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FLAGGED HIGHER CATEGORIES

DAVID AYALA & JOHN FRANCIS

Abstract. We introduce flagged («, n)-categories and prove that they are equivalent to Segal
sheaves on Joyal's category © . As such, flagged («, n)-categories provide a model-independent
formulation of Segal sheaves. This result generalizes the statement that n-groupoid objects in
spaces are effective, as we explain and contextualize. Along the way, we establish a useful expres-
sion for the univalent-completion of such a Segal sheaf.  Finally, we conjecture a characterization
of flagged (=, n)-categories as stacks on («, n)-categories that satisfy descent with respect to

colimit diagrams that do not generate invertible i-morphisms for any i.
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Introduction

Many examples of (», n)-categories of especial interest, even for n = 1, are univalent-completions
of naturally presented Segal sheaves on the category ©,. The following replacements occur as
univalent-completions:

* a group by its moduli space of torsors, which loses conjugation information within the group;
* aring by its category of modules, which remembers only its Morita-type;
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* a category by its idempotent completion;

* a suitably connective sequence (Xy —» - - - > X ) of spaces by the space X, alone;

» a smooth closed manifold by its smooth h-cobordism-type, which loses simple-homotopy-

type.

In light of this univalent-completion construction, it is in order to find a conceptual, model-
independent, formulation of Segalsheaves on ©,. Our purpose for such a formulation is to ac-
commodate native examples of such entities, and also to house such entities in a framework that
can borrow results from established («, n)-category theory (even for n = 1).

In this paper we give a model-independent formulation of ~ Segal sheaves on ©,,, a corollary
concerning higher groupoid objects, and conjecture another model-independent formulation; we
state these three assertions informally here.

(1) (Theorem 0.26) A Segal sheaf on @, is equivalenttoa flagCo - C¢ - - -- > C , in which
each G is an (=, i)-category and, foreachO<k<i<j<n, the functorC; - C; is
surjective on spaces of k-morphisms with specified source-target.

(2) (Corollary 0.32) An n-groupoid object in Spaces is preciselyaflagX ¢ ->X 1 >--->X |
of spaces for which, foreach 0 <i<j<n,themap X | - X ; is i-connective.

(3) (Conjecture 0.44) A Segal sheaf on @, is a stack on the »-category Cat, of (~, n)-category
that satisfies descent with respect to those colimit diagrams that do not generate invertible
i-morphisms for any 0 <i < n.

Conventions. We make use of Lurie’s work [Lu1], as well as Joyal’'s work [Jo1], for the founda-
tions of »-category theory — there, quasi-category theory. This includes a comprehensive theory
of colimits, limits, (space-valued) presheavesthe Yoneda embedding as a colimit completion, the
unstraightening construction, and Bousfield localizations among presentable «-categories. We as-
sume the reader has operational, though not necessarily technical, acquaintance with these features
of »-category theory. We also call on some more specific features of the »-category Spaces, which
are consequences of the fact that it is an »-topos in the sense of §6 of [Lu1]. We assume the reader
has a working acquaintance with Joyal's category © ,, as it is presented in Berger’'s work [Be] as
well as Rezk’s work [Re2].We assume the reader has a working acquaintance with («, n)-categories
as developed by Rezk in [Re2].

We make use of the following notation.

Notation 0.1.
» We may denote the colimit of a presheaf F : C°? - Spaces as |F| := colim(F).
* Let C be an »-category. By right Kan extension, each presheaf (CP £, Spaces) € PShy(C)
extends along the Yoneda embedding as a functor

F: PShv(CPP -Y220__, Spaces, E 3 F(E) := Map(E, F) .

0.1. Setup and main results. We give a definition of Joyal’'s category ©, ([Jo2]), which follows
Definition 3.9 in [Be].
Definition 0.2.  The category ©,, and its subcategory &' © -, of closed morphisms, are defined
by induction on n as follows.

*Forn<0, O, :=d. Assumen=0. An objectinthe category ® , is a pair of objects

[pleAand (S 1,...,9) (O n-1)"P; such an object is typically denoted [p](S 1, ..., §).
A morphismin © , from[p](S+1,..., 9 to[al(T 1,...,q)is a morphism [p] <> [qlin A
together with, foreachO <i<panda(i— 1) <j < a(i), a morphism S; L, T inOnq.

Composition of morphisms in © ,, is given by composing morphisms in A and composing
collections of morphisms in ©-1 .
« For each n 2 0, the subcategory ©® ¢ © &, contains all objects, and for n > 0, only those

morphisms [pl(S;, . . ., ) AN [al(h, . . ., J) for which o is a consecutive inclusion and
each 7; is a morphismin © ¢, .
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For 0 =k = n, the k-cell is ¢ :=[1](ck-1 ) fork >0 and c o = [0].

Remark 0.3.  Consider the (2, 1)-category Caf""™® of strict n-categories, by which it is meant the
(2, 1)-category of ordinary categories enriched over the Cartesian monoidal (2, 1)-category of strict
(n - 1)-categories. There is a fully faithful functor © , Cat »&" as established in [Be]. The nerve

functor is the restricted Yoneda functor along this fully faithful functor:
Cat"™ - PShv(© ,), C#T7-Catd"(T, C)

Notation 0.4. Let0O<i <n. The stricti-category c i-1 1 E(c) corepresents an invertible i-
morphism in a strict n-groupoid. The presheaf on &, which is its nerve is given the same notation.
This is a special case of Definition 2.1.

Notice the morphism between presheaves on @,

(1) G-1 LE(@)—cCiq ,
corepresenting identity i-morphisms as invertible i-morphisms within strict n-categories.
Definition 0.5.

« A Segal coverin © , is a colimit diagram J < - © ¢S, The «-category of Segal Sheaves (on
©, ) is the full »-subcategory

Shv(®,) < PShv(O )
consisting of those presheaves that carry (the opposites of) Segal covers to limit diagrams.
* For 0 <i =< n, the i-univalence diagram in ©  is the functor ©n ., () “ 50, whichis
adjoint to (1). The «-category of univalent Segal sheaves (on @) is the full »-subcategory
Shv™(©,) < Shv(© ,)

consisting of those Segal sheaves that carry (the opposites of) univalence diagrams to limit
diagrams.

Remark 0.6. We use the notation Shv(© ) for Segal sheaves on @, to suggestively regard the
Segal condition on a presheaf as a descent condition with respect to a notion of a cover. We warn
the reader, however, that Segal covers do not form a Grothendieck topology on ® . Likewise,
the «-category Shv(© ;) itis not an «-topos;  therefore, there is no Grothendieck site for which
Shv(0©,) is its »-category of sheaves. Nevertheless,the Segal covers of Definition 0.5 do define a
Grothendieck topology on the subcategory ©% c © ,. Said another way, the pullback «-category

in the diagram
Shv(0%s) — /8hv(G,)

PShv(O%s) — /PShv(©,)
is an »-topos. In fact, this «-topos is free on its infinitesimal basics:
PShv(G®) =Shv(® ),
where G ¢ @ ¢ is the full subcategory consisting of the cells.
We recall the following culminating definition of [Re2].

Definition 0.7 ([Re2]). The «»-category Cat ,, of (», n)-categories is initial among presentable
»-categories under O p,
@n - Cat n

that carry Segal covers to colimit diagrams and carry univalence diagrams to colimit diagrams.

Observation 0.8.  From their defining universal properties, there is a canonical identification be-
tween «-categories under O
Cat, =Shv ""(O,).
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Definition 0.9. Let0<i<n. A functor C —» D between («, n)-categories is i-connective if, for
each 0 < k <1, each solid diagram among («, n)-categories

T

’ ‘

&«-—ID
can be filled.

Example 0.10. Let X - Y be a map between «-groupoids, and let n = 0 be an integer. Regarded
as a functor between (», n)-categories, it is i-connective if and only if it is i-connective as a map
between spaces.

Remark 0.11. Let C - D be a functor between (=, n)-categories.  One might say this functor is
k-surjective if it is surjective on spaces of k-morphisms with specified source-target.More precisely,
if, for each functor oc — C, the resulting map between spaces Mag®*’ (¢, C) - Map™*/ (cx, D) is
surjective on path components. Through this terminology, the functor C —» D being i-connective is
equivalent to it being k-surjective foreach 0 < k < i.

Definition 0.12. A flagged (», n)-category is a sequence of morphisms among (=, n)-categories
C-»Cq->==Chp
satisfying the following conditions:
« for each 0 <i < n, the (», n)-category C ; is actually an (=, i)-category;
«foreach 0 <i<j<n,thefunctorC ; - C; isi-connective.
The «-category of flagged (=, n)-categories is the full =-subcategory

fCat, < Fun[n], Cat ,
consisting of the flagged («, n)-categories.

Example 0.13.  In general, a flagged (», 1)-category is an (», 1)-category C,  together with a
surjective functor G — C from an «-groupoid. Here surjective means essentially surjective, or
equivalently it means Tp-surjective on spaces of objects.

Example 0.14. Let A be an associative algebra in the Cartesian symmetric monoidal »-category
Spaces.Its deloop * -~ BA is an «-category equipped with a functor from the terminal «»-groupoid
which is surjective on maximal «-subgroupoids.

Example 0.15. More generally, let A an E ,-algebra A in the Cartesian symmetric monoidal -
category Spaces. Its n-fold deloop * > - -+ —->+*—>B "Als an (», n)-category equipped wiht a
functor from the terminal («, n = 1)-category which is (n — 1)-connective.

