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Abstract

Semi-supervised learning (SSL) is a key approach to-

ward more data-efficient machine learning by jointly lever-

age both labeled and unlabeled data. We propose Al-

phaMatch, an efficient SSL method that leverages data aug-

mentations, by efficiently enforcing the label consistency

between the data points and the augmented data derived

from them. Our key technical contribution lies on: 1) us-

ing alpha-divergence to prioritize the regularization on data

with high confidence, achieving similar effect as FixMatch

[32] but in a more flexible fashion, and 2) proposing an

optimization-based, EM-like algorithm to enforce the con-

sistency, which enjoys better convergence than iterative reg-

ularization procedures used in recent SSL methods such as

FixMatch, UDA, and MixMatch. AlphaMatch is simple and

easy to implement, and consistently outperforms prior arts

on standard benchmarks, e.g. CIFAR-10, SVHN, CIFAR-

100, STL-10. Specifically, we achieve 91.3% test accuracy

on CIFAR-10 with just 4 labelled data per class, substan-

tially improving over the previously best 88.7% accuracy

achieved by FixMatch.

1. Introduction

Semi-supervised learning (SSL) [7] is a powerful

paradigm for leveraging both labeled and unlabeled data

jointly in machine learning (ML). Effective SSL methods

can help build accurate prediction out of very limited la-

beled data, and can also boost state-of-the-art performance

and robustness in typical supervised learning by leveraging

extra unlabeled data [see e.g., 20, 39, 41]. Due to the high

cost of collecting labels and the availability of a vast amount

of unlabeled data, breakthroughs in SSL can dramatically

advance the application of ML in countless fields.

Recently, data augmentation has been shown a powerful

tool for developing state-of-the-art SSL methods, includ-

ing unsupervised data augmentation (UDA) [38], FixMatch

[32], MixMatch [2], ReMixMatch [3] and Π-model [30].

All these methods are based on the similar idea of enforcing

the consistency between the label of a data point and that of

its perturbed version generated by data augmentation. This

encourages the learned models to be invariant under given

data augmentation transforms, hence incorporating inherent

structures of the data into semi-supervised learning.

The performance of these algorithms can be critically

influenced by what matching objective and matching algo-

rithm are used to enforce the consistency. For the objective,

UDA applies a KL divergence penalty to enforce the con-

sistency uniformly on all the data points. More recently,

FixMatch shows that it is useful to focus on matching the

consistency on the high confidence data points with a hard

thresholding approach, by applying regularization only on

data with confidence higher than a threshold and use the

hard label as the target. In terms of the matching algo-

rithm, most of the existing methods, including UDA and

FixMatch, are based on a similar iterative regularization

procedure that uses the label distribution predicted from the

previous iteration as the target for the next step. Although

being simple and intuitive, a key problem is that this iter-

ative procedure does not correspond to optimizing a fixed

objective function, and hence may suffer from instability

and non-convergence issues.

This work proposes two key algorithmic advances to im-

prove the objective and algorithm for consistency matching

in SSL: 1) we propose to use alpha-divergence to measure

the label consistency. We show that, by using a large value

of α in alpha-divergence, we can focus more on high con-

fidence instances in a way similar to the hard-thresholded

regularization of FixMatch, but in a more “soft” and flex-

ible fashion. 2) We propose an optimization-based frame-

work for consistency matching, which yields an EM-like

algorithm with better convergence property than the com-

monly used iterative regularization procedures. By com-

bining these two key techniques, our main algorithm Al-

phaMatch yields better SSL with more effective and stable

consistency regularization.

Empirically, we find that AlphaMatch consistently out-

performs recently-proposed SSL methods such as Fix-
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Match, ReMixMatch, MixMatch, and UDA both in terms

of accuracy and data efficiency, on various benchmarks in-

cluding CIFAR-10, SVHN CIAFR-100, and STL-10. In

particular, our method improves over the state-of-the-art

method, FixMatch, across all the settings we tested. Our

improvement is particularly significant when the labels are

highly limited. For example, on CIFAR-10, we improve the

88.71%±3.35% accuracy of FixMatch to 91.35%±3.38%

when only 4 labelled images per class are given.

