
Extending High-Level Synthesis for Task-Parallel
Programs

Yuze Chi∗, Licheng Guo∗, Jason Lau∗, Young-kyu Choi∗†, Jie Wang∗, Jason Cong∗
∗University of California, Los Angeles, †Inha University

{chiyuze,cong}@cs.ucla.edu

Abstract—C/C++/OpenCL-based high-level synthesis (HLS)
becomes more and more popular for field-programmable gate
array (FPGA) accelerators in many application domains in recent
years, thanks to its competitive quality of results (QoR) and
short development cycles compared with the traditional register-
transfer level design approach. Yet, limited by the sequential
C semantics, it remains challenging to adopt the same highly
productive high-level programming approach in many other
application domains, where coarse-grained tasks run in parallel
and communicate with each other at a fine-grained level. While
current HLS tools do support task-parallel programs, the pro-
ductivity is greatly limited � in the code development cycle due to
the poor programmability, � in the correctness verification cycle
due to restricted software simulation, and � in the QoR tuning
cycle due to slow code generation. Such limited productivity
often defeats the purpose of HLS and hinder programmers from
adopting HLS for task-parallel FPGA accelerators.

In this paper, we extend the HLS C++ language and present a
fully automated framework with programmer-friendly interfaces,
unconstrained software simulation, and fast hierarchical code
generation to overcome these limitations and demonstrate how
task-parallel programs can be productively supported in HLS.
Experimental results based on a wide range of real-world task-
parallel programs show that, on average, the lines of kernel and
host code are reduced by 22% and 51%, respectively, which
considerably improves the programmability. The correctness
verification and the iterative QoR tuning cycles are both greatly
shortened by 3.2× and 6.8×, respectively. Our work is open-source
at https://github.com/UCLA-VAST/tapa/.

I. INTRODUCTION

C/C++/OpenCL-based high-level synthesis (HLS) [1] has

been adopted rapidly by both the academia and the industry

for programming field-programmable gate array (FPGA) ac-

celerator design in many application domains, e.g., machine

learning [2–4], scientific computing [5–8], and image pro-

cessing [9–11]. Compared with the traditional register-transfer

level (RTL) paradigm where the debug turnaround time of even

simple applications [12] can take tens of minutes, with HLS,

programmers can follow a rapid development cycle. Program-

mers can write code in C and leverage fast software simulation

to verify the functional correctness. The debug turnaround time

for such a correctness verification cycle can take as few as just

one second instead of tens of minutes, allowing functionalities

to be iterated at a fast pace. Once the HLS code is functionally

correct, programmers can then generate RTL code, evaluate the

quality of results (QoR) based on the generated performance

and resource reports, and modify the HLS code accordingly.

Such a QoR tuning cycle typically takes only a few minutes for

a simple design or a component in a modular design. Thanks

to the advances in HLS scheduling algorithms [13–17] and

timing optimizations [18–21], HLS can not only shorten the

development cycle, but also generate programs that are often

competitive in cycle count [22], and more recently in clock

frequency as well [19, 21]. Moreover, FPGA vendors provide

host drivers and communication interfaces for kernels designed

in HLS [23, 24], further reducing programmers’ burden to

integrate and offload workload to FPGA accelerators.

However, not all programs are created equal for HLS.

Data-parallel programs can be easily programmed following

the sequential C semantics, which enables such applications

to be quickly designed and iterated in the fast correctness

verification cycle and QoR tuning cycle. In contrast, task-

parallel programs are not supported by the native C semantics,

and the productivity provided by current HLS tools is greatly

limited for the following reasons:

• Poor programmability. Due to the lack of convenient appli-

cation programming interfaces (API), programmers are often

forced to write more code than necessary. For example, for

an accelerator with PEs connected through a simple on-chip

network, a network node needs to forward packets based on

their content (header) and the availability of output ports.

Without an API to read packets without consuming them

(i.e., “peek”) from the ports, programmers have to manually

and carefully create a buffer and maintain a small state

machine to keep track of incoming packets. This not only

elongates the development cycle, but also is error-prone.

• Restricted software simulation. As the key to fast correctness

verification, software simulation is not always available to

task-parallel programs. For example, Vivado HLS software

simulation does not support Cannon’s algorithm [25] be-

cause its sequential execution of tasks cannot correctly

simulate feedback loops in data paths, while Intel OpenCL

simulator does not support more than 256 concurrent

kernels [24]. Unavailability of software simulation forces

programmers to resort to RTL simulation for correctness

verification, significantly elongating the development cycle.

• Slow code generation. We found that current HLS compilers

do not support hierarchical code generation for task-parallel

programs. Instead, they treat all tasks as a monolithic design

and process each instance of the same task as if they were

different. For designs that instantiate the same task many

times (e.g., in a systolic array), this leads to repetitive

compilation on each task and unnecessarily slows down code

generation. Programmers can manually synthesize tasks

204

2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/21/$31.00 ©2021 IEEE
DOI 10.1109/FCCM51124.2021.00032

separately and instantiate them in RTL, but doing so requires

debugging RTL code, which is time-consuming and error-

prone. We think such processes should be automated.

Limited productivity support for task-parallel programs

significantly elongates the development cycles and under-

mines the benefits brought by HLS. One may argue that

programmers should always go for data-parallel implemen-

tations when designing FPGA accelerators using HLS, but

data-parallelism may be inherently limited, for example, in

applications involving graphs. Moreover, researches show that

even for data-parallel applications like neural networks [3] and

stencil computation [9], task-parallel implementations show

better scalability and higher frequency than their data-parallel

counterparts due to the localized communication pattern [26].

In fact, at least 6 papers [11, 27–31] among the 28 research

papers published in the ACM FPGA 2020 conference use task-

parallel implementation with HLS, and another 3 papers [32–

34] use RTL implementation that would have required task-

parallel implementation if written in HLS.

In this paper, we extend the HLS C++ language and

present our framework, TAPA (task-parallel)1, as a solution

to the aforementioned limitations of HLS productivity. Our

contributions include:

• Convenient programming interfaces: We show that, with

peeking and transactions added to the programming inter-

faces, TAPA can be used to program task-parallel kernels

with 22% reduction in lines of code (LoC) on average. By

unifying the interface used for the kernel and host, TAPA

further reduces the LoC on the host side by 51% on average.

• Unconstrained software simulation: We demonstrate that

our proposed simulator can correctly simulate task-parallel

programs that existing software simulators fail to simulate.

Moreover, the correctness verification cycle can be short-

ened by a factor of 3.2× on average.

• Hierarchical code generation: We show that by modu-

larizing a task-parallel program and using a hierarchical

approach, RTL code generation can be accelerated by a

factor of 6.8× on our server with 32 hyper-threads.

• Fully automated open-source framework: TAPA is open-

source at https://github.com/UCLA-VAST/tapa/.