Example 0.16. Consider the ordinary category Morita whose objects are associative rings, whose
morphisms from A to B are (B, A)-bimodules, and whose composition rule is given as followsfor P
a (B, A)-bimodule, and for Q a (C, B)-bimodule, the composition Q°P is the (C, A)-bimodule PB@Q.

Equivalences in Morita are Morita equivalences between rings.In particular, for each commutative
ring R, the objects Mat 2 (R) and R are equivalent in Morita. Consider the flagged (», 1)-category

Rings —- Morita .

The underlying «=-groupoid of  this flagged (=, 1)-category is, by design, that of isomorphisms
between associative rings.

Example 0.17. More generally, consider the (2, 1)-category Corr whose objects are ordinary cat-
egories and whose morphisms from C to D are (D, C)-bimodules, and whose composition rule is
given by coend. Two categories are equivalent in Corr if their idempotent completions are equiv-
alent as categories. In particular, the ordinary category corepresenting an idempotent and that
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corepresenting a retraction are equivalent in Corr yet they are not equivalent as categories — there
is a unique fully faithful epimorphism between them, and it is not surjective. ~Consider the flagged
(=, 1)-category

Cat” - Corr .
The underlying «-groupoid of this flagged (=, 1)-category is, by design, that of equivalences be-
tween ordinary categories.

Example 0.18. We make use of the terminology introduced in Remark 0.11. In general, a flagged
(=, 2)-category is an («, 2)-category C », together with a functor C 1 - C, from an («», 1)-category
that is O-surjective and 1-surjective, together with a O-surjective functor C ¢ —» C ¢ from an «-
groupoid.

Example 0.19. Let G be an («, 0)-category, which is simply a space. Denote by G<_4 its (-1)-
truncation: this is a space which is initial if G is empty, and is final otherwise. Then G - G« is
a flagged (», 1)-category. This construction is present in the definition of an enriched »-category,
as developed in [GH]. Namely, for V a monoidal «-category, the canonical functor to its deloop

* > BV is a flagged (», 1)-category (internal  to Cat). A V-enriched «»-category, with underlying

«-groupoid C o, is a lax functor between flagged (», 1)-categories hont: (Co - (Co)<-1 ) L (x—>

BV) satisfying a certain univalence condition.

Example 0.20. A flagged (=, n)-category in which each constituent (=, i)-category is, in fact,
an «-groupoid is precisely a flag of  spaces (Xo - - - X p)inwhicheachmap X ; - X ; is
i-connective. (For an interesting example, consider a knotK €S 3, and take X g =X 4 =K and
X2 =X 3 =S 3. For another interesting example, consider a point * € X in an n-connective space
andtake X g =--- =X -4 =+*and X , =X.) The underlying (=, n)-category of this flagged
(«, n)-category is the »-groupoid X  ,, which is blind to the maps X | - X . Inthe example
coming from a point * € X in an n-connective space, this flagged («, n)-category is the E ,-algebra
O" X, whereas the («, n)-category associated to this flagged (», n)-category is its n-fold deloop X,
as an unpointed space. In the case n = 1, the space of automorphisms of X is the space of outer
automorphisms of the Eq-algebra QX.

Example 0.21. Two closed (n - 1)-manifolds are equivalent as (n — 1)-morphisms in the (=, n)-
category Bord, if and only if they are h-cobordant (see §2.2 of [Lu3] for a discussion of this).
Consider the fantastic example of a flagged («, n)-category

Bordyg —— Bord 1 —— - - - == Bord ,

given by the standard functors. The underlying («, i)-category in this flagged (=, n)-category, by
design, codifies diffeomorphisms between compact i-manifolds (with corner structure).

Observation 0.22.  Consider the standard sequence of fully faithful right adjoint functors
(2) Op O-%1 ...-8 08,1 O-5, .

Each of the functors in this sequence, as well as their left adjoints, preserves Segal covers and univa-
lence diagrams. Therefore, left Kan extension along each functor in the above sequence determines
a sequence of fully faithful left adjoint functors

Caty Cat-%4 ...-% Cat-%,4 Cat-%, ;
the right adjoint to each of these functors is given by restriction along the corresponding functor
in (2).
Terminology 0.23. Foreach0O<i<j<n, the value of the right adjointto Cat ; Cat -4 onan
(o, j)-category C is its maximal (=, i)-subcategory C« < C.
Observation 0.24.  Evaluation at the target defines a left adjoint

fCatn - Cat n
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in a localization between «-categories. The right adjoint carries an («, n)-category C to the flagged
(=, n)-category
Cso _—>Cs1 _—>"'_—’Csn—1 _—’Csn =C.

The fully faithful functors

(3) ©, Cat-%&, fCat-o,
determine the restricted Yoneda functors
(4) fCat, —— PShv(Cat,) and fN : fCat, ——» PShv(0© ).

In light of the factorization (3), the functor fN extends the standard nerve functor:
N : Cat, fCat - -~ PShv(©,) .

Remark 0.25. LetC=(Co—~>C4 —>--- > C,)be aflagged (», n)-category. The value of the
presheaf fN(C) on T € @, is the space of fillers in the commutative diagram among (=, n)-categories:

/ /... / /
T, T, frsw Ts,
< - < <
3 oo g L
Co /C1 /.. /Cn—1 —/Cn

In the case that each canonical functor to the maximal (w«, i)-subcategory C ; - (C )< is an
equivalence, such a diagram is just the data of its rightmost vertical arrow.

Here is our main result, which we prove in §3.4.
Theorem 0.26. The restricted Yoneda functor

N - fCat, - PShv(O))

is fully faithful, with image consisting of those presheaves that carry (the opposites of ) Segatovers
to limit diagrams:

fN : fCat, —=— Shv(Q,) .

Remark 0.27. Theorem 0.26 offers a model-independent description Segal sheaves on @, as we
explain. By Definition 0.7, the «-category Cat ,, of (», n)-categories is defined via a universal
property that references © ,. The work of Barwick-Schommer-Pries ([BS]) articulates a sense in
which this dependence on ©,, can be relieved, or rather replaced by an assortment of other basic
categories T,. In this way, we regard the «-category Cat, of («, n)-categories as model-independent
— it can be described as a full ~-subcategory of presheaves on an assortment of basic categories
Th,notjustT , = © ,. Supported by this, the Definition 0.12 of the »-category of flagged («, n)-
categories, then, is a model-independent notion.Theorem 0.26 therefore gives a model-independent
description of Segal sheaves on Q.

0.2. A corollary.  We draw a corollary of Theorem 0.26, as it specializes to the case of groupoids.
To state this corollary, we give two auxiliary definitions.

Recall from Notation 0.4 the strict n-category ¢ -1 t E(q). Consider the functor between strict
n-categories,
(9) G ——cCi-1 1E(a),

corepresenting invertible i-morphisms as examples of i-morphsims within strict n-categories.

Definition 0.28.  The «-category of n-groupoid objects (in Spaces) is the full »-subcategory
n Gpd[S] € PShv(® )

consisting of those presheaves G : ® - Spaces that satisfy the following conditions.

(1) G carries (the opposites of) Segal diagrams to limit diagrams.
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(2) For each 0 <i £ n, each solid diagram among presheaves on ©, admits a filler:

G ————6
5 ﬁ’ﬁ
(9) L3
st
G-1 1 E(q)

Remark 0.29. LetO<i<n. The morphism c; —@—» G-1 Ut E(q) in Shv(@ 1) is an epimorphism.

So, for each Segal sheaf F on ©,, the map between spaces induced by F ¢-1 1 E(g) —F(—@—> F(ci)

is a monomorphism. Therefore, condition (2) in Definition 0.28 is equivalent to the condition that,
foreach 0 <i<n, this monomorphism G ci-1 1 E(g) —— G(g) is surjective on components, and
is therefore an equivalence.In the case that G is the nerve of a strict n-category, this condition (2)
is exactly the condition that G is, infact, a strict n-groupoid. This justifies the terminology of
Definition 0.28.

The next definition isolates the examples discussed in Example 0.20.
Definition 0.30.  The «-category of n-flagged «-groupoids is the full «-subcategory
fGpd, < Fun([n], Spaces)
of sequences (% - - - - - X ) for which the map X ; - X ; is i-connective foreach 0 <i<j<n.
Observation 0.31.  There are evident fully faithful functors
n Gpd[S] Shv(® —»3,) and fGpd, fCat-%o, .

We isolate the following consequence of Theorem 0.26, which is of independent interedts proof
occupies §3.5.

Corollary 0.32.  The equivalence of Theorem 0.26 restricts as an equivalence between «-categories:

fGpd, { { {f:‘{ { t/h Gpd[S]

obs 0.31 obs 0.31
fCat, — /Bhv(@,).
mm 0.26

Remark 0.33. LetX=(X ¢ ->X 4 ->--- > X ;) be an n-flagged »-groupoid. ~Through Corol-
lary 0.32, this is equivalent data to the n-groupoid object fN(X).  This n-groupoid object fN(X) is
the Segal sheaf on @, with the following values on cells and their boundaries.
* IN(X)(c o) =X . Also, IN(X)(dc 1) =X ¢ x X g.
'fN(X)iC 1)=X0; Xo. Also, fN()Q(aC 2)=X o; Xo X Xo x Xo .
1 1

XoxX o X4
L]
fN()_Q(Cz) =X o X Xox Xo X Xox Xo
XQXXZ x XQXXQ X1 XOXXO X1
X2 X2xX 2 X2

=X 2 x fN(X)(c 2).
xs'

* In general, there are pullback squares among spaces:

NX)(c i) — K, N(X)(dc j) —NX)(c -1 )

N(X)(@c 1) —IK S and N(X)(C -1 ) —/INX)(@C -1 ).

diag




Informally, an object in fN(X) is a pointin X . A 1-morphism in fN(X) is a path in X 1 equipped
with lifts of its endpoints to X ¢. A 2-morphism in fN(X) is a 2-disk in X 2, equipped with compatible
lifts of its hemispheres to X 4 and lifts of its poles to X (. Continuing, an i-morphism is an i-disk
in X ; equipped with compatible lifts of its hemispherical j-stratato X ; forj <i. Informally,
composition is given by concatenating disks.

