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Abstract

Data augmentation (DA) is an essential technique for
training state-of-the-art deep learning systems. In this pa-
per, we empirically show that the standard data augmen-
tation methods may introduce distribution shift and conse-
quently hurt the performance on unaugmented data during
inference. To alleviate this issue, we propose a simple yet
effective approach, dubbed KeepAugment, to increase the
fidelity of augmented images. The idea is to use the saliency
map to detect important regions on the original images and
preserve these informative regions during augmentation.
This information-preserving strategy allows us to generate
more faithful training examples. Empirically, we demon-
strate that our method significantly improves upon a num-
ber of prior art data augmentation schemes, e.g. AutoAug-
ment, Cutout, random erasing, achieving promising results
on image classification, semi-supervised image classifica-
tion, multi-view multi-camera tracking and object detection.

1. Introduction

Recently, data augmentation is proven to be a crucial
technique for solving various challenging deep learning

tasks, including image classification [e.g. 8, 39, 4, 5], natu-
ral language understanding [e.g. 7], speech recognition [25]
and semi-supervised learning [e.g. 30, 29, 1]. Notable ex-

amples include regional-level augmentation methods, such
as Cutout [8] and CutMix [39], which mask or modify
randomly selected rectangular regions of the images; and
image-level augmentation approaches, such as AutoAug-
ment [4] and Fast Augmentation [18]), which leverage re-
inforcement learning to find optimal policies for selecting
and combining different label-invariant transforms (e.g., ro-
tation, color-inverting, flipping).

Although data augmentation increases the effective data
size and promotes diversity in training examples, it in-
evitably introduces noise and ambiguity into the training
process. Hence the overall performance would deteriorate if
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the augmentation is not properly modulated. For example,
as shown in Figure 1, random Cutout (Figure 1 (a2) and
(b2)) or RandAugment (Figure 1 (a3) and (b3)) may de-
stroy the key characteristic information of original images
that is responsible for classification, creating augmented im-
ages to have wrong or ambiguous labels.

In this work, we propose KeepAugment, a simple yet
powerful adaptive data augmentation approach that aims to
increase the fidelity of data augmentation by always keep-
ing important regions untouched during augmentation. The
idea is very simple: at each training step, we first score
the importance of different regions of the original images
using attribution methods such as saliency-map [28]; then
we perform data augmentation in an adaptive way, such
that regions with high importance scores always remain in-
tact. This is achieved by either avoiding cutting critical
high-score areas (see Figure 1(a5) and (b5)), or pasting the
patches with high importance scores to the augmented im-
ages (see Figure 1(a6) and (b6)).

Although KeepAugment is very simple and computa-
tionally efficient, the empirical results on a variety of vi-
sion tasks show that it can significantly improve the prior
art data augmentation (DA) baselines. Specifically, for im-
age classification, we achieve improvements on existing DA
techniques, including Cutout [8], AutoAugment [4],
and CutMix [39], boosting the performance on CIFAR-10
and ImageNet across various neural architectures. In par-
ticular, we achieve 98.7% test accuracy on CIFAR-10 us-
ing PyramidNet-ShakeDrop [38] by applying our method
on top of AutoAugment. When applied to multi-view
multi-camera tracking, we improve upon the recent state-of-
the-art results on the Market1501 [44] dataset. In addition,
we demonstrate that our method can be applied to semi-
supervised learning and the model trained on ImageNet us-
ing our method can be transferred to COCO 2017 objec-
tive detection tasks [2 1] and allows us to improve the strong
Detectron? baselines [35].



