-negative, non-positive and zero Chow—Novikov degrees

respectively.

Definition 1.9. We define
MU,-Mod®

as the abelian category of graded modules that are concentrated in even degrees over the

p-completed ring MU,, and
MU,MU-Comod®,

BP.BP-Comod®’

as the abelian categories of graded comodules that are concentrated in even degrees over
the p-completed Hopf algebroids MU, MU and BP,.BP, respectively.
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We define

D*(MU,-Mod®),
D°(MU,MU-Comod®),
D*(BP,BP-Comod®)

as their bounded derived categories.

ProposITION 1.10. ([51, Proposition 1.2.3]) At each prime p, the categories
BP.BP-Comod® and MU,MU-Comod®”

are equivalent as abelian categories.

The abelian categories of modules over p-completed MU, and BP, are not equiva-
lent. However, Proposition 1.10 states that the abelian categories of even comodules over
p-completed MU, MU and BP,BP are equivalent. We will work with MU and MU™°*
since they are E-algebras in the corresponding categories while BP is not, due to a

recent result of Lawson [38].

THEOREM 1.11. (1) The full subcategories

MU™" /r-Mod?’ and MU™'/r-Mod.;’

cell cell

define a t-structure on MU™/7-Mod?,),.
(2) The functor

T o MU™Y/7-Mod, ), — MU,-Mod®"

s an equivalence.

(3) There exists an equivalence of stable co-categories
MU™/7-Mod?,;, — D*(MU,-Mod®),

that preserves the given t-structures and extends the functor m, . on the heart.

Remark 1.12. The functor 7, , naturally lands in the category of bigraded modules
over the bigraded ring MU’jf,lfk’t /7. Since all elements of this bigraded ring are concentrated
in Chow—Novikov degree zero, it can be identified as the single graded ring MU, by
forgetting the motivic weight. A similar comment applies to the following theorem as

well.
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THEOREM 1.13. (1) The full subcategories

5703/7'—M0db’20 and S/OB/T—Modb’go

harm harm

define a t-structure on S90/7-Mod}, ..

(2) The functor
MU 500 /7-ModY,,, — MU,MU-Comod®"

is an equivalence.

(3) There exists an equivalence of stable co-categories

500 /7 Mod?,,,.. — D’ (MU, MU-Comod®")

that preserves the given t-structures and extends the functor MUf:it on the heart.

Remark 1.14. The statements in Theorems 1.11 and 1.13 can be connected by the

following commutative diagram of stable co-categories with ¢-structures:
S0.0 /7-Mod!,,,.. — D*(MU,MU-Comod*")

-A MU™°t/7

56\10/7'

MU™/7-Mod?,;, ——— D*(MU,-Mod®")

The vertical functor on the right is the forgetful functor.

Remark 1.15. From a deformation perspective, our Theorem 1.13 gives a new con-
nection between the moduli stack of formal groups and the classical stable homotopy
theory.

From the deformation

special generic
fiber

STOB/T’ fiber 50,0 s 7150,

parameterized by 7, we have two adjunctions of stable co-categories:
(S99-Mod),_, <= S00-Mod == (S90-Mod),_;.

We call this deformation a “motivic deformation” intuitively.
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By Dugger—Isaksen [14], on the generic fiber, the full subcategory of cellular objects

in
(S09-Mod),_; := 7' 500-Mod

is equivalent to the classical stable homotopy category at the prime p. In fact, Dugger—
Isaksen showed that the motivic homotopy groups of the 7-inverted sphere spectrum
are isomorphic to that of the classical sphere spectrum. By an inductive argument, one
can show that a similar statement is true for all finite cellular objects. This shows that
T-inverted Betti realization functor is fully faithful. It is also essentially surjective, since
the Betti realization functor admits a section with constant weight zero. An Ind-object
argument (similar to the proof of Corollary 1.2) gives us the claim.

Our main theorem shows that, on the special fiber, the full subcategory of harmonic

objects in the category
(599-Mod),—g :=5%9/7-Mod

is equivalent to the derived category of comodules that are concentrated in even degrees
over the p-completed Hopf algebroid MU,MU. By Quillen’s theorem [61], the latter can
be identified with the derived category of quasi-coherent sheaves on the moduli stack of
formal groups over Z,-algebras.

Remark 1.16. In our proof of Theorem 1.13, we set up a strongly convergent motivic

b

Adams—Novikov spectral sequence in the category S%0/7-Mody,,

Exti&%%itMUmot/T(MUftitX, MU:?Y) = [Z"* X, Yl@Umot]S/@/T .
This is stated as Theorem 5.6 in §5. Classically, the Adams—Novikov spectral sequence
is set up in such a way that the first variable is the sphere spectrum. Our construction
could be generalized to an abstract setting and applied to the classical situation when the
first variable X is arbitrary. We will discuss this case in a general framework in future

work.

1.3. The motivic Adams spectral sequence and the algebraic Novikov

spectral sequence

The following Theorem 1.17 establishes an isomorphism between the algebraic Novikov

spectral sequence and the motivic Adams spectral sequence for 50.0 /T.

THEOREM 1.17. At each prime p, there is an isomorphism of tri-graded spectral
sequences: the motivic Adams spectral sequence for SO0 /7. which converges to the motivic
homotopy groups of S%0/7, and the regraded algebraic Novikov spectral sequence, which

converges to the Adams—Novikov Es-page for the sphere.



THE SPECIAL FIBER OF THE MOTIVIC DEFORMATION IS ALGEBRAIC 331
The indexes are indicated in the following diagram:

5,2w a—s /| Ta—s = a,2w—s+a,w
Extyppp,; (Fp, 1%/ 107H) —— Extine™ " (Fy[7], Fp)

Algebraic Novikov SS Motivic Adams SS
5,2w = 300
EXth*Bp (BP*y BP*) E—— 7"'211)—5711)(50’0/7)-

Here, I=(p,v1,va,...) is the augmentation ideal of BP, and A}:}gt is the motivic

mod p dual Steenrod algebra.

Recall that both of the two spectral sequences in Theorem 1.17 are multiplicative,

so there are multiplicative filtrations on the abutments.

THEOREM 1.18. There is an isomorphism between
EXtE;’*BP(BP*vBP*) and 7T*7*(5/'0-7\0/7')

that preserves the multiplicative filtrations, composition products and higher compositions

in the respective categories.

Proof. The multiplicative structure on the abutments comes from composition of
morphisms in both categories

$00/7Mod!, . and D'(BP,BP-Comod®).

The isomorphism on abutments is induced by the equivalence of categories in Theo-

rem 1.13, and in particular respects compositions. O

The isomorphism between the abutments is known to Isaksen [29, Proposition 6.2.5]
and the first author [18, Corollary 3.14]. Our Theorem 1.18 further states that the
isomorphism preserves the multiplicative filtrations on the abutments. We do not prove
that the group isomorphism on the Es-pages is also a ring isomorphism. We shall prove
it in future work.

There has been huge interest in obtaining information on the stable homotopy groups
of spheres by comparing the Adams spectral sequence with the Adams—Novikov spectral
sequence. In fact, this is a dream entertained by Novikov [56, §12]. See also [46], [47], [62],
for example. An important connection and technique of studying both spectral sequences
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is the following Miller square [47]:

Ext®! (F,, [¢~5/1%~5+1)

*

SN

Cartan—Eilenberg SS Algebraic Novikov SS

\
/

Ext§""*"*(F,,F,) Extyp pp(BP., BP,)
N e
Adams SS Adams—Novikov SS
\ i /
90,

By a change-of-ring isomorphism, the Es-page of the Cartan—Eilenberg spectral sequence,
which computes the Adams FEs-page, is isomorphic to the algebraic Novikov spectral
sequence, which computes the Adams—Novikov Fs-page. For p odd, the Cartan—Eilenberg
spectral sequence collapses for degree reasons.

To explore this square, Miller [47] smashes together the Adams resolution and the
Adams—Novikov resolution, and gets a comparison theorem on the ds-differentials in the
algebraic Novikov spectral sequence and the Adams spectral sequence. The following
theorem is due to Novikov [56], Miller [47, Theorem 4.2] and Andrews—Miller [1, Theo-
rem 9.3.3].

THEOREM 1.19. Let 2’ be an element in Extjf+a_s(Fp,Fp) with Cartan—FEilenberg
filtration s. Then, d&SS2' has higher Cartan—FEilenberg filtration.

Moreover, if 2’ is detected in the Cartan—FEilenberg spectral sequence by z in
EXt?f(IFPa Ia_s/Ia_s+1)7

then

)

dSSy s detected by d;lgNSSz

IgNSS _ . .
where an & Z 18 in

Exty ! (B, [*75T /1075F2),

Remark 1.20. We regraded the algebraic Novikov spectral sequence so our ds 1gNSS

is dflgNSS in [1, Theorem 9.3.3].

Based on the Miller square and Theorem 1.19, Miller [47] proves the telescope con-
jecture at chromatic height 1 at odd primes.
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To understand the connection between higher differentials in the Adams and al-
gebraic Novikov spectral sequences, it would be desirable to establish new connections

between them.
For example, suppose in general that we have two spectral sequences

FEy=—F, and Eé 2E(’)O

that are not necessarily connected by a homomorphism of spectral sequences. To compare

them, it would be useful to have a third spectral sequence
El = FE!,
making a zig-zag diagram of spectral sequences:

E, EY E}

|1

Ew+—E] ——E..

This is the one of the major techniques used by the second and third authors in [74]
to explore the Mahowald square [42] and compute differentials in the Adams spectral
sequences.

Following this philosophy, for the Miller square [47], a basic question would be the
following: Which spectral sequence can we put in between these two spectral sequences

and have a zig-zag diagram? Namely,

Exty! (Fp, [958 /1075t «—— 7 —— Ext % (F,, F)

Algebraic Novikov SS Adams SS
s,t 30
EXt};P*BP(BP*, BP.) ? 7,50,

Our Theorem 1.17 shows that we can achieve a zig-zag diagram in the motivic world.
In fact, consider the HF;}”‘Ot—completed motivic sphere spectrum 50,0, Inverting 7,
we get the classical p-completed sphere S0 by Dugger-Isaksen [14], in the sense that
the corresponding Adams and Adams-Novikov spectral sequences have equivalent data.
On the other hand, reducing mod 7, we get 50.0 /7. Then, the naturality of the Adams
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spectral sequences gives us the following zig-zag diagram:

EXti{;gta_s’tﬂ(Fp [T]»Fp) ¢ EXti{;;?_&t/z (Fp [T]a Fp [T]) ” EXtiferais(va Fp)

Motivic Adams SS Motivic Adams SS Adams SS
50,0 50,0 Re 50
T 900/ T T 90 SO,

By Theorem 1.17, the left side spectral sequence, which is the motivic Adams spectral
sequence for S99 /7 is isomorphic to the algebraic Novikov spectral sequence.
More generally, we have the following motivic square:

EXtZ;; (Fp[r], Fp)[7]

O\

Algebraic 7-Bockstein SS Motivic Adams SS

\
/

Ext’;n (Fy 7], Fy[r]) 2590 /7]7]

/
\

Motivic Adams SS T-Bockstein SS
Ty, 500,

Let us compare the motivic square with the Miller square.

For the lower-right side, it is proved by Isaksen [29] that the motivic Adams—Novikov
spectral sequence for 500 i isomorphic to the 7-Bockstein spectral sequence, and that it
is rigid, in the sense that it contains the same information as the classical Adams—Novikov
spectral sequence. Each non-trivial differential in the classical Adams—Novikov spec-
tral sequence corresponds to a family of non-trivial differentials in the motivic Adams—
Novikov spectral sequence, that are connected to each other by multiplication by 7. We
can recover all non-zero differentials in the motivic Adams—Novikov spectral sequence by
knowing all non-zero differentials in the classical Adams—Novikov spectral sequence, and
vice versa.

We would like to point out that the above isomorphism between the motivic Adams—
Novikov spectral sequence for the motivic sphere and the 7-Bockstein spectral sequence
for the motivic sphere does not come from a map between two towers. In particular,
the Chow—Novikov degree compresses motivic Adams—Novikov ds,41-differentials to 7-
Bockstein d,.-differentials, and the motivic Adams—Novikov Es-page is isomorphic to the
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7-Bockstein E;-page, which is isomorphic to the homotopy groups of a motivic spectrum.
Moreover, the edge map of the 7-Bockstein spectral sequence has the advantage of being
induced by an actual map between motivic spectra, so naturality applies to motivic
homotopy groups. Naturality also gives us a map of the motivic Adams spectral sequences
from the motivic sphere to 50.0 /7, where the latter is isomorphic to the classical algebraic
Novikov spectral sequence.

For the upper-left side, the relation of the two spectral sequences in the motivic
square and the Miller square is the same as the relation on the lower-right side. The al-
gebraic 7-Bockstein spectral sequence can be thought as a motivic version of the Cartan—
Eilenberg spectral sequence, and contains the same information, in the same sense as the

lower-right-side situation.

For the upper-right side, our Theorem 1.17 says that the two spectral sequences are

isomorphic.

Therefore, for three out of the four sides, the motivic square contains exactly the

same information as the ones in the Miller square.

For the remaining lower-left side, Dugger—Isaksen [14] show that the 7-inverted mo-
tivic Adams spectral sequence is isomorphic to the 7-inverted classical Adams spectral
sequence. This means that the difference between the motivic square and the Miller
square lies in the 7-torsion information. Therefore, when comparing the higher differen-
tials in the classical and motivic Adams spectral sequences, the T-torsion information is

necessary to make the zig-zag strategy work.

Now, to compute a non-trivial classical Adams differential, for any r, start with an
algebraic Novikov d,-differential. Theorem 1.17 gives us a motivic Adams d,.-differential
for 500 /7. Pulling back to the bottom cell of 500 /7 of the source element gives us
a motivic Adams d,-differential for the motivic sphere with r’<r. Using the Betti

realization functor, we then obtain a classical Adams d,..-differential!

In practice, Isaksen, the second and the third authors [32], [33] extend the compu-
tation of classical and motivic stable stems into a large range using the following steps.

(1) Use a computer to carry out the entirely algebraic computation of the cohomol-
ogy of the C-motivic Steenrod algebra. These groups serve as the input to the C-motivic
Adams spectral sequence.

(2) Use a computer to carry out the entirely algebraic computation of the alge-
braic Novikov spectral sequence that converges to the cohomology of the Hopf algebroid
(BP,,BP.BP). This includes all differentials, and the multiplicative structure of the
cohomology of (BP,, BP,.BP).
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(3) Use Theorem 1.17 to identify the algebraic Novikov spectral sequence with the
motivic Adams spectral sequence that computes the homotopy groups of 50.0 /7. This
includes an identification of the cohomology of (BP,, BP,.BP) with the homotopy groups
of 5§00 /T

(4) Use the inclusion of the bottom cell and the projection to the top cell to pull back
and push forward Adams differentials for 500 /7 to Adams differentials for the motivic
sphere.

(5) Apply a variety of ad-hoc arguments to deduce additional Adams differentials
for the motivic sphere. The most important method involves shuffling Toda brackets.

