2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

Extending High-Level Synthesis for Task-Parallel
Programs

Yuze Chi*, Licheng Guo*, Jason Lau*, Young-kyu Choi*f, Jie Wang*, Jason Cong*
*University of California, Los Angeles, TInha University
{chiyuze,cong}@cs.ucla.edu

Abstract—C/C++/OpenCL-based high-level synthesis (HLS)
becomes more and more popular for field-programmable gate
array (FPGA) accelerators in many application domains in recent
years, thanks to its competitive quality of results (QoR) and
short development cycles compared with the traditional register-
transfer level design approach. Yet, limited by the sequential
C semantics, it remains challenging to adopt the same highly
productive high-level programming approach in many other
application domains, where coarse-grained tasks run in parallel
and communicate with each other at a fine-grained level. While
current HLS tools do support task-parallel programs, the pro-
ductivity is greatly limited @ in the code development cycle due to
the poor programmability, @ in the correctness verification cycle
due to restricted software simulation, and @ in the QoR tuning
cycle due to slow code generation. Such limited productivity
often defeats the purpose of HLS and hinder programmers from
adopting HLS for task-parallel FPGA accelerators.

In this paper, we extend the HLS C++ language and present a
fully automated framework with programmer-friendly interfaces,
unconstrained software simulation, and fast hierarchical code
generation to overcome these limitations and demonstrate how
task-parallel programs can be productively supported in HLS.
Experimental results based on a wide range of real-world task-
parallel programs show that, on average, the lines of kernel and
host code are reduced by 22% and 51%, respectively, which
considerably improves the programmability. The correctness
verification and the iterative QoR tuning cycles are both greatly
shortened by 3.2x and 6.8x, respectively. Our work is open-source
at https://github.com/UCLA-VAST/tapa/.

I. INTRODUCTION

C/C++/OpenCL-based high-level synthesis (HLS) [1] has
been adopted rapidly by both the academia and the industry
for programming field-programmable gate array (FPGA) ac-
celerator design in many application domains, e.g., machine
learning [2-4], scientific computing [5-8], and image pro-
cessing [9-11]. Compared with the traditional register-transfer
level (RTL) paradigm where the debug turnaround time of even
simple applications [12] can take tens of minutes, with HLS,
programmers can follow a rapid development cycle. Program-
mers can write code in C and leverage fast software simulation
to verify the functional correctness. The debug turnaround time
for such a correctness verification cycle can take as few as just
one second instead of tens of minutes, allowing functionalities
to be iterated at a fast pace. Once the HLS code is functionally
correct, programmers can then generate RTL code, evaluate the
quality of results (QoR) based on the generated performance
and resource reports, and modify the HLS code accordingly.
Such a QoR tuning cycle typically takes only a few minutes for
a simple design or a component in a modular design. Thanks

2576-2621/21/$31.00 ©2021 |IEEE
DOI 10.1109/FCCM51124.2021.00032

to the advances in HLS scheduling algorithms [13-17] and
timing optimizations [18-21], HLS can not only shorten the
development cycle, but also generate programs that are often
competitive in cycle count [22], and more recently in clock
frequency as well [19,21]. Moreover, FPGA vendors provide
host drivers and communication interfaces for kernels designed
in HLS [23,24], further reducing programmers’ burden to
integrate and offload workload to FPGA accelerators.
However, not all programs are created equal for HLS.

Data-parallel programs can be easily programmed following
the sequential C semantics, which enables such applications
to be quickly designed and iterated in the fast correctness
verification cycle and QoR tuning cycle. In contrast, task-
parallel programs are not supported by the native C semantics,
and the productivity provided by current HLS tools is greatly
limited for the following reasons:

o Poor programmability. Due to the lack of convenient appli-
cation programming interfaces (API), programmers are often
forced to write more code than necessary. For example, for
an accelerator with PEs connected through a simple on-chip
network, a network node needs to forward packets based on
their content (header) and the availability of output ports.
Without an API to read packets without consuming them
(i.e., “peek”) from the ports, programmers have to manually
and carefully create a buffer and maintain a small state
machine to keep track of incoming packets. This not only
elongates the development cycle, but also is error-prone.

o Restricted software simulation. As the key to fast correctness
verification, software simulation is not always available to
task-parallel programs. For example, Vivado HLS software
simulation does not support Cannon’s algorithm [25] be-
cause its sequential execution of tasks cannot correctly
simulate feedback loops in data paths, while Intel OpenCL
simulator does not support more than 256 concurrent
kernels [24]. Unavailability of software simulation forces
programmers to resort to RTL simulation for correctness
verification, significantly elongating the development cycle.

o Slow code generation. We found that current HLS compilers
do not support hierarchical code generation for task-parallel
programs. Instead, they treat all tasks as a monolithic design
and process each instance of the same task as if they were
different. For designs that instantiate the same task many
times (e.g., in a systolic array), this leads to repetitive
compilation on each task and unnecessarily slows down code
generation. Programmers can manually synthesize tasks

204

separately and instantiate them in RTL, but doing so requires

debugging RTL code, which is time-consuming and error-

prone. We think such processes should be automated.

Limited productivity support for task-parallel programs
significantly elongates the development cycles and under-
mines the benefits brought by HLS. One may argue that
programmers should always go for data-parallel implemen-
tations when designing FPGA accelerators using HLS, but
data-parallelism may be inherently limited, for example, in
applications involving graphs. Moreover, researches show that
even for data-parallel applications like neural networks [3] and
stencil computation [9], task-parallel implementations show
better scalability and higher frequency than their data-parallel
counterparts due to the localized communication pattern [26].
In fact, at least 6 papers [11,27-31] among the 28 research
papers published in the ACM FPGA 2020 conference use task-
parallel implementation with HLS, and another 3 papers [32—
34] use RTL implementation that would have required task-
parallel implementation if written in HLS.

In this paper, we extend the HLS C++ language and
present our framework, TAPA (task-parallel)!, as a solution
to the aforementioned limitations of HLS productivity. Our
contributions include:

+ Convenient programming interfaces: We show that, with
peeking and transactions added to the programming inter-
faces, TAPA can be used to program task-parallel kernels
with 22% reduction in lines of code (LoC) on average. By
unifying the interface used for the kernel and host, TAPA
further reduces the LoC on the host side by 51% on average.

¢ Unconstrained software simulation: We demonstrate that
our proposed simulator can correctly simulate task-parallel
programs that existing software simulators fail to simulate.
Moreover, the correctness verification cycle can be short-
ened by a factor of 3.2x on average.

o Hierarchical code generation: We show that by modu-
larizing a task-parallel program and using a hierarchical
approach, RTL code generation can be accelerated by a
factor of 6.8x on our server with 32 hyper-threads.

o Fully automated open-source framework: TAPA is open-
source at https://github.com/UCLA-VAST/tapa/.