Table I summarizes the related work. Among all general

HLS tools (Section VI-A) and streaming frameworks (Sec-

tion VI-B): � None of them supports peeking in their kernel

APIs; only Intel HLS stream and Vivado HLS axis support

transactions; only Merlin allows the accelerator kernel to be

called from the host as if it is a C/C++ function. � Vivado

HLS, Merlin, and both streaming frameworks (ST-Accel [36]

and Fleet [37]) execute tasks sequentially for simulation,

which works on limited applications, while others launch one

thread per task instance, which does not scale well. � All

general HLS tools treat a task-parallel program as a monolithic

design and generate RTL code for each instance of task

1While a prior work TAPAS [35] and our work TAPA share similarity in
name, our work focuses on statically mapping tasks to hardware, yet TAPAS
specializes in dynamically scheduling tasks.

TABLE I: Summary of related work.

Related Work
Programmability

Software
Simulation

RTL Code
Generation

Peek-
ing

Trans-
action

Host
Iface.

Fleet [37] No No N/A Sequential N/A
Intel HLS (pipe) No No N/A Multi-thread Monolithic
Intel HLS (stream) No Yes N/A Multi-thread Monolithic
Intel OpenCL No No OpenCL Multi-thread Monolithic
LegUp [38, 39] No No N/A Multi-thread Monolithic
Merlin [40] No No C++ Sequential Monolithic
ST-Accel [36] No No VFS Sequential Hierarchical
Vivado HLS (ap_fifo) No No OpenCL Sequential Monolithic
Vivado HLS (axis) No Yes OpenCL Multi-thread Manual
Xilinx OpenCL No No OpenCL Multi-thread Monolithic

TAPA Yes Yes C++ Coroutine Hierarchical

separately, except that Vivado HLS axis allows programmers

to manually instantiate tasks using a configuration file when

running logic synthesis and implementation. To the best of our

knowledge, TAPA is the only work that provides convenient

programming interfaces, unconstrained software simulation,

and hierarchical code generation for general task-parallel pro-

grams on FPGAs using HLS.

II. BACKGROUND

A. Task-Parallel Program

Task-level parallelism is a form of parallelization of com-

puter programs across multiple processors. In contrast to data

parallelism where the workload is partitioned on data and each

processor executes the same program (e.g., OpenMP [41]),

different processors in a task-parallel program often behave

differently, while data are passed between processors. Ex-

amples of task-parallel programs include image processing

pipelines [9–11], graph processing [42–45], and network

switching [33]. Task-parallel programs are often described us-

ing dataflow models [46–50], where tasks are called processes.

Processes communicate only through unidirectional channels.

Data exchanged between channels are called tokens. In this

paper, we borrow the terms channel and token, and focus on

the problem of statically mapping tasks to hardware. That

is, instances of tasks are synthesized to different areas in

an FPGA accelerator. We plan to address dynamic schedul-

ing [35, 39, 51] in our future work.

B. A Motivating Example

An on-chip ring network is a commonly used topology to

provide all-to-all interconnection among many task-parallel

processing elements (PE) in a single FPGA accelerator, which

is particularly useful in graph processing [52–58] where each

vertex may be connected to any other vertices. A ring network

has the advantages of simplicity and high routability, but

implementing a customized ring network in HLS faces several

issues that make such designs verbose to write, hard to read,

and error-prone. In this section, we use a simplified real-world

design to illustrate the productivity issues for implementing

such a ring network in HLS, which serves as a motivating

example for our work.

205

PE 0

PE 1 PE 2

PE 3
Ring
Node

0

Ring
Node

1

Ring
Node

2

Ring
Node

3

Fig. 1: An accelerator with 4 PEs connected via a ring network.

Fig. 1 shows an example where PEs in an accelerator are

interconnected via a ring network. In this example, network

nodes form a cyclic ring, and each ring node is connected to a

PE via a bidirectional link. Each PE can send packets to other

PEs through its associated node, specifying its destination PE

in the packet header. Each node forwards packets either to

its next node or to its associated PE, based on the packet

header. We assume packets are sent infrequently and channels

between nodes are provisioned so that they will never be full.

Furthermore, we would like to insert packets from PEs to the

network ASAP so that PEs will not stall due to back pressure

from the ring nodes. While such a ring node can be written

using Vivado HLS (Listing 1), we found that the followings

are missing or hard-to-use in the HLS tools and significantly

degrade the productivity.
1) Peeking: Peeking is defined as reading a token from

a channel without consuming it. Compared with the normal

destructive read, peeking is non-destructive because the token

may be read many times. For example, in our ring network,

when Node 1 receives incoming packets from both PE 1 (via

pe_in) and Node 0 (via node_in), it will forward the packet

from PE 1 to Node 2 (via node_out) to prevent PE 1 from

being stalled due to back pressure. In the same clock cycle, the

packet from Node 0 cannot be forwarded unless the destination

of that packet is PE 1 (via pe_out), because we cannot write

two tokens to the same output channel (node_out) in the

same clock cycle. This requires us to conditionally read tokens

based on the content of tokens. Without a peek API, one

has to manually maintain a buffer for the incoming values,

as shown in Line 7–15 of Listing 1. This not only increases

the programming burden, but also makes the design prone to

errors in state transitions of the buffer.
2) Transactions: A sequence of tokens may constitute a

single logical communication transaction. Using the same

ring network example, we consider the whole accelerator

execution as a logical communication transaction, and let each

PE control the termination of each RingNode, as shown in

Line 11 of Listing 1. Without an eot API, one has to manually

add a special bit to the data structure to indicate the end-of-
transaction (Line 1–4 of Listing 1). Note that the Pkt struct

may be used elsewhere, thus it may be infeasible to add the

eot bit directly to the Pkt struct. Moreover, determining the

end of transaction must be a peek operation; otherwise, the

HLS compiler will be unable to schedule the exit condition

in the first stage of pipeline, leading to II greater than 1. This

further complicates the HLS implementation (Listing 1).

3) System integration: To offload computation kernel from

the host CPU to PCIe-based FPGA accelerators, programmers

need to write host-side code to interface the accelerator kernel

with the host. FPGA vendors adopt the OpenCL standard

to provide such a functionality. While the standard OpenCL

host-kernel interface infrastructure relieves programmers from

writing their own operating system drivers and low-level

libraries, it is still inconvenient and hard-to-use. Programmers

often have to write and debug tens of lines of code just to set

up the host-kernel interface. This includes manually setting up

environmental variables for simulation, creating, and maintain-

ing OpenCL Context, CommandQueue, Program, Kernel, etc.

data structures [59]. Task-parallel accelerators often make the

situation worse because the parallel tasks are often described

as distinct OpenCL kernels [24], which significantly increases

the programmers’ burden on managing multiple kernels in the

host-kernel interface. In our experiments, more than 60 lines

of host code are created just for the host-kernel integration,

which constitute more than 20 percent of the whole source

code. Yet, what we want is just a single function invocation

of the synthesized FPGA bitstream given proper arguments.