(6) Use a long exact sequence in homotopy groups to deduce hidden T-extensions in
the motivic Adams spectral sequence for the sphere.

(7) Invert 7 to obtain the classical Adams spectral sequence and the classical stable
homotopy groups.

We would like to highlight a few consequences of our stem-wise computations.

Ezxample 1.21. Consider the following four differentials in the classical Adams spec-
tral sequence for the 2-completed sphere.
(1) There is a dg-differential in the 15-stem:

dz(hohs) = hodo.

This is proved by May and Mahowald-Tangora in [43] , [44] by comparing with Toda’s
unstable computations [68].
(2) There is a dy-differential in the 38-stem:

dy(hshs) = hoz.

This is proved in Mahowald-Tangora [43] by an ad-hoc method using a certain finite CW
spectrum.
(3) There is a dz-differential in the 38-stem:

d3(61) = hlt.

This is proved by Bruner in [8] by power operations in the Adams spectral sequence.
(4) There is a ds-differential in the 61-stem:

ds3(D3) = Bs.

This is proved by the second and third authors [74] using the RP*°-technique. The proof
of this differential in [74] is a significant part of the proof that the 61-sphere has a unique

smooth structure.
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It turns out that all these four differentials can be proved by our method. They
all correspond to non-trivial differentials in the algebraic Novikov spectral sequence with
the same length, and therefore are all consequences of purely algebraic computations and

our Theorem 1.17.

Remark 1.22. For some of the differentials computed by Isaksen, the second and the
third authors [32], [33] using Theorem 1.17, our method gives the only known proof. For

example, we prove an Adams ds-differential in the 68-stem
ds(d2) = hgQs,

which shows the non-existence of the homotopy class ko in mgg. As another example, we
prove an Adams ds-differential in the 92-stem

ds(g3) = hedg,

which shows the non-existence of the homotopy class K3 in mgo. Since both the elements
dy and g3 lie in a non-zero Sq¢P-family in the 4-line of the classical Adams E»-page,
the two new non-trivial differentials serve as new evidence of Minami’s new Doomsday

conjecture.

Remark 1.23. Theorem 1.17 can also be used to compute non-trivial extensions and
Toda brackets. For example, there is an n-extension from hsd; to N in the 46-stem.
This is proved by the second and third authors [75, Proposition 1.3 (2)] using the RP°°-

technique. As another example, there is a Toda bracket
<947 27 U2>

in the 45-stem. It is computed by Isaksen in [29, Lemma 4.2.91] by ad-hoc methods.
This Toda bracket computation is crucial in the third author’s proof [77] that

205 =0

in the 62-stem. Both the non-trivial n-extension and the Toda bracket computations
are present in the motivic homotopy groups of 50.0 /7. By Theorem 1.17, they can be
computed by the product and Massey product structure on the classical Adams—Novikov
FEs-page. In particular, the corresponding 3-fold Massey product can be verified in the
algebraic Novikov spectral sequence using May’s convergence theorem [45]. Therefore,
both the non-trivial n-extension and the Toda bracket computations are consequences of
purely algebraic computations and our Theorem 1.17.
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1.4. Organization

This paper is organized in two parts.

In Part 1, we prove the equivalence of stable co-categories in Theorems 1.11 and 1.13.
Our proofs use a theorem of Lurie in Higher Algebra [41] on the relation between a stable
oo-category with a t-structure and the derived category of its heart. We recall Lurie’s
theorem in §2, and prove Theorems 1.11 and 1.13 in §3 and §4, respectively. We also
prove Corollary 1.2 in the end of §4. We introduce the absolute Adams—Novikov spectral

sequence in the category

@/T'MOdi}larm

in 85, which is necessary for our proof of Theorem 1.13. We propose some further
questions in §6. We discuss the HF}°*-completion in §7.

In Part 2, we prove the isomorphism of spectral sequences in Theorem 1.17. In
89, we check that, through the equivalence of stable co-categories in Theorem 1.13, the
algebraic Novikov tower in the derived category of BP,BP-comodules corresponds to the
motivic Adams tower of STOB/T in the category of @/T—modules. In Appendix A, we
recompute certain low filtration and historically more difficult differentials in the range
up to the 45-stem at the prime 2, as an illustration of the power of the isomorphism of

spectral sequences in Theorem 1.17.

1.5. Conventions and notation

All colimits and limits in a stable co-category of spectra mean homotopy colimit and

homotopy limit in the classical sense.
All modules over graded rings are graded modules.

Here is a summary of a list of the notation we use in this paper.
(1) S10: the simplicial sphere S?.

(2) SbH1: the multiplicative group G,,=A\{0}.

(3
(4

(5 Ssw: the motivic H]F;“Ot—completed sphere spectrum in bi-degree (s, w).
(

(

(

(

)
) HIF;“‘”: the mod-p motivic Eilenberg—Mac Lane spectrum.
)

)
6) @/T: the cofiber of .
)

)

)

=

50.0: the motivic HF}'°*-completed sphere spectrum.

7
8
9

C-mot-Spectra: the stable co-category of motivic spectra over Spec C.
S50.0-Mod: the stable co-category of motivic module spectra over S90.
3®%(=): the suspension functor S5 A g4 —.
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(10) R-Mod: the stable oo-category of left modules over R in S/OB—Mod7 for an
F.-algebra Re 50.0-Mod.
(11) R-Mod,e: the stable oo-category of cellular objects in R-Mod.
(12) MGL: the cellular motivic algebraic cobordism spectrum.
(13) MU™": the E..-algebra MGLAg0.0.5%0 in S00-Modeey.
(14) MU™/7: the En-algebra SO0 /7 A g% MU™ in §90 /r-Modcer.
(
(

w

15) 50,0 /7-Modpam: the stable oo-category of harmonic 50,0 /T-module spectra.

16) The Chow—Novikov degree of an element in 7, X: s—2w, for X a motivic

(¥4

spectrum.

(17) MU™°*/7-Mod?,: the stable co-category of cellular MU™°/7-modules whose
homotopy groups are concentrated in bounded Chow—Novikov degrees.

(18) MU™*/7-Mod?7%, MU™/7-Mod”5® and MU™!/7-Mod_,;: full subcate-
gories of MU™"/7-Mod",, spanned by objects whose homotopy groups are concentrated
in non-negative, non-positive and zero Chow—Novikov degrees, respectively.

(19) S90/7-Mod?, . : the stable co-category of harmonic S%0/7-modules whose
MU™°"-homology groups are concentrated in bounded ChowNovikov degrees.

(20) 590 /7-Mod?:>° SO’O/T—Modﬁ’fro and S0 /7-Mody . . : full subcategories of

harm? m harm*

—

500 /7-Mod}, .., spanned by objects whose MU™*-homology groups are concentrated
in non-negative, non-positive and zero Chow—Novikov degrees, respectively.

(21) MU,-Mod®: the abelian category of graded modules that are concentrated in
even degrees over the p-completed ring MU.,.

(22) MU,MU-Comod®": the abelian category of graded comodules that are con-
centrated in even degrees over the p-completed Hopf algebroid MU, MU.

(23) BP,.BP-Comod®": the abelian category of graded comodules that are concen-
trated in even degrees over the p-completed Hopf algebroid BP,BP.

(24) MUYY"/7-Mod: the abelian category of graded left modules over MU'/ 7.

(25) MU:zt/T—MOdOI the abelian category of graded left modules over MUY /7
that are concentrated in Chow—Novikov degree zero.

(26) MUﬁthUmOt/T—Comod: the abelian category of graded left comodules over
the Hopf algebroid MUfffk’tMUmOt/ T.

(27) 1\/IU’:2t1\/[Um°t /7-Comod": the abelian category of graded left comodules over
the Hopf algebroid 1\/IU’:?MU’““Ot /7 that are concentrated in Chow—Novikov degree zero.

(28) DY(A): the bounded derived category of an abelian category A as a stable
oo-category.

(29) Stable(BP.BP): the underlying stable co-category of Hovey’s unbounded de-
rived category of BP,BP-comodules.
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Part 1. Equivalence of stable oo-categories

The question of when the homotopy category of module spectra over a certain ring
spectrum is equivalent to the derived category of an abelian category as a triangulated
category has been studied in many context by many people. For example, Schwede and
Shipley [65] studied the case for the Eilenberg—Mac Lane spectrum HR, where R is a
commutative ring, Patchkoria [59] studied the case for the complex periodic K-theory
localized at an odd prime, Greenlees [21] studied the case for the rational S!-equivarant
sphere spectrum, and Deligne and Goncharov [11] studied the case for the rational motivic
Eilenberg-Mac Lane spectrum HQ™°. The answers are positive in these cases. On the
other hand, Schwede [64] showed that the classical stable homotopy category is not a
derived category.

The goal of Part 1 is to prove that the homotopy category of harmonic 500 /T
spectra whose MU™°*-homology are concentrated in bounded Chow-Novikov degrees is
equivalent to the bounded derived category of MU, MU-comodules that are concentrated
in even degrees. In fact, we will prove Theorem 1.13, which states that there exists an
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equivalence of stable co-categories that preserves the given t-structures:
§00/7-Mod},,,, — D"(MU,MU-Comod*").

We apply a theorem of Lurie in Higher Algebra [41, Proposition 1.3.3.7] on the
relation between a stable co-category with a ¢-structure and the derived category of its
heart. As a warm-up, we will prove Theorem 1.11, which states that there exists an
equivalence of stable co-categories that preserves the given t-structures:

MU™/7-Mod?,;, — D*(MU,-Mod®).

cel

2. Lurie’s theorem on t-structures

In [41, Proposition 1.3.3.7], Lurie proves a theorem on the relation between a stable co-
category with a t-structure and the derived category of its heart. In this section, we state
a corollary of Lurie’s theorem as Proposition 2.11, and its dual version Proposition 2.12.
Both propositions are used in §3 and §4. We will first recall relevant definitions and
Lurie’s theorem and then prove Proposition 2.11.

Let C be an oo-category. Denote by hC its homotopy category, and by [—, —|¢ the
abelian group of homotopy classes of maps in C. When it is clear from the context,
we will also denote it by [—,—]. If C is further a stable oo-category, denote by ¥ its
translation automorphism.

We recall from [41, Definition 1.2.1.4] that a ¢-structure on a stable co-category C is
defined as a t-structure on its homotopy category hC, which is a triangulated category.

More precisely, we have the following definition.

Definition 2.1. A t-structure on a stable co-category C is a pair of two full subcat-
egories C»o and Cgo that are stable under equivalences, satisfying the following three
properties:

(1) for X€Cso and Y €X1Cqp, we have [X,Y]c=0;

(2) there are inclusions ¥C>0CCso and X7'C<oCCxo;

(3) for any X €C, there exists a fiber sequence

X>0 —)X—)ngl,

with X>0€C>0 and X<,1 Ezflcgo.

As in [41], we use homological indexing convention.
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Definition 2.2. Let C and C’ be stable oco-categories equipped with ¢-structures. We
say that an exact functor f:C—C’ is right t-ezact, if it carries C5o to CL,. An exact
functor f:C—C" is left t-exact, if it carries C<o to Cy. A functor is t-ezact if it is both
left and right t-exact.

Definition 2.3. Denote by C,, and C«,, the co-categories X"C>( and X"C, respec-

tively. For every integer n, the subcategories Cx,, and Cg,, sit in adjunctions
Conz——=C and C—C<p,
T}n

where 7>, and 7, are called the nth truncation functors.

Sometimes the truncation functors are post-composed with the inclusion functors,

so they land in C.

Definition 2.4. Denote by C* and C~ the stable full subcategories spanned by left-
bounded and right-bounded objects in C, respectively:

C'=JCcn and ¢ =]JCon,

n=0 n=0

and by
ch=c'nc

the stable subcategory of bounded objects. We say that the t-structure is left-bounded,
right-bounded or bounded, if the inclusion of C*, C~ or CP, respectively, in C, is an
equivalence.
The intersection
C¥ =C>0NC<o

is called the heart of the t-structure.

The oo-category C¥ is always equivalent to (the nerve of) its homotopy category
hC®, which is an abelian category (see [41, Remark 1.2.1.12]). Following [41], we abuse
the notation by identifying C¥ with the abelian category hC®.

Definition 2.5. Let C be a stable co-category equipped with a ¢-structure. We define
the left completion C of C to be the limit of the tower

T

<1 T<0
——>ng \Cgl

We say that C is left-complete if the functor C—C is an equivalence.
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By [41, Proposition 1.2.1.17], the left completion C is again a stable oo-category,
inherits a t-structure from C, and is left-complete.

Two important examples of stable co-categories with t-structures are the oo-category
of spectra (as discussed in [41, §1.4]) and the derived co-category of an abelian category
(as discussed in [41, §1.3]).

Ezample 2.6. Denote by Spectra the oco-category of spectra and the two full sub-

categories

Spectra,, = {X € Spectra: 7, X =0 for n <0},
Spectra, ={X € Spectra:m, X =0 for n>0}.

define a t-structure. Left- and right-bounded objects correspond to connective and co-
connective spectra, respectively, and its heart can be identified with the abelian category

of abelian groups. Moreover, as proved in [41, Proposition 1.4.3.6], it is left complete.

Ezxample 2.7. Suppose that A is an abelian category with enough projective objects.
There exists an associated derived co-category D~ (A), whose objects can be identified
with right-bounded chain complexes with values in A. This co-category D~ (A) is stable
and its homotopy category hD~(A) can be identified as the usual derived category as
triangulated categories.

It admits a natural ¢-structure defined as follows:

e D (A)> is the full subcategory spanned by the complexes whose homology van-
ishes in negative degrees;

e D~ (A)go is the full subcategory spanned by the complexes whose homology van-
ishes in positive degrees.

As proved in [41, Proposition 1.3.3.16], this ¢-structure is left complete and right
bounded. Also, as proved in [41, Proposition 1.3.3.12], the derived oco-category D~ (A)
has a universal property in the sense that if C is any stable co-category equipped with a
left-complete ¢-structure, then any right exact functor A—C" extends (in an essentially

unique way) to a right ¢t-exact functor D~ (A)—C.
We have the following recognition criterion due to Lurie [41, Proposition 1.3.3.7].

ProprOSITION 2.8. Let C be a stable oco-category equipped with a left-complete t-
structure, whose heart A=hC® has enough projective objects. Then, there exists an

essentially unique t-exact functor
F: D (A)—C

extending the inclusion N(A)~C® CC. Here, N(A) is the nerve of the abelian category A.
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Moreover, the following two conditions are equivalent:
o the functor F is fully faithful,
o for any pair of objects X, Y € A, if X is projective, then the abelian groups

X, Y]e

vanish for 1>0.
If the conditions are satisfied, then the essential image of F is the full subcategory

¢ =Jcsn

of right-bounded objects in C.

Remark 2.9. It is clear that if we restrict the functor ' on the bounded stable

subcategory D?(A), then it gives an equivalence of stable co-categories
F:DY(A) —C°

that preserves t-structures.