2. Background: Semi-Supervision with Data

Augmentation

We give a brief introduction to unsupervised data aug-

mentation (UDA) [38] and FixMatch [32], which are mostly

related to our work. Denote by Ds and Du the labeled and

unlabeled datasets, respectively. For a data point x in Du,

let Px be a distribution that prescribes a random perturba-

tion or augmentation transformation on x that (with high

probability) keeps the label of x invariant, such as rota-

tion, shift, and cutout [12]. For learning a prediction model

pθ(y|x), UDA works by iteratively updating the parameter

θ via

θt+1 ← argmin
θ

{

L(θ; Ds) + λΦ(θ; θt,Du)

}

with

Φ(θ; θt,Du) = Ex∼Du, x′∼Px

[

KL(pθt(· | x) ‖ pθ(· | x
′))

]

,

(1)

where θt denotes the value at the t-th iteration, L(Ds; θ) is

the typical supervised loss, e.g. the cross entropy loss, and

KL(· ‖ ·) denotes the Kullback–Leibler (KL) divergence.

Here Φ(θ; θt,Du) can be viewed as a consistency regular-

ization that enforces the label distribution of the augmented

data x′ ∼ Px to be similar to that of the original data x
(based on the parameter θt at the previous iteration); λ is a

regularization coefficient.

In practice, the optimization in (1) can be approximated

by applying one step of gradient descent initialized from θt,
yielding

θt+1 ← θt − ǫ∇θ

(

L(θ; Ds) + λΦ(θ; θt, Du)

)
∣

∣

∣

∣

θ=θt

,

(2)

where ǫ is the step size. This procedure is closely related

to VAT [26], in which augmented data x′ is replaced by an

adversarial example in a neighboring ball of x.

FixMatch improves UDA with ideas similar to the clas-

sical pseudo-labeling method [15]. FixMatch replaces the

“soft label” pθt(·|x) with the corresponding “hard label”

ŷθt(x) = argmaxy pθt(y | x) (a.k.a. pseudo-label), and

turns on the regularization only when the confidence of the

pseudo-label, estimated by pθt(ŷθt(x) | x), is sufficiently

large:

Φ(θ; θt,Du) := Ex∼Du,x′∼Px

[

I

(

pθt(ŷθt(x) | x) ≥ τ

)

×KL

(

p̂θt(· | x) ‖ pθ(· | x
′)

)]

,

(3)

where p̂θt(y | x) := δ(y = ŷθt(x)) and I(·) is the indi-

cator function and τ a threshold parameter (e.g., τ = 0.95).

This regularization has two important effects: 1) it up-

weights the hard label ŷθt(x) while discarding all the other

labels from the regularization, and 2) it skips the data points

with low confidence (i.e., pθt(ŷθt(x) | x) < τ ).

Remark Note that the iterative procedure in (1)-(2) does

not in general correspond to optimizing a fixed objective

function, and hence does not guarantee to converge theo-

retically and may suffer from non-convergence practically.

For example, we empirically observe that the performance

of UDA tends to degenerate significantly when trained for

many iterations when few labelled data is given, and Fix-

Match is sensitive to the choice of threshold τ . An alterna-

tive is to directly optimize the following objective function:

min
θ

{

L(θ; Ds) + λΦ(θ; θ, Du)

}

, (4)

whose gradient descent yields

θt+1 ← θt − ǫ∇θ

(

L(θ; Ds) + λΦ(θ; θ, Du)

)
∣

∣

∣

∣

θ=θt

.

(5)

The difference with (2) is that the gradient of Φ(θ; θt,Du)
through θt is detached and dropped in (2), while the gradi-

ent of Φ(θ; θ, Du) in (5) needs to be taken for both θ. In

Miyato et al. [26], Sohn et al. [32], Xie et al. [38] and all the

related works, (2) is chosen over (5) for better empirical per-

formance, likely because stopping the gradient encourages

the information to pass from the clean data x to the aug-

mented data x′, but not the other way, so that the supervised

objective is less interfered by the consistency regularization

than in the direction optimization approach (5). A complete

theoretical understanding of the benefit of stopping gradient

is still an open question.

