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Abstract

We propose a new Stein self-repulsive dynamics for obtaining diversified sam-
ples from intractable un-normalized distributions. Our idea is to introduce Stein
variational gradient as a repulsive force to push the samples of Langevin dynam-
ics away from the past trajectories. This simple idea allows us to significantly
decrease the auto-correlation in Langevin dynamics and hence increase the ef-
fective sample size. Importantly, as we establish in our theoretical analysis, the
asymptotic stationary distribution remains correct even with the addition of the
repulsive force, thanks to the special properties of the Stein variational gradient.
We perform extensive empirical studies of our new algorithm, showing that our
method yields much higher sample efficiency and better uncertainty estimation
than vanilla Langevin dynamics.

1 Introduction

Drawing samples from complex un-normalized distributions is one of the most basic problems in
statistics and machine learning, with broad applications to enormous research fields that rely on
probabilistic modeling. Over the past decades, large amounts of methods have been proposed for
approximate sampling, including both Markov Chain Monte Carlo (MCMC) [e.g., Brooks et al.,
2011] and variational inference [e.g., Wainwright et al., 2008, Blei et al., 2017].

MCMC works by simulating Markov chains whose stationary distributions match the distributions
of interest. Despite nice asymptotic theoretical properties, MCMC is widely criticized for its slow
convergence rate in practice. In difficult problems, the samples drawn from MCMC are often found
to have high auto-correlation across time, meaning that the Markov chains explore very slowly in
the configuration space. When this happens, the samples returned by MCMC only approximate a
small local region, and under-estimate the probability of the regions un-explored by the chain.

Stein variational gradient descent (SVGD) [Liu and Wang, 2016] is a different type of approximate
sampling methods designed to overcome the limitation of MCMC. Instead of drawing random sam-
ples sequentially, SVGD evolves a pre-defined number of particles (or sample points) in parallel
with a special interacting particle system to match the distribution of interest by minimizing the KL
divergence. In SVGD, the particles interact with each other to simultaneously move towards the
high probability regions following the gradient direction, and also move away from each other due
to a special repulsive force. As a result, SVGD allows us to obtain diversified samples that correctly
represent the variation of the distribution of interest. SVGD has found applications in various chal-
lenging problems [e.g., Feng et al., 2017, Haarnoja et al., 2017, Pu et al., 2017, Liu et al., 2017a,
Gong et al., 2019]. See Han and Liu [e.g., 2018], Chen et al. [e.g., 2018], Liu et al. [e.g., 2019],
Wang et al. [e.g., 2019a] for examples of extensions.

However, one problem of SVGD is that it theoretically requires to run an infinite number of chains
in parallel in order to approximate the target distribution asymptotically [Liu, 2017]. With a finite
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number of particles, the fixed point of SVGD does still provide a prioritized, partial approxima-
tion to the distribution in terms of the expectation of a special case of functions [Liu and Wang,
2018]. Nevertheless, it is still desirable to develop a variant of “single-chain SVGD”, which only
requires to run a single chain sequentially like MCMC to achieve the correct stationary distribution
asymptotically in time, with no need to take the limit of infinite number of parallel particles.

In this work, we propose an example of single-chain SVGD by integrating the special repulsive
mechanism of SVGD with gradient-based MCMC such as Langevin dynamics. Our idea is to use
repulsive term of SVGD to enforce the samples in MCMC away from the past samples visited at
previous iterations. Such a new self-repulsive dynamics allows us to decrease the auto-correlation in
MCMC and hence increase the mixing rate, but still obtain the same stationary distribution thanks
to the special property of the SVGD repulsive mechanism.

We provide thorough theoretical analysis of our new method, establishing its asymptotic conver-
gence to the target distribution. Such result is highly non-trivial, as our new self-repulsive dynamic
is a non-linear high-order Markov process. Empirically, we evaluate our methods on an array of
challenging sampling tasks, showing that our method yields much better uncertainty estimation and
larger effective sample size.

2 Background: Langevin dynamics & SVGD

This section gives a brief introduction on Langevin dynamics [Rossky et al., 1978] and Stein Varia-
tional Gradient Descent (SVGD) [Liu and Wang, 2016], which we integrate together to develop our
new self-repulsive dynamics for more efficient sampling.