Remark 2.10. Lurie’s theorem is exactly the reason we are working with stable oco-
categories instead of triangulated categories. Given a triangulated category equipped
with a t-structure, there in general does not exist a functor from the derived category of
the heart to the original triangulated category extending the identity functor on the heart
(see [17, Remark IV.4.13] for a more detailed explanation for example). However, if the
triangulated category comes from the homotopy category of a stable oco-category, then
such a functor always exists. Moreover, Lurie’s theorem gives us a recognition criterion
in terms of homological algebra to see when such a functor is also an equivalence and

preserves t-structures.
We now use Lurie’s theorem to prove the main result of this section.

PROPOSITION 2.11. Let C be a stable co-category with a given bounded t-structure.
Suppose that the following conditions hold:

(1) the abelian category A=hC® has enough projective objects;

(2) for any pair of objects X, Y €A, if X is projective, then the abelian groups

[Eiin Y]C

vanish for i>0.
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Then, there exists an equivalence of stable co-categories
F:D*(A) —C
extending the inclusion N(A)~C¥ CC, and which preserves t-structures. Here, N(A) is

the nerve of the abelian category A and DP(A) is the bounded derived category of A.

Proof. As explained in [41, Remark 1.2.1.18], for any stable oco-category C with a

t-structure, the functor C—C induces an equivalence
ct— (C)*.

For the stable oco-category C with a bounded t¢-structure in the statement of Proposi-
tion 2.11, we consider its left completion E, so that we could apply Proposition 2.8.
Therefore, the equivalence in the statement of Proposition 2.11 comes from the following

zigzag of equivalences:
Ce—CT— (C)"+— (C)* +—D"(A),

where the first equivalence comes from the fact that the t-structure on C is bounded, the
third equivalence comes from the fact that the ¢-structure on Cis right bounded, since
C is, and the last equivalence comes from Lurie’s theorem and Remark 2.9. O

Considering the opposite category, we have the following dual version of Proposi-
tion 2.11.

PROPOSITION 2.12. Let C be a stable co-category with a given bounded t-structure.
Suppose that the following conditions hold:

(1) the abelian category A=hC® has enough injective objects;

(2) for any pair of objects X, Y €A, if Y is injective, then the abelian groups

[EiiXa Y]C

vanish for i>0.

Then, there exists an equivalence of stable oco-categories
G:D(A) —C

extending the inclusion N(A)~C%CC, and which preserves t-structures. Here, N(A) is
the nerve of the abelian category A and DP(A) is the bounded derived category of A.
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3. An algebraic model for cellular MU™°"/7-modules

In this section, we use Proposition 2.11 to prove Theorem 1.11. Namely, there exists a

t-exact equivalence of stable oo-categories
MU™ /7-Mod?,, — D’(MU,-Mod®"),
whose restriction on the heart is given by

T o MU™' /7-Mod{;, — MU,-Mod®".

cell

In §3.1, we first recall the universal coefficient spectral sequence in the category
MUmOt/T—MOdceu,

which is constructed by Dugger—Isaksen [13]. This is stated as Theorem 3.2. Using this
spectral sequence, we prove the equivalence on the heart as Proposition 3.5 in §3.2. Then,

using this spectral sequence again, we show in §3.3 that the full subcategories

MU™/r-Mod[7’ and MU™/7-Mody,}’

cell cell
define a t-structure. In the end of this section, we prove the equivalence of stable oco-
categories as Theorem 3.8.

We will use in §5 the above equivalence of stable co-categories to construct enough
motivic spectra to build MU™°"/7-based Adams resolutions in the category

@/T—Modcen.

3.1. The category MU™°"/7-Moden and the universal coefficient spectral

sequence
We begin with two adjunctions. The first adjunction
500 /7 A—

S00-Modeey 7———— 590 /7-Mod.en (3.1)
U

between cellular S90-modules and cellular SO0 /T-modules is induced by the E.-ring
map
50,0 — 50,0 /7,
Since MU™°"/7 is an E.-algebra that is cellular over 50.0 /7, the above adjunction
(3.1) extends to

_ SO0 /TA— MU™©t A —
SO’O—MOdCCH «—  ° SO’O/T—MOdCCH « 7 MUmOt/T—MOdCCH. (32)
U U
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Definition 3.1. Denote by
MUf:f:t/T—Mod

the abelian category of graded left modules over MUT?/ 7, and by
MUY /7-Mod’

the full subcategory of MUmOt/T Mod spanned by all graded modules M, ., that are
concentrated in Chow—Novikov degree zero, i.e., M ,, =0 whenever s#2w.

We thus have a commutative diagram

MU™/7-Modey ——— MUY /7-Mod

MU™"/r-Mody,, — " MU™"/7-Mod’.

cel

Since MUfTZt /7 is concentrated in Chow—Novikov degree zero, forgetting the motivic

weight we have an equivalence
MU /7-Mod® = MU,-Mod®".
To show that the restriction of m, . to the heart induces an equivalence

T MU /7-Mod?), — MU,-Mod*®",

cel

we recall the universal coefficient spectral sequence constructed by Dugger—Isaksen [13].
This spectral sequence is our main tool to compute homotopy classes of maps in the
stable co-category MU™"/7-Mod,..

THEOREM 3.2. (Universal coefficient spectral sequence) For any
X, Y € MU™"/7-Model,
there is a conditionally convergent spectral sequence
ESYY =Ex t*%ﬁmﬁ(w*,*x, T s Y) =[S X, Y] ypmet /-

Moreover, if both m, X and m, .Y are concentrated in bounded Chow-Novikov degrees,

then the spectral sequence converges strongly and collapses at a finite page.
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Proof. We refer to [13, Propositions 7.7 and 7.10] for the precise construction of the
spectral sequence and the proof of conditional convergence. For the second statement of
the theorem, we recall a few facts from the proof of [13, Propositions 7.7 and 7.10].

The E;-page arises from a free resolution over MU'/ 7:
0 ¢— Ty o X & Ty o Fo — T o I — ..,

and is given by
Ef’t’w = HOmMUL‘lit/T (77*,* (zt’wFS)’ Tr*v*Y)'

The FEs-page is the cohomology of this chain complex, giving the claimed Ext groups.
Suppose that 7, . X and 7, .Y are concentrated in Chow-Novikov degrees [a, b] and

[c, d], respectively, where a<b and ¢<d. As MU::?/T is concentrated in Chow—Novikov

degree zero, we can choose all 7, , (Fs) such that they are concentrated in Chow—Novikov

degrees [a, b]. Therefore, m, (X" F) is concentrated in Chow—Novikov degrees
[a+(t—2w), b+ (t—2w)]

for all s>0.
s,t,w

In order for the group E7 to be non-zero, we must have
c<b+(t—2w) and dZza+(t—2w).
For a fixed weight w, this gives that
t€e—b+2w,d—a+2w).

Since later pages E$Y* are iterated subquotients of E""" their t-degrees are all con-

centrated in [c—b+2w, d—a+2w].
Recall that the d,-differential has the form

s,t,w dr s+rt+r—1,w

In particular, it changes the t-degrees by r—1. Since the ¢-degrees of all possible non-zero

elements in the Fj-page satisfy t€[c—b+2w, d—a+2w], we must have d,.=0 when
r—1>(d—a+2w)—(c—b+2w)=(b—a)+(d—c)
for degree reasons. In other words, the spectral sequence collapses at the page
Ep—a)+(d—c)+2-

Therefore, under the condition that both m,,X and 7, .Y are concentrated in
bounded Chow—Novikov degrees, this spectral sequence convergences strongly and col-
lapses at a finite page. O
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Recall from Definition 1.8 that

MU™"/r-Mod(;’, MU™'/7-Mody” and MU™"/r-Mod,,

cell » cell cell

are the full subcategories of MU™°'/7-Mod",, that are spanned by objects whose ho-
motopy groups are concentrated in non-negative, non-positive and zero Chow—Novikov

degrees, respectively.

COROLLARY 3.3. Let

X eMU™/7-Mod”2? and Y e MU™/7-Mod":$’.

cell cell

The abelian group of homotopy classes of bi-degree (0,0) can be computed algebraically

by the isomorphism
(X, Yvumet /- — Homygymot o /7 (T4« X, s 1Y)

that is induced by applying my «.

Proof. Consider the Es-page of the universal coefficient spectral sequence. The tri-
degrees that converge to the bi-degree (0,0) are of the form (¢,¢,0), which correspond to
Byt =ESY0 for 0.

By the proof of Theorem 3.2, the t-degrees of all possible non-zero elements in the
Ey-page, and therefore Fsr-page, satisfy t<d—a+2w=d—a. Since 7, ,X and m, .Y are
concentrated in non-negative and non-positive bounded Chow-Novikov degrees, we have
d=a=0. Therefore, we have ¢<0.

Combining both facts, we have established that the only possible non-zero elements
in the Fy-page that converge to the bi-degree (0,0) are in

0,0,0
E5™" =Homyqumoty s /7 (T4« X, Th 1Y),

To show that all elements in Eg 00 survive in the spectral sequence, first note that they
are not targets of any non-zero differentials, since they are in s-degree zero. Second,
all d,-differentials for r>2 increase the t-degree. Since the t-degrees of all non-zero
elements are non-positive, the elements in Eg 00" 4o not support non-zero differentials.

This completes the proof. O

3.2. The equivalence on the heart

We are now ready to show that the functor =, , induces an equivalence on the heart.
The following is a special case of Corollary 3.3.
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COROLLARY 3.4. The functor

T MU /7 Mody,, — MU' /7-Mod”

cell
18 fully faithful. Here, the right-hand side is understood as a discrete oo-category.

As a consequence, Corollary 3.4 shows that MU““Ot/T—Mod?ell is also a discrete

oo-category.

Proof. For n>0 and two objects X, YEMUmOt/T—Mon by Corollary 3.3, the edge

cell?

homomorphism

(270X, Y] s Homyymot 7 (14,50 X, s, Y)

MUmot/T

is an isomorphism. When n>0, the bigraded module 7, . X" X is concentrated in posi-
tive Chow—Novikov degree. So the right-hand side of the above isomorphism is concen-
trated in the case n=0. This shows that =, , is fully faithful on MUmOt/T—ModO O

cell*

To show the equivalence on the heart, we only need to show the essential surjectivity

of Ty «.

ProprosITION 3.5. The functor

T MU /7 Mody,, — MUTS" /7-Mod”

cell
18 an equivalence of oco-categories.

Proof. We need to show that any object MGMU?‘jt/T—ModO can be realized as the
Q

cell*

homotopy groups of an object in MU™°*/7-Mod
Suppose that M is a free MU‘::it/T—module that is concentrated in Chow—Novikov
degree zero:
M= P PFokMurst /T
iel
Here, X2k FMUY"/7 is a free bigraded rank-1 module over MUY'"/7 with a generator

in bi-degree (2k;, k;). We can realize M as the homotopy groups of the wedge

\/ 22]%‘,’% MUmot/T
i€l

with the same index set, which is cellular.

For an arbitrary M GMUffgt /7-Mod’, we can pick a free resolution
0 M Foelp Py mpe (3.3)

in MU' /7-Mod”.
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Each F; can be realized by

Z; e MU™' /7-Mod_,,

v

cel

and by Corollary 3.4, each map f; can be realized by a map g;€MU™"/7-Mod, as in

Z()(g—121<£Z2(——....

Using the standard method of lifting an Adams resolution to an Adams tower, we claim
that we can construct a tower

X1 —)XQ — ey

with the property that the homotopy groups of X; are given by the following groups

M =Cokerf;, if k=0,

“+o00
P maurri(Xi) =1 THOKerf;, if k=1,
l==00 0, otherwise.

and that the maps in this tower induce an isomorphism on the Chow—Novikov-degree-zero
part of these homotopy groups, which is M.
We prove this claim inductively.

In fact, we can choose X; to be the cofiber of
g1: 41— Zp.
This gives us a long exact sequence on homotopy groups
e T M1 x X1 — T 5 1 EELEN w20 — Mo o X1 — oo

Since both m, .Zy and m, .Z; are concentrated in Chow-Novikov degree zero, we
must have that 7, ,X; is concentrated in Chow-Novikov degrees zero and 1. We can
compute directly from the long exact sequence that the Chow-Novikov degree-zero and
degree-1 parts of 7, .X; are isomorphic to M =Cokerf; and $1%Kerf;, respectively.

Suppose now that we have constructed the tower up to X;. We have a homomor-
phism

T wZit1 2 Fipp —» Imfig = Kerf; —— m, . (E790X;)

in MUfjf:t /7-Mod®. Here, the first map is induced by f;;1 and the second map corre-
sponds to the Chow-Novikov-degree-i part of m, . X;.

By Corollary 3.3, this homomorphism can be realized as a map

Zi-i—l — Eii’OXi.
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Define X;,1 as the X%%-suspension of its cofiber, so we have a cofiber sequence
Ei’OZH_l — Xz — Xi+1.

By the associated long exact sequence in homotopy groups, we have that m, . X;11
is concentrated in Chow—Novikov degrees zero and i+1. The Chow—Novikov-degree-zero

part is isomorphic to M, and the Chow—Novikov degree i+1 part is isomorphic to
S Ker figq,

as required.
Having the tower

X1 —>X2 — ey

we define X as its colimit
X :=colim (X; — Xy —>...).
The homotopy groups of X are computed by the colimit
T x X = colim (T X1 — T Xo —> ... ) =M,

and are in particular concentrated in Chow—Novikov degree zero.
mot

Therefore, we have proved that any module M e MU’} / 7-Mod® can be realized as
a spectrum X eMU™°t/7-Mod? O

cell*

3.3. The t-structure, and the equivalence of categories

We prove in this subsection that the full subcategories previously defined satisfy the
required axioms for the t-structure.

We first prove a general proposition regarding the existence of a t-structure.

PROPOSITION 3.6. Let C be a stable co-category, and CZ° and CSY be a pair of
full subcategories of C. Let CZ"=X"C>" and CS"=X"CS. Suppose that the following
conditions hold:

(1) C?Y is closed under extensions and suspensions. CSY is closed under extensions

and desuspensions;
(2)
c=|Jczm

ne”L
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(3) for any X€C?° and Y €CS™1, we have
[X,Y]e=0;

(4) for any X €C>Y, there is an object Xo€CZ°NCSC and a morphism
X — X

such that its fiber lies in C>*.

Then, this pair of subcategories CZ° and CS defines a t-structure on C.

Proof. In view of Definition 2.1, it remains to check that, for any X €C, there exists
a fiber sequence
X>0 — X — Xg_l

such that X>0€C?? and X¢_1€CS™1L
By the second assumption, there exists n such that X eC>".

If n>0, we can take the fiber sequence to be
X— X —=x

If n<0, using the fourth assumption, there exits an object X, €CZ"NCS" and a fiber
sequence
Xopt1 — X — X,

such that X, €CZ" L.

For n<0, iterating this process, we get a finite sequence of morphsims
Xoo—Xo 1 — 0. — Xonp1 — X
such that X>,€C>® and that the cofiber X;_; of the morphism
Xoi— X

lies in CZ*~1NCST~L, where i€[n+1,0].