4) Software simulation: C does not have explicit parallel

semantics by itself. Vivado HLS uses the dataflow model and

allows programmers to instantiate tasks by invoking each of

them sequentially [23]. While this is very concise to write

(Listing 2), it leads to incorrect simulation results because the

communication between a ring node and its corresponding PE

is bidirectional, yet sequential execution can only send tokens

from nodes to PEs because of their invocation order. This

problem was also pointed out in [60]. In order to run software

simulation correctly, the programmer can change the source

code to run tasks in multiple threads, but doing so requires the

same piece of task instantiation code to be written twice for

synthesis and simulation, reducing productivity. While there

exist other tools (e.g. [24]) that can run tasks in parallel threads

and do not have the same correctness problem, we will show

in Section V-D that such simulators do not scale well when

the number of task instances increases.

5) RTL code generation: In our ring network example, the

same ring node is instantiated many times. While state-of-

the-art HLS compilers can recognize multiple instances of the

same function and reuse HLS results for regular non-task-

parallel programs, task-parallel programs are always treated as

a monolithic one. This means instances of the same task in a

task-parallel program are treated as if they were different, pos-

sibly in order to explore different communication interfaces of

each instance. This significantly elongates the code generation

time when the number of instances is large (Section V-E). We

can manually do hierarchical code generation, i.e., synthesize

each task separately and connect the generated RTL code, but

doing so forces us to debug RTL code and spend tens of

minutes to verify the correctness for each code modification,

thus defeats the purpose for adopting HLS.

In this paper, we present the TAPA framework and address

these challenges by providing convenient programming in-

terfaces, unconstrained software simulation, and hierarchical

206

1 struct PktEoT {
2 Pkt pkt;
3 bool eot;
4 };
5 void RingNode(stream<Pkt>& node_in, stream<PktEoT>& pe_in,
6 stream<Pkt>& node_out, stream<Pkt>& pe_out) {
7 Pkt node_pkt;
8 bool node_pkt_valid = false;
9 PktEoT pe_pkt;

10 bool pe_pkt_valid = false;
11 while (!(pe_pkt_valid && pe_pkt.eot)) {
12 if (!pe_pkt_valid)
13 pe_pkt_valid = pe_in.read_nb(pe_pkt);
14 if (!node_pkt_valid)
15 node_pkt_valid = node_in.read_nb(node_pkt);
16 if (pe_pkt_valid) {
17 node_out.write(pe_pkt.pkt);
18 pe_pkt_valid = false;
19 if (node_pkt_valid && IsForThisNode(node_pkt)) {
20 pe_out.write(node_pkt);
21 node_pkt_valid = false;
22 }
23 } else if (node_pkt_valid) {
24 Pkt pkt = node_pkt;
25 node_pkt_valid = false;
26 (IsForThisNode(pkt) ? pe_out : node_out).write(pkt);
27 }
28 } // Highlighted are destructive read operations and
29 } // non-destructive read (peek) operations.

Listing 1: Ring network node written in Vivado HLS.

1 void Kernel(...) {
2 stream<Pkt, 2> node_0_1, node_1_2, ...
3 stream<Pkt, 2> from_pe_0, to_pe_0, from_pe_1, to_pe_1, ...
4 // Instantiates other channels...
5 #pragma HLS dataflow
6 RingNode(node_0_1, node_1_2, from_pe_1, to_pe_1);
7 RingNode(node_1_2, node_2_3, from_pe_2, to_pe_2);
8 // Instantiates other ring nodes and PEs...
9 }

Listing 2: Accelerator task instantiation in Vivado HLS.

code generation.

III. TAPA PROGRAMMING MODEL AND INTERFACES

A. Hierarchical Programming Model
TAPA uses a hierarchical programming model. Each task

is either a leaf that does not instantiate any channels or

tasks, or a collection of tasks and channels with which the

tasks communicate. A task that instantiates a set of tasks and

channels is called the parent task for that set. Correspondingly,

the instantiated tasks are the children tasks of their parent,

which may be parents of their own children. Each channel

must be connected to exactly two tasks. One of the tasks must

act as a producer and the other must act as a consumer. The

producer streams tokens to the consumer via the channel in the

first-in-first-out (FIFO) order. Each task is implemented as a

C++ function, which can communicate with each other via the

communication interface. A parent task instantiates channels

and tasks using the instantiation interface, and waits until all

its children tasks finish. One of the tasks is designated as

the top-level task, which defines the communication interfaces

external to the FPGA accelerator, i.e., the system integration
interface.

Auxiliary struct for termination control;
eot stands for “end of transaction”.

Manually maintained input
buffers to implement non-
destructive read (i.e., peek).

Manually
update
buffers.

B. Convenient Programming Interfaces
1) Communication Interface: TAPA provides separate com-

munication APIs for the producer side and the consumer

1 void RingNode(istream<Pkt>& node_in, istream<Pkt>& pe_in,
2 ostream<Pkt>& node_out, ostream<Pkt>& pe_out) {
3 while (!pe_in.eot()) {
4 if (!pe_in.empty()) {
5 node_out.write(pe_in.read());
6 if (!node_in.empty() && IsForThisNode(node_in.peek()))
7 pe_out.write(node_in.read());
8 } else if (!node_in.empty()) {
9 Pkt pkt = node_in.read();

10 (IsForThisNode(pkt) ? pe_out : node_out).write(pkt);
11 }
12 } // Highlighted are destructive read operations and
13 } // non-destructive read (peek) operations.

Listing 3: Ring network node written in TAPA.

1 void Kernel(...) {
2 channel<Pkt, 2> node_0_1, node_1_2, ...
3 channel<Pkt, 2> from_pe_0, to_pe_0, from_pe_1, to_pe_1, ...
4 // Instantiates other channels...
5 task()
6 .invoke(RingNode, node_0_1, node_1_2, from_pe_1, to_pe_1)
7 .invoke(RingNode, node_1_2, node_2_3, from_pe_2, to_pe_2)
8 // Instantiates other ring nodes and PEs...
9 }

Listing 4: Accelerator task instantiation in TAPA.

side, which use ostream and istream as the interfaces,

respectively. The producer of a channel can test the fullness

of the channel and append tokens to the channel (write) if

the channel is not full. The consumer of a channel can test the

emptiness of the channel and remove tokens from the channel

(destructive read), or duplicate the head of token without

removing it (non-destructive read, a.k.a., peek), if the channel

is not empty. Read, peek, and write operations can be blocking

or non-blocking.