3. Our Method

We introduce our main method AlphaMatch (see Algo-

rithm 1), which consists of two key ideas: i) we leverage

alpha-divergence to enforce the label consistency between

augmented and original data in SSL, which can benefit from
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Model

Model

Unlabeled image x
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Apply weak data 

augmentation with 

probability 1− β
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probability β
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Apply strong data 

augmentation

Alpha divergence based 

consistency loss; see Eqn (9)
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Model predictions

Model predictions
Closed-form update for γ(· | x)
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Figure 1. Diagram of our proposed semi-supervised learning algorithm. When augmentation, we use a hyper-parameter β to control a

mixture of strong and weak augmentation. When calculating the loss, we use a EM-style update. 1) Solving a closed-from solution of

averaging logits with alpha divergence. 2) Using alpha divergence to construct a label-consistency loss. Images are from ImageNet [11].

focusing more on high confidence data like FixMatch, but

in a more smooth and flexible fashion (Section 3.1); ii)

we introduce a convergent EM-like algorithm based on an

optimization-based framework to replace the iterative pro-

cedure in (1)-(2), which allows us to enforce the label con-

sistency much efficiently.

3.1. Matching with Alpha Divergence

We propose to use alpha-divergence in SSL consistency

matching. Under the general framework of (1), this amounts

to replace the consistency regularization with

Φ(θ; θt,Du) = Ex∼Du,x′∼Px

[

Dα(pθt(· | x) ‖ pθ(· | x
′))

]

,

where Dα(· ‖ ·) is the alpha divergence with α ∈ (0, 1) ∪
(1,∞), defined as:

Dα(pθt(·|x) || pθ(·|x
′))

=
1

α(α− 1)

(

Ey∼pθt
(·|x) [ρDα

(y|x)]− 1
)

,

with ρDα
(y|x) :=

(

pθt(y|x)

pθ(y|x′)

)α−1

.

It is well-known that Dα(·||·) reduces to KL divergence

when α → 0 or 1, as follows,

lim
α→1

Dα(pθt(·|x) ‖ pθ(·|x
′)) = KL(pθt(·|x) ‖ pθ(·|x

′)),

lim
α→0

Dα(pθt(·|x) ‖ pθ(·|x
′)) = KL(pθ(·|x

′) ‖ pθt(·|x)).

In general, the value of α critically influences the result of

the algorithm. The regime of α > 1 is of particular in-

terest for our purpose, because it allows us to achieve a

FixMatch-like effect but in a “soft way”. This is because

when α is large, the power term ρDα
(y|x) in Dα(·||·) tends

to put a higher weight on the (x, y) pairs with large val-

ues of pθt(y|x), and hence upweighting the importance the

instances x with high confidence as well as their dominat-

ing labels y. This is similar to what FixMatch attempts to

achieve in (3), except that the regularization is enforced in

a different and more “soft” fashion, so that the instances

with lower confidence and the less dominant labels still con-

tribute to the loss, except with a lower degree.

It is useful to get further insights by examining the gra-

dient of Dα(·||·), which equals

∇θDα(pθt(·|x) ‖ pθ(·|x
′))

= −
1

α
Ey∼pθt

(·|x)

[

ρDα
(y|x)∇θ log pθ(y|x

′)

]

.
(6)

When α = 1 (corresponding to UDA), we have ρDα
(y|x) =

1. The gradient of FixMatch is also similar but with

ρDα
(y|x) replaced by

ρFixMatch(y|x) =

I

(

max
y′

pθt(y
′|x) ≥ τ&y = argmax

y′

(pθt(y
′|x))

)

.
(7)

We can again see that both ρDα
(y|x) and ρFixMatch(y|x) fa-

vor the data and label (x, y) with high confidence pθt(y|x),
but ρFixMatch(y|x) does it in a more aggressive fashion. In

addition, note that ρDα
(y|x) depends on both pθt(y|x) and

pθ(y|x), while ρFixMatch(y|x) only depends on pθt(y|x).

Remark Alpha divergence provides a general framework

for distribution matching. It’s more flexible compared to

other divergences, e.g., Jensen–Shannon divergence. By

choosing different values of α, our alpha divergence gen-

eralizes a number of well-known SSL approaches, includ-

ing UDA (α = 1) and FixMatch (α → ∞). Furthermore,
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Figure 2. The learning curve of update Eqn (2) with alpha-

divergence with different α on SVHN. The x-axis denotes the

training epoch y-axis is the test accuracy. The labelled data in-

cludes 4 randomly picked mages per class. The dashed line shows

the result of FixMatch. We follow all training settings in Fix-

Match.

note that alpha divergence is proportional to the α-th mo-

ment of density ratio p(·|x)/p(·|x′) (x clean image and x′

augmented image). Therefore, when α is large and pos-

itive, large p(·|x)/p(·|x′) ratio is strongly penalized, pre-

venting the case of p(·|x′) ≪ p(·|x). This offers a natural

and flexible way to propagate high confidence label on x to

low-confidence examples x′.