We can now take X¢_; to be the cofiber of the morphism
X20 — X.

The object X<_; can be build up by finite extensions from the objects X;_; for i€
[n+1,0]. Therefore, by the first assumption, we have X¢_;€CS™ 1. O
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PRrOPOSITION 3.7. The pair of full subcategories

MU™/7-Mod”7% and MU™"/7-Mod"5"

cell cell

defines a bounded t-structure on

MU™/7-Mod?

cell*

Proof. We check the four conditions in Proposition 3.6.
The first two conditions follow directly from the definition of the Chow—Novikov
degree.

For the third condition, we need to show that
[X, Y]MUmot/T - 0
for any objects

X eMU™/7-Mod?2° and Y e X~ HOMU™ /7-Mod”$’.

cell cell

By Corollary 3.3, we have that
[Xa Y]MU““’”/T = HomMU?‘it/T (Tr*,*Xa 77*7*Y)

As 7, . X is concentrated in non-negative Chow—Novikov degrees and 7, .Y is concen-
trated in negative Chow—Novikov degrees, the right-hand side is zero.

For the fourth condition, we need to show that, for any

X eMU™*/7-Mod”2"

cell

there exists a fiber sequence
X>1 — X — Xo

such that

Xo e MU™/7-Mody,, and Xs;€XMO(MU™/7-Mod’2?).

cell

Consider the Chow—Novikov-degree-zero part of 7, .(X), namely
W*’*(X):O = @ 7T2k’}c(X>.
k

By Proposition 3.5, there is a spectrum

X, e MU™ /- Mod?

cell
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realizing this bigraded MUf:‘jt/ 7-module
T e Xo 27 (X)) 7.
Consider the projection map
T (X) —» T (X)T0 27, Xo.
By Corollary 3.3, the projection map can be realized by a map
X — Xo.

Denote by X, its fiber. Then from the long exact sequence in homotopy groups, we
have that
X5 € 2HO(MU™/7-Mod”2). O

cell

b

oell, the main result of this section follows

Having this ¢-structure on MU™"/7-Mod

from Proposition 2.11.

THEOREM 3.8. There is a t-exact equivalence of stable oo-categories

D’ (MU, -Mod®) — MU™* /7-Mod"

cell*

Proof. By Proposition 3.7, the t-structure is bounded. By Proposition 3.5 and the
equivalence
MU' /7-Mod’ = MU,-Mod*,

the heart can be identified as modules over MU,. Therefore, it has enough projective
objects.

It remains to show that, for any two objects,

X,Y e MU™/7-Mod_

cell’

with 7, X projective over MUfjfk’t/T, we have that

[E_i7oX7 Y]MUmot/T - O

for i>0.

We apply the universal coefficient spectral sequence in Theorem 3.2, namely

EXtIS\/’[%%it/T (’/T*,*X, 7T*7*Y) — [Etis’wX, Y]MUmot/T.
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Since m, X is projective over MUI:?/T, the Es-page of the spectral sequence is
concentrated on the line s=0, and therefore collapses at the F»-page.

Moreover, since both , ,X and 7, .Y are concentrated in Chow-Novikov degree
zero, the Fy-page is also concentrated in Chow—Novikov degree zero, namely ¢ —2w=0
in this case.

We are interested in the case when t—s=—i<0 and w=0. By the above analysis,
the corresponding tri-degrees in the Fa-page are all zero in our case. Therefore, we must
have that

(70X, Y]yuymet /» =0.

This completes the proof. O

4. An algebraic model for harmonic 500 /T-modules

After the warmup in §3, we use Proposition 2.12 to prove Theorem 1.13. Namely, there

exists a t-exact equivalence of stable co-categories
500 /r-Mod!, . — D*(MU,MU-Comod®"),
whose restriction on the heart is given by

MU™: §00 /r-Mody,,, — MU, MU-Comod®".
The structure of this section is similar to that of §3.

In §4.1, we discuss the category of harmonic 50.0 /m-modules. We will also recall
certain facts on the category of MU,MU-comodules, such as Landweber’s filtration
theorem. Instead of using the universal coefficient spectral sequence in the category
MU™°"/7-Mod.ey, we will use the absolute Adams-Novikov spectral sequence in the
category of harmonic 500 /7m-modules. This spectral sequence is constructed in §5. Using
this spectral sequence, we prove the equivalence on the heart as Proposition 4.11 in §4.2.
Then, using again this spectral sequence, we show in §4.3 that the full subcategories

5703/7'—M0db’>O and S/()B/T-Modb’ <0

harm harm

define a t-structure, and conclude the equivalence of stable co-categories as Proposi-
tion 4.12 and Theorem 4.13.
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4.1. The categories S/(R’/T-Modharm and MU, MU-Comod®

We first recall from Definition 1.6 that a SO0 /7-module spectrum Y is harmonic if it is

50.0 /7-cellular and the natural map
Y — YI\//I\Umot

is an isomorphism on 7, .. As pointed out after Definition 1.6, the two completions X},
in the category C-mot-Spectra and X&Umot in the category 50.0-Mod are equivalent for
any X in @—Modcen. It is clear that in the category ST‘% /7-Modcen, being harmonic
is closed under taking suspensions, finite products and fibers. The category of harmonic
50,0 /7-module spectra is denoted by 50,0 /T-Modparm-

We have the following examples and non-examples of harmonic 500 /T-module spec-

tra.

Ezample 4.1. (1) Any finite cellular object in ,STO’\O/T—Mod is harmonic. In fact,
by discussion in §7 of Dugger—Isaksen [14], the HFg’Ot—completed sphere 500 is MGL-
complete, and is therefore MU™°'-complete. Then, the claim follows from an induction
argument.

(2) Any finite cellular object in MU™°*/7-Mod is harmonic.

(3) The n-inverted cofiber of 7 is 500 /7-cellular but not harmonic.

Here, 7 is the Hopf map in 7r1715/07\0. Post-composing with the unit map 50,0, 500 /T,
we also denote its Hurewicz image in 771,13/07\0 /7 by n. It is non-nilpotent in the ring
71'*7*5/07\0/7'. One way to see this fact is to identify 7r*7*5/07\0/7 as Extgp pp(BP., BP,) by
Gheorghe-TIsaksen, and to use the fact from Miller—-Ravenel-Wilson [50] that the element
that detects 7 in Extgp pp(BP., BP,) is non-nilpotent. The n-inverted cofiber of 7,

n_lS/OB/T = colim(S/OB/T — 2—1,—15/05/7_ — 2_2’_25/05/7' — )y
is a cellular object in @/T—Mod. Since n maps to zero in 7r*7*MUm°t7 we have that
MU (1500 /7) =0,

Therefore, the completion (=" 50,0 /T){pumer is contractible. This shows that the spec-

trum n~1S%9 /7 is not harmonic.

The following Lemma 4.2 will be used in the proof of Proposition 4.11. We postpone
the proof of Lemma 4.2 until the end of §5.
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LEMMA 4.2. Suppose that {Yy}a is a filtered system in @/T-Modiu such that

each Yy, is harmonic. Then, the colimit of {Yy}a in @/T-Modiu is also harmonic.

Recall that, for a 50.0 /m-module X, its MU™*-homology can also be described as

MU??;WX = 7T*7*(MUmot/\ _ X) o~ 7*7*(MUm0t/7-/\

50,0 X)

Sa)/'r
Following computations of MUfff:tMUmot from Hu-Kriz—Ormsby [28] and Dugger—
Isaksen [14], we have the following MU™*-homology of MU™"/7:

T (MU 7N iy, MU™ /) 2 MU 7(by, by, ... ] & MUPSMU™ /7,

5/07’/7'

where |b;|=(2i,4), and is in Chow—Novikov degree zero. Since 7 can be realized as a map
S§0:—1_380.0 it is primitive in MU™°". Therefore, MUf:itMUmOt /7 is a Hopf algebroid.

Definition 4.3. Denote by
MUf:it MU™°*/7-Comod

the abelian category of graded left comodules over the Hopf algebroid MUfitMUmOt/ T,
and by
MUTY'MU™ /7-Comod”

its full subcategory spanned by all graded comodules whose underlying MUfff:t /T-modules

are concentrated in Chow—Novikov degree zero.
We therefore have a commutative diagram

mot

@/T_MOdharm % MUf:it MUmOt/T—Comod

mot

§00/7-Mody,,,, —— MUP9'MU™ /r-Comod’.

harm
Forgetting the motivic weight, we have the equivalence
MUP'MU™"/7-Comod’ = MU, MU-Comod®".
Recall that we have the adjunction between modules and comodules

U:MUPY'MU™ /7-Comod = MU}'?" /7-Mod: MUY MU™" /7 @ypymot/r —. (4.1)

*, % *,%
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The forgetful functor is a left adjoint, while the tensor-up functor is a right adjoint. We
refer to [24, §1.1] for more details.

Using the ring map 500 /T—MU™" /7 we can form the commutative diagram

MU™" /- Mod o) ————— MU™"/7-Mod

*,%

t
MU™/TA G, = U

mot

500 /7 Modeey) ———— MU™*MU™ /7-Comod.

*, %

For the category of comodules over MU,MU, we recall the Landweber’s filtration
theorem. Recall from [36] and [37] that there are elements v, € MU, with vo=p, giving
the invariant prime ideals I,=(v, ..., v,)<IMU,. Moreover, these elements satisfy the
formula

Nr(vy)=v, mod I,_q,

and so MU, /I,, is canonically a comodule over MU, MU. This gives a short exact sequence
of comodules
0— MU, /I, — MU, /I, — MU, /I,,;; —0,

for every n>0. Landweber’s filtration theorem [36], [37] states that any comodule M
over MU, MU whose underlying MU,-module is finitely presented, can be reconstructed
by finitely many extensions of suspensions of MU, /I,,’s.

THEOREM 4.4. (Landweber’s filtration theorem) Suppose that S is a class of co-
modules over MU,MU such that the following conditions hold:

(1) S contains MU, and MU, /I, for all n>0;

(2) S is closed under suspensions and extensions.

Then, S contains all comodules over MU, MU whose underlying MU, -modules are

finitely presented.

There are two more facts that we will use on the category of comodules over MU, MU.
The first one is the following lemma. For a proof, see Miller—Ravenel [49, Lemma 2.11]

and Hovey [24] for example.

LEMMA 4.5. Any comodule over MUMU is a filtered colimit of finitely presented

comodules.

The second one is a consequence of the fact that the forgetful functor from the
category MU, MU-Comod® to MU,-Mod®" has a right adjoint. For a precise argument,
see the proof of Lemma 5.4 for its motivic analogue.
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LEMMA 4.6. The category MU, MU-Comod®” has enough injective objects.

We will construct the absolute Adams—Novikov spectral sequence, namely, for any
two objects X and Y in this category, there is a strongly convergent spectral sequence
that collapses at a finite page:

Ext? (MUPY X, MUPSYY ) =[S X, Y]

MUmetMUmet /7 5007

with differentials

. ms,taw s+rt+r—1,w
dp: ESBY — BS .

The existence of this absolute Adams-Novikov spectral sequence in 500 /T-Modfmm is
proved as Theorem 5.7 in §5.

Using the absolute Adams—Novikov spectral sequence, we will prove the following
Corollaries 4.7 and 4.8 in §5.3.

COROLLARY 4.7. For X€5%0/7-Mod?>° and Y €5°0/r-Mod"<" . the following

harm harm?

map induced by applying the functor 1\/[Uf,:“,,?t is an tsomorphism:

[X, Y]S/O\U/T — HOmMU?o*tMUmot/T (MUE:S:'E)Q MUin’i)tY) .

COROLLARY 4.8. Given X, YG@/T—MOd}?arm, for any bi-degree (t,w) there is an

isomorphism

(S5 X, Y] g50, = Extymsingimer  (MULY X, MUY,

4.2. The equivalence on the heart

We are now ready to show that the functor MU::T induces an equivalence on the heart.

The following is a special case of Corollary 4.7.

COROLLARY 4.9. The functor

MU™St: §00 /7 Mod?,,. — MUPMU™* /> Comod"

harm

18 fully faithful. Here, the right-hand side is understood as a discrete oo-category.

Q

harm 1S also a discrete oco-

As a consequence, Corollary 4.9 shows that 50.0 /7-Mod
category.
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Proof. For n>0 and two objects X, YE@/T—Mod}?arm, by Corollary 4.7, the edge

homomorphism

mot

20X, Y] Xy —"— Homyymetymot /- (MUY S X, MUYS'Y)

is an isomorphism. When n>0, the bigraded module MUfjf:tZ”’OX is concentrated in pos-
itive Chow—Novikov degree. So, the right-hand side of the above isomorphism is concen-
trated in the case n=0. This shows that MUY'S" is fully faithful on 500/r-Mody,.... O

To show the equivalence on the heart, we only need to show the essential surjectivity
of MU,

Unlike the case for modules over MU?:t/T, we do not have free resolutions for
comodules over MU''MU™* /7. We will instead use Landweber’s filtration theorem to
realize all comodules that are finitely presented, and then extend the result using filtered
colimits. In particular, all Smith—-Toda complexes exist in 50.0 /T-Mod.

We start with the following two-out-of-three lemma.

LEMMA 4.10. Consider any short ezact sequence in MU™S*MU™®' /7-Comod’,

0— M L o, (4.2)
If any two of the three comodules M’', M and M" are realizable in @/T-Mod}?arm,
then so is the third.

Proof. There are three cases that we need to prove.
(1) Suppose that both comodules M’ and M are realizable by

M'=MUT'X’' and M=MUTX.

By Corollary 4.9, the algebraic map f’ is also realizable as the MUfffk’t—homology of a
map

x' s x.
Since S0-0 /7-Mod}, . is closed under taking cofibers, we can realize the comodule M”

by the MUfj‘jt—homology of the cofiber of F’. In fact, the associated long exact sequence
on the MU?it—homology tells us that

M"=MUPX",
:

where X" is the the cofiber of F”.
(2) Suppose that both comodules M and M” are realizable. Then, we realize the
algebraic map and take the fiber instead. The same argument shows that it realizes M’.
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(3) Suppose that both comodules M’ and M" are realizable by
M/ o~ MUmOtX/ and M// ~ MUmOtX/I
In this case, the short exact sequence (4.2) corresponds to an element in

1,0,0 " !
Extyjmotyymet /(M M').

By Corollary 4.8, this algebraic element can be realized by a map
F:y 10x" 5 X/

Define X to be the cofiber of the map F. We claim that X realizes M. In fact, the map

mot
*, %k °

Therefore, the cofiber sequence that defines X induces a short exact sequence on MUfﬁt.

F has Adams—Novikov filtration 1, so it induces the zero homomorphism on MU

Since the isomorphism in Corollary 4.8 comes from the collapse of the absolute Adams—
Novikov spectral sequence on the Fs-page, this shows that this short exact sequence on

MUZ" is isomorphic to the the short exact sequence (4.2). Therefore,
M=MUYX.