Langevin Dynamics Langevin dynamics is a basic gradient based MCMC method. For a given
target distribution supported on Rd with density function ρ∗(θ) ∝ exp(−V (θ)), where V : Rd 7→ R
is the potential function, the (Euler-discrerized) Langevin dynamics simulates a Markov chain with
the following rule:

θk+1 = θk − η∇V (θk) +
√

2ηek, ek ∼ N (0, I),

where k denotes the number of iterations, {ek}∞k=1 are independent standard Gaussian noise, and
η is a step size parameter. It is well known that the limiting distribution of θk when k → ∞
approximates the target distribution when η is sufficiently small.

Because the updates in Langevin dynamics are local and incremental, new points generated by
the dynamics can be highly correlated to the past sample, in which case we need to run Langevin
dynamics sufficiently long in order to obtain diverse samples.

Stein Variatinal Gradient Descent (SVGD) Different from Langevin dynamics, SVGD itera-
tively evolves a pre-defined number of particles in parallel. Starting from an initial set of particles
{θi0}Mi=1, SVGD updates the M particles in parallel by

θik+1 = θik + ηg(θik; δ̂Mk ), ∀i = 1, . . . ,M,

where g(θik; δ̂Mk ) is a velocity field that depends the empirical distribution of the current set of
particles δ̂Mk := 1

M

∑M
j=1 δθjk

in the following way,

g(θik; δ̂Mk ) = Eθ∼δ̂Mk

[
−K(θ,θik)∇V (θ)︸ ︷︷ ︸

Confining Term

+ ∇θK(θ,θik)︸ ︷︷ ︸
Repulsive Term

]
.

Here δθ is the Dirac measure centered at θ, and hence Eθ∼δ̂Mk
[·] denotes averaging on the particles.

The K(·, ·) is a positive definite kernel, such as the RBF kernel, that can be specified by users.

Note that g(θik; δ̂Mk ) consists of a confining term and repulsive term: the confining term pushes
particles to move towards high density region, and the repulsive term prevents the particles from
colliding with each other. It is the balance of these two terms that allows us to asymptotically
approximate the target distribution ρ∗(θ) ∝ exp(−V (θ)) at the fixed point, when the number of
particles goes to infinite. We refer the readers to Liu and Wang [2016], Liu [2017], Liu and Wang
[2018] for thorough theoretical justifications of SVGD. But a quick, informal way to justify the
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SVGD update is through the Stein’s identity, which shows that the velocity field g(θ; ρ) equals zero
when ρ equals the true distribution ρ∗, that is, ∀θ′ ∈ Rd,

g(θ′; ρ∗) = Eθ∼ρ∗ [−K(θ,θ′)∇V (θ) +∇θK(θ,θ′)] = 0. (1)

This equation shows that, the target distributions forms a fixed point of the update, and SVGD would
converge if the particle distribution δ̂Mk gives a close approximation to the target distribution ρ∗.

3 Stein Self-Repulsive Dynamics

In this work, we propose to integrate Langevin dynamics and SVGD to simultaneously decrease
the auto-correlation of Langevin dynamics and eliminate the need for running parallel chains in
SVGD. The idea is to use Stein repulsive force between the the current particle and the particles
from previous iterations, hence forming a new self-avoiding dynamics with fast convergence speed.

Specifically, assume we run a single Markov chain like Langevin dynamics, where θk denotes the
sample at the k-th iteration. Denote by δ̃Mk the empirical measure of M samples from the past
iterations:

δ̃Mk :=
1

M

M∑
j=1

δθk−jcη , cη = c/η,

where cη is a thinning factor, which scales inversely with the step size η, introduced to slim the
sequence of past samples. Compared with the δ̂Mk in SVGD, which is averaged over M parallel
particles, δ̃Mk is averaged across time over M past samples. Given this, our Stein self-repulsive
dynamics updates the sample via

θk+1 ← θk + (−ηV (θk) +
√

2ηek)︸ ︷︷ ︸
Langevin

+ ηαg(θk; δ̃Mk )︸ ︷︷ ︸
Stein Repulsive

, (2)

in which the particle is updated with the typical Langevin gradient, plus a Stein repulsive force
against the particles from the previous iterations. Here α ≥ 0 is a parameter that controls the mag-
nitude of the Stein repulsive term. In this way, the particles are pushed away from the past samples,
and hence admits lower auto-correlation and faster convergence speed. Importantly, the addition of
the repulsive force does not impact the asymptotic stationary distribution, thanks to Stein’s identity
in (1). This is because if the self-repulsive dynamics has converged to the target distribution ρ∗, such
that θk ∼ ρ∗ for all k, the Stein self-repulsive term would equal to zero in expectation due to Stein’s
identity and hence does not introduce additional bias over Langevin dynamics. Rigorous theoretical
analysis of this idea is developed in Section 4.