3.2. An EM­like Optimization Framework for La­
bel Matching

Despite the attractive property of alpha-divergence, we

observe that directly incorporating alpha-divergence into

the iterative update in (2) like UDA and FixMatch tends to

cause instability in convergence when α is large, which is

the regime of main interest. We illustrate this with an exper-

iment on SVHN shown in Figure 2, which shows that using

large α (e.g., α = 1.5) can potentially obtain better results

than smaller α but is much more unstable during training

and may eventually diverge to worse results (note that the

case of α = 1 (blue curve) is UDA). This is because the

iterative update in (1) does not correspond to optimizing a

well-defined objective and does not guarantee to converge

theoretically.

To address this problem, we provide an optimization-

based framework for consistency regularization, which

yields an EM-like algorithm when solved with a coordinate

descent procedure. Our method enjoys better convergence

and allows us to achieve better performance than directly

combining alpha-divergence with (2). Our loss function is

min
θ

{

L(Ds; θ) + λEx∼Du

[

min
γ(· | x)

Ψα,β(θ, γ, x)

]}

, (8)

where Ψα,β(θ, x) is a consistency regularization on x that

we define as

Ψα,β(θ, γ, x) = (1− β)Dα(γ(· | x) || pθ(· | x))

+ βEx′∼Px
[Dα(γ(· | x) || pθ(· | x

′))]

= E
x′∼Pβ

x
[Dα(γ(· | x) || pθ(· | x

′))] ,

(9)

where Pβ
x (x

′)
def
= (1 − β)δ(x′ = x) + βPx(x

′) is a

mixture of the random perturbation Px and the original data

x and β ∈ [0, 1] is the ratio between the augmented and

original data in Pβ
x . Here γ(· | x) is an auxiliary variable

optimized in the space of all distributions. It is introduced

to serves as a bridge for comparing pθ(·|x) and pθ(·|x
′),

without having θ appearing on sides of the divergence like

Φ(θ; θ,D) in (4). When β = 0.5, the regularization in (8) is

a symmetrized version of alpha-divergence that generalizes

Jensen-Shannon divergence.

We optimize our objective function in (8) by altere-

naively optimizing θ and γ:

Updating γ With θ = θt fixed, we update γ(·|x) for each
x:

γt(· | x)← argmin
γ(·|x)

E
x′∼P

β
x

[

Dα(γ(· | x) ‖ pθt(· | x
′))

]

.

(10)

Updating θ With γ = γt fixed, we update θ by perform-
ing gradient descent on

θt+1 ← argmin
θ

L(Ds; θ) + λEx∼Du

[

Ψα,β(θ, γ, x)
]

. (11)

Critically, for alpha-divergence, the optimal γt in Eqn (10)
equals a simple powered expectation of pθt(·|x

′) as x′ ∼
Pβ
x ,

γt(· | x) ∝
(

E
x′∼P

β
x

[

pθt(· | x
′)1−α

]

) 1

1−α
=

(

(1− β)pθt(· | x)
1−α + βEx′∼Px

[

pθt(· | x
′)1−α

]

) 1

1−α

.

(12)

Proof. Eqn (10) could be viewed as a general optimization

of form: minγ
∑

i wi[Dα(γ || pi)], where wi denotes the

importance score for each distribution pi. With simple cal-

culations, we have,

∑

i

wi[Dα(γ || pi)] =
∑

i

wi

∑

x

γα(x)

pα−1
i (x)

=
∑

x

∑

i

wip
1−α
i (x)γα(x),

=
∑

x

p̄1−α(x)γα(x),with p̄(x) =

(

∑

i

wip
1−α
i (x)

)
1

1−α

= Dα(γ||zp̄),
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where z is the normalization constant. Therefore, we have

γ∗ ∝ p̄.

This formulation reduces to the typical averaging when

α → 0, and the reduces to geometric mean when α → 1.