(a3) RandAugment

(a4) Saliency map
Figure 1. KeepAugment improves existing data augmentation by always keeping the important regions (measured using saliency map)
of the image untouched during augmentation. This is achieved by either avoiding to cut important regions (see KeepCutout), or pasting
important regions on top of the transformed images (see KeepRandAugment). Images are from ImageNet [0].
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2. Data Augmentation

In this work, we focus on label-invariant data augmen-
tation due to their popularity and significance in boosting
empirical performance in practice. Let x be an input im-
age, data augmentation techniques allow us to generate new
images ©' = A(x) that are expected to have the same la-
bel as x, where A denotes a label-invariant image trans-
form, which is typically a stochastic function. Two classes
of augmentation techniques are widely used for achieving
state-of-the-art results on computer vision tasks:

Region-Level Augmentation Region-level augmentation
schemes, including Cutout [8] and random erasing [45],
work by randomly masking out or modifying rectangu-
lar regions of the input images, thus creating partially
occluded data examples outside the span of the training
data. This procedure could be conveniently formulated as
applying randomly generated binary masks to the origi-
nal inputs. Precisely, consider an input image x of size
H x W, and a rectangular region .S of the image domain.
Let M(S) = [M;;(S)];; be the binary mask of S with
M;;(S) = I((¢,j) € S). Then the augmented data can
be generated by modifying the image on region S, yielding
images of form 2’ = (1 — M(S)) @ x + M(S) ® ¢, where
@ is element-wise multiplication, and J can be either zeros
(for Cutout) or random numbers (for random erasing). See
Figure 1(a2) and (b2) for examples.

Image-Level Augmentation Exploiting the invariance
properties of natural images, image-level augmentation
methods apply label-invariant transformations on the whole
image, such as solarization, sharpness, posterization, and
color normalization. Traditionally, image-level transforma-
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tions are often manually designed and heuristically chosen.
Recently, AutoAugment [4] applies reinforcement learning
to automatically search optimal compositions of transfor-
mations. Several subsequent works, including RandAug-
ment [5], Fast AutoAugment [ 18], alleviate the heavy com-
putational burden of searching on the space of transforma-
tion policies by designing more compact search spaces. See
Figure 1(b3) and Figure 1(a3) for examples of transforms
used by RandAugment.

Data Augmentation and its Trade-offs Although data
augmentation increases the effective size of data, it may in-
evitably cause loss of information and introduce noise and
ambiguity if the augmentation is not controlled properly
[e.g. 34, 12]. To study this phenomenon empirically, we
plot the train and testing accuracy on CIFAR-10 [16] when
we apply Cutout with increasingly large cutout length in
Figure 2(a), and RandAugment with increasing distortion
magnitude (see [5] for the definition) in Figure 2(b). As
typically expected, the generalization (the gap between the
training and testing accuracy on clean data) improves as the
magnitude of the transform increases in both cases. How-
ever, when the magnitudes of the transform are too large
(> 16 for Cutout and > 12 for RandAugment ), the
training accuracy (blue line), and hence the testing accuracy
(red line), starts to degenerate, indicating that augmented
data no longer faithfully represent the clean training data in
this case, such that the training loss on augmented data no
longer forms a good surrogate of the training loss on the
clean data.

3. Our Method

We introduce our method for controlling the fidelity of
data augmentation and hence decreasing harmful misinfor-
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Figure 2. The training and testing accuracy of Wide ResNet-28-10 trained on CIFAR-10 with Cutout and RandAugment, when we vary
the cutout length of Cutout (a), and the distortion magnitude of RandAugment (b). We follow the same implementation details as in [&]
and [5]. For RandAugment, we fix the number of transformations to be 3 as suggested in [5].

mation. Our idea is to measure the importance of the rectan-
gular regions in the image by saliency map, and ensure that
the regions with the highest scores are always presented af-
ter the data augmentation: for Cutout , we achieve this by
avoiding to cut the important regions (see Figure 1(a5) and
(b5)); for image-level transforms such as RandAugment, we
achieve this by pasting the important regions on the top of
the transformed images (see Figure 1 (a6) and (b6)).

Specifically, let g;;(x, y) be saliency map of an image «
on pixel (4, j) with the given label y. For a region S on the
image, its importance score is defined by

I(S,x,y) = D gi(x,y). (D

(i5)es

In our work, we use the standard saliency map based on
vanilla gradient [28]. Specifically, given an image = and its
corresponding label logit value ¢, (x), we take g;;(x,y) to
be the absolute value of vanilla gradients |V ¢, (z)|. For
RBG-images, we take channel-wise maximum to get a sin-
gle saliency value for each pixel (¢, 7).