Practical Algorithm Because δ̃Mk is averaged across the past samples, it is necessary to introduce
a burn-in phase with the repulsive dynamics. Therefore, our overall procedure works as follows,

θk+1 =

{
θk−η∇V (θk)+

√
2ηek, k < Mcη,

θk+η
[
−∇V (θk)+αg(θk; δ̃Mk )

]
+
√

2ηek, k ≥Mcη.
(3)

It includes two phases. The first phase is the same as the Langevin dynamics which collects the
initial M samples used in the second phase while serves as a warm start. The repulsive gradient
update is introduced in the second phase to encourage the dynamics to visit the under-explored
density region. We call this particular instance of our algorithm Self-Repulsive Langevin dynamics
(SRLD), self-repulsive variants of more general dynamics is discussed in Section 5.

Remark Note that the first phase is introduced to collect the initial M samples. However, it’s
not really necessary to generate the initial M samples with Langevin dynamics. We can simply use
some other initialization distribution and get M initial samples from that distribution. In practice,
we find using Langevin dynamics to collect the initial samples is natural and it can also be viewed
as the burn-in phase before sampling, so we use (3) in all of the other experiments.

Remark The general idea of introducing self-repulsive terms inside MCMC or other iterative
algorithms is not new itself. For example, in molecular dynamics simulations, an algorithm called
metadynamics [Laio and Parrinello, 2002] has been widely used, in which the particles are repelled
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away from the past samples in a way similar to our method, but with a typical repulsive function,
such as

∑
j D(θk, θk−jcη ), where D(·, ·) can be any kind of dis-similarity. However, introducing an

arbitrary repulsive force would alter the stationary distribution of the dynamics, introducing a harm-
ful bias into the algorithm. Besides, the self-adjusting mechanism in Deng et al. [2020b] can also
be viewed as a repulsive force using the multiplier in gradient. The key highlight of our approach,
as reflected by our theoretical results in Section 4, is the unique property of the Stein repulsive term,
that allows us to obtain the correct stationary distribution even with the addition of the repulsive
force.

Remark Recent works [Gallego and Insua, 2018, Zhang et al., 2018] also combine SVGD with
Langevin dynamics, in which, however, the Langevin force is directly added to a set of particles that
evolve in parallel with SVGD. Using our terminology, their system is

θik+1 = θik + (−ηV (θik) +
√

2ηeik) + ηαg(θik; δ̂Mk ), ek ∼ N (0, I), ∀i = 1, . . . ,M.

This is significantly different from our method on both motivation and practical algorithm. Their
algorithm still requires to simulate M parallel chains of particles like SVGD, and was proposed to
obtain easier theoretical analysis than the deterministic dynamics of SVGD. Our work is instead mo-
tivated by the practical need of decreasing the auto-correlation in Langevin dynamics, and avoiding
the need of running multiple chains in SVGD, and hence must be based on self-repulsion against
past samples along a single chain.
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Figure 1: Illustrating the advantage of our Self-Repulsive
Langevin dynamics. With a set of initial examples locat-
ing on the left part of the target distribution (yellow dots),
Self-Repulsive Langevin dynamics is forced to explore the
right part more frequently, yielding an accurate approxima-
tion when combined with the initial samples. Langevin dy-
namics, however, does not take the past samples into ac-
count and yields a poor overall approximation.

An Illustrative Example We give
an illustrative example to show the
key advantage of our self-repulsive
dynamics. Assume that we want
to sample from a bi-variate Gaus-
sian distribution shown in Figure 1.
Unlike standard settings, we assume
that we have already obtained some
initial samples (yellow dots in Fig-
ure 1) before running the dynamics.
The initial samples are assumed to
concentrate on the left part of the
target distribution as shown in Fig-
ure 1. In this extreme case, since the
left part of the distribution is over-
explored by the initial samples, it is
desirable to have the subsequent new
samples to concentrate more on the
un-explored part of the distribution.
However, standard Langevin dynam-
ics does not take this into account,
and hence yielding a biased over-
all representation of the true distri-
bution (left panel). With our self-
repulsive dynamics, the new samples
are forced to explore the un-explored
region more frequently, allowing us
to obtain a much more accurate approximation when combining the new and initial samples.

