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Abstract

We develop a Nonparametric Empirical Bayes (NEB) framework for compound estimation in
the discrete linear exponential family, which includes a wide class of discrete distributions
frequently arising from modern big data applications. We propose to directly estimate the
Bayes shrinkage factor in the generalized Robbins’ formula via solving a convex program,
which is carefully developed based on a RKHS representation of the Stein’s discrepancy
measure. The new NEB estimation framework is flexible for incorporating various struc-
tural constraints into the data driven rule, and provides a unified approach to compound
estimation with both regular and scaled squared error losses. We develop theory to show
that the class of NEB estimators enjoys strong asymptotic properties. Comprehensive sim-
ulation studies as well as analyses of real data examples are carried out to demonstrate the
superiority of the NEB estimator over competing methods.

Keywords: Asymptotic Optimality; Empirical Bayes; Power Series Distributions; Shrink-
age estimation; Stein’s discrepancy

(©2021 Trambak Banerjee, Qiang Liu, Gourab Mukherjee, and Wenguang Sun.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/19-873.html.


https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/19-873.html

BANERJEE, L1U, MUKHERJEE AND SUN

1. Introduction

Shrinkage methods, exemplified by the seminal work of James and Stein (1961), have re-
ceived renewed attention in modern large-scale inference problems (Efron, 2012; Fourdrinier
et al., 2018). Under this setting, the classical Normal means problem has been extensively
studied (Brown, 2008; Jiang and Zhang, 2009; Brown and Greenshtein, 2009; Efron, 2011;
Xie et al., 2012; Weinstein et al., 2018). However, in a variety of applications, the observed
data are often discrete. For instance, in the News Popularity study discussed in Section
5, the goal is to estimate the popularity of a large number of news items based on their
frequencies of being shared in social media platforms such as Facebook and LinkedIn. An-
other important application scenario arises from genomics research, where estimating the
expected number of mutations across a large number of genomic locations can help identify
key drivers or inhibitors of a given phenotype of interest.

We mention two main limitations of existing shrinkage estimation methods. First, the
methodology and theory developed for continuous variables, in particular for Normal means
problem, may not be directly applicable to discrete models. Second, existing methods have
focused on the squared error loss. However, the scaled loss (Clevenson and Zidek, 1975),
which effectively reflects the asymmetries in decision making [cf. Equation (3)], is a more
desirable choice for many discrete models such as Poisson, where the scaled loss corresponds
to the local Kulback-Leibler distance. The scaled loss also provides a more desirable criterion
in a range of sparse settings, for example, when the goal is to estimate the rates of rare
outcomes in Binomial distributions (Fourdrinier and Robert, 1995). Much research is needed
for discrete estimation problems under various loss functions. This article develops a general
framework for empirical Bayes estimation for the discrete linear exponential (DLE) family,
also known as the family of discrete power series distributions (Noack, 1950), under both
regular and scaled squared error losses.

The DLE family includes a wide class of popular members such as the Poisson, Binomial,
Negative Binomial and Geometric distributions. Let Y be a non-negative integer valued
random variable. Then Y is said to belong to a DLE family if its probability mass function
(pmf) is of the form

o) =20 ye 01,2, (1)

p y 9(9)7 y Y Y ) 9

where a, and g(f) are known functions such that a, > 0 is independent of 6 and g(6)
is a normalizing factor that is differentiable at every 6. Special cases of DLE include the
Poisson(\) distribution with a, = (y!)~!, § = X and g(#) = exp (), and the Binomial(m, q)
distribution with a, = (r;), 0 =¢q/(1—gq)and g(#) = (1+60)™. Suppose Yi,...,Y, obey
the following hierarchical model