Selective-Cut For region-level (e.g. cutout-based) aug-
mentation that masks or modifies randomly selected rectan-
gle regions, we control the fidelity of data augmentation by
ensuring that the regions being cut can not have large impor-
tance scores. This is achieved in practice by Algorithm 1(a),
in which we randomly sample regions S to be cut until its
importance score Z(.S, z, y) is smaller than a given thresh-
old 7. The corresponding augmented example is defined as
follows,

&= (1-M(9) o, 2)
where M (S) = [M;;(S)];; is the binary mask for .S, with
Mi; =1((i,4) € 5).

Selective-Paste Because image-level transforms modify
the whole images jointly, we ensure the fidelity of the trans-
form by pasting a random region with high importance

Algorithm 1 KeepAugment: An information-preserving
data augmentation approach
Input: given a network, an input image and label pair
(z,y), threshold T
(a) if use Selective-Cut
repeat randomly select a mask region S until region
score Z(S,x,y) < T
Z=(1-M(S))©z (seeEq.2)
(b) if use Selective-paste
' = A(zx) //apply data augmentation
repeat randomly select a mask region .S until region
score Z(S,x,y) > T
T=M(S)oz+ (1—-M(S)) @z (seeEq.3)
Return x

score (see Figure 1(a6) and (b6) for an example). Algo-
rithm 1(b) shows how we achieve this in practice, in which
we draw an image-level augmented data 2’ = A(z), uni-
formly sample a region S that satisfies Z(.S, z,y) > 7 for a
threshold 7, and and paste the region S of the original image
x to «’, which yields

t=MS)oz+ (1-M(S)) o 3)

Similarly, M;;(S) = I((i,j) € S) is the binary mask of
region S.

Remark In practice, we choose our threshold 7 in an
adaptive way. Technically, given an image and consider
an region size h X w of interest, we first calculate the im-
portance scores of all possible candidate regions, following
Eq. 1; then we set our threshold to be the 7-quantile value of
all the importance scores Z(S, z, y) of all candidate regions.
For selective-cut, we uniformly keep sampling a mask re-
gion S until its corresponding score Z(S, x,y) is smaller
than the threshold. For selective-paste, we uniformly sam-
ple a region S with importance score is greater than the
threshold.

We empirically study the effect of our threshold 7 on
CIFAR-10, illustrated in Figure 3. Intuitively, for selective-
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Figure 3. Analysis of the effect of threshold 7 of our algorithm for Cutout (a) and RandAugment (b). In (a), we fix the cutout length 20. In
(b), We fix the number of transformation to be 3 and distortion magnitude to be 15 and the paste back region size to be 8 x 8. We plot how
the accuracy changes with respect to different choices of 7. We use Wide ResNet-28-10 and train on CIFAR-10. The dash line (baseline)
in (a) represents test accuracy achieved by CutOut without selective-cut; the dash line baseline in (b) is the test accuracy achieved by

RandAugment without selective-paste.

cut, it’s more likely to cut out important regions as we use
an increasingly larger threshold 7; on the contrary, a larger 7
corresponds to copy back more critical regions for selective-
paste. As we can see from Figure 3, for Cutout (Figure 3
(a)), we improve on the standard Cutout baseline (dash
line) significantly when the threshold 7 is relative small
(e.g. 7 < 0.6) since we would always avoid cutting impor-
tant regions. As expected, the performance drops sharply
when important regions are removed with a relative large
threshold 7 (e.g. 7 = 0.8); for RandAugment (Figure 3
(b)), using a lower threshold (e.g., 7 = 0.2) tends to yield
similar performance as the standard RandAugment base-
line (dash line). Increasing the threshold 7 ( 7= 0.6 or 0.8)
yields better results. We notice that further increasing 7
(r = 0.8) may hurt the performance slightly, likely be-
cause a large threshold yields too restrictive selection and
may miss other informative regions. we further evaluated

= 0, such that the saliency map information would be
ignored. With 7 = 0, we achieved 97.3% accuracy, which
is worse compared to the result of our default setting (i.e.,
97.8% accuracy with 7 = 0.6).