This completes the proof. O
We now prove the equivalence on the heart.

ProOPOSITION 4.11. The functor
MU 500 /7-Mody, ., —+ MUT'MU™"/7-Comod"

s an equivalence of categories.

Proof. We only need to show that the functor MU™" is essentially surjective. In

other words, for any comodule M eMUi’thMUmOt/T—Comodo, we show that it can be

realized as a harmonic SO0 /m-module X, whose MUfit—homology is M. This follows
from Lemmas 4.10, 4.5, 4.2 and Landweber’s filtration theorem via the equivalence

MUP'MU™"/7-Comod’ = MU, MU-Comod®".

In fact, MU, corresponds MUfjit /7, and is thus realized by 50.0 /7. By Lemma 4.10,

we can inductively realize comodules MU, /I,, for all n>0. Then, by Landweber’s filtra-

tion theorem and Lemma 4.10, we can realized all finitely presented comodules.
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For any comodule M GMUff‘thUmOt/ 7-Comod”, or equivalently a comodule over
MU .MU that is concentrated in even degrees, by Lemma 4.5, we can write it as a filtered

colimit of finitely presented ones M:
= colim M,,.

By the above discussion, we can realize each M, by XQESTO3 / T—Modgarm. Moreover,
by Corollary 4.9, we can realize the whole filtered system {M,}, by a filtered system
{Xa}a. Taking the colimit, we define

X :=colim X,,.

By Lemma 4.2, X is harmonic. Since MUf:j‘jt commutes with filtered colimits, we have
that the comodule M is realized by X. This completes the proof. O

4.3. The t-structure and the equivalence of categories
We prove that two full subcategories satisfy the required axioms for the ¢-structure.

PROPOSITION 4.12. The pair of full subcategories

S/'(L\O/T—MOdb,}O and @/T_Modb,go

harm harm

defines a bounded t-structure on S/Ov\O/T-Modflarm.

Proof. The proof is exactly analogous to the proof of Proposition 3.7, with Corol-
lary 4.7 replacing Corollary 3.3, and Proposition 4.11 replacing Proposition 3.5. O

Having this t-structure on 50.0 / T-Modfmm, the main result of this section follows

from Proposition 2.12.

THEOREM 4.13. There is a t-exact equivalence of stable co-categories

DY(MU,MU-Comod®) — §90 /7 Mod!,

harm*

Proof. The proof is analogous to the proof of Theorem 3.8. It is clear that the

t-structure is bounded. By Proposition 4.11, and the equivalence
MUY*MU™ /7-Comod’ = MU, MU-Comod®,

the heart can be identified as comodules over MU,MU. By Lemma 4.6, it has enough

injective objects.
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It remains to show that, for objects

X,Y € 800 /7-ModY,

harm>

with MUYS'Y injective over MUT'S"MU™" /7, we have that

[Zii)OXa Y]S’O_I)/T =0

for any ¢>0.
We apply the absolute Adams—Novikov spectral sequence
Exty (MU' X, MUY ) =[5 X, Y]

MUmetMUmet /7 5007

in the category 500 /T—Modﬁarm, as in Corollary 5.7.
Since MUI:‘jtY is an injective MUf:ffk’tMUmOt/ T-comodule, the Fs-page of the spectral
sequence is concentrated on the line s=0, and therefore collapses at the Es-page.
Moreover, since both MUfjitX and MU’:?Y are concentrated in Chow-Novikov

degree zero, the Es-page is also concentrated in Chow—Novikov degree zero, namely
t—2w=0

in this case.

We are interested in the case where t—s=—1<0 and w=0. By the above analysis,
the corresponding tri-degrees in the Fa-page are all zero in our case. Therefore, we must
have that

240X, Y] 0.

Sﬁ/T =
This completes the proof. O

Remark 4.14. For the equivalence of stable co-categories in Theorem 4.13, we com-
ment on its bi-grading through some examples.

(1) Tt is clear that STOB/T corresponds to MU, in the derived category of MU,MU-
comodules.

(2) Consider $2:160.0 /7. As its MU™ *-homology is concentrated in Chow—Novikov
degree zero, it lives in the heart. Therefore, by the t-exactness, it corresponds to a cochain
complex that is concentrated in cohomological degree zero. A direct computation shows

that it corresponds to £2MU,. We also denote this object in the category
DP(MU,MU-Comod®")

by £21MU,.
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(3) Consider $1:0500 /7. Tts MU™"-homology is concentrated in ChowNovikov
degree 1. By the t-exactness, it corresponds to the cochain complex that is concentrated
in cohomological degree —1, with the comodule MU, in that cohomological degree. We
also denote this object by X1'°MU,.

(4) In general, denote by X"™"MU, the object in the category

D (MU, MU-Comod®")

that Emm@/T corresponds to. Then X"™"MU, is a cochain complex that is concen-
trated in cohomological degree 2n—m, with the comodule ¥2"MU, in that cohomological

degree.

By Proposition 1.10, we have that there exists an exact equivalence of categories
between BP,.BP-Comod®’ and MU,MU-Comod®. Therefore, Theorem 4.13 implies
Theorem 1.1.

Remark 4.15. The equivalence of stable co-categories in Theorem 1.1 is actually
symmetric monoidal. In fact, the equivalence preserves colimits, so we have the following
commutative diagram

D~ (BP,BP-Comod®)sq — (590 /7-Mod">° )/ |

harm

F1 F2

s(BP,BP-Comod®] .,..) — (590 /7-Mod?, )

rel proj harm

Here, (ST(E/7'—Modb’>0 )" is the left completion of ST(R/T—Modb’}0 with respect to its

harm harm

t-structure, s(BP.BP-Comod; ;) is the category of simplicial objects of relative
projective BP,BP-comodules that are concentrated in even degrees (see [24, Defini-
tion 2.1.2]), and s(5%0 /7-Mody, ) is the category of simplicial objects in the category

harm

50.0 / T—Modfarm. The horizontal arrows are induced by the equivalence in Theorem 1.1,
and the vertical arrows are geometric realizations.

By [40, Proposition 5.5.9.14], geometric realization functors are symmetric monoidal.
The lower-horizontal arrow is also symmetric monoidal, since it is level-wise symmetric
monoidal, which is implied by Proposition 4.11 and the universal coefficient theorem (see
[12, Proposition 7.10]).

Let W and W5 denote the class of morphisms in the co-categories

s(BP,.BP-Comod; ) and s(ST(E/T—ModO )

rel proj harm
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that are sent to equivalences by the functors F; and F5. Let

T harm

s(BP.BP-ComodS) ,,;))[W!] and s(S%0/7-Mody,,, )[W; ']

denote the localizations with respect to W; and W,. The above commutative diagram
factors through the following one:

D~ (BP,BP-Comod® )5y —— (590 /7-Mod?>" )A

harm

s(BP,BP-Comod®, .. ) [W; ] — (590 /7-Mod?, )[Ws™"].

rel proj harm

By the Dold-Kan correspondence and [24, Lemma 1.4.6], the left vertical arrow is
an equivalence.

By [41, Proposition 2.2.1.9], localization functors preserve symmetric monoidal struc-
tures. Thus, the upper-horizontal arrow is symmetric monoidal. Restricting it to the
bounded subcategory and by the universal property of stablization [63, Theorem 2.14],

this gives us the claim.
We now prove Corollary 1.2.

Proof of Corollary 1.2. Let 500 /7-Modg, be the category of finite cellular motivic
left-module spectra over 500 /7, and D?(BP,BP-Comod*®")g, be the full subcategory of
D' (BP,BP-Comod®") consisting of objects generated by BP,, under finite colimits and
shifts by both homological and even internal degrees.

Since S0.0 /7 is harmonic, the category 500 /7-Modagy, is the full subcategory of
500 /7-Mod}, . consisting of objects generated by 500 /7, under finite colimits and shifts
by both the topological degree and the motivic weight.

Since 5§90 /7 corresponds to BP, under the equivalence in Theorem 1.1, we have an

equivalence of stable co-categories with given t-structures at each prime p:
D*(BP,BP-Comod®)g, ~ S90 /7-Modgy,.

By Theorem 5.3.5.11 of Lurie’s higher topos theory [40], if D is an oo-category
that admits filtered colimits, and C is an essentially small full subcategory of D, whose
elements are compact, and generate D under filtered colimits, then D is equivalent to
the oo-category Ind(C) of Ind-objects of C.

It follows that

S'/Ov\O/T—Modcen ~ Ind(S/Oa\O/T—Modﬁn).
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On the other hand, BP, generates D°(BP,.BP-Comod®)g, under finite colimits.
Moreover, it is proved by Hovey in [24, §6] that objects in D°(BP,BP-Comod®")g, are
compact, and generate Stable(BP,BP-Comod®") under filtered colimits. It then follows
from [40, Theorem 5.3.5.11] that

Stable(BP,BP-Comod®") ~ Ind(D’(BP,BP-Comod®")g,).
Therefore, we have an equivalence of stable co-categories at each prime p

Stable(BP,.BP-Comod®") ~ @/T—Modceu. O

5. The absolute Adams—Novikov spectral sequence

In §3, we used the universal coefficient spectral sequence

By = Exty{fmor . (T, e X, T s V) = [E170 X, Yygymor

of Theorem 3.2 to compute homotopy classes of maps in MU™/7-Mod?,,. This is a
b

cel

very convenient tool since both the ¢-structure on MU™"/7-Mod_,;, and the Ey-page of
the universal coefficient spectral sequence are defined in terms of homotopy groups. The
bounds in the t-structure correspond to vanishing areas in the spectral sequence.

For the category 500 /7-Mod?, . the t-structure is defined in terms of MU™°'-
homology. We therefore need a version of the motivic Adams—Novikov spectral sequence
that computes 500 /7-linear maps.

Recall from Dugger-Isaksen [14, §8] or Hu-Kriz—Ormsby [28] the usual MU™*-based
motivic Adams—Novikov spectral sequence

*, Kk mot m mot A
EXt oy (MUPZ 500, MUPSY) = 7, Vi

This spectral sequence is not what we need. We need a spectral sequence of the
form
EXtMUg‘itMUmOt/T (MU?:':X7 MUZ:S:tY) — [X, Yl\//I\Umot]

S/(ﬁ)/'r7

for the following two reasons. Note that Y} has the natural structure of being a

MUmet
STO’\O/T—module. (See property (3) after Definition 7.1 for this fact.)

First, we need a spectral sequence computing homotopy classes of maps in the
category 500 /7-Mod,., instead of homotopy classes of maps between the underlying
motivic spectra.

Second, we need the first variable X to be a general cellular 500 /7-module than

just the unit object 50.0 /7. Classically, when the first variable X is the sphere spectrum,
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we can use the standard cosimplicial cobar Adams—Novikov resolution for the second
variable Y € 500 /7-Mod to set up this spectral sequence. This is done in [62, Chapter 2]
classically, and in [14, §8] and [28] motivically. Such a resolution induces a resolution
of MUf}‘jtY by relative injective comodules. It computes the Fs-page as an Ext-group
only when the first variable MU’*rfitX is a projective module over MUf:fi’t/ 7 [62, Corol-
lary A1.2.12]. Since our first variable X is arbitrary, the Fs-page in general does not
have a description as a relative Ext-group.

Instead of using the canonical Adams—Novikov tower that produces a resolution of
MUff‘jtY by relative injectives, we construct an absolute Adams-Novikov tower that
produces a resolution of MUfjf:tY by absolute injectives. The first step is to establish
Lemmas 5.1 and 5.3, where we produce enough 50.0 /7-modules whose MU™°*~homology
are injective comodules. The second step is Lemma 5.4, where we show that we can
algebraically resolve comodules in MU:‘;’t MU™"/7-Comod by these injective comodules.
The third step is Proposition 5.5, where we topologically realize the algebraic construction
to produce an absolute Adams-Novikov tower in the category 500 /7-Mod?,,. Finally, in
Theorem 5.6, we construct the absolute Adams—Novikov spectral sequence and analyze

its convergence.

5.1. The absolute Adams—Novikov tower

We construct the absolute Adams—Novikov tower in this subsection.
Recall that the forgetful functor from the abelian category MUf,“thUmot /7-Comod
to the category of abelian groups reflects monomorphisms, epimorphisms and exactness.
The following Lemma 5.1 is a consequence of Proposition 3.5 and the homology ver-
sion of Dugger—TIsaksen’s the universal coeflicient spectral sequence [13, Propositions 7.7
and 7.10].

LEMMA 5.1. For any injective module NeMUfgt/T-Mod(}, the following statements
hold:

(1) MUZIMU™ /7 @yumer/- N s an injective MULS"MU™ /7-comodule;

(2) there exists I in MUmOt/T—ModSell such that

Ty d =N,
(3) for any such an object I,

MU T = MU MU /7 @y N
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Proof. (1) is straightforward (see [62, Lemma A1.2.2] for example). Statement (2)
follows directly from Proposition 3.5.

For (3), we have the equivalences

MU™A T~ MU™ /7 A I

S/O?)/T

~MU™ /7 A g5 I (MU™ /7 Aypymet /- 1)

~ (MUmOt/TASﬁ/TMUmOt/T) /\MUmot/T I.

Since MU™°" /7 is 50,0 /7-cellular, the homotopy groups of the last term can be computed
by the following homology version of Dugger—Isaksen’s universal coefficient spectral se-
quence [13, Proposition 7.10]:

t
MUY /T
s,t,w

Tor (MUPSMU™ /7, 71, T) = 70 (MU TA g, MU /7 Aygymor 1)

S’O—’\O/T

in the category MU™°"/7-Mod.cy.
Since 1\/IU§3§:t1\/IUmOt /7 is free, the spectral sequence is concentrated on the line s=0

and collapses at the FEs-page. This proves statement (3). O
Remark 5.2. In statement (3) we do not require that N is injective.

Lemma 5.1 is our source of motivic SO0 /7-modules whose MU™°"/7-homology is

injective as a comodule.

LEMMA 5.3. Suppose that I is an object in MU™/7-Mod_,,, such that m,.I is an
injective MUf:f:t/T-module.
Then, for any X €S%0/7-Mod?,,, we have

cell»
[X7 I] 5/07’/7 = HomMUff',?}MUmOt/-,— (MU::tX7 MU:}?I)
Proof. The lemma follows from the following isomorphisms:

(X, N gz, = MU /7 A g5, X, Tngmo /7
= Homyyymer/~ (MUY X, 7. 1)
= Homyymor/ - (MUTS' X, N)
= Homygymoryumor /- (MU X, MUTSMU™ /7 @ypumer /7 N)

2 Homppupgnpumor /- (MUZZ X, MUSH).

In fact, the first isomorphism follows from the adjunction (3.2) between 500 /T-modules
and MU™°"/7-modules. The third and last isomorphisms follow from Lemma 5.1. The
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fourth isomorphism follows from a change-of-ring isomorphism. It remains to show the
second isomorphism.
Since both I and MU™°"/7A

topy classes of maps

X belong to MU™"/7-Modc1, the set of homo-

S/‘ﬁ]/‘r

[MU™/7A g5 /2 X darumet 7

can be computed by the universal coefficient spectral sequence of Theorem 3.2, that is

Extyine, (MUPSX, 7, 1) =[S 5" MUPY A o5 X, Tygugmes -

As m, . I=N is an injective MUffit/ 7-module, the spectral sequence is concentrated
on the line s=0 and collapses at the E5-page. This gives the second isomorphism. O

LEMMA 5.4. For any M eMUYY"MU™"/7-Comod that is concentrated in Chow-
Nowikov degree k, there exists a monomorphism

M C—> MUI:thUmOt/T ®MU§:‘2‘/T N,

where N is injective in MUfjit/T-Mod and is concentrated in Chow—Novikov degree k.

