
Black-Box Certification with Randomized Smoothing:
A Functional Optimization Based Framework

Dinghuai Zhang∗
Mila

dinghuai.zhang@mila.quebec

Mao Ye∗, Chengyue Gong∗
Department of Computer Science

University of Texas at Austin
{my21, cygong}@cs.utexas.edu

Zhanxing Zhu
School of Mathematical Sciences

Peking University
zhanxing.zhu@pku.edu.cn

Qiang Liu
Department of Computer Science

University of Texas at Austin
lqiang@cs.utexas.edu

Abstract

Randomized classifiers have been shown to provide a promising approach for
achieving certified robustness against adversarial attacks in deep learning. However,
most existing methods only leverage Gaussian smoothing noise and only work
for `2 perturbation. We propose a general framework of adversarial certification
with non-Gaussian noise and for more general types of attacks, from a unified
functional optimization perspective. Our new framework allows us to identify a key
trade-off between accuracy and robustness via designing smoothing distributions
and leverage it to design new families of non-Gaussian smoothing distributions
that work more efficiently for different `p settings, including `1, `2 and `∞ attacks.
Our proposed methods achieve better certification results than previous works and
provide a new perspective on randomized smoothing certification.

1 Introduction

Although many robust training algorithms have been developed to overcome adversarial attacks [1–3],
most heuristically developed methods can be shown to be broken by more powerful adversaries
eventually (e.g., [4–7]). This casts an urgent demand for developing robust classifiers with provable
worst-case guarantees. One promising approach for certifiable robustness is the recent randomized
smoothing method [8–15], which constructs smoothed classifiers with certifiable robustness by introduc-
ing noise on the inputs. Compared with the other more traditional certification approaches [16–18] that
exploit special structures of the neural networks (such as the properties of ReLU), the randomized
smoothing approaches work more flexibly on general black-box classifiers and is shown to be more
scalable and provide tighter bounds on challenging datasets such as ImageNet [19].

Most existing methods use Gaussian noise for smoothing. Although appearing to be a natural choice,
one of our key observations is that the Gaussian distribution is, in fact a sub-optimal choice in high
dimensional spaces even for `2 attack. We observe that there is a counter-intuitive phenomenon in
high dimensional spaces [20], that almost all of the probability mass of standard Gaussian distribution
concentrates around the sphere surface of a certain radius. This makes tuning the variance of Gaussian
distribution an inefficient way to trade off robustness and accuracy for randomized smoothing.

Our Contributions We propose a general framework of adversarial certification using non-Gaussian
smoothing noises, based on a new functional optimization perspective. Our framework unifies the
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methods of [9] and [14] as special cases, and is applicable to more general smoothing distributions and
more types of attacks beyond `2-norm setting. Leveraging our insight, we develop a new family
of distributions for better certification results on `1, `2 and `∞ attacks. An efficient computational
approach is developed to enable our method in practice. Empirical results show that our new
framework and smoothing distributions outperform existing approaches for `1, `2 and `∞ attacking,
on datasets such as CIFAR-10 and ImageNet.

2 Related Works

Certified Defenses Unlike the empirical defense methods, once a classifier can guarantee a consistent
prediction for input within a local region, it is called a certified-robustness classifier. Exact certification
methods provide the minimal perturbation condition which leads to a different classification result.
This line of work focuses on deep neural networks with ReLU-like activation that makes the classifier
a piece-wise linear function. This enables researchers to introduce satisfiability modulo theories [21,22]

or mix integer linear programming [23,24]. Sufficient certification methods take a conservative way
and bound the Lipschitz constant or other information of the network [16,18,25,26]. However, these
certification strategies share a drawback that they are not feasible on large-scale scenarios, e.g. large
and deep networks and datasets.

Randomized Smoothing To mitigate this limitation of previous certifiable defenses, improving net-
work robustness via randomness has been recently discussed [27,28]. [8] first introduced randomization
with technique in differential privacy. [12] improved their work with a bound given by Rényi divergence.
In succession, [9] firstly provided a tight bound for arbitrary Gaussian smoothed classifiers based on
previous theorems found by [29]. [10] combined the empirical and certification robustness, by applying
adversarial training on randomized smoothed classifiers to achieve a higher certified accuracy. [11]

focused on `0 norm perturbation setting, and proposed a discrete smoothing distribution which can be
shown perform better than the widely used Gaussian distribution. [14] took a similar statistical testing
approach with [9], utilizing Laplacian smoothing to tackle `1 certification problem. [15] extended the
approach of [9] to a top-k setting. [13] extends the total variant used by [9] to f -divergences. Recent
works [30–32] discuss further problems about certification methods. We also focus on a generalization
of randomized smoothing, but with a different view on loosing the constraint on classifier.

Noticeably, [30] also develops analysis on `1 setting and provide a thorough theoretical analysis on
many kinds of randomized distribution. We believe the [30] and ours have different contributions
and were developed concurrently. [30] derives the optimal shapes of level sets for `p attacks based
on the Wulff Crystal theory, while our work, based on our functional-optimization framework and
accuracy-robustness decomposition (Eq.9), proposes to use distribution that is more concentrated
toward the center. Besides, we also consider a novel distribution using mixed `2 and `∞ norm for `∞
adversary, which hasn’t been studied before and improve the empirical results.

3 Black-box Certification as Functional Optimization

3.1 Background

Adversarial Certification For simplicity, we consider binary classification of predicting binary
labels y ∈ {0, 1} given feature vectors x ∈ Rd. The extension to multi-class cases is straightforward,
and is discussed in Appendix C. We assume f ] : Rd → [0, 1] is a given binary classifier (] means the
classifier is given), which maps from the input space Rd to either the positive class probability in
interval [0, 1] or binary labels in {0, 1}. In the robustness certification problem, a testing data point
x0 ∈ Rd is given, and one is asked to verify if the classifier outputs the same prediction when the
input x0 is perturbed arbitrarily in B, a given neighborhood of x0. Specifically, let B be a set of
possible perturbation vectors, e.g., B = {δ ∈ Rd : ‖δ‖p ≤ r} for `p norm with a radius r. If the
classifier predicts y = 1 on x0, i.e. f ](x0) > 1/2, we want to verify if f ](x0 + δ) > 1/2 still holds
for any δ ∈ B. Through this paper, we consider the most common adversarial settings: `1, `2 and `∞
attacks.

Black-box Randomized Smoothing Certification Directly certifying f ] heavily relies on the
smooth property of f ], which has been explored in a series of prior works [8,16]. These methods
typically depend on the special structure-property (e.g., the use of ReLU units) of f ], and thus can
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not serve as general-purpose algorithms for any type of networks. Instead, We are interested in
black-box verification methods that could work for arbitrary classifiers. One approach to enable this,
as explored in recent works [9,11], is to replace f ] with a smoothed classifier by convolving it with
Gaussian noise, and verify the smoothed classifier.

Specifically, assume π0 is a smoothing distribution with zero mean and bounded variance, e.g.,
π0 = N (0, σ2). The randomized smoothed classifier is defined by

f ]π0
(x0) := Ez∼π0

[
f ](x0 + z)

]
,

which returns the averaged probability of x0 + z under the perturbation of z ∼ π0. Assume we
replace the original classifier with f ]π0

, then the goal becomes certifying f ]π0
using its inherent

smoothness. Specifically, if f ]π0
(x0) > 1/2, we want to certify that f ]π0

(x0 + δ) > 1/2 for every
δ ∈ B, that is, we want to certify that

min
δ∈B

f ]π0
(x0 + δ) = min

δ∈B
Ez∼π0 [f ](x0 + z + δ)] >

1

2
. (1)

In this case, it is sufficient to obtain a guaranteed lower bound of minδ∈B f
]
π0

(x0 + δ) and check
if it is larger than 1/2. When π0 is Gaussian N (0, σ2) and for `2 attack, this problem was studied
in [9], which shows that a lower bound of

min
z∈B

Ez∼π0 [f ](x0 + z)] ≥ Φ(Φ−1(f ]π0
(x0))− r

σ
), (2)

where Φ(·) is the cumulative density function (CDF) of standard Gaussian distribution. The proof
of this result in [9] uses Neyman-Pearson lemma [29]. In the following section, we will show that this
bound is a special case of the proposed functional optimization framework for robustness certification.