Table I summarizes the related work. Among all general
HLS tools (Section VI-A) and streaming frameworks (Sec-
tion VI-B): @ None of them supports peeking in their kernel
APIs; only Intel HLS stream and Vivado HLS axis support
transactions; only Merlin allows the accelerator kernel to be
called from the host as if it is a C/C++ function. @ Vivado
HLS, Merlin, and both streaming frameworks (ST-Accel [36]
and Fleet [37]) execute tasks sequentially for simulation,
which works on limited applications, while others launch one
thread per task instance, which does not scale well. @ All
general HLS tools treat a task-parallel program as a monolithic
design and generate RTL code for each instance of task

'While a prior work TAPAS [35] and our work TAPA share similarity in
name, our work focuses on statically mapping tasks to hardware, yet TAPAS
specializes in dynamically scheduling tasks.

TABLE I: Summary of related work.

Programmability

Software RTL Code

Related Work Peek— Traps— Host Simulation Generation
ing action Iface.

Fleet [37] No No N/A Sequential ~ N/A
Intel HLS (pipe) No No N/A Multi-thread Monolithic
Intel HLS (stream) No Yes N/A Multi-thread Monolithic
Intel OpenCL No No OpenCL Multi-thread Monolithic
LegUp [38,39] No No N/A Multi-thread Monolithic
Merlin [40] No No C++ Sequential ~ Monolithic
ST-Accel [36] No No VES Sequential ~ Hierarchical
Vivado HLS (ap_fifo) No No OpenCL Sequential ~ Monolithic
Vivado HLS (axis) No Yes OpenCL Multi-thread Manual
Xilinx OpenCL No No OpenCL Multi-thread Monolithic
TAPA Yes Yes C++ Coroutine Hierarchical

separately, except that Vivado HLS axis allows programmers
to manually instantiate tasks using a configuration file when
running logic synthesis and implementation. To the best of our
knowledge, TAPA is the only work that provides convenient
programming interfaces, unconstrained software simulation,
and hierarchical code generation for general task-parallel pro-
grams on FPGAs using HLS.

II. BACKGROUND
A. Task-Parallel Program

Task-level parallelism is a form of parallelization of com-
puter programs across multiple processors. In contrast to data
parallelism where the workload is partitioned on data and each
processor executes the same program (e.g., OpenMP [41]),
different processors in a task-parallel program often behave
differently, while data are passed between processors. Ex-
amples of task-parallel programs include image processing
pipelines [9-11], graph processing [42-45], and network
switching [33]. Task-parallel programs are often described us-
ing dataflow models [46—50], where tasks are called processes.
Processes communicate only through unidirectional channels.
Data exchanged between channels are called fokens. In this
paper, we borrow the terms channel and token, and focus on
the problem of statically mapping tasks to hardware. That
is, instances of tasks are synthesized to different areas in
an FPGA accelerator. We plan to address dynamic schedul-
ing [35,39,51] in our future work.

B. A Motivating Example

An on-chip ring network is a commonly used topology to
provide all-to-all interconnection among many task-parallel
processing elements (PE) in a single FPGA accelerator, which
is particularly useful in graph processing [52-58] where each
vertex may be connected to any other vertices. A ring network
has the advantages of simplicity and high routability, but
implementing a customized ring network in HLS faces several
issues that make such designs verbose to write, hard to read,
and error-prone. In this section, we use a simplified real-world
design to illustrate the productivity issues for implementing
such a ring network in HLS, which serves as a motivating
example for our work.

205

PE 1 PE 2

PE O PE 3

Fig. 1: An accelerator with 4 PEs connected via a ring network.

Fig. 1 shows an example where PEs in an accelerator are
interconnected via a ring network. In this example, network
nodes form a cyclic ring, and each ring node is connected to a
PE via a bidirectional link. Each PE can send packets to other
PEs through its associated node, specifying its destination PE
in the packet header. Each node forwards packets either to
its next node or to its associated PE, based on the packet
header. We assume packets are sent infrequently and channels
between nodes are provisioned so that they will never be full.
Furthermore, we would like to insert packets from PEs to the
network ASAP so that PEs will not stall due to back pressure
from the ring nodes. While such a ring node can be written
using Vivado HLS (Listing 1), we found that the followings
are missing or hard-to-use in the HLS tools and significantly
degrade the productivity.

1) Peeking: Peeking is defined as reading a token from
a channel without consuming it. Compared with the normal
destructive read, peeking is non-destructive because the token
may be read many times. For example, in our ring network,
when Node 1 receives incoming packets from both PE 1 (via
pe_in) and Node O (via node_in), it will forward the packet
from PE 1 to Node 2 (via node_out) to prevent PE 1 from
being stalled due to back pressure. In the same clock cycle, the
packet from Node 0 cannot be forwarded unless the destination
of that packet is PE 1 (via pe_out), because we cannot write
two tokens to the same output channel (node_out) in the
same clock cycle. This requires us to conditionally read tokens
based on the content of tokens. Without a peek API, one
has to manually maintain a buffer for the incoming values,
as shown in Line 7-15 of Listing 1. This not only increases
the programming burden, but also makes the design prone to
errors in state transitions of the buffer.

2) Transactions: A sequence of tokens may constitute a
single logical communication transaction. Using the same
ring network example, we consider the whole accelerator
execution as a logical communication transaction, and let each
PE control the termination of each RingNode, as shown in
Line 11 of Listing 1. Without an eot API, one has to manually
add a special bit to the data structure to indicate the end-of-
transaction (Line 1-4 of Listing 1). Note that the Pkt struct
may be used elsewhere, thus it may be infeasible to add the
eot bit directly to the Pkt struct. Moreover, determining the
end of transaction must be a peek operation; otherwise, the
HLS compiler will be unable to schedule the exit condition
in the first stage of pipeline, leading to II greater than 1. This
further complicates the HLS implementation (Listing 1).

3) System integration: To offload computation kernel from
the host CPU to PCle-based FPGA accelerators, programmers
need to write host-side code to interface the accelerator kernel
with the host. FPGA vendors adopt the OpenCL standard
to provide such a functionality. While the standard OpenCL
host-kernel interface infrastructure relieves programmers from
writing their own operating system drivers and low-level
libraries, it is still inconvenient and hard-to-use. Programmers
often have to write and debug tens of lines of code just to set
up the host-kernel interface. This includes manually setting up
environmental variables for simulation, creating, and maintain-
ing OpenCL Context, CommandQueue, Program, Kernel, etc.
data structures [59]. Task-parallel accelerators often make the
situation worse because the parallel tasks are often described
as distinct OpenCL kernels [24], which significantly increases
the programmers’ burden on managing multiple kernels in the
host-kernel interface. In our experiments, more than 60 lines
of host code are created just for the host-kernel integration,
which constitute more than 20 percent of the whole source
code. Yet, what we want is just a single function invocation
of the synthesized FPGA bitstream given proper arguments.