On the other hand, when α ≥ 1, the regime of our interest,

γt(·|x) becomes a (powered) harmonic mean of pθt(·|x
′)

when x′ ∼ Pβ
x . Consider the limit α → +∞, in which

case we have γt(y|x) ≈ ess inf
x′∼Pβ

x
pθt(y | x

′), which

suggests that γt(y|x) is large only when pθt(y | x
′) are large

for both the original data x′ = x and all the augmented

data x′ ∼ Px. This is again consistent with the idea of

emphasizing high confidence instances.

Our method Combining these two updates yields a sim-

ple and practical algorithm shown in Algorithm 1, in which

we apply one-step of mini-batch gradient descent to update

θ at each iteration and approximate Ex′∼Px
[·] in (9) and

(12) by drawing a number of n random samples {x′
i}

n
i=1

from Px for practical efficiency. Our method converges

theoretically because it is a coordinate descent by design.

It is similar in style to expectation maximization (EM), es-

pecially the α-EM [e.g., 25] which uses alpha-divergence

in EM. However, our method is designed from an opti-

mization perspective for enforcing the label consistency on

augmented data, rather than a generative modeling perspec-

tive underlying EM. Empirically, we approximate Ex′∼Px
[·]

(see Eqn. 9) by drawing a number of n random samples

{x′
i}

n
i=1 from Px. See Algorithm 1 for details.

Time Cost As shown in Algorithm 1, our proposed algo-

rithm introduces an additional latent variable γ which has

a closed-form solution. Therefore, compared to KL diver-

gence, we introduce almost no additional time cost.

4. Experiments

We test AlphaMatch on a variety of standard SSL bench-

marks (e.g. STL-10, CIFAR-10, CIFAR-100 and SVHN)

and compare it with a number of state-of-the-art (SOTA)

SSL baselines, including MixMatch [2], ReMixMatch [3]

and FixMatch [32]. We show that AlphaMatch achieves the

best performance in all benchmark settings evaluated.

We use the code-base provided in FixMatch [32]1 for im-

plementation. Throughout our experiments, we simply set

α = 1.5 and β = 0.5 without tuning; we found the default

setting yields the best performance in almost all the cases.

We provide comprehensive ablation studies on the impact

of different choices of α and β in section 4.5.

1https://github.com/google-research/fixmatch

4.1. STL­10

We conduct experiments on the challenging SLT-10

dataset. SLT-10 is a realistic and challenging SSL dataset

which contains 5,000 labeled images, and 100,000 unla-

beled, which are extracted from a similar but broader dis-

tribution of images than labelled data. The unlabelled data

contains other types of animals (bears, rabbits, etc.) and

vehicles (trains, buses, etc.) in addition to the ones in the

labeled set. The distribution shift between the labeled and

unlabeled data casts a higher challenge for SSL algorithms,

and requires us to learn models with stronger generalizabil-

ity. AlphaMatch again shows clear advantages over existing

methods in this case.

Settings We preprocess the data and split the labeled im-

ages into 5 folds with the same data partition as FixMatch

[32], with each partition containing 1,000 labels. Specif-

ically, for each dataset, we use 4,000 labelled data and

100,000 unlabelled data to train and use the remained 1,000

labelled data to test. Thus, a total of 5 models will be trained

and evaluated. The final performance is averaged over these

5 individual runs.

We use the Wide ResNet(WRN)-28-2 and WRN-16-8

model for our method and all the baselines. We compare

AlphaMatch with π-model, unsupervised data augmenta-

tion (UDA), MixMatch, ReMixMatch and FixMatch. All

baseline results are produced by exactly following the same

training setting suggested in [32]. For our method, we use

the default setting of α = 1.5, β = 0.5 and n = 1.

Results We report the averaged accuracy of all 5 runs in

Table 1. AlphaMatch significantly outperforms all other

baselines in this setting. In particular, for WRN-28-2,

compared with FixMatch, we improve the accuracy from

89.28% to 90.36%. Our performance is also about 1.9%

higher than ReMixMatch. For WRN-16-8, we also improve

the baselines with a large margin.