3.2 Constrained Adversarial Certification

We propose a constrained adversarial certification (CAC) framework, which yields a guaranteed
lower bound for Eq.1. The main idea is simple: assume F is a function class which is known to
include f ], then the following optimization immediately yields a guaranteed lower bound

min
δ∈B

f ]π0
(x0 + δ) ≥ min

f∈F
min
δ∈B

{
fπ0(x0 + δ) s.t. fπ0(x0) = f ]π0

(x0)

}
, (3)

where we define fπ0(x0) = Ez∼π0 [f(x0 + z)] for any given f . Then we need to search for the
minimum value of fπ0(x0 + δ) for all classifiers in F that satisfies fπ0(x0) = f ]π0

(x0). This
obviously yields a lower bound once f ] ∈ F . If F includes only f ], then the bound is exact, but
is computationally prohibitive due to the difficulty of optimizing δ. The idea is then to choose F
properly to incorporate rich information of f ], while allowing us to calculate the lower bound in Eq.3
computationally tractably. In this paper, we consider the set of all functions bounded in [0, 1], namely

F[0,1] =

{
f : f(z) ∈ [0, 1],∀z ∈ Rd

}
, (4)

which guarantees to include all f ] by definition.

Denote by Lπ0(F ,B) the lower bound in Eq.3. We can rewrite it into the following minimax form
using the Lagrangian function,

Lπ0(F ,B) = min
f∈F

min
δ∈B

max
λ∈R

L(f, δ, λ) , min
f∈F

min
δ∈B

max
λ∈R

{
fπ0(x0 + δ)− λ(fπ0(x0)− f ]π0

(x0))

}
,

(5)

where λ is the Lagrangian multiplier. Exchanging the min and max yields the following dual form.
Theorem 1. I) (Dual Form) Denote by πδ the distribution of z + δ when z ∼ π0. Assume F and B
are compact set. We have the following lower bound of Lπ0(F ,B):

Lπ0(F ,B) ≥ max
λ≥0

min
f∈F

min
δ∈B

L(f, δ, λ) = max
λ≥0

{
λf ]π0

(x0)−max
δ∈B

DF (λπ0 ‖ πδ)
}
, (6)
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where we define the discrepancy term DF (λπ0 ‖ πδ) as

max
f∈F

{
λEz∼π0 [f(x0 + z)]− Ez∼πδ

[f(x0 + z)]
}
,

which measures the difference of λπ0 and πδ by seeking the maximum discrepancy of the expectation
for f ∈ F . As we will show later, the bound in (6) is computationally tractable with proper (F ,B, π0).

II) When F = F[0,1] := {f : f(x) ∈ [0, 1], x ∈ Rd}, we have in particular

DF[0,1]
(λπ0 ‖ πδ) =

∫
(λπ0(z)− πδ(z))+ dz,

where (t)+ = max(0, t). Furthermore, we have 0 ≤ DF[0,1]
(λπ0 ‖ πδ) ≤ λ for any π0, πδ and

λ > 0. Note that DF[0,1]
(λπ0 ‖ πδ) coincides with the total variation distance between π0 and πδ

when λ = 1.

III) (Strong duality) Suppose F = F[0,1] and suppose that for any λ ≥ 0,
minδ∈Bminf∈F[0,1]

L (f, δ, λ) = minf∈F[0,1]
L (f, δ∗, λ), for some δ∗ ∈ B, we have

Lπ0 (F ,B) = max
λ≥0

min
δ∈B

min
f∈F

L (f, δ, λ) .

Remark We will show later that the proposed methods and the cases we study satisfy the condition
in part III of the theorem and thus all the lower bounds of the proposed method are tight.

Proof is deferred to Appendix A.1. Although the lower bound in Eq.6 still involves an optimization
on δ and λ, both of them are much easier than the original adversarial optimization in Eq.1. With
proper choices of F , B and π0, the optimization of δ can be shown to provide simple closed-form
solutions by exploiting the symmetry of B, and the optimization of λ is a very simple one-dimensional
searching problem.

As corollaries of Theorem 1, we can exactly recover the bound derived by [14] and [9] under our
functional optimization framework, different from their original Neyman-Pearson lemma approaches.
Corollary 1. With Laplacian noise π0(·) = Laplace(·; b), where Laplace(x; b) =

1
(2b)d

exp(−‖x‖1b ), `1 adversarial setting B = {δ : ‖δ‖1 ≤ r} and F = F[0,1], the lower bound in
Eq.6 becomes

max
λ≥0

{
λf ]π0

(x0)− max
‖δ‖1≤r

DF[0,1]
(λπ0‖πδ)

}
=


1− er/b(1− f ]π0

(x0)),whenf ]π0
(x0) ≥ 1− 1

2e
−r/b,

1
2e
− rb−log[2(1−f]π0 (x0)],whenf ]π0

(x0) < 1− 1
2e
−r/b.

(7)

Thus, with our previous explanation, we obtain Lπ0(F ,B) ≥ 1
2 ⇐⇒ r ≤ −b log

[
2(1− f ]π0

(x0))
]
,

which is exactly the `1 certification radius derived by [14]. See Appendix A.2 for proof details. For
Gaussian noise setting which has been frequently adopted, we have
Corollary 2. With isotropic Gaussian noise π0 = N (0, σ2Id×d), `2 attack B = {δ : ‖δ‖2 ≤ r}
and F = F[0,1], the lower bound in Eq.6 becomes

max
λ≥0

{
λf ]π0

(x0)− max
‖δ‖2≤r

DF[0,1]
(λπ0‖πδ)

}
= Φ

(
Φ−1(f ]π0

(x0))− r

σ

)
. (8)

Analogously, we can retrieve the main theoretical result of [9] :Lπ0(F ,B) ≥ 1
2 ⇐⇒ r ≤

σΦ−1(f ]π0
(x0)). See Appendix A.3 for proof details.

3.3 Trade-off Between Accuracy and Robustness

The lower bound in Eq.6 reflects an intuitive trade-off between the robustness and accuracy on the
certification problem:

max
λ≥0

[
λf ]π0

(x0)︸ ︷︷ ︸
Accuracy

+

(
−max
δ∈B

DF (λπ0 ‖ πδ)
)

︸ ︷︷ ︸
Robustness

]
, (9)
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where the first term reflects the accuracy of the smoothed classifier (assuming the true label is y = 1),
while the second term −maxδ∈B DF (λπ0 ‖ πδ) measures the robustness of the smoothing method,
via the negative maximum discrepancy between the original smoothing distribution π0 and perturbed
distribution πδ for δ ∈ B. The maximization of dual coefficient λ can be viewed as searching for a
best balance between these two terms to achieve the largest lower bound.

More critically, different choices of smoothing distributions yields a trade-off between accuracy and
robustness in Eq.9. A good choice of the smoothing distribution should 1© be centripetal enough to
obtain a large f ]π0

(x0) and 2© have large kurtosis or long tail to yield a small maxδ∈B DF (λπ0 ‖ πδ)
discrepancy term. In the next section, we’ll show how to design a distribution that could improve
both points.

4 Improving Certification Bounds with a New Distribution Family

4.1 “Thin Shell” Phenomenon and New Distribution Family

We first identify a key problem of the usage of Laplacian and Gaussian noise in high dimensional
space, due to the “thin shell” phenomenon that the probability mass of them concentrates on a sphere
far away from the center points [20].

Proposition 1 ( [20], Section 3.1). Let z ∼ N (0, Id×d) be a d-dimensional standard Gaus-
sian random variable. Then there exists a constant c, such that for any δ ∈ (0, 1), Prob(√

d−
√
c log(2/δ) ≤ ‖z‖2 ≤

√
d+

√
c log(2/δ)

)
≥ 1− δ. See [20] for more discussion.

This suggests that with high probability, z takes values very close to the sphere of radius
√
d, within

a constant distance from that sphere. There exists similar phenomenon for Laplacian distribution:

Proposition 2 (Chebyshev bound). Let z be a d-dimensional Laplacian random variable, z =
(z1, · · · , zd), where zi ∼ Laplace(1), i = 1, · · · , d. Then for any δ ∈ (0, 1), we have Prob(

1− 1/
√
dδ ≤ ‖z‖1 /d ≤ 1 + 1/

√
dδ
)
≥ 1− δ.

Although choosing isotropic Laplacian and Gaussian distribution appears to be natural, this “thin
shell” phenomenon makes it sub-optimal to use them for adversarial certification, because one would
expect that the smoothing distribution should concentrate around the center (the original image) in
order to make the smoothed classifier accurate enough in trade-off of Eq.9.

Thus it’s desirable to design a distribution more concentrated to center. To motivate our new
distribution family, it’s useful to examine the density function of the distributions of the radius of
spherical distributions in general.

Proposition 3. Assume z is a symmetric random variable on Rd with a probability density function
(PDF) of form π0(z) ∝ φ(‖z‖), where φ : [0,∞)→ [0,∞) is a univariate function, then the PDF
of the norm of z is p‖z‖(r) ∝ rd−1φ(r). The term rd−1 arises due to the integration on the surface
of radius r norm ball in Rd. Here ‖·‖ can be any Lp norm.