Y| 6: " DLE®,), 6"~ G, (2)
where G(-) is an unspecified prior distribution on #;. The problem of interest is to estimate
0 =(01,...,0,) based on Y = (Y1,...,Y,). Empirical Bayes (EB) approaches to this com-
pound decision problem date back to the famous Robbins’ formula (Robbins, 1956) under
the Poisson model. In the terminology of Efron (2014, 2019) there are two main modeling
strategies for such EB estimation, namely, g-modeling and f-modeling strategies. The main
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goal under g-modeling is to model the prior distribution G of 6 using, for example, Non-
parametric Maximum Likelihood estimation (NPMLE) techniques (Kiefer and Wolfowitz,
1956; Laird, 1978) or by modeling G as a low dimensional exponential family (Efron, 2016).
With an estimate G of G, one can then derive an estimate of 6 by plugging G into the
Bayes rule for various loss functions (see for example Jiang and Zhang (2009); Koenker and
Mizera (2014); Gu and Koenker (2017)). The f-modeling strategy, on the other hand, first
starts from a particular form of the Bayes rule and then directly estimates the unknown
marginal pmf p(-) of Y using, for instance, the observed empirical frequencies (Robbins,
1956), the smoothness-adjusted estimator of Brown et al. (2013), kernel density estimation
techniques (Brown and Greenshtein, 2009) or through maximum likelihood estimation in
flexible exponential family models (Efron, 2012).

This article develops a general non-parametric empirical Bayes (NEB) framework for
compound estimation in discrete models. We first derive generalized Robbins’ formula
(GRF) for the DLE model (2), and then implement GRF via solving a convex program which
is carefully developed based on a reproducing kernel Hilbert space (RKHS) representation
of Stein’s discrepancy measure and leads to a class of efficient NEB shrinkage estimators.
Our work is related to the aforementioned f-modeling strategy however, in contrast with
existing f-modeling approaches that estimate p(y), the proposed NEB estimation framework
directly produces estimates of Bayes shrinkage factors that are ratios of the marginal pmf
p(y) and appear in the GRF for the DLE model (2). We develop theories to show that the
NEB estimator is y/n consistent up to certain logarithmic factors and enjoys superior risk
properties. Simulation studies are conducted to illustrate that the efficiency gain of the
NEB estimator over existing approaches, such as Brown et al. (2013), Koenker and Mizera
(2014); Koenker and Gu (2017), Efron (2016), is substantial in many settings.

There are several advantages of the proposed NEB estimation framework. First, in con-
trast with existing methods such as the smoothness-adjusted Poisson estimator in Brown
et al. (2013), our methodology covers a much wider range of distributions and presents a
unified approach to compound estimation in discrete models. Second, our proposed convex
program directly produces stable estimates of optimal Bayes shrinkage factors and can easily
incorporate various structural constraints into the decision rule. By contrast, the three-step
estimator in Brown et al. (2013), which involves smoothing, Rao-Blackwellization and mono-
tonicity adjustments, is complicated, computationally intensive and sometimes unstable (as
the numerator and denominator of the ratio are computed separately). Third, the RKHS
representation of Stein’s discrepancy measure provides a new analytical tool for developing
theories such as asymptotic optimality and convergence rates. Finally, the NEB estimation
framework is robust to departures from the true model due to its utilization of a generic
quadratic program that does not rely on the specific form of a particular DLE family. Our
numerical results in Section 4 demonstrate that the NEB estimator has a better risk perfor-
mance than competitive approaches of Efron (2011), Brown et al. (2013) and Efron (2016)
under a mis-specified Poisson model.

An alternative approach to compound estimation in discrete models, as suggested and
investigated by Brown et al. (2013), is to employ variance stabilizing transformations, which
converts the discrete problem to a classical normal means problem. This allows estimation
via Tweedie’s formula for normal variables (Efron, 2011). However, there are several draw-
backs of this approach compared to our NEB framework. First, Tweedie’s formula is not
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applicable to scaled error loss whereas our methodology is built upon the generalized Rob-
bins’ formula, which covers both regular and scaled squared error losses. Second, there can
be information loss in conventional data processing steps such as standardization, transfor-
mation and continuity approximation. While investigating the impact of information loss
on compound estimation is of great interest, it is desirable to develop methodologies directly
based on generalized Robbins’ formula that is specifically derived and tailored for discrete
variables. Finally, our NEB framework provides a convenient tool for developing asymptotic
theories. By contrast, convergence rates are yet to be developed for normality inducing
transformations, which can be highly non-trivial.

The rest of the paper is organized as follows. In Section 2, we introduce our estima-
tion framework while Section 3 presents a theoretical analysis of the NEB estimator. The
numerical performance of our method is investigated using both simulated and real data in
Sections 4 and 5 respectively. Section 6 concludes with a discussion. Additional technical
details and proofs are relegated to the Appendices.