A special token denoting end-of-transaction (EoT) is avail-

able to all channels. A process can “close” a channel by

writing an EoT token to it, and a process can “open” a channel

by reading an EoT token from it. A process can also test if

a channel is closed, which is a non-destructive read operation

to the channel (eot). An EoT token does not contain any

useful data. This is designed deliberately to make it possible

to break from a pipelined loop when an EoT is present, for

example, in Line 3 of Listing 3. Listing 3 shows an example

of how the communication interfaces are used in TAPA, which

implements the same functionality as Listing 1, but with 55%

fewer lines due to the absence of the auxiliary struct for end-

of-transaction token and the manually maintained input buffer

that implements peek operations.

2) Instantiation Interface: A parent task can instantiate

channels and tasks using the instantiation interface. Channels

are instantiated using channel<type,capacity>. For exam-

ple, channel<Pkt,2> instantiates a channel with capacity 2,

and data tokens transmitted using this channel have type

Pkt. Tasks are instantiated using task::invoke, with the first

argument being the task function and the rest of arguments

being the arguments to the task instance. This is consistent

with std::invoke in the C++ standard library. Listing 4 shows

how channels and tasks are instantiated in TAPA.

3) System Integration Interface: TAPA uses a unified sys-

tem integration interface to further reduce programmers’ bur-

207

den. To offload a kernel to an FPGA accelerator, programmers

only need to call the top-level task as a C++ function in the

host code. Since TAPA can extract metadata information, e.g.,

argument type, from the kernel code, TAPA will automatically

synthesize proper OpenCL host API calls and emit an imple-

mentation of the top-level task C++ function that can set up

the runtime environment properly. As a user of TAPA, the

programmer can use a single function invocation in the same

source code to run software simulation, hardware simulation,

and on-board execution, with the only difference of specifying

proper kernel binaries.

IV. TAPA FRAMEWORK IMPLEMENTATION

A. Software Simulation

State-of-the-Art Approach: There are two state-of-the-art

approaches to run software simulation for task-parallel ap-

plications: the sequential approach and the multi-thread ap-

proach. A sequential simulator invokes tasks sequentially in

the invocation order [23]. Sequential simulators are fast, but

cannot correctly simulate the capacity of channels and appli-

cations with tasks communicating bidirectionally, as discussed

in Section II-B. A multi-thread simulator invokes tasks in

parallel by launching a thread for each task. This enables

the capacity of channels and bidirectional communication to

be simulated correctly. However, they may perform poorly

due to the inefficient context switch handled by the operating

system. The FLASH simulator [60, 61] proposed an alterna-

tive to the above, which uses HLS scheduling information

to create an interleaving execution of all tasks. Note that

although FLASH is also single-threaded, it is different from a

sequential simulator because it interleaves tasks via source-to-

source transformation while a sequential simulator does not.

Compared with a sequential simulator, FLASH is on average

1.7× slower [61], due to additional scheduling information

being taking into consideration for cycle-accurate modeling.

Besides, generating simulation executable becomes slower due

to the need of the HLS scheduler output for cycle-accuracy,

which is not needed for correctness verification.

In this section, we present an alternative approach to run

software simulation on task-parallel applications. Given that

the inefficiency of multi-thread execution is mainly caused by

the preemptive nature of operating system threads, we propose

an approach that uses collaborative coroutines [62, 63] instead

of preemptive threads for each task. Note that fast and/or cycle-

accurate debugging in general [64] is out of the scope of this

paper; we focus on the correctness and scalability issues for

task-parallel programs.

Coroutine-Based Approach: Routines in programming lan-

guages are the units of execution contexts, e.g., functions

in C/C++ [65]. Coroutines [66] are routines that execute

collaboratively; more specifically, coroutines can be explicitly

suspended and resumed. A coroutine can invoke subroutines

and suspend from and resume to any subroutine [63]. A

context switch between coroutines takes only 26ns on modern

CPUs [63], while a preemptive thread context switch takes

1.2~2.2μs [67], which is two orders of magnitude slower.

TAPA leverages coroutines to perform software simulation

as follows. When a task is instantiated, a coroutine is launched

but suspended immediately. Once all tasks are instantiated,

the simulator starts to resume the suspended coroutines. A

resumed task will be suspended again if any input channel

is accessed when empty or any output channel is accessed

when full, which means that no progress can be made from

this task. A different task will then be selected and resumed

by the simulator. Moreover, the coroutines can be distributed

in a thread pool. The thread pool launches one thread per

CPU core and can bind the thread to the corresponding core,

which prevents the threads from preemption against each other.

This improves simulation parallelism without introducing high

context switch overhead as in the multi-thread simulators. We

will show in Section V-D that the coroutine-based simulator

outperforms the existing simulators by 3.2× on average. TAPA

software simulator is implemented as a C++ library, which can

be compiled by any compatible C++ compiler.

B. RTL Code Generation

State-of-the-Art Approach: Current HLS tools treat the

whole task-parallel program as a monolithic design, treat

channels as global variables, and compile different instances

of tasks as if they are completely unrelated. This can lead

to a significant amount of repeated work. For example, the

dataflow architecture generated by a stencil accelerator com-

piler, SODA [7, 9], is highly modularized, and has many

functionally identical modules. However, both the Vivado HLS

and Intel FPGA OpenCL backends generate RTL code for each

module separately. When the design scales out to hundreds of

modules, RTL code generation can easily run for hours, taking

even longer time than logic synthesis and implementation.

While we recognize that a programmer can manually generate

RTL code for each task and glue them at RTL level, doing

so defeats the purpose of using HLS for high productivity.

We also recognize that fast RTL code generation in general

is an interesting problem, but we focus on the inefficiency

exacerbated by task-parallel programs in this paper.

Modularized Approach: Thanks to the hierarchical pro-

gramming model, TAPA can keep the program hierarchy,

recognize different instances of the same task, and compile

each task only once. As such, the total amount of time spent

on RTL code generation is reduced. Moreover, modularized

compilation makes it possible to compile tasks in parallel,

further reducing RTL code generation time on multi-core

machines. TAPA implements this by invoking the vendor tools

in parallel for each task. On average, TAPA reduces HLS

compilation time by 4.9× (Section V-E).

Fig. 2 shows how RTL code is generated by TAPA, which

is composed of four steps. First, TAPA extracts the HLS

code for each task and the metadata information of the whole

design, including the communication topology among tasks,

token types exchanged between tasks, and the capacity of each

channel. Source-to-source transformation is applied in this

step to insert HLS pragmas where necessary (e.g., to generate

proper RTL interfaces). Then, the vendor HLS tool is used to

208

Handled automatically by TAPA

Extract

metadata

(TAPA)

TAPA C++

code

Complete kernel

RTL code

HLS code

(per task)

Task info

Channal info

Source to source

transformation

(TAPA)

RTL code &

HLS report

(per task)

Instantiate tasks,

channels, and their

ctrl. logic (TAPA)

HLS

compiler

C++ code with host

OpenCL function calls

(TAPA)

Fig. 2: TAPA code generation. The host-kernel interface code is generated
together with the kernel RTL code using metadata of the top-level task.

generate RTL code and HLS report for each task. While TAPA

uses libraries to implement kernel APIs extensively, e.g., for

read, write, and the end-of-transaction bit, not all APIs, e.g.,

peeking, can be implemented as libraries, due to the lack of

support from the HLS scheduler. To support peeking, TAPA

adds a scalar argument to each istream, and connect this port

to the output of first-word-fall-through FIFO when the RTL

code is assembled in the next step.