In particular, for z ∼ N (0, σ2Id×d), we have φ(r) ∝ exp(−r2/(2σ2)) and hence p‖z‖2(r) ∝
rd−1 exp(−r2/(2σ2)). We can see that the “thin shell” phenomenon is caused by the rd−1 term,
which makes the density to be highly peaked when d is large. To alleviate the concentration
phenomenon, we need to cancel out the effect of rd−1, which motivates the following family of
smoothing distributions:

π0(z) ∝ ‖z‖−kn1
exp

(
−
‖z‖pn2

b

)
,

where parameters k, n1, n2, p ∈ N. Next we discuss how to choose suitable parameters depending on
specific perturbation region.

4.2 `1 and `2 Region Certification
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Figure 1: Starting from radius distribution in
Eq.11 with d = 100 σ = 1 and k = 0 (black
start), increasing k (green curve) moves the
mean towards zero without significantly re-
ducing the variance. Decreasing σ (red
curve) can also decrease the mean, but with a
cost of decreasing the variance quadratically.

Based on original Laplacian and Gaussian distributions
and above intuition, we propose:

`1 : π0(z) ∝ ‖z‖−k1 exp

(
−
‖z‖1
b

)
(10)

`2 : π0(z) ∝ ‖z‖−k2 exp

(
−
‖z‖22
2σ2

)
(11)

where we introduce the ‖z‖−k term in π0, with k a pos-
itive parameter, to make the radius distribution more con-
centrated when k is large.

The radius distribution in Eq.10 and Eq.11 is controlled
by two parameters: σ (or b) and k, who control the scale
and shape of the distribution, respectively. The key idea
is that adjusting extra parameter k allows us to control the
trade-off the accuracy and robustness more precisely. As
shown in Fig.1, adjusting σ moves the mean close to zero (hence 1© yielding higher accuracy), but at
cost of decreasing the variance quadratically (hence 2© less robust). In contrast, adjusting k decreases
the mean without significantly impacting the variance, thus yield a much better trade-off on accuracy
and robustness.

Computational Method Now we no longer have the closed-form solution of the bound like Eq.7
and Eq.8. However, efficient computational methods can still be developed for calculating the
bound in Eq.6 with π0 in Eq.11 or Eq.11. The key is that the maximum of the distance term
DF[0,1]

(λπ0 || πδ) over δ ∈ B is always achieved on the boundary of B:

Theorem 2. Consider the `1 attack with B = {δ : ‖δ‖1 ≤ r} and smoothing distribution π0(z) ∝
‖z‖−k1 exp

(
−‖z‖1b

)
with k ≥ 0 and b > 0, or the `2 attack with B = {δ : ‖δ‖2 ≤ r} and smoothing

distribution π0(z) ∝ ‖z‖−k2 exp
(
−‖z‖

2
2

2σ2

)
with k ≥ 0 and σ > 0. Define δ∗ = [r, 0, ..., 0]>, we

have
DF[0,1]

(λπ0 ‖ πδ∗) = max
δ∈B

DF[0,1]
(λπ0 ‖ πδ)

for any positive λ.

With Theorem 2, we can compute Eq.6 with δ = δ∗. We then calculate DF[0,1]
(λπ0 ‖ πδ∗) =

Ez∼π0

[(
λ− πδ∗ (z)

π0(z)

)
+

]
using Monte Carlo approximation with i.i.d. samples {zi}ni=1 be i.i.d. sam-

ples from π0: D̂ := 1
n

∑n
i=1 (λ− πδ∗(zi)/π0(zi))+ , which is bounded in the following confidence

interval [D̂− λ
√

log(2/δ)/(2n), D̂+ λ
√

log(2/δ)/(2n)] with confidence level 1− δ for δ ∈ (0, 1).
What’s more, the optimization on λ ≥ 0 is one-dimensional and can be solved numerically efficiently
(see Appendix for details).

4.3 `∞ Region Certification

Going further, we consider the more difficult `∞ attack whose attacking region is B`∞,r =
{δ : ‖δ‖∞ ≤ r}. The commonly used Gaussian smoothing distribution, as well as our `2-based
smoothing distribution in Eq.11, is unsuitable for this region:

Proposition 4. With the smoothing distribution π0 in Eq.11 for k ≥ 0, σ > 0, and F = F[0,1] shown
in Eq.4, the bound we get for certifying the `∞ attack on B`∞,r = {δ : ‖δ‖∞ ≤ r} is equivalent to
that for certifying the `2 attack on B`2,

√
dr = {δ : ‖δ‖2 ≤

√
dr}, that is,

Lπ0(F[0,1], B`∞,r) = Lπ0(F[0,1], B`2,
√
dr).

6



Figure 2: For `∞ attacking, compared with
the distribution in Eq.11, the mixed norm dis-
tribution in Eq.13 (right) yields smaller dis-
crepancy term (because of larger overlap ar-
eas), and hence higher robustness and better
confidence bound. The distribution described
in Eq.12 has the same impact.

As shown in this proposition, if we use `2 distribution
in Eq.11 for certification, the bound we obtain is ef-
fectively the bound we get for verifying a `2 ball with
radius

√
dr, which is too large to give meaningful

results due to high dimension.

In order to address this problem, we extend our
proposed distribution family with new distributions
which are more suitable for `∞ certification setting:

π0(z) ∝ ‖z‖−k∞ exp

(
−
‖z‖2∞
2σ2

)
, (12)

π0(z) ∝ ‖z‖−k∞ exp

(
−
‖z‖22
2σ2

)
. (13)

The motivation is to allocate more probability mass along the “pointy” directions with larger `∞
norm, and hence decrease the maximum discrepancy term maxδ∈B`∞,r DF (λπ0 ‖ πδ), see Fig.2.

Computational Method In order to compute the lower bound with proposed distribution, we need
to establish similar theoretical results as Theorem 2, showing the optimal δ is achieved at one vertex
(the pointy points) of `∞ ball.

Theorem 3. Consider the `∞ attack with B`∞,r = {δ : ‖δ‖∞ ≤ r} and the mixed norm smoothing
distribution in Eq.13 with k ≥ 0 and σ > 0. Define δ∗ = [r, r, ..., r]>. We have for any λ > 0,

DF[0,1]
(λπ0 ‖ πδ∗) = max

δ∈B
DF[0,1]

(λπ0 ‖ πδ) .

The proofs of Theorem 2 and 3 are non-trivial and deferred to Appendix. With the optimal δ∗ found
above, we can calculate the bound with similar Monte Carlo approximation outlined in Section 4.2.

5 Experiments

We evaluate proposed certification bound and smoothing distributions for `1, `2 and `∞ attacks.
We compare with the randomized smoothing method of [14] with Laplacian smoothing for `1 region
cerification. For `2 and `∞ cases, we regard the method derived by [9] with Gaussian smoothing
distribution as the baseline. For fair comparisons, we use the same model architecture and pre-trained
models provided by [14], [9] and [10], which are ResNet-110 for CIFAR-10 and ResNet-50 for ImageNet.
We use the official code2 provided by [9] for all the following experiments. For all other details and
parameter settings, we refer the readers to Appendix B.2.

`1 RADIUS (CIFAR-10) 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

BASELINE (%) 62 49 38 30 23 19 17 14 12
OURS (%) 64 51 41 34 27 22 18 17 14

`1 RADIUS (IMAGENET) 0.5 1.0 1.5 2.0 2.5 3.0 3.5

BASELINE (%) 50 41 33 29 25 18 15
OURS (%) 51 42 36 30 26 22 16

Table 1: Certified top-1 accuracy of the best classifiers with various `1 radius.

2https://github.com/locuslab/smoothing. Our results are slightly different with those in original
paper due to the randomness of sampling.
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Evaluation Metrics Methods are evaluated with the certified accuracy defined in [9]. Given an
input image x and a perturbation region B, the smoothed classifier certifies image x correctly if the
prediction is correct and has a guaranteed confidence lower bound larger than 1/2 for any δ ∈ B. The
certified accuracy is the percentage of images that are certified correctly. Following [10], we calculate
the certified accuracy of all the classifiers in [9] or [10] for various radius, and report the best results
over all of classifiers.

5.1 `1 & `2 Certification

For `1 certification, we compare our method with [14] on CIFAR-10 and ImageNet with the type 1
trained model in [14]. As shown in Table 1, our non-Laplacian centripetal distribution consistently
outperforms the result of baseline for any `1 radius.

`2 RADIUS (CIFAR-10) 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

BASELINE (%) 60 43 34 23 17 14 12 10 8
OURS (%) 61 46 37 25 19 16 14 11 9

`2 RADIUS (IMAGENET) 0.5 1.0 1.5 2.0 2.5 3.0 3.5

BASELINE (%) 49 37 29 19 15 12 9
OURS (%) 50 39 31 21 17 13 10

Table 2: Certified top-1 accuracy of the best classifiers with various `2 radius.