2. A General Framework for Compound Estimation in DLE Family

This section describes the proposed NEB framework for compound estimation in discrete
models. We first introduce in Section 2.1 the generalized Robbins’ formula for the DLE
family (2), then propose in Section 2.2 a convex optimization approach for its practical
implementation. Details regarding tuning parameter selection are discussed in Section 2.3.

2.1 Generalized Robbins’ formula for DLE models

Denote = (61,...,9,) to be an estimator of @ based on Y. Consider a class of loss
functions

(5 (0;,6;) = 07%(0; — 5;)* (3)

for k € {0, 1}, where £(0)(6;,5;) is the usual squared error loss, and ¢()(6;,6;) = 0,1 (5; — 0;)?
corresponds to the scaled squared error loss (Clevenson and Zidek, 1975; Fourdrinier and
Robert, 1995). In compound estimation, one is concerned with the average loss

£F(0,8) =n""> (®)(0;,6).
=1

The associated risk is denoted R (0,6) = Ey‘gﬁgk)(O, d). Let G(0) denote the joint dis-
tribution of (61, -- ,6,). The Bayes estimator 5&,) that minimizes the Bayes risk By (0) =
fR%k)(B, 4)dG(0) is given by Lemma 1.

Lemma 1 (Generalized Robbins’ formula). Consider the DLE Model (2). Let p(-) =
[ p(:|0)dG(0) be the marginal pmf of Y. Define for k € {0,1},

w® () = p(yi — k)

= B foryi=kk+ 1,
ply; +1—k)

4
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Then the Bayes estimator that minimizes the risk B,&’“)(e) is given by 5&3) = {5% (i) 1<
i < n}, where

) %? foryi=kk+1,- -
5(k),i(yi) = wp (Yi) . (4)
0, fory; <k

Remark 1. Under the squared error loss (k = 0) with Y; | 6; ~ Poi(6;) and a,, = (y;!)~",

Lemma 1 yields

P(¥i + 1)7 (5)
p(yi)

which recovers the classical Robbins’ formula (Robbins, 1956). In contrast, under the scaled

loss, we have

60y (¥i) = (i +1)

T by T .
61y, (¥i) = yzp(yz(—)l) for y; > 0 and &f3, ;(yi) = 0 otherwise. (6)

Under scaled error loss the estimator (5) can be much outperformed by (6) (and vice versa
under the regular loss). We develop parallel results for the two types of loss functions.

Next we discuss related works for implementing Robbins’ formula under the empirical
Bayes (EB) estimation framework. Inspecting (4) and (5), we can view ay,_/ay,+1—k s

a naive and known estimator of ¢;. The ratio functional wz(gk) (yi), which is unknown in
practice, represents the optimal shrinkage factor that depends on p(:). Hence under the
f-modeling strategy a simple EB approach, as done in the classical Robbins’ formula, is
to estimate w](,k) (y) by plugging-in empirical frequencies: 1117(,,0) (y) = Pn(y)/Pn(y + 1), where
Pu(y) =n" 130 I(y; = y). It is noted by Brown et al. (2013) that this plug-in estimator
can be highly inefficient especially when 6; are small. Moreover, the numerator and denom-
inator in wi(,o)(y) are estimated separately, which may lead to unstable ratios. Brown et al.
(2013) showed that Robbins’ formula can be dramatically improved by imposing additional
smoothness and monotonicity adjustments. An alternative approach is to estimate GG using
NPMLE under appropriate shape constraints. However, efficient estimation of G may not
directly translate into an efficient estimation of the ratio functional w,()k) (y). We recast
the compound estimation problem as a convex program, which directly produces consistent
estimates of the ratio functionals

from data. The estimators are shown to enjoy superior numerical and theoretical properties.
Unlike existing f-modeling works that are limited to squared loss and specific members in
the DLE family, our method can handle a wide range of discrete distributions and various
types of loss functions in a unified framework.