4 Theoretical Analysis of Stein Self-Repulsive Dynamics

We provide theoretical analysis of the self-repulsive dynamics. We establish that our self-repulsive
dynamics converges to the correct target distribution asymptotically, in the limit when particle size
M approaches to infinite and the step size η approaches to 0. This is a highly non-trivial task, as the
self-repulsive dynamics is a highly complex, non-linear and high order Markov stochastic process.
We attack this problem by breaking the proof into the following three steps:

(1) At the limit of M →∞ (called the mean field limit), we show that practical dynamics in (3) is
closely approximated by a discrete-time mean-field dynamics characterized by (4).

4



(2) By further taking the limit of η → 0+ (called the continuous-time limit), the dynamics in (4)
converges to a continuous-time mean-field dynamics characterized by (5).

(3) We show that the dynamics in (5) converges to the target distribution.
Remark As we mentioned in Section 3, we introduce the first phase to collect the initial M
samples for the second phase, and our theoretical analysis follows this setting to make our theory as
close to the practice. However, the theoretical analysis can be generalized to the setting of drawing
M initial samples from some initialization distribution with almost identical argument.

Notations We use ‖·‖ and 〈·, ·〉 to represent the `2 vector norm and inner product, respectively.
The Lipschitz norm and bounded Lipschitz norm of a function f are defined by ‖f‖Lip and ‖f‖BL.
The KL divergence, Wasserstein-2 distance and Bounded Lipschitz distance between distribution
ρ1, ρ2 are denoted as DKL[ρ1‖ρ2], W2[ρ1, ρ2] and DBL[ρ1, ρ2], respectively.

4.1 Mean-Field and Continuous-Time Limits

To fix the notation, we denote by ρk := Law(θk) the distribution of θk at time k of the practical
self-repulsive dynamics (3), which we refer to the practical dynamics in the sequel, when the initial
particle θ0 is drawn from an initial continuous distribution ρ0. Note that given ρ0, the subsequent ρk
can be recursively defined through dynamics (3). Due to the diffusion noise in Langevin dynamics,
all ρk are continuous distributions supported on Rd. We now introduce the limit dynamics when we
take the mean-field limit (M → +∞) and then the continuous-time limit (η → 0+).

Discrete-Time Mean-Field Dynamics (M → +∞) In the limit ofM →∞, our practical dynamics
(3) approaches to the following limit dynamics, in which the delta measures on the particles are
replaced by the actual continuous distributions of the particles,

θ̃k+1 =

{
θ̃k−η∇V (θ̃k)+

√
2ηek, k ≤Mcη,

θ̃k+η
[
−∇V (θ̃k)+αg(θ̃k, ρ̃

M
k )
]
+
√

2ηek, k ≥Mcη.
(4)

where ρ̃Mk = 1
M

∑M
j=1 ρ̃k−jcη and ρ̃k := Law(θ̃k) is the (smooth) distribution of θ̃k at time-step

k when the dynamics is initialized with θ̃0 ∼ ρ̃0 = ρ0. Compared with the practical dynamics
in (3), the difference is that the empirical distribution δ̃Mk is replaced by the smooth distribution
ρ̃Mk . Similar to the recursive definition of ρk following dynamics (3), ρ̃k is also recursively defined
through dynamics (4), starting from ρ̃0 = ρ0.

As we show in Theorem 4.3, if the auto-correlation of θk decays fast enough and M is sufficiently
large, ρ̃Mk is well approximated by the empirical distribution δ̃Mk in (3), and further the two dynamics
((3) and (4)) converges to each other in the sense that W2[ρk, ρ̃k] → 0 as M → ∞ for any k. Note
that in taking the limit of M →∞, we need to ensure that we run the dynamics for more than Mcη
steps. Otherwise, SRLD degenerates to Langevin dynamics as we stop the chain before we finish
collecting the M samples.

Continuous-Time Mean-Field Dynamics (η → 0+) In the limit of zero step size (η → 0+), the
discrete-time mean field dynamics in (4) can be shown to converge to the following continuous-time
mean-field dynamics:

dθ̄t =

{
−∇V (θ̄t)dt+ dBt, t ∈ [0,Mc),[
−∇V (θ̄t) + αg(θ̄t, ρ̄

M
t )
]
dt+ dBt, t ≥Mc.