Proof. Since there are enough injective objects in the category MUffi’t/ 7-Mod, we
may choose an embedding M < N into an injective object in the category MUf:fi’t /7-Mod.

Then, the induced comodule map
M < MUZPS'MU™ /7 @yymer ), N,

is also a monomorphism. O

PROPOSITION 5.5. For any YES/OB/T-MOdZC)eH, there exists a tower of the following

form

Y—Y, Yi Y5 <
Iy I Iy

in the category ,STO’\O/T—ModIéeH, such that the following statements hold:
(1) each map Y,—Y,_1 induces the zero homomorphism in MU™*-homology;
(2) each cofiber I is a finite product of suspensions of objects I in MUmOt/T—MOd?Cll
such that m, .1 is an injective MUfjit/T—module.
We call such a tower an absolute Adams—Novikov tower.
Moreover, any map f: X —Y in S/Ov\O/T—ModZC’eH can be lifted to a map of absolute

Adams—Novikov towers.
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Proof. Suppose that MUffi’tY is concentrated in Chow—Novikov degrees [a, b], namely

b +oo
MUY =5 @ MU5Y, Y.

k=a l=—o0

By Lemma 5.4, for every k€|a,b], there exists a monomorphism

+oo
P MUGS, (V) 2 MU (S7F0Y)=0 s MUY MU™ /7 @ypumer No g,

l=—00

where Np i is injective module that is concentrated in Chow-Novikov degree zero. By
Lemma 5.1, there exists a spectrum I j EMUmOt/T—ModSell such that

’/T*,*IO,k = NO,k

and
MU [o, = MULMU™ /7 @ppymet /- No i

*,%

By Lemma 5.3, we have that

S50V, o il gan,
=~ HOII]MUT’?} MUm™©t /7 (MU*m7$t (Zik’OY), MUSgtMUmOt/T ®MU{:T’/T N07k)
= HOH]MUTZC MUm©t /7 (MU{:? (Zik’()Y):O, MUﬁgtMUmOt/T OmMUmot /7 NO,k:)-

The second isomorphism follows from the fact that Ny j is concentrated in Chow-Novikov

degree zero. Therefore, the algebraic map of comodules
MUPH(ETRY) —» MUPSH(E7R0Y) =0 s MUPY MU™ /7 @y pymor /- No ks

where the first map is the project map to the Chow—Novikov-degree-zero part, can be
realized as a S%.0/7-linear map
Ry — Ioy.

Combining these maps for all k€]a, b], we obtain a map
b
Y — [[ =Tk
k=a

This map induces a monomorphism in MU™°*-homology.
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Denote the finite product by

b

Iy:= H 55000 ks
k=a

and the fiber of the map Y — I by Y7, as in

YV

|

I.

By the associated long exact sequence in MU™°*-homology, the map Y; —Y induces the
zero map in MU™°*-homology, and MU‘::itYl is concentrated in Chow—Novikov degrees

[a—1,b—1]. So, in particular, we have
Vi € 890 /r-Mod"

cell*

We can repeat the procedure, producing an absolute Adams—Novikov tower

Y v; Yo
Io L I

satisfying the desired properties.
We now prove the second claim of the theorem. For any S%9/7-linear map

fo: Xo — Y0,

we may assume that MUTY" X and MUY''Y; are both concentrated in Chow—Novikov

degrees [a,b]. Denote the first step of their tower by

XO L} YO
Iy Jo,

where Iy and Jj are the finite products of suspensions of objects that satisfy the conclu-
sions of Lemma 5.1. Applying MU™", we have the following diagram of 1\/IU§fj‘jt1\/[Um°t /T-

*,k 9

comodules:

MUmet x, o, pgmety
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Here the existence of the homomorphism ¢ is due to the universal property of injective
objects in the category MUfj‘thUmOt/ 7-Comod.
We have

b b
MUf:(:t[Q = MUf’lgt ( H Zk’0107k> = H MUirjit(zk’OIO,k),
k=a k=a

MUY Jo = MU ( f[ Ek’OJM) = f[ MUP (S50 Jo k).
k=a k=a
The Chow—Novikov-degree-k parts of MU':??IO and MUffjftJO are given by
MUY (SF0Ty ) and MU (SR ).
Therefore, the homomorphism ¢ is given by the product of homomorphisms
St MUY (5501 ) — MU (S0 o 1)

for each k€|a, b].

Since Jy i satisfies the conclusions of Lemma 5.1, we have that
(2400 1, B0 k] 50, 22 ook Jo k] g5

= HomMU?ZtMUmOt/T (MUinOtIO,k, MUZ}Zt J07k;)

3k

= Homygymerngumer/- (MUY (5501 ), MUTS (55000 1)),

where the second isomorphism is given by Lemma 5.3. Therefore, the homomorphism

¢ can be realized by a 50.0 /7-linear map
Go,k: S0 Ty — B0 T k.

Taking the product of go 1 for all k€a,b], we define a map go:Ip—Jo. Then go realizes

¢, and we have the diagram

Xo -2 ¥,

|, |

Iy i)JQ

To see that the square commutes up to homotopy, we have

b
[X, JO]S/O-,\O/T = |:X7 H Zk’0J07k:|
k=a SO’O/T

b
= H HOmMUirtgtManot/T (MUI:S‘EX, MUir:it (Ek’ojovk))
k=a

mot mot
= HomMU‘f";ﬁMUmOt/T (MU*,* X» MU*,* JO)v
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where the second isomorphism is given by Lemma 5.3.

Therefore, the commutativity of this square follows from the commutativity of the
corresponding square in MU™°*-homology.

The commutative diagram in 500 / T—Modgcn induces a map fi: X1 —Y; between the

fibers, so the following diagram commutes, up to homotopy:

X X1 X2

fo I() f1 : Il

90 Y Yl Y2
Jo Ji.

Tterating this process produces the desired map of absolute Adams—Novikov towers. [

5.2. The spectral sequence

Every absolute Adams—Novikov tower gives rise to an absolute Adams—Novikov spectral
sequence. In the following Theorem 5.6, we identify the Fo-page of the spectral sequence
and its abutment. We also show that it does not depend on the absolute Adams—Novikov
tower, and converges strongly for objects with bounded Chow—Novikov degree.

THEOREM 5.6. For X, YGSTOB/T—ModZCH7 there is an absolute Adams—Novikov spec-

tral sequence

S,t, W A~y s,t,w mot mot t—s,w A o
E5"" 2 Exty{nonymer - (MULS X, MUPSYY) = [£75 X, Yiipmo] g0,

with differentials

. ms,tw s+rt+r—1,w
dy: B3t B3 :

that does not depend on the absolute Adams—Novikov tower. Here, YﬁUmot is the MU™°t-
completion of Y. Moreover, this spectral sequence converges strongly and collapses at a
finite page.
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Proof. The arguments for the existence of the absolute Adams—Novikov spectral
sequence and its independence of the absolute Adams—Novikov tower are both standard.
Under the hypotheses that both MUZ}?X and MUfjitY are concentrated in bounded
Chow—Novikov degrees, the argument for the strongly convergence and collapse at a
finite page is similar to the one given in the proof of Theorem 3.2: it follows from degree
reasons.

To complete the proof, we only need to identify the abutment.

Let Y/Y; be the cofiber of the map Y;—Y in the absolute Adams-Novikov tower

Y Yi Y,
Iy I I,

and define the limit in S0 /m-Mod
Y =lim(Y/Y,).

The spectral sequence converges conditionally to

~

(X, Y] s =
See, for example, [6, §5 and §15] for a discussion of convergence issues of the Adams
spectral sequence.

To identify it as [X, Y)}jmot] since X is S0-0 /7-cellular, we only need to show

500 /7
that ¥ has the same homotopy groups as the Yy} ijmot-

Take X =500 /7. Since MUfjitS/Ov\o /T:MUfj‘jt/ 7 is free over itself, we can use the
canonical MU™"/7-Adams resolution [62, Definition 2.2.10] for Y in this case. Now we
compare the canonical MU™"/7-based Adams-Novikov tower of Y with the absolute
Adams—Novikov tower of Y.

As we did in the proof of Proposition 5.5, we have a map of towers from the canonical
MU™°"/7-based one to the absolute one. The identity map on Y induces a homomorphism
from the canonical cobar resolution of MUfj‘jtY to the absolute injective resolution of
MUfj‘jtY, so in particular a homomorphism of relative injective resolutions.

This induces a homomorphism from the usual Adams—Novikov spectral sequence to
the absolute Adams—Novikov spectral sequence, with an isomorphism on the Es-page. It

is therefore an isomorphism of spectral sequences and we have an isomorphism

~ o A
W*,*Y — W*,*YMUmot .
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Since any cellular 500 /7-module X can be written in terms of filtered colimits and

cofibers of suspensions of 5%0/7’s, there is an isomorphism

(X, Y] s 1 X Yty g0,

Therefore, the absolute Adams—Novikov spectral sequence computes

[X ) YﬁUth]

S/OTO/T'
When Y is harmonic, the isomorphism

o

71'*’*5} 5 T Yy ymot
gives the following corollary.

COROLLARY b5.7. For any X,YES/OB/T—ModﬁMm, there is an absolute Adams—

Nowikov spectral sequence

EShY = Ext%t;ihmm S (MUPX, MUY ) = [ X, Y] g -

with differentials
dT': E:,t,w lls-Jrr,iﬁJrrfl,w7

that converges strongly and collapses at a finite page.

Remark 5.8. The above arguments can be applied to more general situations. How-
ever, this construction of an absolute Adams—Novikov spectral sequence depends on
realizability of categorical injective objects, so the range of situations to which it applies
may be rather limited.

In the case of the classical stable homotopy category, for spectra X and Y, there is

a conditionally convergent spectral sequence
Extyiy vu(MULX, MU,Y) =[S X, Y],

where MU, X does not have to be projective over MU,. We will discuss this case in a

general framework in future work.

5.3. Proofs of Lemma 4.2 and Corollaries 4.7 and 4.8

We give the proofs of Lemma 4.2 and Corollaries 4.7 and 4.8 in this section.
Corollary 4.7 states that, if X €5%0/7-Mod?>" and Y €5°0/7-Mod!'S? | then the

harm harm>
abelian group of homotopy classes of bi-degree (0,0) maps can be computed algebraically
by the isomorphism
[X ) Y} 500 /7 — I'IOHIMU!;ﬂgztl\/IUmot /T (MUff:tX ) MU?:tY)

mot
* % *

that is induced by applying MU
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Proof of Corollary 4.7. The proof is similar to the one of Corollary 3.3.

Consider the Fs-page of the absolute Adams—Novikov spectral sequence. The tri-
degrees that converge to the bi-degree (0,0) are of the form (t,¢,0), which correspond to
Byt =Ey"0 for t>0.

By the proof of Theorem 5.6, the ¢t-degrees of all possible non-zero elements in the
FE;-page and therefore Fo-page satisfy t<d—a+2w=d—a. Since MUf:th and MUfgtY
are concentrated in non-negative and non-positive bounded Chow—Novikov degrees, we
have d=a=0. Therefore, we have t<0.

Combining both facts, we have established that the only possible non-zero elements

in the Fy-page that converge to the bi-degree (0,0) are in
EY00 — Homygymergumer /- (MU X, MUZPSYY).

To show that all elements in Eg 00 gurvive in the spectral sequence, note that they are
not targets of any non-zero differentials since they are in s-degree zero. Second, all d,.-
differentials for r>2 increase the t-degree. Since the t-degrees of all non-zero elements
are non-positive, the elements in Eg 0:0 46 not support non-zero differentials. There are

no hidden extensions due to degree reasons. This completes the proof. O

Corollary 4.8 states that, given X, YE,S’/()v\O/7'—ModQy for any bi-degree (¢, w) there

harm>

is an isomorphism

t, ~ 2w—t,2w, t t
[mtv X, Y]S/@/T & Extl\;[”Ug,)it;”/[{fmot/T(MUf‘j X, MUT‘; Y).

Proof of Corollary 4.8. Consider the Fs-page of the absolute Adams—Novikov spec-
tral sequence. Since both MUl:itX and MU:?Y are concentrated in Chow—Novikov
degree zero, the Fs-page

s,tyw s,t,w t t
Es" Y = ExtMUthUmm/T (MUfknf: X, MUZ"; Y)

is concentrated in degrees t=2w. Since all differentials preserves the motivic weights w,
this spectral sequence collapses at the Fs-page. There are no hidden extensions due to
degree reasons. Therefore, we have the isomorphism

[ZtY X, Y] = Exto i o, (MUT X, MUTSYY). O

500 /7 — EXUyrymotpymot /7

We prove Lemma 4.2, which states that if {Y,} is a filtered system in 50.0 / 7-Mod"
such that each Yy, is harmonic, then the colimit of {V,} in §90/7-Mod" is also harmonic.



378 B. GHEORGHE, G. WANG AND Z. XU

Proof of Lemma 4.2. Consider the absolute Adams—Novikov spectral sequence of
Theorem 5.6,

s, t,w mot &0.0 mot
ExXtymoeygymer / (MUTE500 /7, MUY

t—s,w Q0.0 A A
— [E s wSO7O/T7 YMUmot]S/O’\U/T = ﬂ-tfs,wYMUmOt 5

in the case that X:@/T and Y'=colim Y,. As both @/T and Y are in @/T—Modo,
the Fs-page is concentrated in degrees t=2w. Since all differentials preserve the motivic
weights w, this spectral sequence collapses at the Es-page. There are no hidden exten-

sions, due to degree reasons. Therefore, we have the isomorphism

A ~ [ytw /65 A o~ 2w—t,2w,w mot /6’\0 mot
T Yyumot = (X7 500 /7, YMUmOt]SOYO/T _EXtMUTitMUth/T(MU*7* SO0 /7, MUYTY).