For `2 certification, we compare our method with [9] on CIFAR-10 and ImageNet. For a fair com-
parison, we use the same pre-trained models as [9], which is trained with Gaussian noise on both
CIFAR-10 and ImageNet dataset. Table 2 reports the certified accuracy of our method and the baseline
on CIFAR-10 and ImageNet . We find that our method consistently outperforms the baseline. The
readers are referred to the Appendix B.3 for detailed ablation studies.

5.2 `∞ Certification

Toy Example We first construct a simple toy example to verify the advantages of the distribution
Eq.13 and Eq.12 over the `2 family in Eq.11. We set the true classifier to be f ](x) = I(‖x‖2 ≤ r) in
r = 0.65, d = 5 case and plot in Fig.3 the Pareto frontier of the accuracy and robustness terms in Eq.9
for the three families of smoothing distributions, as we search for the best combinations of parameters
(k, σ). The mixed norm smoothing distribution clearly obtain the best trade-off on accuracy and
robustness, and hence guarantees a tighter lower bound for certification. Fig.3 also shows that Eq.12
even performs worse than Eq.11. We further theoretically show that Eq.12 is provably not suitable
for `∞ region certification in Appendix A.5.
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CIFAR-10 Based on above results, we only compared the method defined by Eq.13 with [10]

on CIFAR-10. The certified accuracy of our method and the baseline using Gaussian smoothing
distribution and Proposition 4 are shown in Table 3. We can see that our method consistently
outperforms the Gaussian baseline by a large margin. More clarification about `∞ experiments is in
Appendix ??.

l∞ RADIUS 2/255 4/255 6/255 8/255 10/255 12/255

BASELINE (%) 58 42 31 25 18 13
OURS (%) 60 47 38 32 23 17

Table 3: Certified top-1 accuracy of the best classifiers with various l∞ radius on CIFAR-10.

To further confirm the advantage of our method, we plot in Fig.4 the certified accuracy of our method
and Gaussian baseline using models trained with Gaussian perturbation of different variances σ0

under different `∞ radius. Our approach outperforms baseline consistently, especially when the
`∞ radius is large. We also experimented our method and baseline on ImageNet but did not obtain
non-trivial results. This is because `∞ verification is extremely hard with very large dimensions [31,32].
Future work will investigate how to obtain non-trivial bounds for `∞ attacking at ImageNet scales
with smoothing classifiers.

6 Conclusion

We propose a general functional optimization based framework of adversarial certification with
non-Gaussian smoothing distributions. Based on the insights from our new framework and high
dimensional geometry, we propose a new family of non-Gaussian smoothing distributions, which
outperform the Gaussian and Laplace smoothing for certifying `1, `2 and `∞ attacking. Our work
provides a basis for a variety of future directions, including improved methods for `p attacks, and
tighter bounds based on adding additional constraints to our optimization framework.

Broader Impact

Adversarial certification via randomized smoothing could achieve guaranteed robust machine learning
models, thus has wide application on AI security. a & b) With our empirical results, security engineers
could get better performance on defending against vicious attacks; With our theoretical results, it will
be easier for following researchers to derive new bounds for different kinds of smoothing methods.
We don’t foresee the possibility that it could bring negative social impacts. c) Our framework is
mathematically rigorous thus would never fail. d) Our method doesn’t have bias in data as we provide
a general certification method for all tasks and data, and our distribution is not adaptive towards data.
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A Proofs

A.1 Proof for Theorem 1

A.1.1 Proof for (I) and (II)

First, observe that the constraint in Equation (3) can be equivalently replaced by an inequality
constraint fπ0(x0) ≥ f ]π0

(x0). Therefore, the Lagrangian multiplier can be restricted to be λ ≥ 0.
We have

Lπ0(F ,B) = min
δ∈B

min
f∈F

max
λ≥0

Eπδ
[f(x0 + z)] + λ

(
f ]π0

(x0)− Eπ0 [f(x0 + z)] )

≥max
λ≥0

min
δ∈B

min
f∈F

Eπδ
[f(x0 + z)] + λ

(
f ]π0

(x0)− Eπ0 [f(x0 + z)] )

= max
λ≥0

min
δ∈B

{
λf ]π0

(x0) + min
f∈F

Eπδ
[f(x0 + z)]− λEπ0 [f(x0 + z)])

}
= max

λ≥0
min
δ∈B

{
λf ]π0

(x0) − DF (λπ0 ‖ πδ)}.

II) follows a straightforward calculation.

A.1.2 Proof for (III), the strong duality

We first introduce the following lemma, which is a straight forward generalization of the strong
Lagrange duality to functional optimization case.
Lemma 1. Given some δ∗, we have

max
λ∈R

min
f∈F[0,1]

Eπδ∗ [f(x0 + z)] + λ
(
f ]π0

(x0)− Eπ0 [f(x0 + z)]
)

= min
f∈F[0,1]

max
λ∈R

Eπδ∗ [f(x0 + z)] + λ
(
f ]π0

(x0)− Eπ0 [f(x0 + z)]
)
.

The proof of Lemma 1 is standard. However, for completeness, we include it here.

Proof. Without loss of generality, we assume f ]π0
(x0) ∈ (0, 1), otherwise the feasible set is trivial.

Let α∗ be the value of the optimal solution of the primal problem. We define f ]π0
(x0) −

Eπ0 [f(x0 + z)] = h[f ] and g[f ] = Eπδ∗ [f(x0 + z)]. We define the following two sets:

A =
{

(v, t) ∈ R× R : ∃f ∈ F[0,1], h[f ] = v, g[f ] ≤ t
}

B = {(0, s) ∈ R× R : s < α∗} .
Notice that both sets A and B are convex. This is obvious for B. For any (v1, t1) ∈ A and
(v2, t2) ∈ A, we define f1 ∈ F[0,1] such that h[f1] = v1, g[f1] ≤ t1 (and similarly we define f2).
Notice that for any γ ∈ [0, 1], we have

γf1 + (1− γ)f2 ∈ F[0,1]

γh[f1] + (1− γ)h[f2] = γv1 + (1-γ)v2

γg[f1] + (1− γ)g[f2] ≤ γt1 + (1− γ)t2,

which implies that γ(v1, t1) + (1 − γ)(v2, t2) ∈ A and thus A is convex. Also notice that by
definition, A ∩ B = ∅. Using separating hyperplane theorem, there exists a point (q1, q2) 6= (0, 0)
and a value α such that for any (v, t) ∈ A, q1v + q2t ≥ α and for any (0, s) ∈ B, q2s ≤ α. Notice
that we must have q2 ≥ 0, otherwise, for sufficient s, we will have q2s > α. We thus have, for any
f ∈ F[0,1], we have

q1h[f ] + q2g[f ] ≥ α∗ ≥ q2α
∗.

If q2 > 0, we have

max
λ∈R

min
f∈F[0,1]

g[f ] + λh[f ] ≥ min
f∈F[0,1]

g[f ] +
q1

q2
h[f ] ≥ α∗,

which gives the strong duality. If q2 = 0, we have for any f ∈ F[0,1], q1h[f ] ≥ 0 and by the
separating hyperplane theorem, q1 6= 0. However, this case is impossible: If q1 > 0, choosing
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f ≡ 1 gives q1h[f ] = q1

(
f ]π0

(x0)− 1
)
< 0; If q1 < 0, by choosing f ≡ 0, we have q1h[f ] =

q1

(
f ]π0

(x0)− 0
)
< 0. Both cases give contradiction.

Based on Lemma 1, we have the proof of the strong duality as follows.

Notice that by Lagrange multiplier method, our primal problem can be rewritten as follows:

min
δ∈B

min
f∈F[0,1]

max
λ∈R

Eπδ
[f(x0 + z)] + λ

(
f ]π0

(x0)− Eπ0 [f(x0 + z)]
)
,

and the dual problem is

max
λ∈R

min
δ∈B

min
f∈F[0,1]

Eπδ
[f(x0 + z)] + λ

(
f ]π0

(x0)− Eπ0 [f(x0 + z)]
)

= max
λ≥0

min
δ∈B

min
f∈F[0,1]

Eπδ
[f(x0 + z)] + λ

(
f ]π0

(x0)− Eπ0 [f(x0 + z)]
)
.