(5)

where ρ̄Mt := 1
M

∑M
j=1 ρ̄t−jc(·), Bt is the Brownian motion and ρ̄t = Law

(
θ̄t
)

is the distribution
of θ̄t at a continuous time point t with θ0 initialized by θ̄0 ∼ ρ̃0 = ρ0. We prove that (5) is
closely approximated by (4) with small step size in the sense that DKL[ρ̃k‖ρ̄kη] → 0 as η → 0
in Theorem 4.2, and importantly, the stationary distribution of (5) equals to the target distribution
ρ∗(θ) ∝ exp(−V (θ)).

4.2 Assumptions

We first introduce the techinical assumptions used in our theoretical analysis.

Assumption 4.1 (RBF Kernel). We use RBF kernel, i.e. K(θ1,θ2) = exp(−‖θ1 − θ2‖2 /σ), for
some fixed 0 < σ <∞.
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We only assume the RBF kernel for the simplicity of our analysis. However, it is straightforward to
generalize our theoretical result to other positive definite kernels.

Assumption 4.2 (V is dissipative and smooth). Assume that 〈θ,−∇V (θ)〉 ≤ b1 − a1 ‖θ‖2 and
‖∇V (θ1)−∇V (θ2)‖ ≤ b1 ‖θ1 − θ2‖. We also assume that ‖∇V (0)‖ ≤ b1. Here a1 and b1 are
some finite positive constant.

Assumption 4.3 (Regularity Condition). Assume Eθ∼ρ0 [‖θ‖2] > 0. Define ρMk =∑M
j=1 ρk−jcη/M , assume there exists a2, B <∞ such that

sup
k≥Mcη

E
∥∥∥g(θk; δ̃Mk )− g(θk; ρMk )

∥∥∥2
sup‖θ‖≤B E

∥∥∥g(θ; δ̃Mk )− g(θ; ρMk )
∥∥∥2 ≤ a2.

Assumption 4.4 (Strong-convexity). Suppose that 〈∇V (θ1)−∇V (θ2),θ1 − θ2〉 ≥ L ‖θ1 − θ2‖2
for a positive constant L.

Remark Assumption 4.2 is standard in the existing Langevin dynamics analysis [see Dalalyan,
2017, Raginsky et al., 2017, Deng et al., 2020a]. Assumption 4.3 is a weak condition as it as-
sumes that the dynamics can not degenerate into one local mode and stop moving anymore. This
assumption is expected to be true when we have diffusion terms like the Gaussian noises in our self-
repulsive dynamics. Assumption 4.4 is a classical assumption on the existing Langevin dynamics
analysis with convex potential Dalalyan [2017], Durmus et al. [2019]. Although being a bit strong,
this assumption broadly applies to posterior inference problem in the limit of big data, as the poste-
rior distribution converges to Gaussian distributions for large training set as shown by Bernstein-von
Mises theorem. It is technically possible to further generalize our results to the non-convex settings
with a refined analysis, which we leave as future work. This work focuses on the classic convex
setting for simplicity.

4.3 Main Theorems

All of the proofs in this section can be found in Appendix E. We first prove that the limiting distri-
bution of the continuous-time mean field dynamics (5) is the target distribution. This is achieved by
writing dynamics (5) into the following (non-linear) partial differential equation:

∂tρ̄t =

{
∇ · (−∇V ρ̄t) + ∆ρ̄t t ∈ [0,Mc)

∇ ·
[(
−∇V + αg(·, ρ̄Mt )

)
ρ̄t
]

+ ∆ρ̄t, t ≥Mc.

Theorem 4.1 (Stationary Distribution). Given some finite M , c and α, and suppose that the limit
distribution of (5) exists. Then the limit distribution is unique and satisfies ρ∗(θ) ∝ exp(−V (θ)).

We then give the upper bound on the discretization error, which can be characterized by analyzing
the KL divergence between ρ̃k and ρ̄kη .
Theorem 4.2 (Time Discretization Error). Given some sufficiently small step size η and choose
α < a2/(2b1 + 4/σ). Under Assumption 4.1, 4.2, 4.3 and cη = c/η. we have for some constant C,

max
l∈{0,...,k}

DKL [ρ̄lη‖ρ̃l] ≤

{
O
(
η + kη2

)
k ≤Mcη − 1

O
(
η +Mcη + α2MceCα

2(kη−Mc)η2
)

k ≥Mcη.