3.1. Efficient Implementation of KeepAugment

Note that our KeepAugment requires to calculate the
saliency maps via back-propagation at each training step.
Naive implementation leads to roughy twice of the compu-
tational cost. In this part, we propose two computational
efficient strategies for calculating saliency maps that over-
come this weakness.

Low resolution based approximation we proceed as fol-
lows: a) for a given image x, we first generate a low-
resolution copy and then calculate its saliency map; b) we
map the low-resolution saliency maps to their correspond-
ing original resolution. This allows us to speed up the
saliency maps calculation significantly, e.g., on ImageNet,
we achieve roughly 3x computation cost reduction by re-
ducing the resolution from 224 to 112.

Early classification head based approximation Our sec-
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Figure 4. We demonstrate two different approaches for using
KeepAugment with less training time. Using Cutout as an ex-
ample, Figure (a) shows that we can use a low resolution copy to
calculate the saliency map, and then generate the augmented im-
age. Figure (b) shows that when calculating the saliency map, we
can use an additional loss at early layer of a given neural network.

ond idea is to introduce an early loss head in the network,
then we approximate saliency maps with this loss. In prac-
tice, we add an additional average pooling layer and a lin-
ear head after the first block of our networks evaluated. Our
training objective is the same as the Inception Network [31].
The neural network is trained with the standard loss together
with the auxiliary loss. We achieve about 3 computation
cost reduction in computing saliency maps.

Furthermore, in section 4, we show that both approxi-
mation strategies do not lead to any performance drop. In
the following, we denote our low resolution based approxi-
mation as low resolution and early classification head based
approximation as early loss for presentation clarity.

4. Experiments

In this section, we show our adaptive augmentation
strategy KeepAugment significantly improves on exist-
ing state-of-the-art data augmentation baselines on a va-



Model ResNet-18 ResNet-110 Wide ResNet-28-10
Cutout 95.640.1 94.840.1 96.91+0.1
KeepCutout 96.1+0.1 95.5+0.1 97.3£0.1
KeepCutout (low resolution) 96.2+0.1 95.5+0.1 97.3+0.1
KeepCutout (early loss) 96.0+0.1 95.3+0.1 97.240.1

Model Wide ResNet-28-10 Shake-Shake PyramidNet+ShakeDrop
AutoAugment 97.3+0.1 97.4+0.1 98.5
KeepAutoAugment 97.8+0.1 97.84+0.1 98.7+0.0
KeepAutoAugment (low resolution) 97.84+0.1 97.9+0.1 98.7+0.0
KeepAutoAugment (early loss) 97.8+0.1 97.74+0.1 98.6+0.0

Table 1. Test accuracy (%) on CIFAR-10 using various models architectures.

riety of challenging deep learning tasks, including image
classification, semi-supervised image classification, multi-
view multi-camera tracking, and object detection. For
semi-supervised image classification and multi-view multi-
camera tracking, we use low resolution images to calculate
saliency maps as discussed above.

Settings We apply our method to improve prior art
region-level augmentation methods, including [8], CutMix
[39], Random FErasing [45] and image-level augmentation
approach, such as AutoAugment [4]. To sample the re-
gion of interest, for each image, we rank the absolute
saliency values measured on all candidate regions and take
our threshold to be the 7-th percentile value. We set T to
0.6 for all our experiments. Additionally, we set the cutout
paste-back length to be 16 on CIFAR-10 and 40 on Ima-
geNet, which is the default setting used by Cutout [8].
For our low resolution based efficient training strategy, we
reduce the image width and height by half with bicubic in-

From Table 1, we observe a consistent improvement on
test accuracy by applying our information-preserving aug-
mentation strategy.