By the assumption that for any λ ≥ 0, we have

max
λ≥0

min
δ∈B

min
f∈F[0,1]

Eπδ
[f(x0 + z)] + λ

(
f ]π0

(x0)− Eπ0 [f(x0 + z)]
)

= max
λ≥0

min
f∈F[0,1]

Eπδ∗ [f(x0 + z)] + λ
(
f ]π0

(x0)− Eπ0 [f(x0 + z)]
)
,

for some δ∗ ∈ B. We have

max
λ∈R

min
δ∈B

min
f∈F[0,1]

Eπδ
[f(x0 + z)] + λ

(
f ]π0

(x0)− Eπ0 [f(x0 + z)]
)

= max
λ≥0

min
f∈F[0,1]

Eπδ∗ [f(x0 + z)] + λ
(
f ]π0

(x0)− Eπ0 [f(x0 + z)]
)

= max
λ∈R

min
f∈F[0,1]

Eπδ∗ [f(x0 + z)] + λ
(
f ]π0

(x0)− Eπ0 [f(x0 + z)]
)

∗
= min
f∈F[0,1]

max
λ∈R

Eπδ∗ [f(x0 + z)] + λ
(
f ]π0

(x0)− Eπ0 [f(x0 + z)]
)

≥min
δ∈B

min
f∈F[0,1]

max
λ∈R

Eπδ∗ [f(x0 + z)] + λ
(
f ]π0

(x0)− Eπ0 [f(x0 + z)]
)
,

where the second equality (*) is by Lemma 1.

A.2 Proof for Corollary 1

Proof. Given our confidence lower bound

max
λ≥0

min
‖δ‖1≤r

{
λp0 −

∫
(λπ0(z)− πδ(z))+ dz

}
,

One can show that the worst case for δ is obtained when δ∗ = (r, 0, · · · , 0) (see following subsection),
thus the bound is

max
λ≥0

{
λp0 −

∫
1

2b
exp

(
−|z1|

b

)[
λ− exp

(
| z1 | −|z1 + r|

b

)]
+

dz1

}
.

Denote a to be the solution of λ = exp
(
|a|−|a+r|

b

)
, then obviously we have

a =


−∞, b log λ ≥ r
− 1

2 (b log λ+ r) , −r < b log λ < r

+∞. b log λ ≤ −r

So the bound above is

λ

∫
z1>a

1

2b
exp

(
−|z1|

b

)
dz1 −

∫
z1>a

1

2b
exp

(
−|z1 + r|

b

)
dz1.
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i) b log λ ≥ r ⇔ λ ≥ exp
(
r
b

)
the bound is

max
λ≥er/b

{λp0 − (λ− 1)} = 1− exp
(r
b

)
(1− p0) .

ii) −r < b log λ < r ⇔ exp
(
− rb
)
< λ < exp

(
r
b

)
the bound is

max
λ

{
λp0 − λ

[
1− 1

2
exp

(
−b log λ+ r

2b

)]
+

1

2
exp

(
b log λ− r

2b

)}
= max

λ

{
λ(p0 − 1) +

λ

2
exp

(
−b log λ+ r

2b

)
+

1

2
exp

(
b log λ− r

2b

)}
=

1

2
exp

(
− log [2(1− p0)]− r

b

)
.

the extremum is achieved when λ̂ = exp
(
−2 log [2(1− p0)]− r

b

)
. Notice that λ̂ does

not necessarily locate in
(
e−r/b, er/b

)
, so the actual bound is always equal or less than

1
2 exp

(
− log [2(1− p0)]− r

b

)
.

iii) b log λ ≤ −r ⇔ λ ≤ exp
(
− rb
)

the bound is
max

λ≤exp(− rb )
λ · p0 = p0 exp

(
−r
b

)
.

Since λ̂ > er/b ⇔ p0 > 1− 1
2 exp(− rb ), notice that the lower bound is a concave function w.r.t. λ,

making the final lower bound become{
1− exp

(
r
b

)
(1− p0) , when p0 > 1− 1

2 exp(− rb )
1
2 exp

(
− log [2(1− p0)]− r

b

)
. otherwise

Remark Actually, we have 1 − exp
(
r
b

)
(1− p0) ≤ 1

2 exp
(
− log [2(1− p0)]− r

b

)
all the time.

Another interesting thing is that both the bound can lead to the same radius bound:

1− exp
(r
b

)
(1− p0) >

1

2
⇔ r < −b log [2(1− p0)]

1

2
exp

(
− log [2(1− p0)]− r

b

)
>

1

2
⇔ r < −b log [2(1− p0)]

A.3 Proof for Corollary 2

Proof. With strong duality, our confidence lower bound is

min
‖δ‖2≤r

max
λ≥0

{
λp0 −

∫
(λπ0(z)− πδ(z))+ dz

}
,

define Cλ = {z : λπ0(z) ≥ πδ(z)} = {z : δ>z ≤ ‖δ‖2
2 + σ2 lnλ} and Φ(·) to be the cdf of

standard gaussian distribution, then∫
(λπ0(z)− πδ(z))+ dz

=

∫
Cλ

(λπ0(z)− πδ(z)) dz

=λ · P
(
N(z;0, σ2I) ∈ Cλ

)
− P

(
N(z; δ, σ2I) ∈ Cλ

)
=λ · Φ

(
‖δ‖2
2σ

+
σ lnλ

‖δ‖2

)
− Φ

(
−‖δ‖2

2σ
+
σ lnλ

‖δ‖2

)
.
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Define

F (δ, λ) := λp0−
∫

(λπ0(z)− πδ(z))+ dz = λp0−λ·Φ
(
‖δ‖2
2σ

+
σ lnλ

‖δ‖2

)
+Φ

(
−‖δ‖2

2σ
+
σ lnλ

‖δ‖2

)
.

For ∀δ, F is a concave function w.r.t. λ, as F is actually a summation of many concave piece wise
linear function. See [33] for more discussions of properties of concave functions.

Define λ̂δ = exp
(

2σ‖δ‖2Φ−1(p0)−‖δ‖22
2σ2

)
, simple calculation can show ∂F (δ,λ)

∂λ |λ=λ̂δ
= 0, which

means

min
‖δ‖2≤r

max
λ≥0

F (δ, λ) = min
‖δ‖2≤r

F (δ, λδ)

= min
‖δ‖2≤r

{
0 + Φ

(
−‖δ‖2

2σ
+
σ ln λ̂δ
‖δ‖2

)}

= min
‖δ‖2≤r

Φ

(
Φ−1(p0)− ‖δ‖2

σ

)
= Φ

(
Φ−1(p0)− r

σ

)
This tells us

min
‖δ‖2≤r

max
λ≥0

F (δ, λ) > 1/2⇔ Φ
(

Φ−1(p0)− r

σ

)
> 1/2⇔ r < σ · Φ−1(p0),

i.e. the certification radius is σ · Φ−1(p0). This is exactly the core theoretical contribution of [9]. This
bound has a straight forward expansion for multi-class classification situations, we refer interesting
readers to Appendix C.

A.4 Proof For Theorem 2 and 3

A.4.1 Proof for `2 and `∞ cases

Here we consider a more general smooth distribution π0(z) ∝ ‖z‖−k1∞ ‖z‖−k22 exp
(
−‖z‖

2
2

2σ2

)
, for

some k1, k2 ≥ 0 and σ > 0. We first gives the following key theorem shows that DF[0,1]
(λπ0 ‖ πδ)

increases as |δi| becomes larger for every dimension i.

Theorem 4. Suppose π0(z) ∝ ‖z‖−k1∞ ‖z‖−k22 exp
(
−‖z‖

2
2

2σ2

)
, for some k1, k2 ≥ 0 and σ > 0, for

any λ ≥ 0 we have

sgn(δi)
∂

∂δi
DF[0,1]

(λπ0 ‖ πδ) ≥ 0,

for any i ∈ {1, 2, ..., d}.

Theorem 2 and 3 directly follows the above theorem. Notice that in Theorem 2, as our distribution is
spherical symmetry, it is equivalent to set B =

{
δ : δ = [a, 0, ..., 0]>, a ≤ r

}
by rotating the axis.

Proof. Given λ, k1 and k2, we define φ1(s) = s−k1 , φ2(s) = s−k2e−
s2

σ2 . Notice that φ1 and φ2 are
monotone decreasing for non-negative s. By the symmetry, without loss of generality, we assume
δ = [δ1, ..., δd]

> for δi ≥ 0, i ∈ [d]. Notice that

∂

∂δi
‖x0 − δ‖∞= I{‖x0 − δ‖∞ = |xi − δi|}

∂

∂δi

√
(xi − δi)2

= I{‖x0 − δ‖∞ = |xi − δi|}
− (xi − δi)
‖x0 − δ‖∞

.
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And also

∂

∂δi
‖x0 − µ‖2 =

∂

∂δi

√∑
i

(xi − µi)2

=
− (xi − µi)
‖x0 − µ‖2

.