4) Software simulation: C does not have explicit parallel
semantics by itself. Vivado HLS uses the dataflow model and
allows programmers to instantiate tasks by invoking each of
them sequentially [23]. While this is very concise to write
(Listing 2), it leads to incorrect simulation results because the
communication between a ring node and its corresponding PE
is bidirectional, yet sequential execution can only send tokens
from nodes to PEs because of their invocation order. This
problem was also pointed out in [60]. In order to run software
simulation correctly, the programmer can change the source
code to run tasks in multiple threads, but doing so requires the
same piece of task instantiation code to be written twice for
synthesis and simulation, reducing productivity. While there
exist other tools (e.g. [24]) that can run tasks in parallel threads
and do not have the same correctness problem, we will show
in Section V-D that such simulators do not scale well when
the number of task instances increases.

5) RTL code generation: In our ring network example, the
same ring node is instantiated many times. While state-of-
the-art HLS compilers can recognize multiple instances of the
same function and reuse HLS results for regular non-task-
parallel programs, task-parallel programs are always treated as
a monolithic one. This means instances of the same task in a
task-parallel program are treated as if they were different, pos-
sibly in order to explore different communication interfaces of
each instance. This significantly elongates the code generation
time when the number of instances is large (Section V-E). We
can manually do hierarchical code generation, i.e., synthesize
each task separately and connect the generated RTL code, but
doing so forces us to debug RTL code and spend tens of
minutes to verify the correctness for each code modification,
thus defeats the purpose for adopting HLS.

In this paper, we present the TAPA framework and address
these challenges by providing convenient programming in-
terfaces, unconstrained software simulation, and hierarchical

206

XN AW =

struct PktEoT {
Pkt pkt;
bool eot;
b
void RingNode(stream<Pkt>& node_in, stream<PktEoT>& pe_in,
stream<Pkt>& node_out, stream<Pkt>& pe_out) {
Ektln"dZ—PkEi N Manually maintained input
00l node_pkt_valid = false; L phyffers to implement non-

PktEoT pe_pkt; N .
bool pe_pkt_valid = false; destructive read (i.e., peek).

while (!(pe_pkt_valid && pe_pkt.eot)) {
if (!pe_pkt_valid)
pe_pkt_valid = pe_in.read_nb(pe_pkt);
if (!node_pkt_valid)
node_pkt_valid = node_in.read_nb(node_pkt);
if (pe_pkt_valid) {
node_out.write(pe_pkt .pkt);
pe_pkt_valid = false;
if (node_pkt_valid && IsForThisNode(node_pkt)) {
pe_out.write(node_pkt);
node_pkt_valid = false;

Auxiliary struct for termination control;
eot stands for “end of transaction”.

Manually
update
buffers.

}

} else if (node_pkt_valid) {
Pkt pkt node_pkt ;
node_pkt_valid = false;
(IsForThisNode(pkt) ? pe_out :

node_out) .write(pkt);

} // Highlighted are destructive read operations and
// non-destructive read (peek) operations.

}

Listing 1: Ring network node written in Vivado HLS.

void Kernel(...) {
stream<Pkt, 2> node_0_1, node_1_2, ...
stream<Pkt, 2> from_pe_0, to_pe_0, from_pe_1, to_pe_1, ...
// Instantiates other channels...

#pragma HLS dataflow
RingNode(node_0_1, node_1_2, from_pe_1, to_pe_1);
RingNode(node_1_2, node_2_3, from_pe_2, to_pe_2);
// Instantiates other ring nodes and PEs...

}

Listing 2: Accelerator task instantiation in Vivado HLS.

code generation.

III. TAPA PROGRAMMING MODEL AND INTERFACES
A. Hierarchical Programming Model

TAPA uses a hierarchical programming model. Each task
is either a leaf that does not instantiate any channels or
tasks, or a collection of tasks and channels with which the
tasks communicate. A task that instantiates a set of tasks and
channels is called the parent task for that set. Correspondingly,
the instantiated tasks are the children tasks of their parent,
which may be parents of their own children. Each channel
must be connected to exactly two tasks. One of the tasks must
act as a producer and the other must act as a consumer. The
producer streams tokens to the consumer via the channel in the
first-in-first-out (FIFO) order. Each task is implemented as a
C++ function, which can communicate with each other via the
communication interface. A parent task instantiates channels
and tasks using the instantiation interface, and waits until all
its children tasks finish. One of the tasks is designated as
the top-level task, which defines the communication interfaces
external to the FPGA accelerator, i.e., the system integration
interface.

B. Convenient Programming Interfaces

1) Communication Interface: TAPA provides separate com-
munication APIs for the producer side and the consumer

e I - NV N SR TR R

12

void RingNode(istream<Pkt>& node_in, istream<Pkt>& pe_in,

ostream<Pkt>& node_out, ostream<Pkt>& pe_out) {
while (!pe_in.eot()) {
if (!pe_in.empty()) {
node_out.write(pe_in.read());
if (!node_in.empty() && IsForThisNode(node_in.peek()))
pe_out.write(node_in.read());
} else if (!node_in.empty()) {
Pkt pkt = node_in.read() ;
(IsForThisNode(pkt) ? pe_out : node_out).write(pkt);
} // Highlighted are destructive read operations and
3 // non-destructive read (peek) operations.

Listing 3: Ring network node written in TAPA.

R R . I R TR

void Kernel(...) {

channel<Pkt, 2> node_0_1, node_1_2, ...

channel<Pkt, 2> from_pe_0, to_pe_0, from_pe_1, to_pe_1, ...

// Instantiates other channels. ..

task()
.invoke(RingNode, node_0_1, node_1_2, from_pe_1, to_pe_1)
.invoke(RingNode, node_1_2, node_2_3, from_pe_2, to_pe_2)
// Instantiates other ring nodes and PEs...

}

Listing 4: Accelerator task instantiation in TAPA.

side, which use ostream and istream as the interfaces,
respectively. The producer of a channel can test the fullness
of the channel and append tokens to the channel (write) if
the channel is not full. The consumer of a channel can test the
emptiness of the channel and remove tokens from the channel
(destructive read), or duplicate the head of token without
removing it (non-destructive read, a.k.a., peek), if the channel
is not empty. Read, peek, and write operations can be blocking
or non-blocking.

A special token denoting end-of-transaction (EoT) is avail-
able to all channels. A process can “close” a channel by
writing an EoT token to it, and a process can “open” a channel
by reading an EoT token from it. A process can also test if
a channel is closed, which is a non-destructive read operation
to the channel (eot). An EoT token does not contain any
useful data. This is designed deliberately to make it possible
to break from a pipelined loop when an EoT is present, for
example, in Line 3 of Listing 3. Listing 3 shows an example
of how the communication interfaces are used in TAPA, which
implements the same functionality as Listing 1, but with 55%
fewer lines due to the absence of the auxiliary struct for end-
of-transaction token and the manually maintained input buffer
that implements peek operations.