With this theorem, we can know that if η is small enough, then the discretization error is small and
ρ̃ approximates ρ̄ closely. Next we give result on the mean field limit of M →∞.
Theorem 4.3 (Mean-Field Limit). Under Assumption 4.1, 4.2, 4.3, and 4.4, suppose that we choose
α and η such that−(a1−2αb1/σ) +ηb1 < 0; 2αη

σ (b1 + 1) < 1; a2−α
(
2b1 + 4

σ

)
> 0; Then there

exists a constant c2, such that when L/a ≥ c2 and we have

W2
2[ρk, ρ̃k] =

{
O
(
α2/M + η2

)
≥Mcη,

0 k ≤Mcη − 1.

Thus, if M is sufficiently large, ρk can well approximate the ρ̃k. Combining all the above theorems,
we have the following Corollary showing the convergence of the proposed practical algorithm to the
target distribution.
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Corollary 4.1 (Convergence to Target Distribution). Under the assumptions of Theorem 4.1, 4.2
and 4.3, by choosing k, η,M such that kη → ∞, exp(Cα2kη)η2 = o(1) and kη

Mc = γ (1 + o(1))
with γ > 1, we have

lim
k,M→∞,η→0+

DBL [ρk, ρ
∗] = 0.

Remark A careful choice of parameters is needed as our system is a complicated longitudinal
particle system. Also notice that if γ ≤ 1, the repulsive dynamics reduces to Langevin dynamics, as
only the samples from the first phase will be collected.

5 Extension to General Dynamics

Although we have focused on self-repulsive Langevin dynamics, our Stein self-repulsive idea can
be broadly combined with general gradient-based MCMC. Following Ma et al. [2015], we consider
the following general class of sampling dynamics for drawing samples from p(θ) ∝ exp(−V (θ)):

dθt = −f(θ)dt+
√

2D(θ)dBt,

with f(θ) = [D(θ) +Q(θ)]∇V (θ)− Γ(θ), Γi(θ) =

d∑
j=1

∂

∂θj
(Dij(θ) +Qij(θ)) .

where D is a positive semi-definite diffusion matrix that determines the strength of the Brownian
motion and Q is a skew-symmetric curl matrix that can represent the traverse effect [e.g. in Neal
et al., 2011, Ding et al., 2014]. By adding the Stein repulsive force, we obtain the following general
self-repulsive dynamics

dθ̄t =

{
−f(θ)dt+

√
2D(θ)dBt, t ∈ [0,Mc)

−
(
f(θ) + αg(θ̄t; ρ̄

M
t )
)
dt+ dBt, t ≥Mc

(6)

where ρ̄t := Law(θ̄t) is again the distribution of θ̄t following (6) when initalized at θ̄0 ∼ ρ̄0. Similar
to the case of Langevin dynamics, this process also converges to the correct target distribution, and
can be simulated by practical dynamics similar to (3).

Theorem 5.1 (Stationary Distribution). Given some finiteM , c and α, and suppose that the limiting
distribution of dynamics (6) exists. Then the limiting distribution is unique and equals the target
distribution ρ∗(θ) ∝ exp(−V (θ)).

6 Experiments

In this section, we evaluate the proposed method in various challenging tasks. We demonstrate
the effectiveness of SRLD in high dimensions by applying it to sample the posterior of Bayesian
Neural Networks. To demonstrate the superiority of the SRLD in obtaining diversified samples,
we apply SRLD on contextual bandits problem, which requires the sampler efficiently explores the
distribution in order to give good uncertainty estimation.

We include discussion on the parameter tuning and additional experiment on sampling high dimen-
sional Gaussian and Gaussian mixture in Appendix B. Our code is available at https://github.
com/lushleaf/Stein-Repulsive-Dynamics.

6.1 Synthetic Experiment

We first show how the repulsive gradient helps explore the whole distribution using a synthetic
distribution that is easy to visualize. Following Ma et al. [2015], we compare the sampling efficiency
on the following correlated 2D distribution with density

ρ∗([θ1, θ2]) ∝ −θ4
1/10−

(
4 (θ2 + 1.2)− θ2

1

)2
/2.

We compare the SRLD with vanilla Langevin dynamics, and evaluate the sample quality by Maxi-
mum Mean Discrepancy (MMD) [Gretton et al., 2012], Wasserstein-1 Distance and effective sample
size (ESS). Notice that the finite sample quality of gradient based MCMC method is highly related
to the step size. Compared with Langevin dynamics, we have an extra repulsive gradient and thus
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Figure 2: Sample quality of SRLD and Langevin dynamics for sampling the correlated 2D distribu-
tion. The auto-correlation is the averaged auto-correlation of the two dimensions.
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Figure 3: Sampling trajectory of the correlated 2D distribution.

we implicitly have larger step size. To rule out this effect, we set different step sizes of the two
dynamics so that the gradient of the two dynamics has the same magnitude.