Using the metadata extracted in the first step, TAPA assem-

bles the per-task RTL code to create the complete kernel. In

this step, for each parent task, TAPA instantiates the children

tasks and channels, and generates a small state machine that

controls start of the children tasks and termination of the parent

task. Finally, TAPA packages the assembled RTL code to a

format that the vendor implementation tool can recognize (xo
file for Vitis).

V. EVALUATION

We prototype TAPA on Xilinx devices using Vivado HLS

as the backend; support for Intel devices will be added later.

We compare the productivity of TAPA with two vendor tools

that provide end-to-end high-level programming experience

(including host-kernel communication): Xilinx Vitis 2019.2

suite and Intel FPGA SDK for OpenCL Pro Edition 19.4. The

experimental results are obtained on an Ubuntu 18.04 server

with 2 Xeon Gold 6244 processors.

A. Benchmarks

Table II summarizes the benchmarks used in this paper.

All implementations (Vivado HLS, Intel OpenCL, and TAPA)

of each benchmark are written in such a way that tasks in

each implementation have one-to-one correspondence, corre-

sponding loops are scheduled with the same initiation interval

(II), and each task performs the same computation. This not

only guarantees source codes to all tools are functionally

equivalent, but also makes all tools generate consistent quality

of results (QoR), which enables fair comparison of tool run

time. Note that we aim to compare the productivity of the HLS

tools, not QoR (although we want to make sure there is no

QoR degradation). In particular, we were unable to guarantee

that the generated RTL codes have exactly the same cycle-

accurate behavior without having access to the HLS compiler’s

scheduling algorithm. For example, the bucket sort network

implemented in TAPA has a total latency of 3 cycles while

TABLE II: Benchmarks used in this paper. Each task may be instantiated
multiple times, so task instance count (#Inst.) and channel count (#Chan.) are
greater than task count (#Task).

Benchmark Application #Task #Inst. #Chan.

cannon Cannon’s algorithm [25] 5 91 344
cnn VGG [68] convolutional network [3] 14 209 366
gaussian Gaussian stencil filter [9] 15 564 1602
gcn Graph convolutional network [52] 5 12 25
gemm General matrix multiplication [3] 14 207 364
network Bucket sort w/ Omega network [69] 3 14 32
page_rank PageRank citation ranking [54] 4 18 89

cann
on cnn

gaus
sian gcn gemm netw

ork
page

_ran
k

Fig. 3: LoC comparison for kernel code. Lower is better.

the Vivado HLS implementation has a total latency of 6.

This is inevitable because, using Vivado HLS, the manually

maintained buffer forces an additional latency of 1 cycle at

each network stage. The shallower pipeline makes TAPA use

40% fewer LUTs and 39% fewer FFs for network. For other

benchmarks, TAPA uses 0.4% fewer LUTs and 1% fewer FFs

on average. This shows that the additional APIs provided by

TAPA does not add resource overhead.

B. Lines of Kernel Code

TAPA simplifies the kernel code in two aspects. First, the

TAPA communication interfaces simplify the code with the

built-in support for peeking and transactions. This not only

simplifies the body of each task definition, but also removes

the necessity for many struct definitions. Second, the TAPA

instantiation interfaces simplify the code by allowing tasks to

be launched concisely. Fig. 3 shows the lines of kernel code

comparison of each benchmark. On average, TAPA reduces

the lines of kernel code by 22%. Note that only synthesizable

kernel code is counted; code added for multi-thread software

simulation is not counted for Vivado HLS.

C. Lines of Host Code

The host code used in the benchmarks contains a mini-

mal test bench to verify the correctness of the kernel code.

TAPA system-integration API automatically interfaces with the

OpenCL host APIs and relieves the programmer from writing

repetitive code just to connect the kernel to a host program.

Table 4 shows the lines of host code comparison. On average,

the length of host code is reduced by 51%.

D. Software Simulation Time

Fig. 5 shows four simulators, that is, the sequential Vivado

HLS simulator, the multi-thread Vivado HLS simulator, the

multi-thread Intel OpenCL simulator, and the coroutine-based

TAPA simulator. Among the three simulators, the sequential

209

cann
on cnn

gaus
sian gcn gemm netw

ork
page

_ran
k

Fig. 4: LoC comparison for host code. Lower is better.

cann
on cnn

gaus
sian gcn gemm netw

ork
page

_ran
k

Fig. 5: Simulation time in log scale. Lower is better. Sequential simulator
fails to simulate cannon and pagerank correctly. Intel OpenCL multi-thread
simulator cannot simulate gaussian due to its large number of task instances.

cann
on cnn

gaus
sian gcn gemm netw

ork
page

_ran
k

Fig. 6: RTL code generation time in log scale. Lower is better.

simulator fails to correctly simulate benchmarks that require

feedback data paths (cannon and page_rank). Due to the

larger memory footprint required for storing the tokens trans-

mitted between tasks and lack of parallelism, the sequential

simulator is outperformed by the coroutine-based simulator

in all but one of the benchmarks (network). The two multi-

thread simulators correctly simulate all benchmarks, except

that Intel OpenCL cannot handle gaussian because its large

number of task instances (564) exceeds the maximum allowed

by the simulator (256). However, the multi-thread simula-

tors perform poorly on benchmarks that are communication-

intensive (e.g., network) or have more tasks than the number

of available threads (e.g., gaussian). Although the coroutine-

based TAPA simulator is not always the fastest simulator for

all benchmarks, the worst-case slowdown is only 6%, which is

not significant in comparison with the multi-thread simulator,

which can be 11× slower. On average, TAPA is 3.2× faster

than other simulators.

E. RTL Code Generation Time

Fig. 6 shows the RTL code generation time comparison.

Thanks to the hierarchical programming model and modular-

ized code generator, TAPA shortens the HLS compilation time

by 6.8× on average. This is because � TAPA runs HLS for

each task only once even if it is instantiated many times, while

Vivado HLS and Intel OpenCL run HLS for each task instance;

� TAPA runs HLS in parallel on multi-core machines.

VI. RELATED WORK

Table I on Page 2 shows a brief summary of the related HLS

tools. Section VI-A presents more details about these tools.

Two domain-specific streaming frameworks are discussed in

Section VI-B. SystemC and pthread are two well-known alter-

native API paradigms that support task-parallel programs. We

will discuss and compare them with TAPA in Section VI-C.