Improve on CutOut We study the relative improvements
on Cutout across various cutout lengths. We use ResNet-
18 and train on CIFAR-10. We experiment with a variety
of cutout length from 8 to 24. As shown in Table 2, we
observe that our KeepCutout achieves increasingly signifi-
cant improvements over Cutout when the cutout regions
become larger. This is likely because that with large cutout
length, Cutout is more likely to remove the most infor-
mative region and hence introducing misinformation, which
in turn hurts the network performance. On the other hand,
with a small cutout length, e.g. 8, those informative regions
are likely to be preserved during augmentation; standard
Cutout strategy achieves better performance by taking
advantage of more diversified training examples.

terpolation. For the early loss based approach, we use an Cutout length Cutout KeepCutout
additional head (linear transform and loss) with a coefficient 8 95.3+0.0 95.1+0.0
of 0.3 after the first block of each network. 12 95.44+0.0 95.5+0.0
16 95.6+0.0 96.1+0.0
4.1. CIFAR-10 Classification 20 95.5+0.1 96.0+0.1
24 94.9+0.1 95.6+0.1

We apply of our adaptive selective strategy to improve
two state-of-the-art augmentation schemes, Cutout and
RandAugment , on the CIFAR-10 ' [15] dataset. We
experiment with various of backbone architectures, such
as ResNets [13], Wide ResNets [40], PyramidNet Shake-
Drop [38] and Shake-Shake [9]. We closely follow the
training settings suggested in [8] and [5]. Specifically, we
train 1,800 epochs with cosine learning rate deacy [22] for
PyramidNet-ShakeDrop and 300 epochs for all other net-
works, We report the test test accuracy in Table 1. All
results are averaged over three random trials, except for
PyramidNet-ShakeDrop [38], on which only one random
trial is reported.

lh:tps://www.Cs.toronto.edu/“kriz/cifar.html

Table 2. Test accuracy (%) of ResNet-18 on CIFAR-10. All re-
sults are averaged over 5 random trials.

Improve on AutoAugment In this case, we use the Au-
toAugment policy space, apply our selective-paste and
study the empirical gain over AutoAugment for four dis-
tortion augmentation magnitude (6, 12, 18 and 24). We
train Wide ResNet-28-10 on CIFAR-10 and closely follow
the training setting suggested in [4]. As we can see from
Table 3, our method yields better performance in all set-
tings consistently, and our improvements is more significant
when the transformation distortion magnitude is large.
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Magnitude | AutoAugment KeepAutoAugment
6 96.940.1 97.3£0.1
12 97.1£0.1 97.5+£0.1
18 97.1£0.1 97.6£0.1
24 97.31+0.1 97.8+0.1

Table 3. Test accuracy (%) of wide ResNet-28-10 on CIFAR-10
across varying distortion augmentation magnitudes. All results are
averaged over 5 random trials.

Wide ResNet-28-10 Accuracy (%) Time (s)
GridMask 97.540.1 92
AugMix 97.5+0.0 92
Attentive CutMix 97.3+0.1 127
KeepAutoAugment+L 97.8+0.1 111
ShakeShake Accuracy (%) Time (s)
GridMask 97.4+0.1 124
AugMix 97.5+0.0 124
Attentive CutMix 97.440.1 166
KeepAutoAugment+L 97.9+0.1 142

Table 4. Results on CIFAR-10 using various models architectures
and various baselines. ‘Time’ reports the per epoch training time
on one TITAN X GPU. ‘Accuracy’ reports the accuracy on test
set, which is averaged over 5 trials. ‘L’ denotes low resolution.
We use Wide ResNet-28-10, and the corresponding AutoAugment
baseline result is presented above.

Additional Comparisons on CIFAR-10 Recently, some
researchers [3, 33, 14] also mix the clean image and aug-
mented image together to achieve higher performance.
Girdmask [3], AugMix [I4] and Attentive CutMix are
popular methods among these approaches. Here, we con-
duct experiments on CIFAR-10 to show the accuracy and
training cost of each method. Note that we implement all
the baselines by ourselves, and the results of our imple-
mentation are comparable or even better than the results re-
ported in the original papers.

Table 4 shows that our proposed algorithm can achieve
clear improvements on accuracy over all other baselines.
Moreover, Gridmask only implements upon Cutout and
Attentive CutMix only implements upon CutMix by
pasting the most important region. But our approach is more
flexible and can be easily applied to improve a large variety
of data augmentation schemes.