In addition, to decrease the influence of random noise, the two dynamics are set to have the same
initialization and use the same sequence of Gaussian noise. We collect the sample of every iteration.
We repeat the experiment 20 times with different initialization and sequence of Gaussian noise.

Figure 2 summarizes the result with different metrics. We can see that SRLD has a significantly
smaller MMD and Wasserstein-1 Distance as well as a larger ESS compared with the vanilla
Langevin dynamics. Moreover, the introduced repulsive gradient creates a negative auto-correlation
between samples. Figure 3 shows a typical trajectory of the two sampling dynamics. We can see that
SRLD have a faster mixing rate than vanilla Langevin dynamics. Note that since we use the same
sequence of Gaussian noise for both algorithms, the difference is mainly due to the use of repulsive
gradient rather than the randomness.

6.2 Bayesian Neural Network

Bayesian Neural Network is one of the most important methods in Bayesian Deep Learning with
wide application in practice. Here we test the performance of SRLD on sampling the posterior of
Bayesian Neural Network on the UCI datasets [Dua and Graff, 2017]. We assume the output is
normal distributed, with a two-layer neural network with 50 hidden units and tanh activation to
predict the mean of outputs. All of the datasets are randomly partitioned into 90% for training and
10% for testing. The results are averaged over 20 random trials. We refer readers to Appendix C
for hyper-parameter tuning and other experiment details. Table 1 shows the average test RMSE and
test log-likelihood and their standard deviation. The method that has the best average performance
is marked as boldface. We observe that a large portion of the variance is due to the random partition
of the dataset. Therefore, to show the statistical significance, we use the matched pair t-test to test
the statistical significance, mark the methods that perform the best with a significance level of 0.05
with underlines. Note that the results of SRLD/LD and SVGD is not very comparable, because
SRLD/LD are single chain methods which averages across time, and SVGD is a multi-chain method
that only use the results of the last iteration. We provide additional results in Appendix C that SRLD
averaged on 20 particles (across time) can also achieve similar or better results as SVGD with 20
(parallel) particles.
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Dataset Ave Test RMSE Ave Test LL
SVGD LD SRLD SVGD LD SRLD

Boston 3.300± 0.142 3.342± 0.187 3.086± 0.181 −4.276± 0.217 −2.678± 0.092 −2.500± 0.054
Concrete 4.994± 0.171 4.908± 0.113 4.886± 0.108 −5.500± 0.398 −3.055± 0.035 −3.034± 0.031
Energy 0.428± 0.016 0.412± 0.016 0.395± 0.016 −0.781± 0.094 −0.543± 0.014 −0.476± 0.036
Naval 0.006± 0.000 0.006± 0.002 0.003± 0.000 3.056± 0.034 4.041± 0.030 4.186± 0.015

WineRed 0.655± 0.008 0.649± 0.009 0.639± 0.009 −1.040± 0.018 −1.004± 0.019 −0.970± 0.016
WineWhite 0.655± 0.008 0.692± 0.003 0.688± 0.003 −1.040± 0.019 −1.047± 0.004 −1.043± 0.004

Yacht 0.593± 0.071 0.597± 0.051 0.578± 0.054 −1.281± 0.279 −1.187± 0.307 −0.458± 0.036

Table 1: Averaged test RMSE and test log-likelihood on UCI datasets. Results are averaged over 20
trails. The boldface indicates the method has the best average performance and the underline marks
the methods that perform the best with a significance level of 0.05.

Dataset SVGD LD SRLD
Mushroom 20.7± 2.0 4.28± 0.09 3.80± 0.16

Wheel 91.32± 0.17 38.07± 1.11 32.08± 0.75

Table 2: Cumulative Regrets on two bandits problem (smaller is better). Results are averaged over 10
trails. Boldface indicates the methods with best performance and underline marks the best significant
methods with significant level 0.05.