We thus have
∂

∂δ1

∫
(λπ0(x0)− πδ(x0))+ dx0

=−
∫

I {λπ0(x0) ≥ πδ(x0)} ∂

∂δ1
πδ(x0)dx0

=

∫
I {λπ0(x0) ≥ πδ(x0)}F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0

=

∫
I {λπ0(x0) ≥ πδ(x0), x1 > δ1}F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0

+

∫
I {λπ0(x0) ≥ πδ(x0), x1 < δ1}F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0,

where we define

F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2)

= φ′1 (‖x0 − δ‖∞)φ2 (‖x0 − δ‖2) I{‖x0 − δ‖∞ = |x1 − δ1|}
(x1 − δ1)

‖x0 − δ‖∞

+ φ1 (‖x0 − δ‖∞)φ′2 (‖x0 − δ‖2)
(x1 − δ1)

‖x0 − δ‖2
.

Notice that as φ′1 ≤ 0 and φ′2 ≤ 0 and we have∫
I {λπ0(x0) ≥ πδ(x0), x1 > δ1}F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0 ≤ 0∫
I {λπ0(x0) ≥ πδ(x0), x1 < δ1}F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0 ≥ 0.

Our target is to prove that ∂
∂δ1

∫
(λπ0(x0)− πδ(x0))+ dx0 ≥ 0. Now define the set

H1 = {x0 : λπ0(x0) ≥ πδ(x0), x1 > δ1}
H2 =

{
[2δ1 − x1, x2, ..., xd]

> : x0 = [x1, ..., xd]
> ∈ H1

}
.

Here the set H2 is defined as a image of a bijection

proj(x0) = [2δ1 − x1, x2, ..., xd]
>

= x̃0,

that is constrained on the set H1. Notice that under our definition,∫
I {λπ0(x0) ≥ πδ(x0), x1 > δ1}F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0

=

∫
H1

F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0.

Now we prove that∫
I {λπ0(x0) ≥ πδ(x0), x1 < δ1}F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0

(1)

≥
∫
H2

F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0

(2)
=

∣∣∣∣∫
H1

F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0

∣∣∣∣ .
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Property of the projection Before we prove the (1) and (2), we give the following property of the
defined projection function. For any x̃0 = proj(x0), x0 ∈ H1, we have

‖x0 − δ‖∞ = ‖x̃0 − δ‖∞
‖x0 − δ‖2 = ‖x̃0 − δ‖2
‖x0‖2 ≥ ‖x̃0‖2
‖x0‖∞ ≥ ‖x̃0‖∞ .

This is because
x̃i = xi, i ∈ [d]− {1}
x̃1 = 2δ1 − x1,

and by the fact that x1 ≥ δ1 ≥ 0, we have |x̃1| ≤ |x1| and |x̃1 − δ1| ≤ |x1 − δ1|.

Proof of Equality (2) By the fact that proj is bijective constrained on the set H1 and the property
of proj, we have∫

H2

F1 (‖x̃0 − δ‖∞ , ‖x̃0 − δ‖2) dx̃0

=

∫
H2

φ′1 (‖x̃0 − δ‖∞)φ2 (‖x̃0 − δ‖2) I{‖x̃0 − δ‖∞ = |x̃1 − δ1|}
(x̃1 − δ1)

‖x̃0 − δ‖∞
dx̃0

+

∫
H2

φ1 (‖x̃0 − δ‖∞)φ′2 (‖x̃0 − δ‖2)
(x̃1 − δ1)

‖x̃0 − δ‖2
dx̃0

(∗)
=

∫
H1

φ′1 (‖x0 − δ‖∞)φ2 (‖x0 − δ‖2) I{‖x0 − δ‖∞ = |x1 − δ1|}
(δ1 − x1)

‖x0 − δ‖∞
|det (J)| dx0

+

∫
H1

φ1 (‖x0 − δ‖∞)φ′2 (‖x0 − δ‖2)
(δ1 − x1)

‖x0 − δ‖2
dx0

=−
∫
H1

F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0,

where (∗) is by change of variable x̃0 = proj(x0) and J is the Jacobian matrix J =
−1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 and here we have the fact that x̃1 − δ1 = (2δ1 − x1)− δ1 = −(x1 − δ1).

Proof of Inequality (1) This can be done by verifying that H2 ⊆
{x0 : λπ0(x0) ≥ πδ(x0), x1 < δ1}. By the property of the projection, for any x0 ∈ H1,
let x̃0 = proj(x0), then λπ0(x̃0) ≥ λπ0(x0) ≥ πδ(x0) = πδ(x̃0) (by the fact that t φ1 and φ2

are monotone decreasing). It implies that for any x̃0 ∈ H2, we have λπ0(x̃0) ≥ πδ(x̃0) and thus
H2 ⊆ {x0 : π0(x0) ≥ πδ(x0), x1 < δ1}.

Final statement By the above result, we have
∂

∂δ1

∫
(λπ0(x0)− πδ(x0))+ dx0 ≥ 0,

and the same result holds for any ∂
∂δ1

∫
(λπ0(x0)− πδ(x0))+ dx0, i ∈ [d], which implies our

result.

A.4.2 Proof for `1 case

Slightly different for former cases, apart from proving ∂
∂δi

DF[0,1]
(λπ0 ‖ πδ) ≥ 0 for ∀δi ≥ 0, we

also need to demonstrate

Theorem 5. Suppose π0(x0) ∝ ‖x0‖−k exp
(
−‖x0‖1

b

)
, then for δ = (r, d − r, δ3, δ4, · · · ) and

δ̃ = (0, d, δ3, δ4, · · · ), 0 < r < d, we have

DF[0,1]
(λπ0 ‖ πδ) ≥ DF[0,1]

(
λπ0 ‖ πδ̃

)
17



Proof. We turn to show that
∂

∂r
DF[0,1]

(λπ0 ‖ πδ) ≤ 0,

for δ = (r, d− r, δ3, δ4, · · · ) and r < d/2. We define φ(s) = s−k exp(− sb ). With

∂

∂δi
‖x0 − δ‖1 =

∂

∂δi
|xi − δi| = −sgn(xi − δi) =

δi − xi
|xi − δi|

,

We have
∂

∂r
DF[0,1]

(λπ0 ‖ πδ)

=−
∫

I {λπ0(x0) ≥ πδ(x0)} ∂
∂r
πδ(x0)dx0

=

∫
I {λπ0(x0) ≥ πδ(x0)}F (x0)dx0,

where

F (x0) =− ∂

∂r
φ (‖x0 − δ‖1) = −φ′ (‖x0 − δ‖1)

∂

∂r
‖x0 − δ‖1

= φ′ (‖x0 − δ‖1)
∂

∂r
(|x1 − r|+ |x2 − d+ r|)

= φ′ (‖x0 − δ‖1) · (sgn(x1 − r) + sgn(d− x2 − r)) .

Thus the original derivative becomes

=

∫
I {λπ0(x0) ≥ πδ(x0), x1 > r, x2 < d− r}F (x0)dx0

+

∫
I {λπ0(x0) ≥ πδ(x0), x1 > r, x2 > d− r}F (x0)dx0

+

∫
I {λπ0(x0) ≥ πδ(x0), x1 < r, x2 > d− r}F (x0)dx0

+

∫
I {λπ0(x0) ≥ πδ(x0), x1 < r, x2 < d− r}F (x0)dx0

=2

∫
I {λπ0(x0) ≥ πδ(x0), x1 > r, x2 < d− r}φ′(‖x0 − δ‖1)dx0

− 2

∫
I {λπ0(x0) ≥ πδ(x0), x1 < r, x2 > d− r}φ′(‖x0 − δ‖1)dx0

We only need to show that

∫
I {λπ0(x0) ≥ πδ(x0), x1 > r, x2 < d− r}φ′(‖x0 − δ‖1)dx0 ≥∫
I {λπ0(x0) ≥ πδ(x0), x1 < r, x2 > d− r}φ′(‖x0 − δ‖1)dx0.

Notice that r < d/2, therefore this can be proved with a similar projection x0 7→ x̃0:

(x1, x2, x3, x4, · · · ) 7→ (2r − x1, 2d− 2r − x2, x3, x4, · · · )

and the similar deduction as previous theorem.

A.5 Theoretical Demonstration about the Ineffetivity of Equation (12)

Theorem 6. Consider the adversarial attacks on the `∞ ball B`∞,r = {δ : ‖δ‖∞ ≤ r}. Suppose we
use the smoothing distribution π0 in Equation (12) and choose the parameters (k, σ) such that
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1) ‖z‖∞ is stochastic bounded when z ∼ π0, in that for any ε > 0, there exists a finite M > 0 such
that Pπ0(|z| > M) ≤ ε;
2) the mode of ‖z‖∞ under π0 equals Cr, where C is some fixed positive constant,

then for any ε ∈ (0, 1) and sufficiently large dimension d, there exists a constant t > 1, such that , we
have

max
δ∈B`∞,r

{
DF[0,1]

(λπ0 ‖ πδ)
}
≥ (1− ε)

(
λ−O(t−d)

)
.