4.2. ImageNet Classification

We conduct experiments on large-scale challenging Im-
ageNet dataset, on which our adaptive augmentation algo-
rithm again shows clear advantage over existing methods.

Dataset and Settings We use ILSVRC2012, a subset
of ImageNet classification dataset [0], which contains

Method ResNet-50 ResNet-101
Top-1 Top-5 | Top-1 Top-5
Vanilla [13] 763 929 | 774 93.6
Dropout [30] 76.8 934 | 7777 939
DropPath [17] 77.1 93.5 - -
Manifold Mixup [32] | 77.5  93.8 - -
Mixup [41] 779 939 | 79.2 944
DropBlock [10] 783 941 | 79.0 943
RandAugment [5] 77.6 93.8 79.2 94 .4
Random Erasing [45] | 77.3 933 79.6 947
AutoAugment [4] 77.6 938 | 793 944
KeepAutoAugment 78.0 939 | 79.7 94.6
+ low resolution 781 939 | 79.7 94.6
+ early loss 779 938 | 79.6 945
CutMix [39] 786 940 | 799 94.6
KeepCutMix 79.0 944 | 80.3 95.1
+ low resolution 79.1 944 | 80.3 95.2
+ early loss 79.0 943 | 80.2 95.1

Table 5. Validation accuracy (%) on ImageNet using ResNet-50
and ResNet-101.

around 1.28 million training images and 50,000 valida-
tion images from 1,000 classes. We apply our adaptive
data augmentation strategy to improve CutMix [39] and
AutoAugment [4], respectively.

CutMix randomly mixes images and labels. To aug-
ment an image x with label y, CutMix removes a ran-
domly selected region from x and replace it with a patch of
the same size copied from another random image x’ with la-
bel . Meanwhile, the new label is mixed as Ady+ (1 —\)y/,
where )\ equals the uncorrupted percentage of image . We
improve on CutMix by using selective-cut. In practice,
we found it is often quite effective to simply avoiding cut-
ting informative region from x. We denote our adaptive
CutMix method as KeepCutMix. We further improve on
AutoAugment by pasting-backing randomly selected re-
gions with important score greater than 7 = 0.6.

For a fair comparison, we closely follow the training set-
tings in CutMix [39] and AutoAugment [5]. We test
our method on both ResNet50 and ResNet101 [13]. Our
models are trained for 300 epochs, and the experiment is
implemented based on the open-source code .

Results We report the single-crop top-1 and top-5 accu-
racy on the validation set in table 5. Compared to CutMix,
we method KeepCutMix achieves 0.5% improvements on
topl accuracy using ResNet-50 and 0.4% higher topl ac-
curacy using ResNet101; compared to AutoAugment [4],
our method improves top-1 accuracy from 77.6% to 78.1%
and 79.3% to 79.7% using ResNet-50 and ResNet-101, re-
spectively. Again, we also notice that our accelerated ap-

2https://qithub.com/clovaai/CutMix—PyTorch
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Model R-18 R-110 Wide ResNet

Cutout 19 28 92

KeepCutout 38 +100.0% 54 +92.8% 185 +101.1%
+ low resolution | 24 +263% 35 +250% 111 +20.6%
+ early loss 23 +13.0% 34 21.1% 104 +13.0%

Table 6. Per epoch training time (seconds) on CIFAR-10. Here R-
18 and R-110 represents ResNet-18 and ResNet-110, respectively.

Model ResNet-50 ResNet-101
CutMix 41.5 68.6
CutMix + low resolution 49.8 +20.0% 83.5 +21.7%
CutMix + early loss 49.1 +183% 82.7 +20.6 %
AutoAugment 41.1 68.2
AutoAugment + low resolution |49.5 +204% 83.2 +21.9%
AutoAugment + early loss 48.9 +19.0% 82.4 +20.8%
Table 7. Average training time (minutes) per epoch.

proaches do not hurt the performance of the model. We also
notice that, similar to the results on CIFAR-10, the proposed
accelerating approach can speed up KeepAugment without
loss of accuracy on ImageNet.