2) Instantiation Interface: A parent task can instantiate
channels and tasks using the instantiation interface. Channels
are instantiated using channel<type,capacity>. For exam-
ple, channel<Pkt, 2> instantiates a channel with capacity 2,
and data tokens transmitted using this channel have type
Pkt. Tasks are instantiated using task: : invoke, with the first
argument being the task function and the rest of arguments
being the arguments to the task instance. This is consistent
with std: : invoke in the C++ standard library. Listing 4 shows
how channels and tasks are instantiated in TAPA.

3) System Integration Interface: TAPA uses a unified sys-
tem integration interface to further reduce programmers’ bur-

207

den. To offload a kernel to an FPGA accelerator, programmers
only need to call the top-level task as a C++ function in the
host code. Since TAPA can extract metadata information, e.g.,
argument type, from the kernel code, TAPA will automatically
synthesize proper OpenCL host API calls and emit an imple-
mentation of the top-level task C++ function that can set up
the runtime environment properly. As a user of TAPA, the
programmer can use a single function invocation in the same
source code to run software simulation, hardware simulation,
and on-board execution, with the only difference of specifying
proper kernel binaries.

IV. TAPA FRAMEWORK IMPLEMENTATION
A. Software Simulation

State-of-the-Art Approach: There are two state-of-the-art
approaches to run software simulation for task-parallel ap-
plications: the sequential approach and the multi-thread ap-
proach. A sequential simulator invokes tasks sequentially in
the invocation order [23]. Sequential simulators are fast, but
cannot correctly simulate the capacity of channels and appli-
cations with tasks communicating bidirectionally, as discussed
in Section II-B. A multi-thread simulator invokes tasks in
parallel by launching a thread for each task. This enables
the capacity of channels and bidirectional communication to
be simulated correctly. However, they may perform poorly
due to the inefficient context switch handled by the operating
system. The FLASH simulator [60,61] proposed an alterna-
tive to the above, which uses HLS scheduling information
to create an interleaving execution of all tasks. Note that
although FLASH is also single-threaded, it is different from a
sequential simulator because it interleaves tasks via source-to-
source transformation while a sequential simulator does not.
Compared with a sequential simulator, FLASH is on average
1.7x slower [61], due to additional scheduling information
being taking into consideration for cycle-accurate modeling.
Besides, generating simulation executable becomes slower due
to the need of the HLS scheduler output for cycle-accuracy,
which is not needed for correctness verification.

In this section, we present an alternative approach to run
software simulation on task-parallel applications. Given that
the inefficiency of multi-thread execution is mainly caused by
the preemptive nature of operating system threads, we propose
an approach that uses collaborative coroutines [62, 63] instead
of preemptive threads for each task. Note that fast and/or cycle-
accurate debugging in general [64] is out of the scope of this
paper; we focus on the correctness and scalability issues for
task-parallel programs.

Coroutine-Based Approach: Routines in programming lan-
guages are the units of execution contexts, e.g., functions
in C/C++ [65]. Coroutines [66] are routines that execute
collaboratively; more specifically, coroutines can be explicitly
suspended and resumed. A coroutine can invoke subroutines
and suspend from and resume to any subroutine [63]. A
context switch between coroutines takes only 26ns on modern
CPUs [63], while a preemptive thread context switch takes
1.2~2.2us [67], which is two orders of magnitude slower.

TAPA leverages coroutines to perform software simulation
as follows. When a task is instantiated, a coroutine is launched
but suspended immediately. Once all tasks are instantiated,
the simulator starts to resume the suspended coroutines. A
resumed task will be suspended again if any input channel
is accessed when empty or any output channel is accessed
when full, which means that no progress can be made from
this task. A different task will then be selected and resumed
by the simulator. Moreover, the coroutines can be distributed
in a thread pool. The thread pool launches one thread per
CPU core and can bind the thread to the corresponding core,
which prevents the threads from preemption against each other.
This improves simulation parallelism without introducing high
context switch overhead as in the multi-thread simulators. We
will show in Section V-D that the coroutine-based simulator
outperforms the existing simulators by 3.2x on average. TAPA
software simulator is implemented as a C++ library, which can
be compiled by any compatible C++ compiler.

B. RTL Code Generation

State-of-the-Art Approach: Current HLS tools treat the
whole task-parallel program as a monolithic design, treat
channels as global variables, and compile different instances
of tasks as if they are completely unrelated. This can lead
to a significant amount of repeated work. For example, the
dataflow architecture generated by a stencil accelerator com-
piler, SODA [7,9], is highly modularized, and has many
functionally identical modules. However, both the Vivado HLS
and Intel FPGA OpenCL backends generate RTL code for each
module separately. When the design scales out to hundreds of
modules, RTL code generation can easily run for hours, taking
even longer time than logic synthesis and implementation.
While we recognize that a programmer can manually generate
RTL code for each task and glue them at RTL level, doing
so defeats the purpose of using HLS for high productivity.
We also recognize that fast RTL code generation in general
is an interesting problem, but we focus on the inefficiency
exacerbated by task-parallel programs in this paper.

Modularized Approach: Thanks to the hierarchical pro-
gramming model, TAPA can keep the program hierarchy,
recognize different instances of the same task, and compile
each task only once. As such, the total amount of time spent
on RTL code generation is reduced. Moreover, modularized
compilation makes it possible to compile tasks in parallel,
further reducing RTL code generation time on multi-core
machines. TAPA implements this by invoking the vendor tools
in parallel for each task. On average, TAPA reduces HLS
compilation time by 4.9x (Section V-E).

Fig. 2 shows how RTL code is generated by TAPA, which
is composed of four steps. First, TAPA extracts the HLS
code for each task and the metadata information of the whole
design, including the communication topology among tasks,
token types exchanged between tasks, and the capacity of each
channel. Source-to-source transformation is applied in this
step to insert HLS pragmas where necessary (e.g., to generate
proper RTL interfaces). Then, the vendor HLS tool is used to

208

Handled automatically by TAPA

Source to source TL code &
transformation —FI(_ILStCOIC(l‘; co§1];isler_> HLS report
(TAPA) per tas ! er task

Task info Instantiate tasks,
Extract —»
metadata Channal info | channels, and their)
(TAPA) (TAPA) ctrl. logic (TAPA)
,,,,,,,,,,,,,,,,,,,, L

v y
C++ code with host Complete kernel
OpenCL function calls RTL code
Fig. 2: TAPA code generation. The host-kernel interface code is generated
together with the kernel RTL code using metadata of the top-level task.

generate RTL code and HLS report for each task. While TAPA
uses libraries to implement kernel APIs extensively, e.g., for
read, write, and the end-of-transaction bit, not all APIs, e.g.,
peeking, can be implemented as libraries, due to the lack of
support from the HLS scheduler. To support peeking, TAPA
adds a scalar argument to each istream, and connect this port
to the output of first-word-fall-through FIFO when the RTL
code is assembled in the next step.