Remark 0.34. Let X be an n-flagged «-groupoid. The connectivity assumptions on X ensure
that the space X, can be recovered as the colimit of the n-groupoid object fN(X). Without these
connectivity assumptions, this colimit | fN(X)| would report a suitable connective cover of X .

Remark 0.35. LetX=(X o - X 1) be a 1-flagged »-groupoid. = The 1-groupoid object fN(X),
which is in particular a simplicial  space, is the Cech nerve of the map X ¢ - X 4, in the sense
of §6.1.2 of [Lu1]. In this sense, Corollary 0.32 generalizes the fact that every 1-groupoid object G
in Spaces is the Cech nerve of the canonical map @— |G. | to its colimit.

Remark 0.36. LetX=(X ¢ —---- - X p)be ann-flagged »-groupoid.  After Remark 0.35,
the n-groupoid object fN(X), which is in particular a presheaf on © |, can be interpreted as the
n-Cech nerve of the given flag X. In this way, Corollary 0.32 states that every n-groupoid object

OF &, Spaces in Spaces is the n-Cech nerve of the canonical flag of mapssGG .<1 | > |Gz | >
s |G-5n |

Remark 0.37. Remark 0.35 can be interpreted as an instance of unstable Koszul duality over the
E1-operad, which we expand on now. Let X =(X ¢ - X 1) be a 1-flagged ~-groupoid. Fix a field

k of characteristic 0; consider the presentable «»-category Stack(k) of (commutative) k-stacks. The

functor = DSpeclor, Stack(k), which selects the terminal (commutative) k-stack, uniquely extends as

a colimit preserving functor Spaces — Stack(k). In this way, each space and each diagram among
spaces, determines a (commutative) k-stack and a diagram of (commutative) k-stacks, respectively.
In particular, the given map X ¢ -~ X 1 between spaces determines a map between (commutative) k-
stacks. Let us suppose that Xy = * is terminal. E4-deformations of this map between (commutative)
k-stacks is organized as a functor from local Artin E {-k-algebras. Koszul duality asserts that this
functor is represented by an augmented E ;-algebra TE' X ;. For formal reasons,this representing
augmented E;-k-algebra TE' X4 is the universal enveloping Ej-algebra of the Lie algebra T . X,
which is the tangent space of the (commutative) k-stack X 4 at its point. For other formal reasons,
this representing augmented E4-k-algebra TE* X4 is the group ring k[QX] :=C.(QX; k) on the
group QX ¢ which fN(X) codifies, as it is equipped with its standard augmentation.  Conversely,
using the assumption that the map between spaces * — X1 is 0-connective gives that the canonical
map from the Maurer—Cartan E 1-k-stack,

MCyax 1 = Spec(K) xax 1] -=> X4,

is an equivalence (as E-k-stacks). Though less developed, we anticipate a similar interpretation of
Corollary 0.32 for the general n = 1 case (in which X ¢ is general). Specifically,
* the 1-groupoid fN(X), which we regard as an unstable version of an E-algebroid over Xo,
represents B-deformations of the map Xy - X 4 between (commutative) k-stacks;
* the connectivity of the map X o —» X 1 between spaces ensures that X, as an E;-k-stack, is
the Maurer—Cartan E ¢-k-stack of this E {-algebroid over Xg.

Remark 0.38. We follow-up on Remark 0.37. Though even less developed, we speculate a further
interpretation of Corollary 0.32 for the case of general n. Specifically, for X=(X ¢ ->-"+>X )
an n-flagged ~-groupoid,
* the n-groupoid fN(X), which we regard as an unstable version of an E {-algebroid over an
Eq-algebroid over ... over an Eq-algebroid over Xy, represents compatible &-deformations
of each map X; - X i+1 in the given flag X;
* the connectivity of each map X ; - X ; ensures that X,,, as an E,-k-stack, is the Maurer—
Cartan E,, -k-stack of this iterated E {-algebroid over Xy.
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0.3. Aconjecture.  We state a conjecture, and some related problems, that are prompted by this
work. To state our conjecture we single out a class of diagrams in Cat,.

Definition 0.39. A gaunt colimit djiagram in Cat ,, is a functor J < - Cat ,, for which, for each
0 =i < n, the composite functor J < - Cat, AN Cat is a colimit diagram.
Example 0.40. For each 0 <i < p, the diagram

iy ———i<---<p}

{0<---<i} 4/{0<...<p}

is a gaunt colimit diagram in Cat 1. More generally, for each Segalcover J* - © ,, the composite
functor

J9-->0 , — Cat,
is a gaunt colimit diagram.

Example 0.41.  While the diagram in Cat 4
{0<2}11{1<3} —{0<1<2<3}

* H * /*
is a colimit diagram, itis not a gaunt colimit diagram. Note, however, that the map from the
colimit of maximal »-subgroupoids to the maximal «-subgroupoid of *, «-groupoids
a
{0<1<2<3} ~ I = {-}H{+}—~,

{0<2} - L{1<3} -
is 0-connective, which is to say that it is surjective on path components.

Example 0.42. Consider the ordinary 1-category E(c;) corepresenting an isomorphism. Consider
the functor A g ,) = AX . (Caty)/[E(c1Cat —-A > (1 from the slice category. Consider its
at1

terminal extension

(A g ,))” — Catq .
While this functor is a colimit diagram, it is not a gaunt colimit diagram. More generally, for each
0 <i < n, consider the strict n-groupoidification E(c ;) of the i-cell. While the composite functor

Onge,))"— 0 n Cat-9o,
is a colimit diagram, it is not a gaunt colimit diagram.

Remark 0.43. Heuristically, a colimit diagram J< - Cat, is gaunt if it does not generate invertible
i-morphisms for any i.

We make the following.
Conjecture 0.44.  The restricted Yoneda functor

icat, - pshv(Cat,)

is fully faithful, with image consisting of those presheaves that carry (the opposites of ) gaunt colimit
diagrams to limit diagrams.

Remark 0.45. We reflect on the statement of Conjecture 0.44. By definition, the «-category
Cat, is presentable. Therefore, the image of the Yoneda functor Cat , — PShv(Cat ), which is
fully faithful, consists of those presheaves that carry (the opposites of) all colimit diagrams to limit
diagrams.

9



Problem 0.46. Identify checkable criteria for when a colimit diagram J< — Cat is in fact a gaunt
colimit diagram.

Problem 0.47. LetO<i<n. Fordc; —» C afunctor to a finite gaunt n-category, give an explicit
description (for instance as a presheaf on @,, or even as a presheaf on finite gaunt n-categories) of
the pushout (», n)-category

Clig.

6Ci
Acknowledgements.  We are grateful to Jacob Lurie, for his contributions to foundational topos
theory, and to Charles Rezk, for his careful and operationally practical exposition of (w«, n)-
categories.

1. Comparing Segal sheaves and flagged higher categories

We establish adjunctions connecting the »-categories Shv(©,) and fCat,,. In doing so, we intro-
duce some interpolating «-categories.

1.1. An adjunction. Recall the sequence of functors (2); foreach0<i<j<n, denote that
functor as
(6) =15 10 05

where the subscripts are omitted if the indices are understood from context. The sequence (2) of
fully faithful right adjoint functors is selected by a functor:

0.:1n 2. cat, i7-0 .

Postcomposing this functor with the functor PShv : Cat —» Pr L. to presentable «-categories and left

adjoint functors among them, results in a functor [n] -, cat P2, pi The unstraightening of

this functor is an »-category over [n],
(7) PShv(®.) - [n],
which is both a coCartesian fibration and a Cartesian fibration.

Remark 1.1. LetO<i<j<n. Consider the morphism c 1 =L [n]. The coCartesian mon-
odromy functor of (7) over the morphism is the unique colimit preserving functor 1 ,: PShv(®;) »
PShv(©; ) extending the composite functor © | © »&; PShv(© -5 ). The Cartesian monodromy
functor of (7) over this same morphism is the functor PShv(© ;) « PShv(© ) : 1" given by pullback
along ©; © -»%;. Notice that both of these monodromy functors preserve colimits, and that the
coCartesian monodromy functor is left adjoint to the Cartesian monodromy functor.

Consider the «-category of sections of (7):
PShv(©.) :=Fun ;y [n], PShv(G.)

Explicitly, an object of ' PShv(©.) s, foreach0<i<n, apresheafF, € PShv(©;), together
with, for each 0 <i < n, a morphism1 Fi-y - F; between presheaves on @ Now, because n € [n]
is a final object, Cartesian monodromy of the unique morphisms in [n] to this final object define a
functor from the fiber over n to this »-category of sections:

(8) PShv(©y) -~ I PShv(O .)