Training time cost We provide additional training cost
comparisons on both CIFAR-10 and ImageNet in Table 6
and Table 7, respectively. On CIFAR-10, all models are
trained on one TITAN X GPU with batch size 128; On
ImageNet, we train all models on 8 TITAN X GPUs with
batch size 384. As we can see from Figure 6, our low reso-
lution and early loss based approximation significantly ac-
celerates the computation of salience maps. Meanwhile, in
general, our KeepAugment equipped with low resolution or
early loss based saliency map approximation leads to ~20%
increase in per epoch training time compared to the cor-
responding baselines. To factor in this training overhead,
in Table 8, we increase the training budget of CutMix and
AutoAgument for additional 20%, from 300 epochs to 360
epochs. Comparing with our results in Table 5, our method
still yields the best performance.

Method Epochs  Top-1  Top-5

CutMix 360 78.72 94.15

AutoAugment 360 77.63 93.85
Table 8. Validation accuracy (%) on ImageNet using ResNet-50.

4.3. Semi-Supervised Learning

Semi-supervised learning (SSL) is a key approach to-
ward more data-efficient machine learning by jointly lever-
age both labeled and unlabeled data. Recently, data aug-
mentation has been shown a powerful tool for developing
state-of-the-art SSL methods. Here, we apply the proposed
method to unsupervised data augmentation [37] (UDA) on

4000 labels 2500 labels
UDA + RandAug 95.1£0.2 91.2£1.0
UDA + KeepRandAug | 95.4+0.2 92.4+0.8

Table 9. Result on CIFAR-10 semi-supervised learning. ‘4000 la-
bels’ denotes that 4,000 images have labels.

CIFAR-10 to verify whether our approach can be applied to
more general applications.
UDA minimizes the following loss on unlabelled data:

Eyop,, o~p, |[KL(po(- | z) || po(-| x’))], where P de-

notes the randomized augmentation distribution, =’ denotes
an augmented image and 6 denotes the neural network pa-
rameters. Notice that for semi-supervised learning, we do
not have labels to calculate the saliency map. Instead, we
use the max logit of pg(- | =) to calculate the saliency map.
We simply replace the RandAug [5] in UDA with our pro-
posed approach, and use the WideResNet-28-2.

In Table 9, we show that our approach improves on Ran-
dAug and leads to improved semi-supervised learning per-
formance on CIFAR-10.

4.4. Multi-View Multi-Camera Tracking

We apply our adaptive data augmentation to improve a
state-of-the-art multi-view multi-camera tracking approach
[23]. Recent works [e.g. 23, 45, 44] have shown that data
augmentation is an effective technique for improving the
performance on this task.

Settings [23] builds a strong baseline based on Random
Erasing [45] data augmentation. Random Erasingis
similar to Cutout , except filling the region dropped with
random values instead of zeros. We improve over [23] by
only cutting out regions with importance score smaller than
7 = 0.6. We denote the widely-used open-source baseline
open-RelID 3 as the standard baseline in table 10. To ab-
late the role of our selective cutting-out strategy, we pursue
minima changes made to the baseline code base. We follow
all the training settings reported in [23], except using our
adaptive data augmentation strategy. We use ResNet-101 as
the backbone network.

We evaluate our method on a benchmark dataset, Mar-
ket1501 [44]. Market1501 contains 32,668 bounding boxes
of 1,501 identities, in which images of each identity are cap-
tured by at most six cameras.

Results We report test accuracy and mean average preci-
sion (mAP) of different methods in Table 10. Our method
achieves the best performance. In particular, we achieve a
95.0% accuracy and 87.4 mAP on Market1501.

3https ://github.com/Cysu/open-reid
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Market1501
Method Accuracy mAP
Standard Baseline 88.14+0.2 74.6+0.2
+ Bag of Tricks [23] 94.540.1 87.1+£0.0
+ Ours 95.0+0.1 87.4+0.0

Table 10. We compare our method with the standard and [23] on
two benchmark datasets. mAP represents mean average precision.