Using the metadata extracted in the first step, TAPA assem-
bles the per-task RTL code to create the complete kernel. In
this step, for each parent task, TAPA instantiates the children
tasks and channels, and generates a small state machine that
controls start of the children tasks and termination of the parent
task. Finally, TAPA packages the assembled RTL code to a
format that the vendor implementation tool can recognize (xo
file for Vitis).

V. EVALUATION

We prototype TAPA on Xilinx devices using Vivado HLS
as the backend; support for Intel devices will be added later.
We compare the productivity of TAPA with two vendor tools
that provide end-to-end high-level programming experience
(including host-kernel communication): Xilinx Vitis 2019.2
suite and Intel FPGA SDK for OpenCL Pro Edition 19.4. The
experimental results are obtained on an Ubuntu 18.04 server
with 2 Xeon Gold 6244 processors.

A. Benchmarks

Table II summarizes the benchmarks used in this paper.
All implementations (Vivado HLS, Intel OpenCL, and TAPA)
of each benchmark are written in such a way that tasks in
each implementation have one-to-one correspondence, corre-
sponding loops are scheduled with the same initiation interval
(II), and each task performs the same computation. This not
only guarantees source codes to all tools are functionally
equivalent, but also makes all tools generate consistent quality
of results (QoR), which enables fair comparison of tool run
time. Note that we aim to compare the productivity of the HLS
tools, not QoR (although we want to make sure there is no
QoR degradation). In particular, we were unable to guarantee
that the generated RTL codes have exactly the same cycle-
accurate behavior without having access to the HLS compiler’s
scheduling algorithm. For example, the bucket sort network
implemented in TAPA has a total latency of 3 cycles while

TABLE II: Benchmarks used in this paper. Each task may be instantiated
multiple times, so task instance count (#Inst.) and channel count (#Chan.) are
greater than task count (#Task).

Benchmark Application #Task #Inst. #Chan.
cannon Cannon’s algorithm [25] 5 91 344
cnn VGG [68] convolutional network [3] 14 209 366
gaussian Gaussian stencil filter [9] 15 564 1602
gecn Graph convolutional network [52] 5 12 25
gemm General matrix multiplication [3] 14 207 364
network Bucket sort w/ Omega network [69] 3 14 32
page_rank PageRank citation ranking [54] 4 18 89
o 07 N _ Vivado HLS
2% 121 N 728 SSN Intel OpenCL
S8 N
bt N \ N \g S TAPA
S £081 \ \ & el =8
2204t N N PN

N N 2N

0.0 -

canno® et %a\,\ssia“ g ge™ netwovkpage,faﬂk

Fig. 3: LoC comparison for kernel code. Lower is better.

the Vivado HLS implementation has a total latency of 6.
This is inevitable because, using Vivado HLS, the manually
maintained buffer forces an additional latency of 1 cycle at
each network stage. The shallower pipeline makes TAPA use
40% fewer LUTs and 39% fewer FFs for network. For other
benchmarks, TAPA uses 0.4% fewer LUTs and 1% fewer FFs
on average. This shows that the additional APIs provided by
TAPA does not add resource overhead.

B. Lines of Kernel Code

TAPA simplifies the kernel code in two aspects. First, the
TAPA communication interfaces simplify the code with the
built-in support for peeking and transactions. This not only
simplifies the body of each task definition, but also removes
the necessity for many struct definitions. Second, the TAPA
instantiation interfaces simplify the code by allowing tasks to
be launched concisely. Fig. 3 shows the lines of kernel code
comparison of each benchmark. On average, TAPA reduces
the lines of kernel code by 22%. Note that only synthesizable
kernel code is counted; code added for multi-thread software
simulation is not counted for Vivado HLS.

C. Lines of Host Code

The host code used in the benchmarks contains a mini-
mal test bench to verify the correctness of the kernel code.
TAPA system-integration API automatically interfaces with the
OpenCL host APIs and relieves the programmer from writing
repetitive code just to connect the kernel to a host program.
Table 4 shows the lines of host code comparison. On average,
the length of host code is reduced by 51%.

D. Software Simulation Time

Fig. 5 shows four simulators, that is, the sequential Vivado
HLS simulator, the multi-thread Vivado HLS simulator, the
multi-thread Intel OpenCL simulator, and the coroutine-based
TAPA simulator. Among the three simulators, the sequential

209

o — 41 Vivado HLS
=k 5
S831 % MNNN Intel OpenCL
<SS \ TAPA
1R N
S&€ 14 N

0 d

canno® - cnt ga\,\ssia“ gch gem® ne’t"‘orkpa%e,f ank
Fig. 4: LoC comparison for host code. Lower is better.

10 hr
® Vivado HLS (Seq) NS Intel OpenCL (MT)
E 1 hr Vivado HLS (MT) Il TAPA (Coroutine)
; 10 min
Q . N
2 | min §
5 N N N
= 10 sec N \ \ \
) N N I N N N .

1 sec \ J = ,\ \ N

ga

Ca““O“ con \.\Ssiaﬂ geh ge™ r\etworkpa%e,ra“\‘

Fig. 5: Simulation time in log scale. Lower is better. Sequential simulator
fails to simulate cannon and pagerank correctly. Intel OpenCL multi-thread
simulator cannot simulate gaussian due to its large number of task instances.

o 10hr] % Vivado HLS
E o lnr N SSN' Intel OpenCL
S 10 min| s N EEE TAPA

é 1 min \

= 10 secq

1 sec -
%auSs.‘a“ gt

ge“\‘“ o etwo(“page r ank

Fig. 6: RTL code generation time in log scale. Lower is better.

simulator fails to correctly simulate benchmarks that require
feedback data paths (cannon and page_rank). Due to the
larger memory footprint required for storing the tokens trans-
mitted between tasks and lack of parallelism, the sequential
simulator is outperformed by the coroutine-based simulator
in all but one of the benchmarks (network). The two multi-
thread simulators correctly simulate all benchmarks, except
that Intel OpenCL cannot handle gaussian because its large
number of task instances (564) exceeds the maximum allowed
by the simulator (256). However, the multi-thread simula-
tors perform poorly on benchmarks that are communication-
intensive (e.g., network) or have more tasks than the number
of available threads (e.g., gaussian). Although the coroutine-
based TAPA simulator is not always the fastest simulator for
all benchmarks, the worst-case slowdown is only 6%, which is
not significant in comparison with the multi-thread simulator,
which can be 11x slower. On average, TAPA is 3.2x faster
than other simulators.

E. RTL Code Generation Time

Fig. 6 shows the RTL code generation time comparison.
Thanks to the hierarchical programming model and modular-
ized code generator, TAPA shortens the HLS compilation time
by 6.8x on average. This is because @ TAPA runs HLS for
each task only once even if it is instantiated many times, while

Vivado HLS and Intel OpenCL run HLS for each task instance;
@ TAPA runs HLS in parallel on multi-core machines.