This functor (8) is fully faithful, and its image consists of the Cartesian sections, which are those
sections that carry morphisms to (7)-Cartesian morphisms. Precomposing with the Yonda functor
©, PShv(© -%) determines the solid diagram among «-categories:

0, " Ipshv(@,) — " IrPshv(@.)
Yoneda ?&” (8) =
I 9 I 9
ff it w @
w4 e ee 0w
PShv(@,) PP M

10



Left Kan extensions define the fillers in this diagram, which is indeed a commutative diagram
because each ofthe solid arrows is a fully faithful ~ functor. From the universal property of the
Yoneda functor, the inner filler is the identity functor on PShv(® ), asindicated. As is always
the case for left Kan extensions through a Yoneda functor, the outer filler is the restricted Yoneda
functor. (We give this left Kan extension the same notation as (4) because it extends that functor,
as we will see.) From the universal property of left Kan extensions, the resulting triangle among
presentable «»-categories

@oPShv(©.)

///W

0, —1PShv(G,) 4/P8hv(®n

\-r PShv(0.)

lax-commutes, as indicated. By construction, the resulting outer lax-commutative triangle among
«-categories is, in fact, a commutative triangle. From the universal property of the Yoneda functor
©, - PShv(0© ,) as a colimit completion, it follows that the second-to-outer lax-commutative
triangle is also, in fact, a commutative triangle. This concludes the construction of an adjunction
9 (8) : PShv(©,) 2T PShv(© .) : iN.

Explicitly, the left adjoint evaluates on a presheaf F € PShv(© ,) as the sectioni 7> F o op; in the
case that F is represented by an object T € © ,, we implement the other notation T <. in place of
Flo». Explicitly, the right adjoint evaluates on a section F . as the presheaf T % Map (T<. , F.),
whose values are spaces of morphisms in the »-category ' PShv(@.) .

Inspecting the definition of the restricted Yoneda functor fN : T PShv(®@ .) - PShv(® ), asn
varies, reveals the following.

Observation 1.2.  For each 0 <i <j < n, the diagram among «-categories

PShv(@) 2™ T PShv(©.q )

PShv(@) 2—™ T PShv(O.< )
canonically commutes.
1.2. Restricting the adjunction. We now show that the adjunction (9) restricts to Segal objects.
Recall the »-category of (7). Consider the full «-subcategories
(10) PShv(©.) > Shv(® .) > Shv"™(@.)
consisting of those pairs i €[n], F € PShv(® ;) forwhichF ; € Shv(© ;), and forwhichF ; €
Shv'™(@)), respectively.
Lemma 1.3. In the commutative diagram among «-categories,
PShv(@.) &——— Shy(0.) 20— ShV'™(0.)

I

N I T ‘

| | I )
(n] :
each of the vertical functors is both a coCartesian fibration and a Cartesian fibration, and each of the
horizontal functors is fully faithful and preserves coCartesian morphisms and Cartesian morphisms
over [n].
1



Proof. By Definition 0.5, both Segal covers and univalence diagrams are,in particular, limit dia-
grams in ©,. By direct inspection, for each 0 <i < j < n, the fully faithful functor © ;| © - carries
Segalcovers to Segalcovers and carries univalence diagrams to univalence diagrams. From these
two points, it follows that the adjunction1 : PShv(©;) 2 PShv(© ;) : 1" restricts as an adjunction

Ii: Shv(©;) 2 Shv(© ) 1",
which further restricts as an adjunction
e Shv™(@;) 2 Shv"™(@;) 11",
The lemma follows.

Foreach 0 <i<n, viaBousfield localization, the fully faithful inclusion between presentable
w-categories, Shv'"™ (@ Shv(® —-( ;), is a right adjoint:

(11) (=) B Shv(©;) 2 Shv "™(©;).
The left adjoint is univalent-completion.
Lemma 1.4. The fully faithful inclusion

Shv(©. Shv "« ("™(©.)

is a right adjoint functor.  |ts left adjoint functor lies over [n], and the adjunction is given on fibers

overie[n] as the Bousfield localization (<) ®,,: Shv(®;) 2 Shv “™(©;) implementing univalent-
completion.

Proof. The existence of a left adjoint is a condition on the given fully faithful functor. Because
the given fully faithful functor is a coCartesian functor between coCartesian fibrations over [n], the
result is proved upon showing that the following two points.

(1) For each 0 <i < n, the functor between fibers over i is a right adjoint in an adjunction,
Li : Shv(©;) 2 Shv'™(@;) .

(2) For each 0 <i < n, the diagram

Shv(0i-1 ) U Shv™(©i-1 )

Shv(@;) — " IEhwW™(@))

lax-commutes.

The first point is exactly the adjunction (11), in which L; = (=) 5, is univalent-completion. The fully
faithful functor Shv "™ (@1 Shv --(""(©;) is a left adjoint, with right adjoint given by restriction:
C 7- G . Therefore, the sought lax-commutative diagram is implemented from the commutativity
of the diagram involving right adjoints to the sought lax-commutative diagram:

Shv(Qg ) 0 Sh\}’”v@m )
Shv(@) &——— ShV™(@))

Taking sections, Lemma 1.4 has the following useful consequence.
12



Corollary 1.5.  The fully faithful inclusion
I Shv(®.) T Shv «"(O.)

is a right adjoint functor.  |ts left adjoint carries a section F . to the section (F. ), whose value on
i € [n] is the univalent-completion of the Segal sheaf F € Shv(O;).

Remark 1.6. Verifying that a presheaf on © |, satisfies the Segalcondition, as defined in Defini-

tion 0.5, can be reduced to a simpler problem, as we now explain. Each closed morphismin ©

is a monomorphism. Therefore, for each T € © £, the overcategory @ﬁ'f’T is a a poset. Inspecting
the definition of the category © ,,, this poset Oﬁ',ST is, in fact, finite. Therefore, each colimit in © ¢
can be expressed as a finite iteration of pushouts. It follows that a presheaf F € PShv(@© ) is Segal
if and only if it carries (the opposites of) pushout diagrams in @ ¢ to pullback diagrams among

spaces.We make implicit use of this reduction as we proceed.

Lemma 1.7. The adjunction (9) restricts as an adjunction
(12) (8) : Shv(®,) 2T Shv(® .) : fN.

Proof. Because the asserted restriction is to fully faithful »-subcategories in the adjunction (9), we
need only show that the left and the right adjoint functors restrict as desired.
From its definition, Lemma 1.3 gives that the functor (8) restricts as a functor

(8): Shv(@,) 2T Shv(® .) ,

which is necessarily fully faithful.

It remains to prove that fN restricts likewise.Let F. € ' Shv(®© .) . We must show, then, that the
presheaf fN(F ) : ©% — Spaces carries (opposites) of Segal covers to limit diagram&y definition of
fN as a restricted Yoneda functor, this is implied by the functor © , - fCat, carrying Segal covers
to colimit diagrams. By definition of a Segal cover, this is implied by the functor @ ¢  fCat ,,

preserving colimit diagrams. By definition of fCat ,, as a full «-subcategory of Fun([n], Cat,), this

is implied by each of the forgetful functors (=) ¢ : ©¢¢ - Cat , 119t Cat i preserving colimit

diagrams.

Now let T. : J* » @ S8 be a colimit diagram. Denote the value on the cone pointas T:=T e Q.
We must show that the composite functor (T .)< : J¥ — Cat; is a colimit diagram. In general, for
each k, the full subcategory of ©F" consisting of the cells strongly generates; also, by definition, the
functor ©  Cat -»& preserves such colimit diagrams. We can therefore reduced to the case that
the functor J = E(T) "> © ¢ s the inclusion of the full subcategory E(T ) € @€ consisting of
those closed morphisms T - T for which T ; =c is a k-cell forsome 0 <k <n. This, a priori,
«-category E(T ) is in fact a finite poset (see Remark 1.6). The lemma is proved once we establish
the following sequence of equivalences among («, i)-categories:

colimCs <«-— colim colim C'
CeE(T) CeE(T) C'eE(C) «
«=—  colim C
C'eE(T) «
=5

From the universal property of the right adjoint functor (-)  : Cat, - Cat;, foreachS e ©,,
there is a canonical identification as a colimit:

S =colm® ;5 -0 ; Cat-%

Consider the subcategory 65'35 c O ys consisting of the closed morphisms to S and closed mor-

phisms among them. Via the active-closed factorization system on the category @, the inclusion of

this subcategory is a final functor. Consider the full subcategory E(S)s; € E(S) € © 5'33 consisting
13



of those (C — S) for which C =c¢  is a k-cell forsome 0 <k <i. Now, for each k, the full subcat-
egory of © %" consisting of the cells strongly generates; also,by definition, the functor ©  Cat -
preserves such colimit diagrams.We conclude from these observations an identification

S« =colmE(S) s 0 -5 08 -0, Cat-§

Applying this to S = T gives the final equivalence in the above string. Notice that the assignments
S % E(S)and S 7- E(S)< each evidently extend as a functors @ - Poset,q os. This gives the first
of the equivalences. The second equivalence follows from Quillen’s Theorem A, using the following
observation.

Let C' - T be a closed morphism in © , from an i-cell. Then the poset of factorizations of
this closed morphism through a closed morphism C - T from a cell, has an initial object.

Finally, the composition of this string of equivalence is evidently the canonical morphism we intended
to show is an equivalence.