Method WRN-28-2 (%) WRN-16-8 (%)

π-model 71.39±1.21 74.92±1.18

UDA 86.57±1.06 89.14±0.73

MixMatch 85.19±1.24 87.52±0.79

ReMixMatch 88.42±0.78 91.07±0.84

FixMatch 89.28±0.63 91.35±0.67

AlphaMatch 90.36±0.75 92.83±0.86

Table 1. Testing accuracy on STL-10. All averaged over 5 differ-

ent folds. Results on two different model architectures, WRN-28-2

and WRN-16-8 is reported.
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Algorithm 1 AlphaMatch: Improving Consistency for SSL with Alpha-divergence

1: Input: labeled data Ds; unlabeled data Du; regularization coefficient λ; alpha-divergence hyper-parameters α and β;

number of augmentation samples n; initial model parameter θ0.

2: for iteration t do

3: Randomly sample a labeled batch Bs from Ds and an unlabeled batch Bu from Du.

4: for each x in Bu do

5: Apply data augmentation on x for n times, yielding augmented examples {x′
i}

n
i=1

6: Fixing θ = θt, update γ(·|x) with γt+1(· | x)←

(

(1− β)× pθt(· | x)
1−α + β

n
×
∑n

i=1

[

pθt(· | x
′
i)

1−α

])
1

1−α

.

7: Approximate Ψα,β(θ, γt+1, x) in (9) with augmented examples {x′
i}

n
i=1 accordingly.

8: end for

9: Update θt+1 by applying one step of gradient descent on (11) over batch Bu: θt+1 ← θt − ǫ∇θ

(

L(Bs; θ) +

λEx∼Bu
[Ψα,β(θ, γt+1, x)]

)

∣

∣

∣

∣

θ=θt

.

10: end for

Method
CIFAR-10 SVHN CIFAR-100

40 labels 250 labels 40 labels 250 labels 400 labels 2500 labels

Pseudo-Labeling - 50.22±0.43 - 79.79±1.09 - 42.62±0.46

UDA 70.95±5.93 91.18±1.08 47.37±20.51 94.31±2.70 40.72±0.88 66.87±0.22

MixMatch 52.46±11.50 88.95±0.86 57.45±14.53 96.02±0.23 33.39±1.32 60.06±0.37

ReMixMatch 80.90±9.64* 94.56±0.05* 96.64±0.30* 97.08±0.48* 55.72±2.06* 73.57±0.31*

FixMatch 88.71±3.35 94.93±0.33 92.35±7.65 97.36±0.64 59.79±2.94* 74.63±0.22*

AlphaMatch 91.35±3.38 95.03±0.29 97.03±0.26 97.56±0.32 61.26±3.13* 74.98±0.27*

Table 2. Testing accuracy (%) of different methods on CIFAR-10, SVHN, and CIFAR-100. All averaged over 5 different folds. The ‘*’

indicates the results are achieved by combining the distribution alignment loss proposed in ReMixMatch [3].

4.2. CIFAR­10, SVHN and CIFAR­100

We then test AlphaMatch on three widely-used bench-

mark SSL datasets: CIFAR-10 [21], SVHN [27] and

CIFAR-100. With only 4 labeled data per class, we achieve

91.28%±3.41% accurcy on CIFAR-10, 97.03%±0.26% on

SVHN, and 61.27%±3.13% on CIFAR-100, all of which

yield significantly improvement over prior SSL results on

this task.

Settings For a fair comparison, we proceed with mini-

mum changes to the code provided by [32]. Specifically,

we use the same setting and random seeds as in FixMatch

[32] to generate labeled and unlabeled data partitions. We

use wide ResNet-28-2 [40] with 1.5M parameters as our

prediction model, and then train it using SGD with cosine

learning rate decay for 1024 epochs. We use CTAugment

[3] for data augmentation as suggested in FixMatch [32].

We evaluate two SSL settings, which use 4 (resp. 25)

labeled images per class, yielding 40 (resp. 250) labeled

images in CIFAR-10 and SVHN and 400 (resp. 2500) in

CIFAR-100. The remaining data in the training set is re-

garded as unlabelled data. For our method, we set α = 1.5

and β = 0.5 by default and investigate the effect of α and

β in section 4.5. In order to maintain the similar training

computation cost as FixMatch, We set the number of aug-

mentation applied per image n = 1 as default; the effect of

n is studied in section 4.5. Following FixMatch, we com-

bine AlphaMatch with an additional distribution alignment

loss on CIFAR-100, which is proposed in ReMixMatch [3].