Model Backbone Detectron2  Ours
Faster R-CNN ResNet50-C4 38.4 39.5
Faster R-CNN | ResNet50-FPN 40.2 40.7
RetinaNet ResNet50-FPN 37.9 39.1
Faster R-CNN | ResNet101-C4 41.1 42.2
Faster R-CNN | ResNet101-FPN 42.0 42.9
RetinaNet ResNet101-FPN 39.9 41.2

Table 11. Detection mean Average Precision (mAP) Results on
COCO 2017 validation set. (mAP%) is reported for comparsion.

4.5. Transfer Learning: Object Detection

We demonstrate the transferability of our ImageNet pre-
trained models on the COCO 2017 [21] object detection
task, on which we observe significant improvements over
strong Detectron2 [35] baselines by simply applying
our pre-trained models as backbones.

Dataset and Settings  COCO 2017 consists of 118,000
training images and 5,000 validation images. To verify that
our trained models can be widely useful for different de-
tector systems, we test several popular structures, including
Faster RCNN [26], feature pyramid networks [19] (FPN)
and RetinaNet [20]. We use the codebase provided by
Detectron?2 [35], follow almost all the hyper-parameters
except changing the backbone networks from PyTorch
provided models to our models. For our method, we test
the ResNet-50 and ResNet-101 models trained with our
KeepCutMix.

Results We report mean average precision (mAP) on
the COCO 2017 validation set [21]. As we can see from Ta-
ble 11, our method consistently improves over baseline ap-
proaches. Simply replacing the backbone network with our
pre-trained model gives performance gains for the COCO
2017 object detection tasks with no additional cost. In par-
ticular, on the single-stage detector RetinaNet, we improve
the 37.9 mAP to 39.1, and 39.9 mAP to 41.2 for ResNet-50
and ResNet-101, respectively.

5. Related Works

Our work is most related to [12], which studies the im-
pact of affinity (or fidelity) and diversity of data augmenta-
tion empirically, and finds out that a good data augmenta-
tion strategy should jointly optimize these two aspects. Re-

cently, many other works also show the importance of bal-
ancing between fidelity and diversity. For example, [| 1] and
[43] show that optimize the worst case or choose the most
difficult augmentation policy is helpful, which indicates the
importance of diversity. [34] considers to correct the label
of noisy augmented examples by using a teacher network,
thus increasing fidelity. This approach also needs additional
supervision and only focus on one typical data augmenta-
tion method. Compared to these works, our augmentation
improves on stronger data augmentation by preserving in-
formative regions, thus naturally achieve fidelity and diver-
sity. It allows us to train better models by leveraging more
diversified faithful examples.

Our work focus on improving label-invariant data aug-
mentation. Another line of data augmentation schemes cre-
ate augmented examples by mixing both images and their
corresponding labels, exemplified by mixup [41], Manifold
Mixup [32], CutMix [39]. It is not clear how to quantify
noisy examples for label-mixing augmentation since labels
are also mixed, nevertheless we show empirically that our
selective-cut also improves on CutMix and leave further
extensions as our future work.

The idea of using saliency map for improving computer
vision systems have been widely explored in the literature.
Saliency map can be applied to object detection [42], seg-
mentation [24], knowledge distillation [2] and many more
[e.g. 2, 27]. We propose to use the saliency map to measure
the relative importance of different regions, thus improving
regional-level cutting-based data augmentation by avoiding
informative regions; or improving image-level augmenta-
tion techniques by pasting-back discriminative regions.

6. Conclusion

In this work, we empirically show that prior art data
augmentation schemes might introduce noisy training ex-
amples and hence limit their ability in boosting the over-
all performance. Thus we use saliency map to measure
the importance of each region, and propose to avoid cut-
ting important regions for region-level data augmentation
approaches, such as Cutout ; or pasting back critical ar-
eas from the clean data for image-level data augmentation,
like RandAugment and AutoAugment . Throughout an
extensive evaluation, we have demonstrated that our adap-
tive augmentation approach helps to significantly improve
the performance of image classification, multi-view multi-
camera tracking and object detection.
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