Concatenating Corollary 1.5 and Lemma 1.7 results in the composite adjunction
(13) (- 10%)%: Shv(©n) 2T Shv(®@ .) =2TShv “™(@.) : iN.
Unwinding definitions reveals the next observation.
Observation 1.8.  There is a canonical fully faithful functor between «-categories:
(14) fCat, I Shv-»5“™(@.)

The image consists of those sections C=(Co - C¢ - -+ - C,) for which, foreach0 <i<j<n,
the functor C; — C; between (=, j)-categories is i-connective.

The proof of the next result occupies §3.1.

Lemma 1.9. The value of the left adjoint of the adjunction (13) on a Segal sheaf F € Shv(©,) lies
in the image of the fully faithful functor of Observation 1.8:

(Flo »)®  efCat , .
Through Observation 1.8, Lemma 1.9 has the following consequence.

Corollary 1.10.  The adjunction (13) restricts as an adjunction

(15) (- 10%)5n: Shv(©,) =2fCat : fN.

unv -

1.3. Explicating the adjunction. After Corollary 1.10, our main result (Theorem 0.26) is implied
by showing that both the unit and the counit transformations of the adjunction (15) are equivalences.
So we explicate the values of left and right adjoints, as well as the unit and the counit, of the
adjunction (15).

1.3.1. The left adjoint. The value of the left adjoint (- |o »)P., of the adjunction (13) on a Segal
sheaf F € Shv(©,) is the section (F g )%, of the functor Shv'™(©.) - [n] that is the assignment
[N] i 7~ (Flo)n € SWV™ (@),

which is the univalent completion of the restriction F o o € Shv(0;).

1.3.2. The right adjoint. The value of the right adjoint fN of the adjunction (13) on a section
C. el Shv'™(©.) isthe Segal sheaf fN(C) € Shv(®,) that is the assignment

O >T7%Mapr_ (Ts. ,C) e Spaces,

which is the space of morphisms in [ Shv'"™(@.) fromTe. =(Tg - Tt > 5T g = T)
to C.. The next result (Corollary 1.12) makes the values of the Segal sheaf fN(C) more explicit.
14



Observation 1.11.  For C. and D. sections of the functor PShv(©.) - [n], the canonical square
among spaces of morphisms

-1
Mapr_ (C., D.) MapPShv(On)(Cns Dn)

Mapr_, (Cecn , Desn ) ——————Mappshy(o ,)(Ca-1 , Dn)

is a pullback.

Proof. The coCartesian monodromy functors of the coCartesian fibration PShv(@) - [n] are given
by left Kan extensions along fully faithful functors. Therefore, these coCartesian monodromy func-
tors are fully faithful. These coCartesian monodromy functors thusly define a fully faithful functor
to the fiber over the final object n < [n]:

I PShv(®.) Fun[n], PShv(® »&,) =:PShv(0,)M .
The canonical functor [n — 1] { ]% {n=1<n}-[n] between «-categories is an equivalence
e

from the pushout. Consequently, for X an «-category, and forx ., y. € Fun([n], X) =: X[ two
functors [n] - X, the canonical square among spaces of morphisms

X (x., ) K (X0, yn)

X (Xean s Yoan ) ——IX(Xn=1 5 Yn)
is a pullback. Apply this to the case X = PShv(© ).

Corollary 1.12.  Let C. be a section of the functor PShv(©.) - [n]. LetTe® ,. Thereisa
canonical pullback diagram among spaces:

N(C. )(T) lea(m)

fN(Csn )(Tan ) ———1C(T<n ) -

Alternatively, there is a canonical limit diagram among spaces:

Co(Tso),  Ci(Tsr) dg Gt (Tan ()
A“““A.@‘ s ‘
b & -

Ci(T<0) Co(T<1) Ch-1 (Ten2 ) Cn(T<n-1 )-

Corollary 1.12 makes apparent the following.

Observation 1.13. Let0<i<n. LetF. be a section of the functor PShv(®.) —» [n]. Restricting
this section over [i] = {0 < - - - <i} € [n] determines the section F . of PShv(®.) - [i]. There is
a canonical equivalence between presheaves on;©

N(F.si ) =NF ) -
15



1.3.3. The unit.  The unit of the adjunction (13) evaluates on each Segal sheafon © , as the
morphism between presheaves

unit: F => N (F g %)y

whose value on T € O ,, is described inductively (via Observation 1.13) through Corollary 1.12 as
the square among spaces

(16) F(T) IF8W(T)

F(T p ) —nduction  /e\ — IFe (Ta).

b
F |© w<n )unv

Without compressing this description via induction, the unit transformation can be described
through Corollary 1.12 as the canonical diagram among spaces

(17)
. F(T)ny
ore222?3ll iy,
m:zzm””””M IIIII'lll)
(Fie gp)lﬂnv(ng ) (Fio ;’p)BnV(Ts] ) (Floe, )tt)mv(TSn—l‘l ) (Flo2)on(T)
'l.".' |||||| |||||||II
Dl..(( ||||IIII "||))
(Flo2)on(T<0) S (Flo)onv(T<n-1 ).

The proof of the next result occupies §1.3.3.

Lemma 1.14. For each SegalsheaffF on © ,, and for each T € © ,,, both of the diagrams among
spaces (16) and (17) are limit diagrams.

1.3.4. The counit.  The counit of the adjunction (13) evaluates on each section C. of the functor
Sh™ (@) - [n] as the morphism between sections

counit : (N(C. )0 %)%y == C-

whose value on i € [n] is described, through Observation 1.13, as the canonical functor between
(=, i)-categories
fN(C.si ) ° = C;

unv

from the univalent-completion of the Segal sheaf fN(C.; ) on ©; that evaluates oneach T € ©; as
the canonical map

(18) fN(Csi )(T)——Ci(T)
as in Corollary 1.12.

Observation 1.15.  Let C be a flagged («, n)-category. Through the fully faithful ~functor (14),
regard C as a section of the functor Shv “™(0©.) - [n].  The connectivity assumptions on each
G — C; ensure that, foreach 0 <i<nand each T € © ;, the map (18) between spaces is surjective
(on path components). From the 2-out-of-3 property for surjections, it follows that the counit
evaluates as a surjection

b
unv(

counit: fN(C.q )

is surjective (on path components).

T)—Ci(T)

The proof of the next result occupies §1.3.4.
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Lemma 1.16. Let C efCat, be a flagged (=, n)-category. ForeachO<i <n, the canonical
morphism between Segaéheaves on @

counit: fN(C.q; ) —— C;

witnesses a univalent-completion: (fN(C.q; )) -=5 G-

b
unv

2. Univalence completion
We establish a formula for univalent-completion.Section §2.1 establishes the formula for univalent-
completion. Section §2.2 justifies that this formula indeed implements univalent-completion.

2.1. The formula.  We establish the somewhat explicit formula for univalent-completion.
Notation 0.4 is an instance of the following.

Definition 2.1.  The functor

(19) E:©, -—— PShv(© ,)
carries an object T = [p](T 1, . . ., §) € © , to the presheaf of sets
n o]
f
E(T) 18 = [q](s'l e §) 2 {O, R Q}_—’ {O, R p} ’ glj € E(TI)(SJ) 0<isp;  jeHullf (i-1).f (i)}

Each value of the functor (19) is an explicit description of strict n-groupoid-completion, as we
now observe.

Observation 2.2.  The functor (19) is identical to the composite functor

n-groupoid completion

E: @, Cat et Z00Rm 2ot - - Gpd"™® Cat -3t -, pShy(@,)

which we briefly explain. Here, Gp"™ c Cat3"™ is its full (2, 1)-subcategory consisting of those
categories enriched in Gpcf,t_"1Ct for which each (1-)morphism is invertible. The first functor is the
fully faithful functor of Remark 0.3. The second functor is the left adjoint to the inclusion of the
strict n-groupoids. The third functor is the inclusion of the strict n-groupoids.  The fourth functor
is the nerve functor of Remark 0.3.

Observation 2.2 yields the following.

Observation 2.3.  The functor (19) factors through n-groupoids, and in particular Segal sheaves:

(19
E:0,--2.nGpd < Shv(G,).
" PC obs 0.31 (©n)

S

Using the adjoint functor theorem, there is a Bousfield localization
(20) Shv(@,) =2 Shv "™(@,), FAFP., .

We now give a somewhat explicit formula for this left adjoint, which is inspired the classifying
diagram construction of [Re1], which is elaborated in [JT]. Consider the composite functor

(21)
L: PShv(@,) ~—=~==t- 5 PShv(0, %0 ) ~22PL, PSh(@),  F7-L(F):=T7 - F(T xE("))] .

The initial functor = ~LL_, P determines the initial functor © =@ P x + > © P x O . This, in
turn, determines the natural transformation

(22) id--L, F% F=F(-xEQ]) - F(-xE@) .= L(F)

The proof of the next result occupies §2.2.
17



Proposition 2.4.  There is a canonical commutative diagram among =-categories:

=) an

Shv(©,) IShv™(@,)

PShv(®,) — = /PShv(@,),
which extends as a commutative diagram among »-categories:
¢ x Shv(@,) — "™ /Bhv(O,)

2
o x PShv(05) — 22 IpsShv(ey).

In other words, for each Segal sheafF c PShv(@© ,,), and foreach T € © , thereis a canonical
identification between spaces:
Map TxE(s),F -=>FB (T);
with respect to this identification, the value of the unit of the adjunction (20) on F evaluates on
T € © , as the canonicalmap between spaces
F(T)=Map T xE([0]),F --» MapTxE(),F =F2,(T).