VI. RELATED WORK

Table I on Page 2 shows a brief summary of the related HLS
tools. Section VI-A presents more details about these tools.
Two domain-specific streaming frameworks are discussed in
Section VI-B. SystemC and pthread are two well-known alter-
native API paradigms that support task-parallel programs. We
will discuss and compare them with TAPA in Section VI-C.

A. HLS Support for Task-Parallel Programs

Intel HLS supports two different inter-task communication
interfaces: pipe and stream. pipe implements a simple FIFO
interface with data, valid, and ready signals, while stream
implements an Avalon-ST interface that supports transactions.
Tasks are instantiated using launch and collect.

Intel FPGA OpenCL supports the simple FIFO interface
via two sets of APIs, i.e., standard OpenCL pipe and Intel-
specific channel. Tasks are instantiated by defining OpenCL
__kernels, which forces instances of the same task to be
synthesized separately as different OpenCL kernels.

Vivado (Vitis) HLS provides two different streaming inter-
faces: ap_fifo and axis. ap_fifo generates the simple FIFO
interface. Tasks are instantiated by invoking the corresponding
functions in a dataflow region (Listing 2). axis generates
AXI-Stream interface with transaction support. It requires the
programmers to instantiate channels and tasks in a separate
configuration file when running logic synthesis and imple-
mentation. This allows different instances of the same task
to be synthesized only once, but takes longer time to learn
and implement compared with ap_fifo.

Xilinx OpenCL supports standard OpenCL pipe, which
generates AXI-Stream interfaces similar to Vivado HLS axis,
but pipe does not provide APIs to support transactions.

LegUp supports the simple FIFO interface via FIFO. Tasks
are instantiated using pthread API (Section VI-C).

Merlin [40] allows programmers to call the FPGA kernel as
a C/C++ function and provides OpenMP-like simple pragmas
with automated design space exploration based on machine
learning. To support task-parallel programs, Merlin leverages
its backend vendor HLS tools’ programming interfaces.

Their limitations are summarized in Table I on Page 2. Note
that a common limitation of HLS tools (including TAPA) is
that they can not guarantee the software description produces
deterministic output sequences for task-parallel programs. For
instance, the emptiness test to an input channel is prone to
breaking determinism, yet it is available to all HLS tools for
performance and expressiveness reasons: merging two input
channels round-robin using non-blocking reads would produce
an output sequence determined by the relative arrival order of
the input tokens. An implication of non-determinism is we
cannot assert that a program is deadlock-free just because
its simulation succeeds. This is different from deterministic
programs, e.g., Kahn process networks [47], whose successful

210

simulation generally implies deadlock-free on-board execu-
tion. For applications that can be efficiently written without
breaking determinism, e.g., streaming applications, there are
dedicated frameworks developed specifically for them, which
are discussed in the next section.

B. Streaming Framework

ST-Accel [36] is a high-level programming platform that
features highly efficient host-kernel communication interface
exposed as a virtual file system (VES). It uses Vivado HLS as
its backend for hardware generation.

Fleet [37] is a massively parallel streaming framework for
FPGAs that features highly efficient memory interfaces for
massive instances of parallel processing elements. Program-
mers write Fleet programs in a domain-specific RTL language
based on Chisel [70].

TAPA aims to support more general task-parallel applica-
tions beyond streaming.

C. Alternative APIs

SystemC is a set of C++ classes and macros that provide
detailed hardware modeling and event-driven simulation. It
supports both cycle-accurate and untimed simulation and
many simulator implementations are available [71,72]. The
official open-source SystemC simulator implementation uses
coroutines without thread pooling. Some HLS tools support
a subset of untimed SystemC as the input [23]. SystemC
supports task-parallel programs natively via the SC_MODULE
constructs and tlm_fifo interfaces, which supports peeking.
While SystemC supports peeking FIFOs and coroutine-based
simulation for task-parallel programs, it is limited by its
special and verbose coding style. Listing 5 shows the example
discussed in Section II-B written in SystemC. Compared with
other C-like HLS languages, SystemC is more verbose and less
productive due to its special language constructs: for TAPA
code snippets shown in Listing 3 and Listing 4, the equivalent
SystemC kernel code would be 86% longer. On the host side,
SystemC generates the main function in sc_main by itself for
simulation, and programmers need to spend time incorporating
the SystemC test bench with other parts of their program. This
is not a problem if the whole system is defined by the kernel
in SystemC, e.g., as in embedded systems, but in data center
applications where the FPGA accelerator is only part of the
system, this introduces non-trivial complication.

Pthread API is a set of widely used standard APIs that can
be used to implement task-parallel programs using threads.
Pthread requires programmers to explicitly create and join
threads, and each argument needs to be manually packed and
passed. Listing 6 shows an example using the accelerator
discussed in Section II-B. Compared with the invoke API
used by TAPA, the pthread APIs require more effort to
program: for TAPA code snippets shown in Listing 3 and
Listing 4, equivalent pthread-based code would be 2.4x long.

In summary, while the API alternatives do exist in their
own domains, they are more verbose and thus less productive
compared with TAPA for task-parallel FPGA acceleration.

R Y N

SC_MODULE (RingNode) {
sc_port<tlm_fifo_get_if<Pkt>> node_in;
sc_port<tlm_fifo_get_if<PktEoT>> pe_in;
sc_port<tlm_fifo_put_if<Pkt>> node_out,
SC_CTOR(RingNode) { SC_THREAD(thread); }
void thread() { while (...) {...} }

pe_out;

b
SC_MODULE (Kernel) {
tlm_fifo<Pkt> node_0_1{/*depth=+/2}, node_1_2{2}, ...
// Other channels. ..
RingNode nodel, node2, ...
// Other tasks...
SC_CTOR(Kernel) {
nodel.node_in(node_0_1);
nodel.node_out(node_1_2);
// Other argument bindings...
}
b

Listing 5: SystemC TLM API example.

struct RingNode_Arg {
FIFO<Pkt>* node_in, node_out, pe_out;
FIFO<PktEoT>* pe_in;
};
void RingNode(void* arg) {
FIFO<Pkt>* node_in = ((RingNode_argx)arg)->node_in;
// Unpack other arguments...
while (...) {...}
pthread_exit(NULL);

}

void Kernel(...) {
FIFO<Pkt> node_0_1, node_1_2, ...
// Instantiate other channels...
RingNode_Arg nodel_arg, node2_arg, ...
nodel_arg.node_in = &node_0_1;
// Pack other arguments...
pthread_t nodel_pid, node2_pid, ...;
pthread_create(&nodel_pid, NULL, RingNode, &nodel_arg);
// Create other threads...
pthread_join(&nodel_pid, NULL);
// Join other threads...