A. HLS Support for Task-Parallel Programs

Intel HLS supports two different inter-task communication

interfaces: pipe and stream. pipe implements a simple FIFO

interface with data, valid, and ready signals, while stream
implements an Avalon-ST interface that supports transactions.

Tasks are instantiated using launch and collect.

Intel FPGA OpenCL supports the simple FIFO interface

via two sets of APIs, i.e., standard OpenCL pipe and Intel-

specific channel. Tasks are instantiated by defining OpenCL

__kernels, which forces instances of the same task to be

synthesized separately as different OpenCL kernels.

Vivado (Vitis) HLS provides two different streaming inter-

faces: ap_fifo and axis. ap_fifo generates the simple FIFO

interface. Tasks are instantiated by invoking the corresponding

functions in a dataflow region (Listing 2). axis generates

AXI-Stream interface with transaction support. It requires the

programmers to instantiate channels and tasks in a separate

configuration file when running logic synthesis and imple-

mentation. This allows different instances of the same task

to be synthesized only once, but takes longer time to learn

and implement compared with ap_fifo.

Xilinx OpenCL supports standard OpenCL pipe, which

generates AXI-Stream interfaces similar to Vivado HLS axis,

but pipe does not provide APIs to support transactions.

LegUp supports the simple FIFO interface via FIFO. Tasks

are instantiated using pthread API (Section VI-C).

Merlin [40] allows programmers to call the FPGA kernel as

a C/C++ function and provides OpenMP-like simple pragmas

with automated design space exploration based on machine

learning. To support task-parallel programs, Merlin leverages

its backend vendor HLS tools’ programming interfaces.

Their limitations are summarized in Table I on Page 2. Note

that a common limitation of HLS tools (including TAPA) is

that they can not guarantee the software description produces

deterministic output sequences for task-parallel programs. For

instance, the emptiness test to an input channel is prone to

breaking determinism, yet it is available to all HLS tools for

performance and expressiveness reasons: merging two input

channels round-robin using non-blocking reads would produce

an output sequence determined by the relative arrival order of

the input tokens. An implication of non-determinism is we

cannot assert that a program is deadlock-free just because

its simulation succeeds. This is different from deterministic

programs, e.g., Kahn process networks [47], whose successful

210

simulation generally implies deadlock-free on-board execu-

tion. For applications that can be efficiently written without

breaking determinism, e.g., streaming applications, there are

dedicated frameworks developed specifically for them, which

are discussed in the next section.

B. Streaming Framework

ST-Accel [36] is a high-level programming platform that

features highly efficient host-kernel communication interface

exposed as a virtual file system (VFS). It uses Vivado HLS as

its backend for hardware generation.

Fleet [37] is a massively parallel streaming framework for

FPGAs that features highly efficient memory interfaces for

massive instances of parallel processing elements. Program-

mers write Fleet programs in a domain-specific RTL language

based on Chisel [70].

TAPA aims to support more general task-parallel applica-

tions beyond streaming.

C. Alternative APIs

SystemC is a set of C++ classes and macros that provide

detailed hardware modeling and event-driven simulation. It

supports both cycle-accurate and untimed simulation and

many simulator implementations are available [71, 72]. The

official open-source SystemC simulator implementation uses

coroutines without thread pooling. Some HLS tools support

a subset of untimed SystemC as the input [23]. SystemC

supports task-parallel programs natively via the SC_MODULE
constructs and tlm_fifo interfaces, which supports peeking.

While SystemC supports peeking FIFOs and coroutine-based

simulation for task-parallel programs, it is limited by its

special and verbose coding style. Listing 5 shows the example

discussed in Section II-B written in SystemC. Compared with

other C-like HLS languages, SystemC is more verbose and less

productive due to its special language constructs: for TAPA

code snippets shown in Listing 3 and Listing 4, the equivalent

SystemC kernel code would be 86% longer. On the host side,

SystemC generates the main function in sc_main by itself for

simulation, and programmers need to spend time incorporating

the SystemC test bench with other parts of their program. This

is not a problem if the whole system is defined by the kernel

in SystemC, e.g., as in embedded systems, but in data center

applications where the FPGA accelerator is only part of the

system, this introduces non-trivial complication.

Pthread API is a set of widely used standard APIs that can

be used to implement task-parallel programs using threads.

Pthread requires programmers to explicitly create and join

threads, and each argument needs to be manually packed and

passed. Listing 6 shows an example using the accelerator

discussed in Section II-B. Compared with the invoke API

used by TAPA, the pthread APIs require more effort to

program: for TAPA code snippets shown in Listing 3 and

Listing 4, equivalent pthread-based code would be 2.4× long.

In summary, while the API alternatives do exist in their

own domains, they are more verbose and thus less productive

compared with TAPA for task-parallel FPGA acceleration.

1 SC_MODULE(RingNode) {
2 sc_port<tlm_fifo_get_if<Pkt>> node_in;
3 sc_port<tlm_fifo_get_if<PktEoT>> pe_in;
4 sc_port<tlm_fifo_put_if<Pkt>> node_out, pe_out;
5 SC_CTOR(RingNode) { SC_THREAD(thread); }
6 void thread() { while (...) {...} }
7 };
8 SC_MODULE(Kernel) {
9 tlm_fifo<Pkt> node_0_1{/*depth=*/2}, node_1_2{2}, ...

10 // Other channels...
11 RingNode node1, node2, ...
12 // Other tasks...
13 SC_CTOR(Kernel) {
14 node1.node_in(node_0_1);
15 node1.node_out(node_1_2);
16 // Other argument bindings...
17 }
18 };

Listing 5: SystemC TLM API example.

1 struct RingNode_Arg {
2 FIFO<Pkt>* node_in, node_out, pe_out;
3 FIFO<PktEoT>* pe_in;
4 };
5 void RingNode(void* arg) {
6 FIFO<Pkt>* node_in = ((RingNode_arg*)arg)->node_in;
7 // Unpack other arguments...
8 while (...) {...}
9 pthread_exit(NULL);

10 }
11 void Kernel(...) {
12 FIFO<Pkt> node_0_1, node_1_2, ...
13 // Instantiate other channels...
14 RingNode_Arg node1_arg, node2_arg, ...
15 node1_arg.node_in = &node_0_1;
16 // Pack other arguments...
17 pthread_t node1_pid, node2_pid, ...;
18 pthread_create(&node1_pid, NULL, RingNode, &node1_arg);
19 // Create other threads...
20 pthread_join(&node1_pid, NULL);
21 // Join other threads...
22 }

Listing 6: Pthread API example.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present TAPA as an HLS C++ language

extension to enhance the programming productivity of task-

parallel programs on FPGAs. TAPA has multiple advantages

over state-of-the-art HLS tools: on average, � its enhanced

programming interface helps to reduce the lines of kernel code

by 22%, � its unified system integration interface reduces the

lines of host code by 51%, � its coroutine-based software

simulator shortens the correctness verification development

cycle by 3.2×, � its modularized code generation approach

shortens the QoR tuning development cycle by 6.8×. As a

fully automated and open-source framework, TAPA aims to

provide highly productive development experience for task-

parallel programs using HLS. For future work, we plan to

extend our work to support dynamic tasks on FPGAs.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

and our labmate, Linghao Song, for their valuable comments

and helpful suggestions. This work is partially supported by

a Google Faculty Award, the NSF RTML program (CCF-

1937599), NIH Brain Initiative (U01MH117079), the Xilinx

Adaptive Compute Clusters (XACC) program, and CRISP, one

of six JUMP centers.