Since MUf:i’tS/Ov\O / T%MUZTT /7 is free over MUf:jit /T, one can use the canonical cobar
resolution for MUf}TY. Since it is functorial and commutes with filtered colimits, the
isomorphism

colim MUfjgtYa & MUf}gt (Y)

induces an isomorphism

: * kK mot mot * %k mot mot
colim Extyjtmoeyymot /. (MUY /7, MUTL'Y,) = Extygmonyymot (MU /7, MUYSYY)

Therefore, we have the following isomorphisms

~ .
Y =Ty (colim Yy,)
= colim 7y 4y Yo

= colim [Et’“’gd\o/ﬂ Ya]S/O,TJ/T

. 2w—t,2w,w mot mot
= colim ExtMU,*,,o*tMUmt/T(MU*V* /T, MUY,)

2w—t,2w,w ot ot
= Bty oty (MUY /7, MURS'Y)

o [Et,w 50,0 /7, Yl\//[\Umot ] S0 /7

=t 7Tt’wY1\§[\Umot B
where the fourth isomorphism is given by Corollary 4.8, since each Y, is harmonic.

ot - This shows that Y is

harmonic. O

The composite is induced by the completion map ¥ =Y}

Remark 5.9. Lemma 4.2 can be generalized to the case when there is a uniform
bound on the Chow-Novikov degrees of MUY'S'Y,, for all a. Example 4.1 (3) shows that
Lemma 4.2 cannot hold without any bound on Chow—Novikov degrees.
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6. Further questions

The category of cellular modules over 50.0 /7 measures the difference between cellular
modules over the HF?Ot—completed motivic sphere spectrum S99 and cellular modules

over the classical p-completed sphere spectrum S0,

Definition 6.1. Let @—Modﬁn be the category of finite cellular modules over
56’\0, and ,S:E)—Modﬁn be the category of classical finite cellular modules over 5%. Let
STO’\O—Modg;for be the full subcategory of S/Ov\O—Modfln that is generated by 500 /7-Modg,
under cofibers, i.e. the smallest full subcategory containing objects of 5707\0 /7-Modg, and
closed under taking cofibers.

The following Proposition 6.2 can be proved from Dugger—Isaksen [14, §3.2 and §3.4]
and Isaksen [29, Proposition 3.0.2].

PROPOSITION 6.2. The sequence
— _ — ’R\ ~
50.0.Modf, " — S00-Modg, —— S9-Modg,

is an ezxact sequence of stable co-categories in the sense of Blumberg—Gepner—Tabuada
[5, §5], where Re is the p-completed version of the Betli realization functor ([12, Theo-

rem 1.4]) ezplained below.

Let Re be the Betti realization functor constructed in Dugger—Isaksen [12, Theo-
rem 1.4]. It is symmetric monoidal and preserves colimits. It was shown by Dugger—
Isaksen [14] that Re sends the motivic Adams tower for S%° to the classical Adams tower

for SY. Taking the limit, we get a map of E,, spectra
Re(500) — 0.
For any 59:0_module X , we define the p-completed Betti realization functor to be

Re(X) i=Re(X) A, g0, S".

The p-completed Betti realization functor Re sends 590 to SO, Tt is symmetric monoidal,
and preserves colimits.

In the sense of Proposition 6.2, our Theorem 1.1 gives a decomposition of the cellular
stable motivic category into more classical categories.

In particular, we can apply the non-connective algebraic K-theory functor K con-
structed in Blumberg—Gepner—Tabuada [5, §9], and get a cofiber sequence of non-con-
nective algebraic K-theory spectra, since the functor K sends exact sequences of stable

oo-categories into cofiber sequences:

K(S%0-Mod[*") — K(S90-Modgy, ) —2 K(S9-Modgy,).
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Since the Betti realization functor admits a section, the above cofiber sequence actually
splits:
K(599-Modg,) ~ K(S9-Modg, ) VK(S00-Modp;").

The spectrum
K(S9-Modg,,)

for the p-completed sphere spectrum is described by Bokstedt—Hsiang—Madsen [7].

To understand the spectrum
K(S00-Modf; "),
we consider the inclusion functor
500 /7-Modg, — S00-Modj . (6.1)

We propose the following question.

Question 6.3. Does the inclusion functor (6.1) induce an equivalence on non-con-

nective algebraic K-theory spectra?

Our Question 6.3 is an example of the dévissage question for algebraic K-theories.
It is known to be false in some situations (see Anticau-Barthel-Gepner [2]).
Let

BP.BP-Comodg)

be the subcategory of BP,BP-Comod® on those comodules whose underlying BP,-
module is finitely presented. If the answer to Question 6.3 is yes, then, by the theorem of
the heart due to Barwick [4] and Theorem 1.1, we have the following isomorphism for all
i>0 (we require this condition, since Barwick’s theorem only applies to the connective
K-theories):

K;(S%9-Modgy,) = K; (S°-Modg, ) ®K; (BP,BP-ComodS ).
If we further regard the category BP.BP-Comodg,, as the category Coh(Mpg) of
coherent sheaves over the moduli stack Mg of formal groups [20], and the answer to

Question 6.3 is yes, then for all ¢ there is an isomorphism

K;(S90) 2 K, (59) §K; (Coh(Mpe)).
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7. HF'*-completion

Let R be an F.-algebra in a symmetric monoidal stable co-category C with the unit
object S.

Definition 7.1. For any object Z in C, we define its R-completion, denoted by Z7,

as the totalization of the co-simplicial object
ZRR®",

where the co-face maps are induced by the unit map S— R.

The R-completion Zp in C has the following properties:

(1) It commutes with finite limits and finite colimits.

(2) It commutes with suspensions and desuspensions.

(3) If Z is an E-algebra in C, then Z} is also an E-algebra in C. Moreover, if Y’
is an Z-module, then Y} is an Zp-module. These are special cases of Corollary 3.2.2.5
in Higher Algebra [41].

We now consider the category C-mot-Spectra and the HIE‘;“Ot—completion of the
sphere spectrum S%0:

00 A
SO’O == SO7OHﬂrmot .
p

Both the sphere spectrum S%° and the Eilenberg-Mac Lane spectrum H]F;;lot are Foo-
algebras in C-mot-Spectra. Therefore, the HIFgwt—completed sphere spectrum 500 is
an F.-algebra.

It is a theorem of Hu-Kriz—Ormsby [27], [28] that, over any algebraic closed field
of characteristic zero, the HFSIOt-completion of the sphere spectrum and the usual p-
completion of the motivic sphere spectrum have isomorphic motivic homotopy groups.

For the effect of the H]F;“Ot—completion of the sphere spectrum on homotopy groups,
Hu-Kriz—Ormsby [27], [28] pointed out that there is a short exact sequence on homo-
topy groups of the uncompleted sphere spectrum S%° and the HFj**-completed sphere

spectrum S9:0:
0 — BxtL(Z/p™, 7s.08%°) — 74,0590 — Homz (Z/p™, me—1.5,5%°) — 0.

See [27] for a general discussion regarding the effect of homotopy groups with respect to
the HIF},'*'-completion.
Now we consider the cellular motivic spectrum MGL. Recall from [69] that

MGL = colim ™2 "Thom(V (k,n)).

n,k—o0
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Here, V(k,n) is the tautological bundle over the Grassmannian Gr(k,n) for k>n, which
is the smooth scheme of complex n-planes in C*, and Thom(V (k,n)) is its associated
motivic Thom spectrum.

Recall that we have defined in §1.1 that

MU™et = MGLAgo,0 5705
By adjunction, for any S00_module X , its MGL-completion in the category
C-mot-Spectra

can be identified as its MU™°*-completion in the category 50.0_Mod.

The following proposition states that MU™® has the same homotopy groups as the
HIF***-completion of MGL.

PROPOSITION 7.2. The natural map
MU™°" = MGLAg0.0 590 —3 MGL gt
D

induces an isomorphism on m ..

We prove Proposition 7.2 by using [28, Lemma 11]. Recall from [28] that a motivic
cellular spectrum X is k-connective, if 75, X =0 for all s and w such that s—w<k. A
cellular map f: X —Y between cellular motivic spectra is a k-equivalence, if its cofiber
is (k+1)-connective. Lemma 11 of [28] states that, if X is k-connective, then XQF?M is
also k-connective.

For MGL, recall from Schubert calculus (see Griffiths—Harris [22, §1.5] in the classical
setting and Wendt [76, Proposition 2.2] for adaption to the motivic setting) that the map

Y2 " Thom(V (k,n)) — MGL

is m-connective, where m=min{n—1,k—n—1}.

For any finite cellular motivic spectrum X, we have
X Ago.o 50,0 ~ Xﬁﬂ;mot,
p

since both sides commute with finite colimits.
Because Thom(V (k,n)) is a finite motivic spectrum for all n and k, Proposition 7.2
follows from the following Lemma 7.3.
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LEMMA 7.3. Suppose that X is the colimit of motivic cellular spectra
X1 —Xo— ...
Suppose further that there exists an increasing sequence m., of natural numbers

lim m,, =00
n—00

such that the map X, —X is an my,-equivalence for all n. Then, the map
colim((Xn)ﬁFg,ot) — Xﬁmgm

induces an isomorphism on T, .
Proof. By assumption, the map X,,— X is an m,-equivalence. By [28, Lemma 11]
and the above discussion, the map

(Xn ) ?I]Fglot — XﬁFgot

is also an m,,-equivalence.

Taking the colimit, we have that

T COlim((Xn)/I_\I]Fglot) = colim 7, « (Xn)ﬁmgm ~ W*’*XI/_}anot. O

Part 2. Equivalence of spectral sequences
8. Main theorem of Part 2

The algebraic Novikov spectral sequence is introduced by Novikov [56] and Miller [46].
Ravenel’s green book [62] and Andrews—Miller’s paper [1] are also good references for
this material.

THEOREM 8.1. (Novikov [56], Miller [46]) There ezists a tri-graded spectral sequence
with

s,i,t s,t

By = EXtBP*BP/I

. IS,1,t s+1,i47r,t
dy: St — B ,

(BP*/Ivll/IZJrl)v

converging to
Extyp pp(BP., BP.).

Here, I=(p,v1,vs,...) is the augmentation ideal of BP,.
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To compare it with the motivic Adams spectral spectral, which is studied by Morel,
Dugger-Isaksen and Hu-Kriz—Ormsby [14], [28], [52], we regrade the algebraic Novikov

spectral sequence.

Definition 8.2. The a-filtration of the algebraic Novikov spectral sequence is
a=1+s.
The goal of Part 2 of this paper is to prove the following Theorem 8.3.

THEOREM 8.3. At each prime p, there is an isomorphism of tri-graded spectral se-
quences between the motivic Adams spectral sequence for 50.0 /T, which converges to the
motivic homotopy groups of 5/05/7, and the regraded algebraic Novikov spectral sequence,
which converges to the Adams—Novikov Es-page for the sphere spectrum.

The indexes are indicated in the following diagram:

8,2 a—s a—s = 2w—s+a,
Extpp gp, (BP«/1,197°/1 +1)—>Extf‘4§n§t (R, 7], Fp)

Algebraic Novikov SS Motivic Adams SS
5,2w = 300
Extpp pp(BPs, BPy) ————— T2y 5,0 (S90/7).

Here, Af:ff,ft is the motivic mod-p dual Steenrod algebra.

9. The equivalence to the motivic Adams spectral sequence
9.1. The algebraic Novikov tower

In this subsection, we write down the algebraic Novikov tower using the newly defined
a-filtration explicitly.

Recall from [62, Definition A.1.2.7] that a BP,BP-comodule is relative injective if it
is a direct summand of a BP,BP-comodule of the form BP,BP®gp, M for some BP,-
module M. Recall from [62, Definition A.1.2.10] that, for the BP,BP-comodule BP,, its

relative injective resolution
BP, —C) —C} — ... (9.1)

is a long exact sequence in the abelian category of BP,BP-comodules, that satisfies the
following two conditions:

(1) the long exact sequence (9.1) is split exact as BP,-modules;

(2) each comodule C§ is relative injective.
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For now on, we fix such a relative injective resolution Cf of BP, that is concentrated
in even internal degrees. Such a relative injective resolution exists (for example the cobar
complex).

For a>1, let C; be the sub cochain complex of C defined by

Cs=1"°Cj.

Since [ is an invariant ideal of BP,, each C¢ is a sub BP.BP-comodule of Cfj. It is
understood that I"=BP, for r<0. Therefore, for s>a, we have CJ=Cj.

For a>0, let @ be the quotient cochain complex of the inclusion map
Cip —Ci

Therefore, we have a tower of cochain complexes, which induces the following tower in

the derived category of BP,BP-comodules:

~ i1

BP, =i O Cp 2

Fol ok

Qo Q1 Q@3-

For s>a+1,
Q:=1""5C5 /I *T'Cs =0.

So, in particular, the cochain complex @} is bounded. This implies that each cochain
complex C7 has bounded cohomology. Therefore, although the cochain complexes C
are unbounded, they live in the category D°(BP.BP-Comod®").
Applying the functor
R** Hompp,gp (BP., —),

where R** Hompp,gp(—, —) is the derived homomorphisms in the category
D*(BP,BP-Comod®),
we get a spectral sequence with the Ei-page
R** Hompp,pp(BP., Q}),

converging to
R** Hompp, gp(BP., BP,) =Extgp pp(BP.,BP,).

This is the regraded algebraic Novikov spectral sequence.
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9.2. Characterization of Adams towers

Recall that we denote by HIE‘g‘Ot the motivic mod-p Eilenberg-Mac Lane spectrum. It is
shown by Hu-Kriz-Ormsby [28] and Hoyois [25] that HF}*°" is cellular. We set

HIF;“Ot/T = SOvO/T/\S/@ HF;“Ot.

Definition 9.1. A tower

g1 g2

@/T = X() 90 X1 X2

T

Ky K, K,

in @/T—Modﬁarm is a motivic Adams tower if the following conditions hold:
(1) each motivic spectrum K,, is a retract of a wedge of suspensions of HF;'*"/7;
(2) each map f,,: X;,— K, induces an epimorphism on the H]F;mt—cohomology. Or
equivalently, each map g,,: Xyn4+1— X, induces the zero map on the HFg‘Ot—cohomology.

By the adjunction between modules over 500 and SO0 /7, and the fact that 50.0 /T
is Spanier—Whitehead dual to itself up to a bi-degree shift (see [18, Proposition 4.3] for a
proof, for example), it is equivalent to check that each map g,, induces the zero map on

[, HF?Ot/T] 50,0 /7
in condition (2).

From the general discussions (see [10], [16], [47], [48], for example), all such towers are
equivalent to each other in the sense that there exist towers maps that induce canonical
isomorphisms on the Es-pages.

Dugger—Isaksen [14] use the cobar construction to define the motivic Adams spectral
sequence for 50,0 /7, which satisfies the two conditions in Definition 9.1. Therefore,
the motivic Adams spectral sequence for 500 /7 by Dugger—Isaksen [14] is canonically
isomorphic to the motivic Adams spectral sequence defined by any motivic Adams tower
satisfying the two conditions in Definition 9.1.