2.2. The formula is correct. We prove Proposition 2.4. This result is proved upon establishing
the following features of the functor L of (21) and the natural transformation id - L of (22).

(1) Should F carry (the opposites of) Segal covers to limit diagrams, then the presheaf L(F)
also carries (the opposites of) Segal covers to limit diagrams. In other words, there is a
factorization of the restriction:

Shv(@,) L L L ¥ U 1 UBhy(o,)

PShv(®,) — = 1PShv(@,).

(2) Should F carry (the opposites of) Segal covers to limit diagrams, then the presheaf L(F)
carries (the opposites of) univalence diagrams to limit diagrams. In other words, there is a
further factorization of the restriction:

Shv(@,) f t L Lt U 1t Ushw™(o,)

PShv(O)

(3) Should F carry (the opposites of) Segal covers and univalence diagrams to limit diagrams,
then the natural transformation id — L evaluates as an equivalence. In other words, the
lax-commutative diagram

is, in fact, a commutative diagram.
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* Proof of (1): Let F € Shv(O ) be a Segal sheaf.Let

TO —IT*

T —IT
be a pushout diagram on @®. This diagram determines the diagram in Fun @,, PShv(©,) :

TOXE() ——IT* xE(s)

T~ x E(+) . Ifrx E(e).

Through Observation 2.2, using that the Segal condition is closed under products of presheaves,
this is in fact a diagram in Fun © ,, Shv(©,) < Fun O, PShv(G,) . Established in [Re2],
products in Shv(© ) distribute over colimits.  Therefore the above diagram is a pushout
diagram in Fun © ,,, Shv(©,) . Applying the Segal sheaf F results in the pullback diagram

in Fun © %P, Spaces

(23) FTxE(s) —— JFT* xE(s)

FT-xE(s) —— IFTOxE() .

Because it is the case for each E(¢), this diagram is in fact a diagram in the full 0=

subcategory n Gpd © Fun(@P, Spaces) of Observation 0.3 Because this full »-subcategory
is closed under limits, the above diagram is a pullback diagram in n Gpd.  The functor
| - ]:n Gpd - Spaces carries the above diagram to a diagram among spaces

(24) LF)(T):= FTxE(F) —NFT*xE(F) =LFNT *)

LFT ")= FT - xE() ——NFTOxE() = LEF)NT 9.

This proof that L(F) is a Segal sheafwhenever F is a Segal sheafis complete once we
show (24) is a pullback among spaces.

Restricting the diagram (23) in PShv(® ) along the standard diagonal functor A ™" -
O, determines a pullback diagram

(25) GlL....[] ———1G [],...,[]

in PShv(A *"). Because the diagram (23) belongs to n Gpd, this restricted diagram (25)

belongs to the »-category Gpd" [S] of groupoid objects in the »-category Gpd "1[S], where

Gpd1 [S] =1 Gpd[S] is the »-category of groupoid objects in Spaces. Now, let P :=
19



(26)

(27)

(28)

(29)

[P1],....[p11 €A "' . Consider the functor A WD A1 xA=A  * . Con-
sider the restriction

) ——Id )

e —IG )

of the diagram (25) along this functor.  This diagram (26) is a pullback diagram among
simplicial spaces.Because F € Shv(Q, ) is a Segal sheaf,inspecting the standard diagonal
functor A ™ - © , gives that the vertical arrows in the pullback diagram (26) are Cartesian
fibrations as well as coCartesian fibrations among Segal sheaves on A. Quillen’s Theorem
B (of [AF]) applied to (26) grants that the resulting diagram among spaces

) — &

) —Fe
is a pullback. Proceeding by induction on n gives that the diagram among spaces

GPFlL....[' 1 ——G [....[

G[,....[1 ————&[L....[1

is a pullback diagram. Now, there is a canonical morphism among square diagrams in Spaces
from (28) to diagram (24). By direct examination using Quillen’s Theorem A, the diagonal
functor A ™™ - © | is final. It follows that this comparison morphism from (28) to (24) is
an equivalence between square diagramsFinally, because (28) is a pullback diagram, then
so too is (24).

* Proof of (2): LetF eShv(© ,)beaSegal sheaf. By Definition 0.5 of the univalence
condition, we must show, for each 0 <i < n, that the canonical map between spaces

L(F)(ci) -~ L(F)c i 1 E(a)

is an equivalence. Consider the diagram in Shv(©,):

oci x E(Cisg ) I&; x E(cir1 )
tt
gtt
gttt
0%
0

In this diagram, the outer square is a pushout, and the inner square is trivially a pushout.

Furthermore, the diagonal arrows in this square are carried to equivalences by the localiza-

tion Shv(® ,) - Shv"™(®,). Applying the Segal sheaf L(F) to this diagram results in the
20



(30)

(31)

diagram among spaces,

L(F)(ci) iL(F)(Ci)
AQQQ
yﬁaﬁ*’%
L(F)c i1 E(@) ——IL(F)c i x E(Cis1 )

L(F) ag,i * E(Cis1 ) — 1L(F)(oc i)..

M mm.,...

L(F)(c i) IL(F)(oc 1),

in which both the inner and the outer squares are pullback squares. Therefore, the down-
rightward arrow, which is (29), is an equivalence provided each of the down-leftward arrow
and the up-rightward arrow is an equivalence. This is implied by showing, foreach S, T €
©,, that the canonical map between spaces,

LIF(T):= FTxE() -—- FTxE(S)x*xE() = LF)TxES) ,

is an equivalence.So fix S, T © .
As established in the Proof of (1) above, the presheaf Gr(¢) :=F T x E(*) on®,
belongs to the full »-subcategory n Gpd CO 31 PShv(©,). Inspecting the Definition 2.1 of
obs 0.

bs
the functor E : ©, —» n Gpd, its left Kan extension to Ca preserves products.Therefore
E(S x ¢) = E(S) x E(*). We conclude an identification of the exponential presheaf,

strict
th

Gr()%:=Gr(Sx*)=FTxESx+) =FTxES)xE()

and that this is also an n-groupoid object in Spaces.So it remains to establish the following
general claim:

(f): Leto P <, Spaces be an n-groupoid object.Let S € © , be an object. Consider
the morphism G - G S between n-groupoid objects induced by the unique morphism
S - *in ® . The resulting map between colimits

|G| — |G®|

is an equivalence between spaces.
Consider the morphism s : * —» S that selects the unique object for which there are no
non-identity morphisms to it in the n-category S. This morphism is a section of the unique
morphism S > *in® . This determines a retraction |G S| =~ |G|, for which (30) is a
section. The claim () then follows upon showing the composite map among spaces

81 -2 16 -2 )

is equivalent to the identity map. We do this representably. More precisely, we construct a
filler among strict n-categories

S Jxs Xg, xs A x5 02gsS
&
: He g id




Such a filler determines a filler in the diagram among presheaves on @:
0 S 1
6604/% ore op—'vﬁs

5o

: < id
G G
S
The colimit functor | = |: PShv(®,) — Spaces preserves products, and carries ¢, to *.

Applying this colimit functor to the above diagram results in the sought equivalence between
the composite map |&| - |G| - |G S| and the identity map.

So we are left to construct a filler, H s : ¢, x S —» S, in the diagram (31). We do this for
all S € © ,, by induction on n. The base case that n = 0 is tautological. So assume n > 0.
Write S=[p](S 1,...,9). Ifp=0, thenS=~+isterminal and thereis a unique Hs. So
assume p > 0. Because S is a colimit of its maximal Segal cover, it is enough to define Hs
on each term of this colimit, compatibly. So the functor H g is determined by declaring,
for each consecutive morphism ¢ - Sin © , what is the composite functor among strict
n-categories:

Hs ° (id, f): ¢ —21, ¢, x5 -He g
Soletcy 1. S be a consecutive morphism in ®, that is injective on sets of objects. Sof
evaluates on objects as f (0) =i—-1 and f (1) =i for some 0 <i < p, and f evaluates on strict
(n = 1)-categories of morphisms as Hom (0, 1) : Hom, (0, 1) = Cn-1 LN Si =Homg(i—1,1)
for some consecutive morphism f: c,-1 > S in © -1 . We declare the composite functor
among strict n-categories

Hs © (id,f): 6 - cp x5 2o s

as follows. On objects, this composite functor is
Hs ° (id, f)(0) =0 and Hs ° (id, f)(1) = (1).
On (n - 1)-categories of morphisms, this composite functor,

Hom, (0, 1) = Cn-1
S g,
= Hom, (0, 1) x Homg f(0), f (1)
Y
H 0,1
el Homs 0,f(1) =S,
0<jsi
is defined by declaring the composition
. Y
H 0,1
. _Gdfi) | G-1 X S; _Homns 1) _ S _pr, S|
0<j<i
to be the following. If j<i, this latter composition is constant at the object0 e S ;. If

j =, this latter compositionis H s, ° (id, fi); note that, because § € © -1, this has been
defined by induction on n. This completes the construction of H g, foreach S€ © ,, and
therefore completes the proof of (2).

s Proof of (3):  Let F € Shv"™(@,) be a univalent Segal sheafWe must show the morphism
between univalent Segal sheaves

(32) (22):F - F-xE() = L(F)

is an equivalence. LetS, T © ,. Consider the projection morphism T x E(S) - T in

the »-category Shv(® ). Inthe casethat T =+, this is the case nearly by definition of

the univalence condition. The case of general T follows from this T = * case because the
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Bousfield localization Shv(®,) - Shv "™(@ ) preserves products (as established in [Re2]).
Using that F is univalent, the resulting map between spaces
F(T)-—>F T x E(S)

is an equivalence. It follows that the morphism (32) is an equivalence, as desired.