211

REFERENCES

[1] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-Level Synthesis for FPGAs: From Prototyping to Deployment,”
TCAD, 2011.

[2] X. Wei, Y. Liang, and J. Cong, “Overcoming Data Transfer Bottlenecks
in FPGA-based DNN Accelerators via Layer Conscious Memory Man-
agement,” in DAC, 2019.

[3] J. Cong and J. Wang, “PolySA: Polyhedral-Based Systolic Array Auto-
Compilation,” in ICCAD, 2018.

[4] Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and
Z. Zhang, “HeteroCL: A Multi-Paradigm Programming Infrastructure
for Software-Defined Reconfigurable Computing,” in FPGA, 2019.

[5] H. R. Zohouri, A. Podobas, and S. Matsuoka, “Combined Spatial
and Temporal Blocking for High-Performance Stencil Computation on
FPGAs Using OpenCL,” in FPGA, 2018.

[6] M. Koraei, O. Fatemi, and M. Jahre, “DCMI: A Scalable Strategy for
Accelerating Iterative Stencil Loops on FPGAs,” TACO, vol. 16, no. 4,
2019.

[7] Y. Chi and J. Cong, “Exploiting Computation Reuse for Stencil Accel-
erators,” in DAC, 2020.

[8] J. de Fine Licht, A. Kuster, T. De Matteis, T. Ben-Nun, D. Hofer, and
T. Hoefler, “StencilFlow: Mapping Large Stencil Programs to Distributed
Spatial Computing Systems,” in CGO, 2021.

[9] Y. Chi, J. Cong, P. Wei, and P. Zhou, “SODA : Stencil with Optimized
Dataflow Architecture,” in ICCAD, 2018.

[10] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and
M. Horowitz, “Programming Heterogeneous Systems from an Image
Processing DSL,” TACO, vol. 14, no. 3, 2017.

[11] J. Li, Y. Chi, and J. Cong, “HeteroHalide: From Image Processing DSL
to Efficient FPGA Acceleration,” in FPGA, 2020.

[12] UCLA-VAST, “TAPA Sample Applications.” [Online]. Available:
https://github.com/UCLA-VAST/tapa/tree/master/apps

[13] J. Cong and Z. Zhang, “An Efficient and Versatile Scheduling Algorithm
Based On SDC Formulation,” in DAC, 2006.

[14] J. Cheng, S. T. Fleming, Y. T. Chen, J. H. Anderson, and G. A.
Constantinides, “EASY: Efficient Arbiter SYnthesis from Multi-threaded
Code,” in FPGA, 2019.

[15] J. Cheng, L. Josipović, G. A. Constantinides, P. Ienne, and J. Wickerson,
“Combining Dynamic & Static Scheduling in High-level Synthesis,” in
FPGA, 2020.

[16] H. Hsiao and J. Anderson, “Thread Weaving: Static Resource Scheduling
for Multithreaded High-Level Synthesis,” in DAC, 2019.

[17] A. Haj-Ali, Q. Huang, W. Moses, J. Xiang, K. Asanovic, J. Wawrzynek,
and I. Stoica, “AutoPhase: Juggling HLS Phase Orderings in Random
Forests with Deep Reinforcement Learning,” in MLSys, 2020.

[18] Y. T. Chen, J. H. Kim, K. Li, G. Hoyes, and J. H. Anderson, “High-
Level Synthesis Techniques to Generate Deeply Pipelined Circuits for
FPGAs with Registered Routing,” in FPT, 2019.

[19] L. Guo, J. Lau, Y. Chi, J. Wang, C. H. Yu, Z. Chen, Z. Zhang, and
J. Cong, “Analysis and Optimization of the Implicit Broadcasts in FPGA
HLS to Improve Maximum Frequency,” in DAC, 2020.

[20] L. Josipović, S. Sheikhha, A. Guerrieri, P. Ienne, and J. Cortadella,
“Buffer Placement and Sizing for High-Performance Dataflow Circuits,”
in FPGA, 2020.

[21] L. Guo, Y. Chi, J. Wang, J. Lau, W. Qiao, E. Ustun, Z. Zhang,
and J. Cong, “AutoBridge: Coupling Coarse-Grained Floorplanning and
Pipelining for High-Frequency HLS Design on Multi-Die FPGAs,” in
FPGA, 2021.

[22] J. Cong, P. Wei, C. H. Yu, and P. Zhang, “Automated Accelerator
Generation and Optimization with Composable, Parallel and Pipeline
Architecture,” in DAC, 2018.

[23] Xilinx, “Vivado Design Suite User Guide: High-Level Synthesis
(UG902),” 2020.

[24] Intel, “Intel FPGA SDK for OpenCL Pro Edition: Programming Guide,”
2020.

[25] H.-J. Lee, J. P. Robertson, and J. A. Fortes, “Generalized Cannon’s
Algorithm for Parallel Matrix Multiplication,” in ICS, 1997.

[26] J. Cong, P. Wei, C. H. Yu, and P. Zhou, “Latte: Locality Aware
Transformation for High-Level Synthesis,” in FCCM, 2018.

[27] T. Young-Schultz, L. Lilge, S. Brown, and V. Betz, “Using OpenCL
to Enable Software-like Development of an FPGA-Accelerated Biopho-
tonic Cancer Treatment Simulator,” in FPGA, 2020.

[28] V. Rybalkin and N. Wehn, “When Massive GPU Parallelism Ain’t
Enough: A Novel Hardware Architecture of 2D-LSTM Neural Network,”
in FPGA, 2020.

[29] A. Sohrabizadeh, J. Wang, and J. Cong, “End-to-End Optimization of
Deep Learning Applications,” in FPGA, 2020.

[30] J. De Fine Licht, G. Kwasniewski, and T. Hoefler, “Flexible Com-
munication Avoiding Matrix Multiplication on FPGA with High-Level
Synthesis,” in FPGA, 2020.

[31] J. Jiang, Z. Wang, X. Liu, J. Gómez-Luna, N. Guan, Q. Deng, W. Zhang,
and O. Mutlu, “Boyi: A Systematic Framework for Automatically De-
ciding the Right Execution Model of OpenCL Applications on FPGAs,”
in FPGA, 2020.

[32] H. Zeng and V. Prasanna, “GraphACT: Accelerating GCN training on
CPU-FPGA heterogeneous platforms,” in FPGA, 2020.