Fully Supervised Baselines As a reference, we train

fully-supervised baselines, i.e., training the models with

all the training labels available. The test accuracy is

96.14%±0.03%, 97.89%±0.02% and 79.17%±0.01% on

CIFAR-10, SVHN and CIFAR-100, respectively.

Results We report the test accuracy of all baselines [2, 3,

24, 32, 38] along with AlphaMatch in Table 2. All results

are averaged over 5 random trials with different data parti-

tions. We can see that the models trained with AlphaMatch

achieve the best performance in all the settings. The gain

is especially significant when the number of labeled data

examples is limited (e.g. 4 labeled image per class). In

particular, compared with FixMatch, our method achieves

a 2.64% improvement on CIFAR-10 and 4.58% on SVHN

for test accuracy. On CIFAR-100, when combined with the
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distribution alignment loss as suggested in [3], AlphaMatch

yields the best performance, achieving 61.26%±3.13% ac-

curacy with 4 labels per class and and 74.98%±0.27% with

25 labels per class.

4.3. ImageNet

We test our algorithm on ImageNet. Specifically, we use

10% of the training set as labelled data and treat the rest

as un-labelled data. We use ResNet-18 as our testbed. We

train for 120 epochs on 8 V100 GPUs with batch size of

4,096. As shown in Table 3, our AlphaMatch outperforms

FixMatch.

Method Top-1 Accuracy

FixMatch 63.0

AlphaMatch 63.5
Table 3. Top-1 (%) accuracy on ImageNet validation set.

4.4. Point Cloud Classification

To further verify the effectiveness of our method, we

conduct experiments for semi-supervised 3D point cloud

classification. We test a number of prior art SSL baselines

and our algorithm on ModelNet40 [6] using the SOTA Dy-

namic graph convolution neural network (DGCNN) [36].

Dataset ModelNet40 is the most widely adopted bench-

mark for point-cloud classification. It contains objects from

40 common categories. There are 9840 objects in the train-

ing set and 2468 in the test set. In the experiment, we ran-

domly select 100 objects for each category as labelled data

and treat the other objects in the training set as unlabelled

data. It means, we use 4,000 labelled data and 5,420 un-

labelled data during training and then evaluate the perfor-

mance on the original test set. For all the baselines and our

method, we use Gaussian blurN (0, 0.02) as weak augmen-

tation, and using additional randomized jittering as strong

augmentation. For the DGCNN model, we use 2048 num-

ber of particles for each object and set the number of neigh-

bours to 20. We train the model with 2,00 epochs with SGD

with cosing learning rate decay and 0.9 momentum.

Result We report the averaged accuracy of all 5 runs in

Table 4. AlphaMatch significantly outperforms all other

baselines in this setting. In particular, compared with Fix-

Match, we improve the accuracy from 86.5% to 88.3%.

Compared to other baselines, the proposed methods can

also boost the performance by a large margin. The result

shows that our method can also be applied to other settings

except image classification.

Method ModelNet40 Accuracy (%)

π-model 81.82±1.18

UDA 86.15±1.13

MixMatch 85.34±1.05

ReMixMatch 85.66±0.92

FixMatch 86.47±0.79

AlphaMatch 88.32±0.84

Table 4. All averaged over 5 different folds.

4.5. Ablation Studies

Impact of α and β We follow all training settings as Sec-

tion 4.2. All models are trained with 4 labeled examples

per class. On this dataset, FixMatch achieves 92.4% test

accuracy (see the dashed black line). In Figure 3 (a), we fix

α = 1.5 and study the impact of β. We find a smaller β
(e.g. β = 0.2 or 0.5) often yields more stabilized training;

in the contrary, a larger β (e.g. β = 0.8) focuses less on

clean (or weakly augmented) data and performs worse than

small β in general.

We plot in Figure 3 (b) the testing accuracy of Al-

phaMatch with different α and β on SVHN dataset. As

we can see from Figure 3, a larger α (e.g. α ≥ 1.5) and

a smaller β (e.g. β ≤ 0.5) normally achieves better per-

formance than FixMatch. This is expected, as using alpha-

divergence with large α values help propagate high confi-

dence labels and a smaller β helps to stabilize the training.

On the other hand, if α is too large, the performance may

diminish because numerical instability increases.

We observe that α = 1.5 and β = 0.5 yields the best per-

formance, achieving a good balance between consistency

regularization and training stability.