3. Using the formula to prove the main result

We use the formula of Proposition 2.4 for univalent-completion to prove Theorem 0.26. Specif-
ically, we use that formula to prove Lemma 1.9, Lemma 1.14, and Lemma 1.16, then draw Theo-
rem 0.26 as a consequence.

3.1. Proof of Lemma 1.9. Recall from Proposition 2.4 the explicit description of  the functor
(= 10%)5n: Shv(®n) - T Shv “™(©.) . Through that description, the problem is to show that,
for each Segal sheaf F € Shv(© ), andforeach0<i <j<n, the canonical functor between
(=, j)-categories

(FIO i"p)?mv - (F 1© jc’p)lL)mv
is i-connective. So fix F e Shv(@ n)and0<i<j<n. By Definition 0.9 of i-connective, we must
show that, for each 0 < k < i, the solid diagram among (=, j)-categories

(33) ock ——NF

b
¢] i"p)unv
. ¢

b
F|e Jf’p)unv

can be filled. So fixsuchaO<k<i.
Consider the canonical diagram among spaces of functors:

' / .
(34) Catj Cks (F|O i"p)?mv Catj Gk (FIG j"p)kt)mv

Caty ek, (Fio»)iny ——/Cal dci, (Fio )iy -
Unwinding definitions, the problem of finding a filler in (33) is identical  to showing the resulting
map to the pullback
Cal] Ck (FlG) ;’p)?mv - Catj OCk (F|O ?p)?mv x Catj Gk (F|e fp)ﬂnv

Catj 0ck ,(F © jop)an

is surjective (on path components).
Recall Definition 2.1 of the functor E : © , -~ PShv(® ). For each ¢ < n, denote its restriction

E:©, @ »& = PShv(@,) .
The canonical morphism dck — ¢k then determines, for each ¢ < n, the morphism
Flck x Ey(*)) — F(dc « * Ej (%))

between ¢-groupoid objects in Spaces. Taking colimits results in a commutative diagram among
spaces:
F(ck X Eji (%)) F(ck x Ejj ()

F(ock x Eji(v) ———/F(ack x Ejj (+)) .
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Through Proposition 2.4, which identifies univalent-completion in terms of

E, this commutative

diagram among spaces is identified as the commutative diagram (34). So we must show that the

canonical map between spaces

(35) F(ck xEji(+)) —— F(ock x Eji (%)) x

F(ck x Ej ()

F(oc k xEjj (*)

is surjective (on path components). This map (35) factors as the string of maps,

F(ck x Eji (%) =

i

1"F(ck X Ejj ()

1" F(ock x Ej (+)) x Flck x Ejj (%))
(b) F(oc k xE jj (*)
P 1" F(ock X Ejj () x F(ck x Ejj ()
(c) F(oc k xE jj (*)
S F(ock x Ej (+) x Flck x Ej ()
(d) F(oc k xE jj (*)
-——»  nI"F(ck x Ej (+)) x Flck X Ej (%))
(e) Foc « xE j (+))
= F(ock x Eji (*)) x Flek xEj ()
© F(ee «xEy ()
which we now explain. We use the notation1: ©; © —»&; for the standard fully faithful  right
adjoint functor. This functor determines the adjunction 1 : PShv(©;) 2 PShv(O ;) : 1", whose left

adjoint is given by left Kan extension along 1

along 1°P.  With this notation,

% and whose right adjoint is given by restriction

the equivalence (a) is definitional, from the notation for E |,. The
equivalence (b) is a trivial pullback. Because 1 is fully faithful, the unit of this (i

1, I")-adjunction is

an equivalence.Together with the fact that the right adjoint 1 * preserves pullbacks, this establishes

the equivalence (c). The map (d) is the canonical
1. Because this functor i1 is a right adjoint,

colimits |1 *X| - |X]

is surjective (on path components).

one, induced by restriction along the functor
for any presheaf X on © j, the canonical map between
In particular, the map (d) is surjective

(on path components). The equivalence (f) is the fact that left Kan extensions compose, together

with the definitional

identification F(oc « x E|i(*)) =1 "F(dck x E (*)) as that supporting the

equivalence (a). The equivalence (e) follows through the same logic, which reduces from presheaves

on @, to simplicial spaces, as in the final part of Proof of (1), in §2.2.

of Lemma 1.9.

3.2. Proof of Lemma 1.14.

This completes the proof

Let F € Shv(© ) be a Segal sheaf. Following §1.3.3, we must show,

foreach T € @, that the diagram (16) is a limit diagram. Through Proposition 2.4, we can describe
each instance of univalent-completion appearing in (16) by the expression involving E(*):

(36) F(T)

IIE T x E(+)

F(T<n)

is a limit diagram. We do this by induction on n.

N F-xE(-<n)

(Tan) —————1 FT<n xE(%)

For n =0, this assertion is vacuously true. So

assume n > 0. By induction on n, the bottom left horizontal morphism in (36) is an equivalence.
Using that the »-category Spaces is an »-topos, Theorem 6.1.0.6 of [Lu1] grants that the square (36)
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is a pullback square provided, for each S € ©,, the square
FT) ——F T xE(S)
F(Tan ) ———F T xE(S)

is a pullback. To show this square is pullback it is sufficient to show that the square among strict
n-categories

(37) Ten XES) —— I x E(S)

Tn I

is a pushout in Shv(®,). Because S - E(S) is an epimorphism in Shv(® ), it follows through the
Cartesian Bousfield localization of univalent-completion (established in [Re2]) that the top horizontal
morphism in (37) is an epimorphism in Shv(® ). Thus, the square (37) among strict n-categories
is a pushout in Shv(®,) provided the square among strict n-categories

Tan xS —————ITxs

Ten I

is a pushout in Shv(® ). This latter square is trivially a pushout, after the Cartesian Bousfield
localization of Segal completion (established in [Re2]).

3.3. Proof of Lemma 1.16. From the description of the counit in §1.3.4, we must show, for each
0 <i < n, that the functor between (=, i)-categories

counit: fN(C)e oy, = Ci

is an equivalence. So fix 0 <i<n. Through the nearly definitional Observation 0.8, it is enough
to show, for each T € ©;, that the map between spaces

(38) NClow |,

unv(

T)--Ci(T)
is an equivalence.So let T € © ;. Through Proposition 2.4, this map (38) is identified as the map
(39) fNC)TXE( <) —— G TxE(*<) «—C(T)

in which the leftward arrow is an equivalence because ¢ is, by definition, univalent.
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We establish that the map (39) is an equivalence using, for each S € O ;, the following diagram
among spaces

fN(C) T x E(S) Y

fN(Q) T<i x (a)
))*))))
)
)))))))))))))))))))
39 30 fN(C) T« xE(* ) ““475444444“:(T<i)
33 )))))))))))))
%y

fN(C) T« x E(S

))F))))
M)
0000y,

fIN(C) T« XE(* <) - g (T<i )8,

which we now explain. This diagram is a representation of the »-category [2]x[2] in the «»-category
Spaces, where the second factor selects the vertical sequences.

 For each u € [2], the representation {u} x {0 < 1} - [2] x [2] - Spaces selects the map that
is induced by the canonical functor T; — T between i-categories.

 For each u € [2], the representation {u} x {1 <2} - [2] x [2] -~ Spaces selects the map that
is induced by the canonical functor S¢; — S between i-categories.

* For each v € [2], the representation {0 < 1} - {v} x [2] x [2] -~ Spaces selects the map that
is induced by the canonical map to a colimit.

* Foreach v e[2], the representation {1 <2} x {v} - [2] x [2] — Spaces selects the map
that is that determined by (39).  In particular, the representation (a) : {1 <2} x {0} -
[2] x [2] - Spaces is precisely (39).

* This entire diagram commutes because G is univalent.

So we must show that the map (a) is an equivalence.
We isolate some observations concerning surjectivity.

(Surj 1):  Observation 1.15 grants that, forv=0, 1€ [2], the representation {0 < 2} x {v} —
[2] % [2] — Spaces selects a map between spaces that is surjective (on path components).

(Surj 2): Because this functor 1 : ©p © -&; is a right adjoint, for any presheaf F on ©;, the canonical
map between colimits F[0] =1 *F| - |F| is surjective (on path components). Applying
this observation to F = fN(C) T x E(*) andto F=fN(C) T « xE(s) givesthat, for
v =0, 1 € [2], the representation {0 < 1} x {v} - [2] % [2] -~ Spaces selects a map between
spaces that is surjective (on path components) in the case that S =[0]. The general case
for S € @ ; follows from the 2-out-of-3 property for surjections, again using that [0] € © ; is
a final object.

(Surj 3):  After the previous point (Surj 2), commutativity of the square selected by the representa-
tion {0 < 1} x {1 <2} > [2] x [2] - Spaces implies the map selected by the representation
{0 <1} x {2} - [2] % [2] — Spaces is surjective over the image of the diagonal map, which
is selected by the representation {1} x {1 < 2} - [2] % [2] —» Spaces.

(Surj 4): By the 2-out-of-3 property for surjections, we conclude that, forv=0,1<[2], the rep-
resentation {1 < 2} x {v} - [2] x [2] — Spaces selects a map that is surjective (on path
components).