[33] P. Papaphilippou, J. Meng, and W. Luk, “High-Performance FPGA
Network Switch Architecture,” in FPGA, 2020.

[34] H. Chen, S. Madaminov, M. Ferdman, and P. Milder, “FPGA-
Accelerated Samplesort for Large Data Sets,” in FPGA, 2020.

[35] S. Margerm, A. Sharifian, A. Guha, A. Shriraman, and G. Pokam,
“TAPAS: Generating Parallel Accelerators from Parallel Programs,” in
MICRO, 2018.

[36] Z. Ruan, T. He, B. Li, P. Zhou, and J. Cong, “ST-Accel: A High-
Level Programming Platform for Streaming Applications on FPGA,”
in FCCM, 2018.

[37] J. Thomas, P. Hanrahan, and M. Zaharia, “Fleet: A Framework for
Massively Parallel Streaming on FPGAs,” in ASPLOS, 2020.

[38] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. Anderson,
S. Brown, and T. Czajkowski, “LegUp: High-Level Synthesis for FPGA-
Based Processor/Accelerator Systems,” in FPGA, 2011.

[39] J. Choi, S. D. Brown, and J. H. Anderson, “From Pthreads to Multicore
Hardware Systems in LegUp High-Level Synthesis for FPGAs,” TVLSI,
vol. 25, no. 10, 2017.

[40] J. Cong, M. Huang, P. Pan, D. Wu, and P. Zhang, “Software Infras-
tructure for Enabling FPGA-Based Accelerations in Data Centers,” in
ISLPED, 2016.

[41] L. Dagum and R. Menon, “OpenMP: An Industry Standard API for
Shared-Memory Programming,” IEEE Computational Science and En-
gineering, vol. 5, no. 1, 1998.

[42] G. Dai, Y. Chi, Y. Wang, and H. Yang, “FPGP: Graph Processing
Framework on FPGA A Case Study of Breadth-First Search,” in FPGA,
2016.

[43] G. Dai, T. Huang, Y. Chi, N. Xu, Y. Wang, and H. Yang, “ForeGraph:
Exploring Large-scale Graph Processing on Multi-FPGA Architecture,”
in FPGA, 2017.

[44] S. Zhou, R. Kannan, V. K. Prasanna, G. Seetharaman, and Q. Wu,
“HitGraph: High-throughput Graph Processing Framework on FPGA,”
TPDS, 2019.

[45] Y. Wang, J. C. Hoe, and E. Nurvitadhi, “Processor Assisted Worklist
Scheduling for FPGA Accelerated Graph Processing on a Shared-
Memory Platform,” in FCCM, 2019.

[46] C. A. R. Hoare, “Communicating Sequential Processes,” Communica-
tions of the ACM, vol. 21, no. 8, 1978.

[47] G. Kahn, “The Semantics of a Simple Language for Parallel Program-
ming,” in IFIP, 1974.

[48] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,” IEEE,
vol. 75, no. 9, 1987.

[49] J. T. Buck, “Scheduling Dynamic Dataflow Graphs with Bounded
Memory Using the Token Flow Model,” Ph.D. dissertation, 1993.

[50] J. L. Peterson, “Petri Nets,” ACM Computing Surveys, vol. 9, no. 3,
1977.

[51] M. Abeydeera and D. Sanchez, “Chronos: Efficient Speculative Paral-
lelism for Accelerators,” in ASPLOS, 2020.

[52] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” in ICLR, 2017.

[53] C. Deng, Z. Zhao, Y. Wang, Z. Zhang, and Z. Feng, “GraphZoom:
A Multi-level Spectral Approach for Accurate and Scalable Graph
Embedding,” in ICLR, 2020.

[54] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation
Ranking: Bringing Order to the Web,” Tech. Rep., 1998.

[55] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community
Structure in Large Networks: Natural Cluster Sizes and the Absence of
Large Well-Defined Clusters,” Internet Mathematics, vol. 6, no. 1, 2009.

[56] J. Mcauley, “Learning to Discover Social Circles in Ego Networks,” in
NIPS, 2012.

[57] Y. Chi, G. Dai, Y. Wang, G. Sun, G. Li, and H. Yang, “NXgraph:
An Efficient Graph Processing System on a Single Machine,” in ICDE,
2016.

212

[58] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and
H. Yang, “GraphH: A Processing-in-Memory Architecture for Large-
scale Graph Processing,” TCAD, 2018.

[59] Xilinx, “Vitis Accel Hello World Example.” [Online]. Available:
https://github.com/Xilinx/Vitis_Accel_Examples/blob/21bb0cf788ace59
3c6075accff7f7783588ae8b4/hello_world/src/host.cpp#L58-L115

[60] Y. Chi, Y.-k. Choi, J. Cong, and J. Wang, “Rapid Cycle-Accurate
Simulator for High-Level Synthesis,” in FPGA, 2019.

[61] Y.-k. Choi, Y. Chi, J. Wang, and J. Cong, “FLASH: Fast, ParalleL, and
Accurate Simulator for HLS,” TCAD, 2020.

[62] A. L. de Moura and R. Ierusalimschy, “Revisiting Coroutines,” TOPLAS,
vol. 31, no. 2, 2009.

[63] O. Kowalke, “Boost Library Documentation, Coroutine2,” 2014.
[Online]. Available: https://boost.org/doc/libs/1_65_0/libs/coroutine2/d
oc/html/coroutine2/intro.html

[64] A. S. Jamal, E. Cahill, J. Goeders, and S. J. E. Wilton, “Fast Turnaround
HLS Debugging using Dependency Analysis and Debug Overlays,”
TRETS, vol. 13, no. 1, 2020.

[65] D. E. Knuth, Fundamental Algorithms. The Art of Computer Program-
ming 1, 3rd ed., 1997.

[66] M. E. Conway, “Design of a Separable Transition-Diagram Compiler,”
Communications of the ACM, vol. 6, no. 7, 1963.

[67] E. Bendersky, “Measuring context switching and memory overheads
for Linux threads,” 2018. [Online]. Available: https://eli.thegreenplace.
net/2018/measuring-context-switching-and-memory-overheads-for-linu
x-threads/

[68] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in ICLR, 2015.

[69] D. H. Lawrie, “Access and Alignment of Data in an Array Processor,”
ToC, vol. C-24, no. 12, 1975.

[70] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing Hardware in a
Scala Embedded Language,” in DAC, 2012.

[71] T. Schmidt, G. Liu, and R. Dömer, “Exploiting Thread and Data Level
Parallelism for Ultimate Parallel SystemC Simulation,” in DAC, 2017.

[72] M. K. Chung, J. K. Kim, and S. Ryu, “SimParallel: A High Performance
Parallel SystemC Simulator Using Hierarchical Multi-threading,” in
ISCAS, 2014.

213