This shows that, in very high dimensions, the maximum distance term is arbitrarily close to λ
which is the maximum possible value of DF[0,1]

(λπ0 ‖ πδ) (see Theorem 1). In particular, this
implies that in high dimensional scenario, once f ]π0

(x0) ≤ (1 − ε) for some small ε, we have
Lπ0(F[0,1], B`∞,r) = O(t−d) and thus fail to certify.

Remark The condition 1) and 2) in Theorem 6 are used to ensure that the magnitude of the random
perturbations generated by π0 is within a reasonable range such that the value of f ]π0

(x0) is not too
small, in order to have a high accuracy in the trade-off in Equation (9). Note that the natural images
are often contained in cube [0, 1]d. If ‖z‖∞ is too large to exceed the region of natural images, the
accuracy will be obviously rather poor. Note that if we use variants of Gaussian distribution, we
only need ||z||2/

√
d to be not too large. Theorem 6 says that once ‖z‖∞ is in a reasonably small

scale, the maximum distance term must be unreasonably large in high dimensions, yielding a vacuous
lower bound.

Proof. First notice that the distribution of z can be factorized by the following hierarchical scheme:

a ∼ πR(a) ∝ ad−1−ke−
a2

2σ2 I{a ≥ 0}
s ∼ Unif⊗d(−1, 1)

z ← s

‖s‖∞
a.

Without loss of generality, we assume δ∗ = [r, ..., r]>. (see Theorem 4)

DF[0,1]
(λπ0 ‖ πδ∗) = Ez∼π0

(
λ− πδ

π0
(z)

)
+

.

Notice that as the distribution is symmetry,

Pπ0 (‖z + δ∗‖∞ = a+ r | ‖z‖∞ = a) =
1

2
.

Define |z|(i) is the i-th order statistics of |zj |, j = 1, ..., d conditioning on ‖z‖∞ = a. By the
factorization above and some algebra, we have, for any ε ∈ (0, 1),

P

(
|z|(d−1)

|z|(d)
> (1− ε) | ‖z‖∞ = a

)
≥ 1− (1− ε)d−1.

And |z|
(d−1)

|z|(d) ⊥ |z|
(d). Now we estimate DF[0,1]

(λπ0 ‖ πδ∗).

Ez∼π0

(
λ− πδ

π0
(z)

)
+

=EaEz∼π0

[(
λ− πδ

π0
(z)

)
+

| ‖z‖∞ = a

]

=
1

2
EaEz∼π0

[(
λ− πδ

π0
(z)

)
+

| ‖z‖∞ = a, ‖z + δ∗‖∞ = a+ r

]

+
1

2
EaEz∼π0

[(
λ− πδ

π0
(z)

)
+

| ‖z‖∞ = a, ‖z + δ∗‖∞ 6= a+ r

]
.
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Conditioning on ‖z‖∞ = a, ‖z + δ∗‖∞ = a+ r, we have

πδ
π0

(z) =

(
1

1 + r
a

)k
e−

1
2σ2

(2ra+r2)

=

(
1

1 + r
a

)k
e−

d−1−k
2C2 (2 ar+1).

Here the second equality is because we choose mode(‖z‖∞) = Cr, which implies that√
d− 1− kσ = Cr. And thus we have

EaEz∼π0

[(
λ− πδ

π0
(z)

)
+

| ‖z‖∞ = a, ‖z + δ∗‖∞ = a+ r

]

=

∫ (
λ−

(
1

1 + r
a

)k
e−

d−1−k
2C2 (2 ar+1)

)
+

π(a)da

=

∫ (
λ−

(
1 +

r

a

)−k (
e

2a/r+1

2C2

)−(d−1−k)
)

+

π(a)da

=λ−O(t−d),

for some t > 1. Here the last equality is by the assumption that ‖z‖∞ = Op(1).

Next we bound the second term EaEz∼π0

[(
λ− πδ

π0
(z)
)

+
| ‖z‖∞ = a, ‖z + δ∗‖∞ 6= a+ r

]
. By

the property of uniform distribution, we have

P

(
|z|(d−1)

|z|(d)
> (1− ε) | ‖z‖∞ = a, ‖z + δ∗‖∞ 6= a+ r

)

=P

(
|z|(d−1)

|z|(d)
> (1− ε) | ‖z‖∞ = a

)
≥1− (1− ε)d−1.

And thus, for any ε ∈ [0, 1),

P
(
‖z + δ∗‖∞ ≥ ((1− ε)a+ r)

2 | ‖z‖∞ = a, ‖z + δ∗‖∞ 6= a+ r
)
≥ 1

2

(
1− (1− ε)d−1

)
.

It implies that

Ez∼π0

[(
λ− πδ

π0
(z)

)
+

| ‖z‖∞ = a, ‖z + δ∗‖∞ = a+ r

]

≥1

2

(
1− (1− ε)d−1

)(
λ−

(
1− ε+

r

a

)−k
e−

1
2σ2

(ε(ε−2)a2+2r(1−ε)a+r2)
)

+

=
1

2

(
1− (1− ε)d−1

)(
λ−

(
1− ε+

r

a

)−k
e−

d−1−k
2C2 (ε(ε−2)a2/r2+2(1−ε)a/r+1)

)
+

.

For any ε′ ∈ (0, 1), by choosing ε = log(2/ε′)
d−1 , for large enough d, we have

Ez∼π0

[(
λ− πδ

π0
(z)

)
+

| ‖z‖∞ = a, ‖z + δ∗‖∞ = a+ r

]

≥1

2

(
1− (1− ε)d−1

)(
λ−

(
1− ε+

r

a

)−k
e−

d−1−k
2C2 (2(1−ε)a/r+1)e

a2 log(2/ε′)
C2r2

)
+

=
1

2

(
1− (1− log(2/ε′)

d− 1
)d−1

)(
λ−

(
1− log(2/ε′)

d− 1
+
r

a

)−k
e−

d−1−k
2C2 (2(1−ε)a/r+1)e

a2 log(2/ε′)
C2r2

)
+

≥1

2
(1− ε′)

(
λ−

(
1− ε+

r

a

)−k
e−

d−1−k
2C2 (2(1−ε)a/r+1)e

a2 log(2/ε′)
C2r2

)
+

.
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Thus we have

1

2
EaEz∼π0

[(
λ− πδ

π0
(z)

)
+

| ‖z‖∞ = a, ‖z + δ∗‖∞ 6= a+ r

]

=
1

2
(1− ε′)

(
λ−O(t−d)

)
.

Combine the bounds, for large d, we have

DF[0,1]
(λπ0 ‖ πδ∗) = (1− ε′)

(
λ−O(t−d)

)
.

B More about Experiments

B.1 Practical Algorithm

In this section, we give our algorithm for certification. Our target is to give a high probability bound
for the solution of

Lπ0(F[0,1], B`∞,r) = max
λ≥0

{
λf ]π0

− DF[0,1]
(λπ0 ‖ πδ)

}

given some classifier f ]. Following [9], the given classifier here has a binary output {0, 1}. Computing
the above quantity requires us to evaluate both f ]π0

and DF[0,1]
(λπ0 ‖ πδ). A lower bound p̂0

of the former term is obtained through binominal test as [9] do, while the second term can be
estimated with arbitrary accuracy using Monte Carlo samples. We perform grid search to optimize
λ and given λ, we draw N i.i.d. samples from the proposed smoothing distribution π0 to estimate
λf ]π0

− DF[0,1]
(λπ0 ‖ πδ). This can be achieved by the following importance sampling manner:

λf ]π0
− DF[0,1]

(λπ0 ‖ πδ)

≥ λp̂0 −
∫ (

λ− πδ
π0

(z)

)
+

π0(z)dz

≥ λp̂0 −
1

N

N∑
i=1

(
λ− πδ

π0
(zi)

)
+

− ε.

And we use reject sampling to obtain samples from π0. Notice that, we restrict the search space of
λ to a finite compact set so the importance samples is bounded. Since the Monte Carlo estimation
is not exact with an error ε, we give a high probability concentration lower bound of the estimator.
Algorithm 1 summarized our algorithm.
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Algorithm 1 Certification algorithm
Input: input image x0; original classifier: f ]; smoothing distribution π0; radius r; search interval

[λstart, λend] of λ; search precision h for optimizing λ; number of samples N1 for testing p0;
pre-defined error threshold ε; significant level α;

compute search space for λ : Λ =range(λstart, λend, h)
compute N2: number of Monte Carlo estimation given ε, α and Λ
compute optimal disturb: δ depends on specific setting
for λ in Λ do

sample z1, · · · , zN1
∼ π0

compute n1 = 1
N1

∑N1

i=1 f
](x0 + zi)

compute p̂0 =LowerConfBound(n1, N1, 1− α)
sample z1, · · · , zN2

∼ π0
compute D̂F[0,1]

(λπ0 ‖ πδ) = 1
N2

∑N2

i=1

(
λ− πδ

π0
(zi)

)
+

compute confidence lower bound bλ = λp̂0 − D̂F[0,1]
(λπ0 ‖ πδ)− ε

end
if maxλ∈Λ bλ ≥ 1/2 then

x0 can be certified
else

x0 cannot be certified
end

The LowerConfBound function performs a binominal test as described in [9]. The ε in Algorithm 1 is
given by concentration inequality.