Now, it follows from Corollary 1.12 that the representation {0 < 2}x{1 < 2} - [2]x[2] — Spaces
selects a pullback diagram. As established in Proof of (1) of §2.2, the functor

OF - SpaceS



is an i-groupoid object. Precisely because i-groupoid objects in Spaces are effectivethe represen-
tation {0 <1} x {1 <2} > [2] x [2] — Spaces selects a pullback diagram. Taking the case that
S =[1], thetwo squares {0 <u}x{0<1}-1[2] x[2] — Spaces, foru=1, 2, being pullback
implies, for each point x e fN(C) T < x E([1]) , that the induced map between based loop spaces

O INC) Tai XE( <) ——Co Qo G(T<i )

is an equivalence.Using that the »-topos Spaces is hypercomplete, we conclude from this, together
with the above (Surj) observations concerning the bottom horizontal arrow, that the map (b) is an
equivalence between spaces.

The (Surj) observations give that each of the representations {0 < 1} x {1} > [2] x [2] » Spaces
and {0 <2} x {1} > [2] x [2] — Spaces is surjective (on path components). It follows, again,
from Corollary 1.12 that the representation {0 <2} x {0 < 1} - [2] % [2] — Spaces selects a
pullback diagram. Established above is that the map (b) is an equivalence. Using, again, that the
«-topos Spaces is hypercomplete, we conclude from (b) being an equivalence, that the map (a) is
an equivalence, as desired, provided the representation {0 < 1} x {0 < 1} - [2] x [2] - Spaces
selects a pullback square.So it remains to show just that.

LetS - S ' be a morphism in @ ;. Consider the evident square among strict i-categories:

(40) Ta xE(S) ———ITxE(S)

Ta xE(S) ——— T xE(S).

Applying the left adjoint functor (- o )0, : Shv(©;) - fCat; of (15) to this square (40) results in
square among flagged («, i)-categories. Using the fact that the Bousfield localization implementing
Segal completion is Cartesian (as established in [Re2]), this square in flagged («, i)-categories is a
pushout. From the definition of fN as a restricted Yoneda functor, it follows that the square among
spaces

(41) N(C) TxEES) ——/IN(C) TxE(S )

N(C) T« xE(S) ——JfN(C) T4 x E(S)

is a pullback. Using that the «-category Spaces is an »-topos, Theorem 6.1.0.6 of [Lu1] gives that
the resulting square involving colimits

fN(C) Tx E(S) ——— 1 fN(C) T x E(*)

fN(C) T x E(S) ————— fN(C) T« x E(*)

is a pullback. As this square is the representation {0 < 1} x {0 < 1} - [2] x [2] — Spaces, this
completes this proof.

3.4. Proof of the main result (Theorem 0.26). To prove Theorem 0.26, it is enough to show
that the unit and the counit of the adjunction (11) are equivalencesThrough the discussion in §1.3.3,
that the unit of  the adjunction (13) is an equivalence is exactly the statement of = Lemma 1.14.
Through the discussion in §1.3.4, that the counit of the adjunction (13) is an equivalence is exactly
the statement of Lemma 1.16.
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3.5. Proof of Corollary 0.32.  We prove Corollary 0.32. Recall Definition 0.28 of n-groupoid
objects, and Definition 0.30 of n-flagged »-groupoids.

LetO<is<n. Using thatthe standard fully faithful functor =@ g° © - is a fully faithful
left adjoint, restriction and left Kan extension define a localization

Spaces = PShv(@) =2 PShv(O ;)

in which the left adjoint is fully faithful. Evidently, this left adjoint factors as the commutative
diagram among «-categories and fully faithful functors there among:

(42) Spageq |t 11 1 Uigpds]
|
* ! obs 0.31

* T
Shv™(0;) 4)Shv(®i ).

Inspecting the definitions of these full «-subcategories of PShv(©;) (as Bousfield localizations
thereof) reveals that this is a limit diagram. In other words, if a Segal sheafon ©; is both an
n-groupoid object in Spaces and univalent complete, then it is a constant presheaf.

Lemma3.1. ForeachO<i<n, the adjunction (11) restricts through Observation 0.31 as an
adjunction:

|_
!9—”9d)( ]

iGpd[S]04— Spaces
obs 0.31 ) Snv constant
e

Shv(@;) &—— ShV™(0))
inclusion
Proof. The top horizontal arrow Spaces "~ iGpd[S]is a right adjoint; its left adjoint is the functor
| - | : iGpd[S] - Spaces given by taking the colimit of an i-groupoid object © * — Spaces. Because
the straight diagram in the statement of the lemma commutes, there is a canonical lax-commutative
diagram:
[l

iGpd[S] f Spaces

constant

Obs 0.31‘
.\ b
Shv(@)) — 2 Ishy™(@)).

It remains, then, to show that this lax-commutative diagramis, in fact, a commutative diagram.
So let G € iGpd[S] be an i-groupoid object. We must show that the canonical morphism between
univalent Segal sheaves on @ under G,

C"Env -— |G,

is an equivalence. Through the universal property of the univalent-completion of G, this is to show
that, for each univalent Segal sheaf C on @, each horizontal morphism in Shv(©;),

Gw—{ﬁ%. . - o)
LJ
e
‘ a* e i
Gt
admits a unique factorization as in the upward diagonal arrow. -~ The fully faithful functor iGpd[S]

Shv(0©;) is a left adjoint; we will denote its right adjoint as (=)~ : Shv(©;) - iGpd[S]. The definition
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of univalent Segal sheaves on Qis just so that this adjunction restricts as an adjunction
Spacesz2 Shv "™(©): (=) .

This adjunction determines a unique downward diagonal factorization, and also ensures that the
bottom right presheaf C on ©; is, in fact, constant. Because C is constant, there is a unique
factorization as in the bottom horizontal arrow. This establishes a unique factorization as in the
upward diagonal arrow, as desired.

Remark 3.2. Lemma 3.1 articulates that the univalent-completion of an i-groupoid object © 2,
Spaces is nothing other than its colimit |G|, regarded as a constant presheaf on @ which is thusly
univalent and Segal.

Lemma 3.3. The adjunction (15) restricts through Observation 0.31 as an adjunction:
(=) o :nGpd[S] 2 fGpd ,: fN.

Proof. Lemma 3.1 implies, and identifies how, the restriction of (- ey »)P., ton Gpd[S] factors
through fGpd,,. It remains to show that the restriction of fN to f{Gpd , factors through n Gpd[S].
By direct inspection, there is a canonical lax-commutative diagram among «-categories,

On ICat, lfCaty It Shv“”"(@o. ) > [n]

n Gpd[S] f fGBg] —/Fun([n], Spaces),

~

where the bottom curved arrow has been established in the first line of this proof,  and the right
horizontal arrows are the evident fully faithful functors. Foreach0<i<n, the standard fully
faithful functor Spaces "~ Cat is a right adjoint. Their left adjoints assemble as a left adjoint to
the standard fully faithful ~functor Fun([n], Spaces) "» I Sh"'"(0©.) - [n] whose image consists
of those sections that take values in «-groupoids. Replacing the right upward arrow in the above
diagram by this left adjoint determines another lax-commutative diagram among »-categories:

On IEat, lfCat, If Shv'™(@.) > [n]

E

E

n Gpd[S] f fGBdn —/Fun([n], Spaces).

~

Observation 2.3 implies that this lax-commutative diagram is, in fact, a commutative diagram.Now,
the functor fN is defined as the restricted Yoneda functor along the composite functor © , - fCat
appearing in the above diagram. Commutativity of the above diagram thusly gives that, for each
n-flagged «-groupoid X =(X ¢—---—> X p),and each T € @, that the canonical monomorphism
between spaces

N(XYE(T )) — IN(X)(T)
is an equivalence. We conclude that flagged (=, n)-category fN(X)_is, in fact, an n-flagged «-
groupoid, as desired.

Remark 3.4. InLemma 3.3, the left adjoint carries an n-groupoid object © 2P <, Spaces to the
sequence ofspaces |%gp| -G o 3p| -+ >|G g»|. Lemma 1.9 ensures that this sequence of
spaces indeed satisfies the requisite connectivity conditions to be an n-flagged «-groupoid. = The
right adjoint in Lemma 3.3 carries an n-flagged »-groupoid X ¢ - - - X p toits n-Cech nerve,
elaborated in Remark 0.33.
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Remark 3.5.  Note that the right adjoint in Lemma 3.3 is defined on the full «-subcategory
Fun([n], Spaces) c I Sh¥™(©.) - [n] . As so, for X. € Fun([n], Spaces) a sequence of spaces, the
counit

fN(X . )|@ op - X .
is the terminal n-flagged »-groupoid over X .. In this way, this is counit is a relative connective
cover of X.. Indeed, forn =1, and should X = *, then this morphismis (* - X ;) - (x> X 1)
where X; - X 1 is the canonical map from the connected component of X1 through which * - X 4

factors. And for general n, yet X ¢ =— ...=— Xn-1 =+, this morphismis (* >+ >*>X ) -
(*->--->+>X ,)where Xr', - X p is the n-connective cover of the based space * - X,.

Proof of Corollary 0.32. 1t remains to show that the unit and the counit of the adjunction of
Lemma 3.3 are equivalences. Through Lemma 3.3, it is enough to observe that the unit and the
counit of the extended adjunction (15) are equivalences. That this is so is precisely Lemma 1.14
and Lemma 1.16, respectively.
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