Listing 6: Pthread API example.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present TAPA as an HLS C++ language
extension to enhance the programming productivity of task-
parallel programs on FPGAs. TAPA has multiple advantages
over state-of-the-art HLS tools: on average, @ its enhanced
programming interface helps to reduce the lines of kernel code
by 22%, @ its unified system integration interface reduces the
lines of host code by 51%, @ its coroutine-based software
simulator shortens the correctness verification development
cycle by 3.2x, @ its modularized code generation approach
shortens the QoR tuning development cycle by 6.8x. As a
fully automated and open-source framework, TAPA aims to
provide highly productive development experience for task-
parallel programs using HLS. For future work, we plan to
extend our work to support dynamic tasks on FPGAs.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
and our labmate, Linghao Song, for their valuable comments
and helpful suggestions. This work is partially supported by
a Google Faculty Award, the NSF RTML program (CCF-
1937599), NIH Brain Initiative (UO1MH117079), the Xilinx
Adaptive Compute Clusters (XACC) program, and CRISP, one
of six JUMP centers.

211

[1]

[6]

[7]

[9]
[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]
[26]

[27]

[28]

REFERENCES

J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-Level Synthesis for FPGAs: From Prototyping to Deployment,”
TCAD, 2011.

X. Wei, Y. Liang, and J. Cong, “Overcoming Data Transfer Bottlenecks
in FPGA-based DNN Accelerators via Layer Conscious Memory Man-
agement,” in DAC, 2019.

J. Cong and J. Wang, “PolySA: Polyhedral-Based Systolic Array Auto-
Compilation,” in /ICCAD, 2018.

Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and
Z. Zhang, “HeteroCL: A Multi-Paradigm Programming Infrastructure
for Software-Defined Reconfigurable Computing,” in FPGA, 2019.

H. R. Zohouri, A. Podobas, and S. Matsuoka, “Combined Spatial
and Temporal Blocking for High-Performance Stencil Computation on
FPGAs Using OpenCL,” in FPGA, 2018.

M. Koraei, O. Fatemi, and M. Jahre, “DCMI: A Scalable Strategy for
Accelerating Iterative Stencil Loops on FPGAs,” TACO, vol. 16, no. 4,
2019.

Y. Chi and J. Cong, “Exploiting Computation Reuse for Stencil Accel-
erators,” in DAC, 2020.

J. de Fine Licht, A. Kuster, T. De Matteis, T. Ben-Nun, D. Hofer, and
T. Hoefler, “StencilFlow: Mapping Large Stencil Programs to Distributed
Spatial Computing Systems,” in CGO, 2021.

Y. Chi, J. Cong, P. Wei, and P. Zhou, “SODA : Stencil with Optimized
Dataflow Architecture,” in ICCAD, 2018.

J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and
M. Horowitz, “Programming Heterogeneous Systems from an Image
Processing DSL,” TACO, vol. 14, no. 3, 2017.

J. Li, Y. Chi, and J. Cong, “HeteroHalide: From Image Processing DSL
to Efficient FPGA Acceleration,” in FPGA, 2020.
UCLA-VAST, “TAPA Sample Applications.” [Online].
https://github.com/UCLA- VAST/tapa/tree/master/apps

J. Cong and Z. Zhang, “An Efficient and Versatile Scheduling Algorithm
Based On SDC Formulation,” in DAC, 2006.

J. Cheng, S. T. Fleming, Y. T. Chen, J. H. Anderson, and G. A.
Constantinides, “EASY: Efficient Arbiter SYnthesis from Multi-threaded
Code,” in FPGA, 2019.

J. Cheng, L. Josipovi¢, G. A. Constantinides, P. Ienne, and J. Wickerson,
“Combining Dynamic & Static Scheduling in High-level Synthesis,” in
FPGA, 2020.

H. Hsiao and J. Anderson, “Thread Weaving: Static Resource Scheduling
for Multithreaded High-Level Synthesis,” in DAC, 2019.

A. Haj-Ali, Q. Huang, W. Moses, J. Xiang, K. Asanovic, J. Wawrzynek,
and I. Stoica, “AutoPhase: Juggling HLS Phase Orderings in Random
Forests with Deep Reinforcement Learning,” in MLSys, 2020.

Y. T. Chen, J. H. Kim, K. Li, G. Hoyes, and J. H. Anderson, “High-
Level Synthesis Techniques to Generate Deeply Pipelined Circuits for
FPGAs with Registered Routing,” in FPT, 2019.

L. Guo, J. Lau, Y. Chi, J. Wang, C. H. Yu, Z. Chen, Z. Zhang, and
J. Cong, “Analysis and Optimization of the Implicit Broadcasts in FPGA
HLS to Improve Maximum Frequency,” in DAC, 2020.

L. Josipovié, S. Sheikhha, A. Guerrieri, P. Ienne, and J. Cortadella,
“Buffer Placement and Sizing for High-Performance Dataflow Circuits,”
in FPGA, 2020.

L. Guo, Y. Chi, J. Wang, J. Lau, W. Qiao, E. Ustun, Z. Zhang,
and J. Cong, “AutoBridge: Coupling Coarse-Grained Floorplanning and
Pipelining for High-Frequency HLS Design on Multi-Die FPGAs,” in
FPGA, 2021.

J. Cong, P. Wei, C. H. Yu, and P. Zhang, “Automated Accelerator
Generation and Optimization with Composable, Parallel and Pipeline
Architecture,” in DAC, 2018.

Xilinx, “Vivado Design Suite User Guide: High-Level Synthesis
(UG902),” 2020.

Intel, “Intel FPGA SDK for OpenCL Pro Edition: Programming Guide,”
2020.

H.-J. Lee, J. P. Robertson, and J. A. Fortes, “Generalized Cannon’s
Algorithm for Parallel Matrix Multiplication,” in ICS, 1997.

J. Cong, P. Wei, C. H. Yu, and P. Zhou, “Latte: Locality Aware
Transformation for High-Level Synthesis,” in FCCM, 2018.

T. Young-Schultz, L. Lilge, S. Brown, and V. Betz, “Using OpenCL
to Enable Software-like Development of an FPGA-Accelerated Biopho-
tonic Cancer Treatment Simulator,” in FPGA, 2020.

V. Rybalkin and N. Wehn, “When Massive GPU Parallelism Ain’t
Enough: A Novel Hardware Architecture of 2D-LSTM Neural Network,”
in FPGA, 2020.

Available:

212

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]
(48]
[49]
[50]
[51]
[52]

(53]

[54]

[55]

[56]

(571

A. Sohrabizadeh, J. Wang, and J. Cong, “End-to-End Optimization of
Deep Learning Applications,” in FPGA, 2020.

J. De Fine Licht, G. Kwasniewski, and T. Hoefler, “Flexible Com-
munication Avoiding Matrix Multiplication on FPGA with High-Level
Synthesis,” in FPGA, 2020.

J. Jiang, Z. Wang, X. Liu, J. Gémez-Luna, N. Guan, Q. Deng, W. Zhang,
and O. Mutlu, “Boyi: A Systematic Framework for Automatically De-
ciding the Right Execution Model of OpenCL Applications on FPGAs,”
in FPGA, 2020.