Theorem 7. Let h(z1, · · · , zN ) = 1
N

∑N
i=1

(
λ− πδ(zi)

π0(zi)

)
+

, we yield

Pr{|h(z1, · · · , zN )−
∫

(λπ0(z)− πδ(z))+ dz| ≥ ε} ≤ exp

(
−2Nε2

λ2

)
.

Proof. Given McDiarmid’s Inequality, which says

sup
x1,x2,...,xn,x̂i

|h (x1, x2, . . . , xn)− h (x1, x2, . . . , xi−1, x̂i, xi+1, . . . , xn)| ≤ ci for 1 ≤ i ≤ n,

we have ci = λ
N , and then obtain

Pr{|h(z1, · · · , zN )−
∫

(λπ0(z)− πδ(z))+ dz| ≥ ε} ≤ exp

(
−2Nε2

λ2

)
.

The above theorem tells us that, once ε, λ,N is given, we can yield a bound with high-probability
1 − α. One can also get N when ε, λ, α is provided. Note that this is the same as the Hoeffding
bound mentioned in Section 4.2 as Micdiarmid bound is a generalization of Hoeffding bound.

However, in practice we can use a small trick as below to certify with much less comupation:
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Algorithm 2 Practical certification algorithm
Input: input image x0; original classifier: f ]; smoothing distribution π0; radius r; search interval

for λ: [λstart, λend]; search precision h for optimizing λ; number of Monte Carlo for first
estimation: N0

1 , N
0
2 ; number of samplesN1 for a second test of p0; pre-defined error threshold

ε; significant level α; optimal perturbation δ (δ = [r, 0, . . . , 0]> for `2 attacking and δ =
[r, . . . , r]> for `∞ attacking).

for λ in Λ do
sample z1, · · · , zN0

1
∼ π0

compute n0
1 = 1

N0
1

∑N0
1

i=1 f
](x0 + zi)

compute p̂0 =LowerConfBound(n0
1, N

0
1 , 1− α)

sample z1, · · · , zN0
2
∼ π0

compute D̂F[0,1]
(λπ0 ‖ πδ) = 1

N0
2

∑N0
2

i=1

(
λ− πδ

π0
(zi)

)
+

compute confidence lower bound bλ = λp̂0 − D̂F[0,1]
(λπ0 ‖ πδ)

end
compute λ̂ = arg maxλ∈Λ bλ
compute N2: number of Monte Carlo estimation given ε, α and λ̂
sample z1, · · · , zN1

∼ π0
compute n1 = 1

N1

∑N1

i=1 f
](x0 + zi)

compute p̂0 =LowerConfBound(n1, N1, 1− α)
sample z1, · · · , zN2

∼ π0
compute D̂F[0,1]

(λπ0 ‖ πδ) = 1
N2

∑N2

i=1

(
λ− πδ

π0
(zi)

)
+

compute b = λ̂p̂0 − D̂F[0,1]
(λπ0 ‖ πδ)− ε

if b ≥ 1/2 then
x0 can be certified

else
x0 cannot be certified

end

Algorithm 2 allow one to begin with small N0
1 , N

0
2 to obtain the first estimation and choose a λ̂. Then

a rigorous lower bound can be achieved with λ̂ with enough (i.e. N1, N2) Monte Carlo samples.

B.2 Experiment Settings

The details of our method are shown in the supplementary material. Since our method requires Monte
Carlo approximation, we draw 0.1M samples from π0 and construct α = 99.9% confidence lower
bounds of that in Equation (9). The optimization on λ is solved using grid search. For `2 attacks, we
set k = 500 for CIFAR-10 and k = 50000 for ImageNet in our non-Gaussian smoothing distribution
Equation (11). If the used model was trained with a Gaussian perturbation noise of N (0, σ2

0), then
the σ parameter of our smoothing distribution is set to be

√
(d− 1)/(d− 1− k)σ0, such that the

expectation of the norm ‖z‖2 under our non-Gaussian distribution Equation (11) matches with the
norm of N (0, σ2

0). For `1 situation, we keep the same rule for hyperparameter selection as `2 case,
in order to make the norm of proposed distribution has the same mean with original distribution.
For `∞ situation, we set k = 250 and σ also equals to

√
(d− 1)/(d− 1− k)σ0 for the mixed norm

smoothing distribution Equation (13) just for consistency. More ablation study about k is deferred to
Appendix B.3.

B.3 Abalation Study

On CIFAR10, we also do ablation study to show the influence of different k for the `2 certification
case as shown in Table 4.
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`2 Radius 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25
Baseline (%) 60 43 34 23 17 14 12 10 8
k = 100 (%) 60 43 34 23 18 15 12 10 8
k = 200 (%) 60 44 36 24 18 15 13 10 8
k = 500 (%) 61 46 37 25 19 16 14 11 9
k = 1000 (%) 59 44 36 25 19 16 14 11 9
k = 2000 (%) 56 41 35 24 19 16 15 12 9

Table 4: Certified top-1 accuracy of the best classifiers on cifar10 at various `2 radius. We use the
same model as [9] and do not train any new models.

C Illumination about Bilateral Condition3

The results in the main context is obtained under binary classfication setting. Here we show it has a
natural generalization to multi-class classification setting. Suppose the given classifier f ] classifies
an input x0 correctly to class A, i.e.,

f ]A(x0) > max
B 6=A

f ]B(x0) (14)

where f ]B(x0) denotes the prediction confidence of any class B different from ground truth label
A. Notice that f ]A(x0) +

∑
B 6=A f

]
B(x0) = 1, so the necessary and sufficient condition for correct

binary classification f ]A(x0) > 1/2 becomes a sufficient condition for multi-class prediction.

Similarly, the necessary and sufficient condition for correct classification of the smoothed classifier is

min
f∈F

{
Ez∼π0 [fA(x0 + δ + z)] s.t. Eπ0 [fA(x0)] = f ]π0 ,A

(x0)

}
>

max
f∈F

{
Ez∼π0 [fB(x0 + δ + z)] s.t. Eπ0 [fB(x0)] = f ]π0 ,B

(x0)

}
for ∀B 6= A and any perturbation δ ∈ B. Writing out their Langragian forms makes things clear:

max
λ

λf ]π0 ,A
(x0)− DF[0,1]

(λπ0 ‖ πδ) > min
λ

max
B 6=A

λf ]π0 ,B
(x0) + DF[0,1]

(πδ ‖ λπ0)

Thus the overall necessary and sufficient condition is

min
δ∈B

{
max
λ

(
λf ]π0 ,A

(x0)− DF[0,1]
(λπ0 ‖ πδ)

)
−max
B 6=A

min
λ

(
λf ]π0 ,B

(x0) + DF[0,1]
(πδ ‖ λπ0)

)}
> 0

Optimizing this bilateral object will theoretically give a better certification result than our method
in main context, especially when the number of classes is large. But we do not use this bilateral
formulation as reasons stated below.

When both π0 and πδ are gaussian, which is [9]’s setting, this condition is equivalent to:

min
δ∈B

{
Φ

(
Φ−1(f ]π0 ,A

(x0))− ‖δ‖2
σ

)
−max
B 6=A

Φ

(
Φ−1(f ]π0 ,B

(x0)) +
‖δ‖2
σ

)}
> 0

⇔ Φ−1(f ]π0 ,A
(x0))− r

σ
> Φ−1(f ]π0 ,B

(x0)) +
r

σ
, ∀B 6= A

⇔ r <
σ

2

(
Φ−1(f ]π0 ,A

(x0))− Φ−1(f ]π0 ,B
(x0))

)
,∀B 6= A

with a similar derivation process like Appendix A.3. This is exactly the same bound in the (restated)
theorem 1 of [9].
[9] use 1− pA as a naive estimate of the upper bound of f ]π0 ,B

(x0), where pA is a lower bound of
f ]π0 ,A

(x0). This leads the confidence bound decay to the bound one can get in binary case, i.e.,
r ≤ σΦ−1(f ]π0 ,A

(x0)).

As the two important baselines [9,10] do not take the bilateral form, we also do not use this form in
experiments for fairness.

3In fact, the theoretical part of [15] share some similar discussion with this section.
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