Impact of the number of augmented examples n In our

algorithm, n controls on how many augmented examples is

generated to approximate Px (see Algorithm 1). We can

expect that {x′
i}

n
i=1 forms increasingly better approxima-

tion for Px with a larger n. In this section, we perform an

in-depth analysis on the effect of different n values. Intu-

itively, a smaller n leads to better energy-efficiency while a

larger n is more computationally expensive but may yield

more robust estimation hence produce better performance.

We test AlphaMatch on CIFAR-10 and SVHN, with the

same settings as section 4.2. Table 5 shows the performance

of various n. All results are averaged over 5 random trials.

We find n = 1 often performs competitively and a larger

n (e.g. n = 4, n = 10) yields slightly improvements in

general. However, a large n can significantly increase the

computation cost since it increases the forward and back-

ward time cost of the training model, and more critically, it

requires a larger GPU memory cost. Considering its huge

time/memory cost and mild improvement, we recommend
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Figure 3. (b) The Learning curve of AlphaMatch on SVHN, when using α = 1.5 and varying β. The x-axis denotes the training epoch and

y-axis represents the test accuracy. The dashed line shows the result of FixMatch. (b) Testing accuracy of AlphaMatch with various α and

β on the SVHN dataset. All models are trained with 4 labeled examples per class.

n augmented examples 1 2 4 10

CIFAR-10 Accuracy (%) 91.35±3.38 91.48±3.41 91.63±3.12 91.59±3.08

SVHN Accuracy (%) 97.03±0.26 97.07±0.19 97.18±0.23 97.18±0.21

Table 5. Comparison on testing accuracy for various n. All results are averaged over 5 random trials with the same settings as section 4.2.

to use n = 1 in practice.

5. Related Works

Semi-supervised learning (SSL) has been a classical sub-

field of machine learning with a large literature. Examples

of classical methods include transductive models [e.g. 10,

13, 19], co-training [e.g. 5, 28], entropy minimization [e.g.

14, 23], graph-based models [e.g. 1, 4, 16, 35, 37, 43, 44]

and many more (see [e.g. 7, 45]).

Due to the recent success of deep learning, combining

generative model [9, 17] and adversarial training [26] with

SSL achieves meaningful improvement over the classic SSL

methods in many real-world problems, e.g. image classifi-

cation [34, 38], segmentation [29], detection [18]. Most

recently, data augmentation has been introduced into SSL

and achieved great success. Π-model, for example, shares

the similar idea of (1), but replaces the KL divergence

with L2 distance and replace x in (1) with another ran-

dom copy of augmentation x′′. MixMatch [2] and ReMix-

Match [3], use mixup [42] to do data augmentation. Based

on MixMatch, ReMixMatch uses some additional loss and

new data augmentation method to improve the performance.

These methods force the label consistency between weakly

augmented examples (or examples without augmentation)

and strong augmented examples, and improve the state-of-

the-art results on classification tasks by a large margin.

Closely related to our work, a series of recent SSL meth-

ods have been proposed based on the general idea of en-

forcing the label prediction of an image to be consistent

with its augmented counterparts. The label consistency

has been mostly measured by either KL divergence [e.g.,

2, 3, 26, 32, 38], or mean squared error [e.g., 22, 30, 31, 33].

Almost all these methods use iterative regularization pro-

cesses similar to (1)-(2), with the stop-gradient trick (see

Section 2). Compared to these works, our method first intro-

duces alpha-divergence as consistency measure, and equip

it with a convergent EM-like matching algorithm to achieve

better results.

Most recently, Chen & He [8] presents a similar EM-like

approach for self-supervised learning. For each step, Chen

& He [8] first closed-form optimizes a local latent variable

(similar to our γ) and then updates the model parameters

with a fixed γ. This motivates us to further explore our

method to more general topics.

6. Conclusion

In this paper, we propose to use alpha-divergence and

a new optimization-based framework to build a semi-

supervised learning algorithm based on data augmenta-

tion. The proposed AlphaMatch is simple yet powerful.

With only a few lines of extra code to implement alpha-

divergence and the EM-like update, it achieves the state-

of-the-art performance on various benchmarks. For future

work, we plan to apply our algorithm to more practical

tasks, e.g. 2D segmentation, machine translation, object de-

tection. We plan to extend our algorithm to unsupervised

learning, out-of-distribution detection and other topics.
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