H. Zeng and V. Prasanna, “GraphACT: Accelerating GCN training on
CPU-FPGA heterogeneous platforms,” in FPGA, 2020.

P. Papaphilippou, J. Meng, and W. Luk, “High-Performance FPGA
Network Switch Architecture,” in FPGA, 2020.

H. Chen, S. Madaminov, M. Ferdman, and P. Milder,
Accelerated Samplesort for Large Data Sets,” in FPGA, 2020.
S. Margerm, A. Sharifian, A. Guha, A. Shriraman, and G. Pokam,
“TAPAS: Generating Parallel Accelerators from Parallel Programs,” in
MICRO, 2018.

Z. Ruan, T. He, B. Li, P. Zhou, and J. Cong, “ST-Accel: A High-
Level Programming Platform for Streaming Applications on FPGA,”
in FCCM, 2018.

J. Thomas, P. Hanrahan, and M. Zaharia, “Fleet: A Framework for
Massively Parallel Streaming on FPGAs,” in ASPLOS, 2020.

A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. Anderson,
S. Brown, and T. Czajkowski, “LegUp: High-Level Synthesis for FPGA-
Based Processor/Accelerator Systems,” in FPGA, 2011.

J. Choi, S. D. Brown, and J. H. Anderson, “From Pthreads to Multicore
Hardware Systems in LegUp High-Level Synthesis for FPGAs,” TVLSI,
vol. 25, no. 10, 2017.

J. Cong, M. Huang, P. Pan, D. Wu, and P. Zhang, “Software Infras-
tructure for Enabling FPGA-Based Accelerations in Data Centers,” in
ISLPED, 2016.

L. Dagum and R. Menon, “OpenMP: An Industry Standard API for
Shared-Memory Programming,” IEEE Computational Science and En-
gineering, vol. 5, no. 1, 1998.

G. Dai, Y. Chi, Y. Wang, and H. Yang, “FPGP: Graph Processing
Framework on FPGA A Case Study of Breadth-First Search,” in FPGA,
2016.

G. Dai, T. Huang, Y. Chi, N. Xu, Y. Wang, and H. Yang, “ForeGraph:
Exploring Large-scale Graph Processing on Multi-FPGA Architecture,”
in FPGA, 2017.

S. Zhou, R. Kannan, V. K. Prasanna, G. Seectharaman, and Q. Wu,
“HitGraph: High-throughput Graph Processing Framework on FPGA,”
TPDS, 2019.

Y. Wang, J. C. Hoe, and E. Nurvitadhi, “Processor Assisted Worklist
Scheduling for FPGA Accelerated Graph Processing on a Shared-
Memory Platform,” in FCCM, 2019.

C. A. R. Hoare, “Communicating Sequential Processes,” Communica-
tions of the ACM, vol. 21, no. 8, 1978.

G. Kahn, “The Semantics of a Simple Language for Parallel Program-
ming,” in [FIP, 1974.

E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,” IEEE,
vol. 75, no. 9, 1987.

J. T. Buck, “Scheduling Dynamic Dataflow Graphs with Bounded
Memory Using the Token Flow Model,” Ph.D. dissertation, 1993.

J. L. Peterson, “Petri Nets,” ACM Computing Surveys, vol. 9, no. 3,
1977.

M. Abeydeera and D. Sanchez, “Chronos: Efficient Speculative Paral-
lelism for Accelerators,” in ASPLOS, 2020.

T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” in ICLR, 2017.

C. Deng, Z. Zhao, Y. Wang, Z. Zhang, and Z. Feng, “GraphZoom:
A Multi-level Spectral Approach for Accurate and Scalable Graph
Embedding,” in /CLR, 2020.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation
Ranking: Bringing Order to the Web,” Tech. Rep., 1998.

J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community
Structure in Large Networks: Natural Cluster Sizes and the Absence of
Large Well-Defined Clusters,” Internet Mathematics, vol. 6, no. 1, 2009.
J. Mcauley, “Learning to Discover Social Circles in Ego Networks,” in
NIPS, 2012.

Y. Chi, G. Dai, Y. Wang, G. Sun, G. Li, and H. Yang, “NXgraph:
An Efficient Graph Processing System on a Single Machine,” in ICDE,
2016.

“FPGA-

[58] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and
H. Yang, “GraphH: A Processing-in-Memory Architecture for Large-
scale Graph Processing,” TCAD, 2018.

[59] Xilinx, “Vitis Accel Hello World Example.” [Online]. Available:
https://github.com/Xilinx/Vitis_Accel_Examples/blob/21bb0ct788ace59
3c6075acctf7f7783588ae8b4/hello_world/src/host.cpp#LS58-L115

[60] Y. Chi, Y.-k. Choi, J. Cong, and J. Wang, “Rapid Cycle-Accurate
Simulator for High-Level Synthesis,” in FPGA, 2019.

[61] Y.-k. Choi, Y. Chi, J. Wang, and J. Cong, “FLASH: Fast, ParalleL, and
Accurate Simulator for HLS,” TCAD, 2020.

[62] A.L.de Moura and R. Ierusalimschy, “Revisiting Coroutines,” TOPLAS,
vol. 31, no. 2, 2009.

[63] O. Kowalke, “Boost Library Documentation, Coroutine2,” 2014.
[Online]. Available: https://boost.org/doc/libs/1_65_0/libs/coroutine2/d
oc/html/coroutine2/intro.html

[64] A.S.Jamal, E. Cahill, J. Goeders, and S. J. E. Wilton, “Fast Turnaround
HLS Debugging using Dependency Analysis and Debug Overlays,”
TRETS, vol. 13, no. 1, 2020.

[65] D. E. Knuth, Fundamental Algorithms. The Art of Computer Program-
ming 1, 3rd ed., 1997.

[66] M. E. Conway, “Design of a Separable Transition-Diagram Compiler,”
Communications of the ACM, vol. 6, no. 7, 1963.

[67] E. Bendersky, “Measuring context switching and memory overheads
for Linux threads,” 2018. [Online]. Available: https://eli.thegreenplace.
net/2018/measuring-context-switching-and-memory-overheads-for-linu
x-threads/

[68] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in /CLR, 2015.

[69] D. H. Lawrie, “Access and Alignment of Data in an Array Processor,”
ToC, vol. C-24, no. 12, 1975.

[70] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. AviZienis,
J. Wawrzynek, and K. Asanovié, “Chisel: Constructing Hardware in a
Scala Embedded Language,” in DAC, 2012.

[71] T. Schmidt, G. Liu, and R. Démer, “Exploiting Thread and Data Level
Parallelism for Ultimate Parallel SystemC Simulation,” in DAC, 2017.

[72] M. K. Chung, J. K. Kim, and S. Ryu, “SimParallel: A High Performance
Parallel SystemC Simulator Using Hierarchical Multi-threading,” in
ISCAS, 2014.

213