Having the regraded algebraic Novikov tower in the category D*(BP,BP-Comod®"),
we use the equivalence of stable co-categories in Theorem 4.13 and Proposition 1.10 in
Part 1,

DY(BP,BP-Comod®") —= D*(MU,MU-Comod®) — 590 /7 Mod"

harm>
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to get a tower in the category S%0/7-Mod},

57)5/7' = Yb Yl Y2
Lg L, Ly

PROPOSITION 9.2. The above tower is a motivic Adams tower in the sense of Defi-
nition 9.1, if the following two conditions are satisfied for the regraded algebraic Novikov
tower in the category D°(BP,.BP-Comod®):

(1) each QF is quasi-isomorphic to a retract of a direct sum of shifts of BP.BP/I;

(2) each map qq:Cr—Q} induces an epimorphism on R**Homgpp, (—,F,). Or,

equivalently, each map iq: Cj,—Cy induces the zero map on R** Hompp, (—,F,).

Proof. By the following Lemmas 9.3 and 9.4, the two conditions in this proposition

correspond to the two conditions in Definition 9.1. O

For the first condition in Proposition 9.2, we identify the BP,BP-comodule that
corresponds to HIF‘;I‘)t /7 with BP,.BP/I under the equivalences of the hearts in Proposi-
tions 4.11 and 1.10:

mot

_ U
50.0 /7 ModY ——— MU,.MU-Comod*"

harm

BP.®wmu, —

~

BP.BP-Comod®".

LEMMA 9.3. Under the equivalences of the hearts, HIF;,“Ot/T corresponds to BP,BP/I.
Proof. We have that HF2°" is an MU™"-module, both MU™°* and HF" are cel-

lular, and MUfitMUmOt/ 7 is free over MUI:?/T. Then, by Dugger—Isaksen’s universal
coefficient spectral sequence [13, Proposition 7.7] in the category MU™°"/7-Mod.cp1, we

have

MUff:tH]Fgmt/T =~ MUPMU™ /7 Omumet /- Fp,

*, %

which is isomorphic to MU, MU®yy, F), forgetting the motivic weight.
Therefore, under the equivalences in Propositions 4.11 and 1.10, the S99 /7-module

HJF;“Ot /7 corresponds to
BP.®vu, MUMU®wmu, Fp =BP. MU®wnu, Fp,
~BP, MU®wu, BP.®gp.F,
=BP.BP®gp, F,
~BP,BP/!.

The first and third isomorphisms follow from the Landweber exactness of BP,. This
completes the proof. O
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For the second condition in Proposition 9.2, we have the following lemma.

LEMMA 9.4. Suppose that X is in the category ,STO’\O/T—Modﬁarm and that C*(X)
is the cochain complex of BP.BP-comodules representing the image of X wunder the
equivalence in Theorem 4.13 in Part 1.

Then, we have

577 X HE 7] g, R Hompgp (C*(X), Fy),
where R** Hompp, (—, —) is the derived homomorphism in the derived category of BP,-

modules.

Proof. We have

(57X, HFy/7] 50, 2R Hompp,p(C(X), BP.BP@pp, Fy)

~RM* HOHpr* (C* (X), Fp).

The first isomorphism follows from Theorem 4.13 and Lemma 9.3, and the second one
follows from the adjunction of the derived functor of BP,.BP®pp, — and the forgetful
functor between the derived categories of BP,-modules and BP,BP-comodules. O

In the rest of this section, we check that the two conditions in Proposition 9.2 are
satisfied by the regraded algebraic Novikov tower in the category D°(BP,BP-Comod®").

9.3. Proof of the first condition

LEMMA 9.5. Suppose that N is a relative injective BP,BP-comodule that is con-

centrated in even degrees. Then, for any a, I*N/I*T1N is isomorphic to a retract of a

direct sum of shifts of BP,.BP/I.

Proof. Without loss of generality, we may assume that N has the form
BP.BP®gp, M.

Because [ is an invariant ideal,

I°BP,BP®pp. M
I*t1BP,BP@gp. M

~BP,BP®gp, [*M/I*T' M.

So, it suffices to show that, for any BP,/I-module M’, BP,BP®gp, M’ corresponds to
a direct sum of shifts of BP,.BP/I. This is straightforward. O
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Now, we prove that the regraded algebraic Novikov tower satisfies the first condition

in Proposition 9.2.

PROPOSITION 9.6. (1) All differentials in the cochain complex Q% are zero, and
therefore Q% splits as a direct sum of cochain complexes that are concentrated in one
cohomological degree.

(2) Each Q% is a retract of a direct sum of shifts of BP,BP/I.

Therefore, the first condition of Proposition 9.2 is satisfied.

Proof. In Q7, all differentials Q5 — Q5*! have the form
Ia—scg/la—s—&-lcg _)Ia—s—lcos+l/la—scg+l.

They are all zero, since they are BP,-linear. The second claim follows from Lemma 9.5
and the definition of @?. O

9.4. Proof of the second condition

We will use the following Lemma 9.7 in the proof of Proposition 9.8. The proof of
Lemma 9.7 is technical. We will postpone it to the last subsection of this section.

LEMMA 9.7. The homomorphisms
Extip (19 F,) — Extyp (111 F,),

that are induced by the inclusions 19Tt —=1T1%, are zero for all a>0.

We now prove that the regrade algebraic Novikov tower satisfies the second condition

of Proposition 9.2.

PROPOSITION 9.8. Each map i,: C; 1 —Cy induces the zero map on

1:‘,*’)’< HOI’IIBP* (—, Fp)

Proof. Because we are computing derived Hom in the derived category of BP,-
modules, we can first apply a forget functor from BP,BP-comodules to BP,-modules on
our complexes.

From the definition of a relative injective resolution, Cf splits in the category of

BP.-modules as a direct sum of cochain complexes:

Cg:@Dép

Jj=0
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where D is isomorphic to the cochain complex
BP,—0—0—...
and, for j>1, D ; is a cochain complex of the form
o —>0— N l>Nj —0—..

that is concentrated in cohomological degrees j and j—1, where N; is a BP,-module.

The algebraic Novikov filtration only depends on the underlying BP,-module struc-

cx :@D;,j

=20

ture. So, we have

where, for j>1, D7 ; is the subcomplex
i =0 — TN, — [N, — 0 — ...
It follows that Dy ; is quasi-isomorphic to the complex
e =0 — TN /TN, — 00— ...
Now, we consider the maps

R** HOHIBP* (D Fp) —R"" HOIIIBP* (DZ-&-l}j’ Fp) (92)

a3’
that are induced by the inclusions
D;iq;— Dy ;.

For j>1, these maps can be identified as (shifts of)

R** Hompp, (I°7/N; /177t N;,F,) — R** Homgp, (I* 7T N; /I*77T2N;,F,).
It is clear that the maps

979N, /T2 N — [N, JI°IHIN;
are all zero. Therefore, the maps in (9.2) are all zero for j>1.
For j=0, we have that Dy , is the complex

I"—0— ..,

and the corresponding maps in (9.2) can be rewritten as
Extg’;* Im,F,) — EXtE;* (I™*1F,).
By Lemma 9.7, they are all zero. Therefore, the maps
R** Homgp, (C;,1,F,) — R** Hompp, (C;,,F)p)

are all zero, since they are zero on each direct summand. O
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Combining Propositions 9.6 and 9.8, we have shown that the regraded algebraic
Novikov tower satisfies the two conditions of Proposition 9.2, and therefore corresponds
to a motivic Adams tower for §0-0 /7. This proves that there exists an isomorphism be-
tween the regraded algebraic Novikov spectral sequence and the motivic Adams spectral

sequence for S0.0/7.

9.5. Proof of Lemma 9.7

We prove Lemma 9.7 in this subsection.

For any BP,-module M, we have
Extyp (M, F,) 2 Homg, (Tortl: (M, F,),F,).
Lemma 9.7 is implied by its dual statement.
LEMMA 9.9. The maps
Torll: (1", Fp,) — Tor}L- (I, F,)

are zero for n>0.

Proof. The powers of I filter BP, as a BP,-module, and the BP,-action on the
associated graded pieces factors through an IFp-action.

Therefore, we have an associated spectral sequence
Byt =Tory(I' /I Fp) = Torly = (BP,,F,).
The FE;-page can be identified as

E(r,71,...)®Fplao, a1, -],

since
Tor}L* (Fy, Fp) = E(7o, 71, ... ),

where E(19, 71, ...) is the exterior algebra over F,, generated by the 7;’s, with the same

internal degrees as the v;’s and homological degree 1, and

gr*BP* :Fp[q()a q1, ]7

where g; corresponds to v;.
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Using the Koszul complex, it is straightforward to see that this spectral sequence is
multiplicative and that d;7,=gq,. Therefore, its Fs-page is concentrated in degrees i=0,

and the following sequence is exact
0— TorPl* (BP,,F,) — By — B} — L.

Now, the exact couple looks like this:

A? Al AV

%, 1 *,%,0
d1 El d1 El ’

where A'=Tor’}*(I',F,), and the bottom line is exact. All we need to show is that

all the 7 maps are injective. This follows from an induction using a diagram chasing

argument. O

Remark 9.10. For the polynomial ring with finitely many generators Zy[z1, z2, ..., T/,

the analogue of Lemmas 9.7 and 9.9 are well known (see [66], for example).

Appendix A. Computation of some classical Adams differentials

In this appendix, we illustrate the power of the isomorphism of spectral sequences in
Theorem 8.3, by recomputing certain low filtration and historically more difficult differ-
entials in the range up to the 45-stem at the prime 2. We follow notation in Isaksen’s
stable stems [29], and Isaksen, the second and third author’s more stable stems [32], [33].

When computing non-trivial differentials in the classical Adams spectral sequence,
it is usually harder to give proofs for the ones whose sources are in low Adams filtrations.
There are at least two reasons for this. Firstly, there are more potential targets that
it could hit, so it means more possibilities to check and rule out. Secondly, on the
other hand, elements in high Adams filtrations can usually be detected by certain known
spectrum in small chromatic height—for instance, elements above the %—line can be
detected by the K (1)-local sphere, and many elements around the é—line can be detected
by the spectrum of topological modular forms. This gives ways to compare with Adams

spectral sequences of other spectra.
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Adams differential Stem of the source | Filtration of the source
dz(ha)=hoh3 15 1
ds(hoha)=hodo 15 2
dz(eo)=hido 17 4
da(fo)=hdeo 18 4
d2(hs)=hoh} 31 1
ds(hihs)=hoAh3 31 4
ds(hahs)=hop=h1d: 34 2
ds(hshs)=hox 38 2
ds(e1)=hit 38 4
da2(c2)=ho f1 41 3

Table 1. Some non-trivial differentials up to the 45-stem.

Up to the 45-stem, we list in Table 1 above ten non-trivial differentials, whose
sources are in low Adams filtrations. Five of them are ds-differentials, four of them are
dz-differentials, and one of them is a d4-differential.

Historically, the first four of them were proved by May in his thesis, by comparing
with Toda’s unstable computations. The next two are obtained by the Hopf invariant
one problem, and by comparing with the J-spectrum. The elements AhZ and hoAh3
were historically called r and s, respectively, and there is a non-trivial extension in the
May spectral sequence that gives us a relation s=hgr. The last four, except the one on
ds(e1), were proved by Barratt-Mahowald-Tangora [3] using ad-hoc methods. In fact,
the differentials

ds(hohs)=hop and da(ca)=hof1

are both closely related to the non-trivial v-extension from h? to the element p, and the
differential
d4(h3h5) = ho[E

is closely related to the non-trivial o-extension from h2 to the element z. For the ele-
ment e, Barratt—-Mahowald—Tangora [3] erroneously thought it was a permanent cycle.
It was later proved by Bruner [8], using power operations, that it supports a non-trivial
differential

ds(e1) = hqt.

Now, using Theorem 8.3, we compare them with the computations of the motivic
Adams spectral sequence of S90/7. All five do-differentials are present in the motivic
Adams spectral sequence of S90/7. This gives immediate proofs for all of them.
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Moreover, the three out of four ds-differentials except ds(hohs) are present in the
motivic Adams spectral sequence of 50.0 /7. To be careful, one also needs to rule out the
possibility of non-zero ds-differentials in these cases. This can be done by multiplying hg
to the proposed ds-differentials and get contradictions.

For the ds-differential

d3(hohs) = haidy,

one can show the following three statements are equivalent, by considering the long exact
sequence of motivic homotopy groups associated with the cofiber map of .
(1) There is a differential
ds(hohs) =7h1dy

in the motivic Adams spectral sequence of 50,0,

(2) In homotopy groups, {hahs} maps to {hid; } under the quotient map from @/T
to its top cell S11,

(3) There is an n-extension from hohs to h2d; in w*v*(go’\o/r), where h2d; is the
element in the motivic Adams Ey-page of 500 /7 that corresponds to hfd; in that of the
top cell Sﬁ

Statement (3) can be checked in the F.-page of the motivic Adams spectral sequence
for §0.0 /7, which is isomorphic to the classical Adams—Novikov Fs-page. This gives a
proof for the ds-differential in the motivic Adams spectral sequence for S’o,\o’ and hence
for the classical ds-differential. Statement (2) is proved by Isaksen in Table 42 of stable
stems [29].

At last, the dy-differential d4q(hshs) is also present in the motivic Adams spectral
sequence for 50.0 /7. To pull it back and get the dy-differential in the motivic sphere, one
needs to rule out the possibilities of non-zero ds’s and d3’s. For degree reasons, there are
no possible da’s. To rule out the only ds possibility that dz(hshs)==z, since hzx=h3gs,
this would give another ds-differential by multiplying by hs:

d3(h3hs) = higo.

However, there is no such ds in the motivic Adams spectral sequence for 50.0 /7, which
gives a contradiction.

Summarizing, we reprove all ten non-trivial low filtration differentials up to the 45-
stem without much effort. In fact, among all non-trivial differentials up to the 45-stem,

there is only one that cannot be proved by our motivic 50.0 /T-method:
d3(Ah3) = hyd3.
This can be proved by other methods, such as the ad-hoc method by Barratt—Mahowald—

Tangora [3], the power operation method by Bruner [9], the method of detection by the
spectrum of topological modular forms, and the RP*-technique in [78].
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In the next pages (Figures 1-8), we present Isaksen’s charts for the reader’s reference
of the differentials that are discussed in this appendix.

There are eight charts in total. The first two (Figures 1 and 2) are for the classical
Adams spectral sequences. The horizontal degree is t—s, i.e., the topological stem, and
the vertical degree is s, i.e., the Adams filtration. Each dot is a copy of Fo. Vertical lines
and lines of slope 1 and % correspond to multiplication by hg, h; and ho, respectively.
Lines of negative slope correspond to differentials. We mark all algebraic generators for
completeness.

For the rest of the six charts, we only mark certain low Adams filtration elements
and the elements that are relevant to our discussion of differentials in this section.

The second two charts (Figures 3 and 4) are the Fs-pages with do-differentials of
the motivic Adams spectral sequences for 50.0 /7. Each arrow with slope 1 indicates an
infinite hi-tower, and each arrow with slope —2 is a family of h-periodic ds-differentials.

The third two charts (Figures 5 and 6) are the Es-pages with d3- and dy-differentials
of the motivic Adams spectral sequences for 50.0 /T

The last two charis\ (Figures 7 and 8) are the E,.-pages of the motivic Adams

spectral sequences for S%9/7. The blue lines are non-trivial 2-, 7- and v-extensions.
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