6.3 Contextual Bandits

We consider the posterior sampling (a.k.a Thompson sampling) algorithm with Bayesian neural
network as the function approximator, to demonstrate the uncertanty estimation provided by SRLD.
We follow the experimental setting from Riquelme et al. [2018]. The only difference is that we
change the optimization of the objective (e.g. evidence lower bound (ELBO) in variational inference
methods) into running MCMC samplers. We compare the SRLD with the Langevin dynamics on
two benchmarks from [Riquelme et al., 2018], and include SVGD as a baseline. For more detailed
introduction, setup, hyper-parameter tuning and experiment details; see Appendix D.

The cumulative regret is shown in Table 2. SVGD is known to have the under-estimated uncertainty
for Bayesian neural network if particle number is limited [Wang et al., 2019b], and as a result, has
the worst performance among the three methods. SRLD is slightly better than vanilla Langevin
dynamics on the simple Mushroom bandits. On the much more harder Wheel bandits, SRLD is
significantly better than the vanilla Langevin dynamics, which shows the improving uncertainty
estimation of our methods within finite number of samples.

7 Conclusion

We propose a Stein self-repulsive dynamics which applies Stein variational gradient to push samples
from MCMC dynamics away from its past trajectories. This allows us to significantly decrease the
auto-correlation of MCMC, increasing the sample efficiency for better estimation. The advantages
of our method are extensive studied both theoretical and empirical analysis in our work. In future
work, we plan to investigate the combination of our Stein self-repulsive idea with more general
MCMC procedures, and explore broader applications.
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A Discussion on Hyper-parameter Tuning

The key hyper-parameters of SRLD are 1. α, which balance the confining gradient and repulsive
gradient; 2. M the number of particles used; 3. σ the bandwidth of kernel; 4. η the stepsize; 5. cη
the thinning factor. Among which, α, M and σ are the hyper-parameter introduced by the proposed
repulsive gradient and thus we mainly discuss these three hyper-parameter. The number of particles
M and bandwidth of kennel σ are introduced by the use the repulsive term in SVGD [Liu and Wang,
2016]. In practice, we find using a similar setting for tuning M and σ as that in SVGD [Liu and
Wang, 2016] gives good performance. In specific, in order to obtain good performance, M does not
needs be very large, and similar to SVGD, M = 10 already gives good enough particle approxima-
tion. A good choice of bandwidth σ is also important for the kernel. In SVGD, instead of tuning
σ, they propose an adaptive way to adjust σ during the running of the dynamics. Specifically, they
choose σ = med2/ log(M), where med is the median of the pairwise distance between the particles
θik, i ∈ [M ]. In this way, the bandwidth ensures that

∑M
j=1K(θik,θ

j
k) ≈ 1. This adaptive way of

choosing σ is also widely used in current approximation inference area, e.g., Liu et al. [2017b], Han
and Liu [2017], Wang et al. [2019b,a]. We also find that applying this adaptive bandwidth is able to
give good empirical performance and thus we also use this method in the implementation. Now we
discuss how choose α. Notice that α serves to balance the confining gradient and repulsive gradient
and based on this motivation, we recommend readers to find a proper α using the samples at burn-in
phase by setting

α ≈
∑Mcη
k=1 ‖∇V (θk)‖∑Mcη
k=1

∥∥∥g(θk, δ̃Mk )
∥∥∥ .

In this way, α balances the two kind of gradients. And then we may further tune α by searching
around this value. An empirical good choice of α is 10 for the data sets we tested and we use α = 10
for all the experiments.

The step size is important for gradient based MCMC, as too large step size gives too large discretiza-
tion error while a too small step size will cause the dynamics converges very slowly. In this paper,
we mainly use validation set to tune the step size. The thinning factor is also a common parameter
is MCMC methods and usually MCMC methods are not sensitive to this parameter. SRLD is not
sensitive to this parameter and we simply set cη = 100 for all experiments.

B Additional Experiment Result on Synthetic Data

In this section, we show additional experiment on synthetic data. To further visualize the role of the
proposed stein repulsive gradient, we also apply our method to sample a 2D mixture of Gaussian
distribution (see section B.1). To further study how different α influences sampling high dimension
distribution, we apply SRLD to sample high dimensional Gaussian (section B.2) and high dimen-
sional mixture of Gaussian (section B.3).

B.1 Synthetic 2D Mixture of Gaussian Experiment
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Figure 4: Sample quality and autocorrelation of the mixture distribution. The auto-correlation is the
averaged auto-correlation of the two dimensions.

We aim to show how the repulsive gradient helps the particle escape from the local high density
region by sampling the 2D mixture of Gaussian distribution using SRLD and Langevin dynamics.
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