2.2 Shrinkage estimation by convex optimization

This section focuses on the scaled squared error loss (kK = 1). Methodologies and theories
for the case with the squared error loss (k = 0) can be derived similarly; details are provided
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in Appendix A.1. We first introduce some notations and then present the NEB estimator in
Definition 1.
Suppose Y is a non-negative integer-valued random variable with pmf p(-). Define

(1) 1, fy=0
h = 7
0 (9) {1—w;(,1)(y), ifye{1,2,...}. @

Let Kx(y,y') = exp{—%(y — )%} be the positive definite Gaussian kernel with bandwidth
parameter A € A where A is a compact subset of R™ bounded away from 0. Given observa-

tions y = (Y1, - .., Yn) from model (2), let h(()l) = {hél)(yl), e h(()l)(yn)}. Define operators
AyKA(y,9') = Kaly +1,) = Ka(y,y/') and

Dy y K, y) = Ay AyKa(y,y') = DyAy Ka(y,y).-
Consider the following nxn matrices, which are needed in the definition of the NEB estimator:
Ky =n"2[Kalyiyj)lij, AKX =n"2[Ay (i, y)lijs DKy = n"*[Ay, 5, K (Y1, y5)]is-

Definition 1 (NEB estimator). Consider the DLE model (2) with loss £V (8;,6;). For any
fixed A € A, let fzg)()\) = {ilgl)()\), . ,iL,(—Ll)()\)} be the solution to the following quadratic

optimization problem:

min hT'K\h+2h"AK\1+1TA3K 1, (8)
cH,

where H, = {h = (h1,...,h,) : Ah = b, Ch = d} is a convex set and A,C,b and

d are known real matrices and vectors that enforce linear constraints on the components

of h. Define uﬁgl)(/\) =1- Bgl)()\). Then the NEB estimator is given by é?f)b()\) =

{5?16)1’1,()\) 1< < n}, where

5nebi(>‘) — M7 if yi € {172’ - ‘}’
A OIY

and 5?1“';”1.(/\) =0ify; =0.

Remark 2. In problem (8) the linear inequality constraints Ah < b can be used to impose

structural constraints on the NEB decision rule 6E‘f)b (A). These structural constraints, which

may take the form of monotonicity constraints (Brown et al., 2013; Koenker and Mizera,
2014), have been shown to be effective for stabilizing the estimator and hence improving

the accuracy. For instance, a monotonicity constraint on 5E‘f)bi()\) will imply 5?{3)[’(1)()\) >

R 6E‘f)b(n)()\) for yay > y@) = -+ < Y- In particular, when Y; | 6; ~ Poi(6;) then

5E‘f)bi()\) =y /{1 - iLZ(-l) (A)} and the monotonicity constraints in this setting will imply

SO 4 Y

Yi)
i i (/\) <
(4) Y(i+1) (i+1)

< -1, for1<i<(n—1)
Yi+1)

6
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These n — 1 linear inequality constraints may be imposed with an (n — 1) x n matrix .4 and
an n — 1 column vector b such that for 1 <i < (n—1)and 1 <r <mn,

—1, when y, =y

Ai,r) = Yy /Y1), when gy =y
0, otherwise

and bz = y(z)/y(z—i-l) —1.

Moreover, when y; = 0 we set 5E‘1e)b,i()\) = 0 by convention (see lemma 1). The equality

constraints Ch = d accommodate such boundary conditions along with instances of ties for
which we require h(l)()\) = hg-l)()\) whenever y; = y;.

(2

Next we provide some insights on why the optimization criterion (8) works; theories are
developed in Section 3 to establish the properties of the NEB estimator rigorously. Denote
h((]l) and (V) as the ratio functionals corresponding to pmfs p and p, respectively and let
MA,n(h) = hTK\h +2hT"AK, 1+ 17A3K,1. Suppose Y; are i.i.d. samples obeying p(y).
Theorem 1 shows that og?

M (R) = Ma(R) + Oy (S5 )

where M,\n(ﬁ) is the objective function in (8) and M (h), also denoted Sy[p](p), is the
kernelized Stein’s discrepancy (KSD). Roughly speaking, the KSD measures how different
one distribution p is from another distribution p, with S\[p](p) = 0 if and only if p = p. A
key feature of the KSD is that S)[p](p) can be equivalently represented by the discrepancy
between the corresponding ratio functionals hél) and A, Hence, optimizing (8) is asymp-
totically equivalent to finding RV that is as close as possible to the true underlying h[()l),
which corresponds to the optimal shrinkage factor in the compound estimation problem.
Theorems 2 and 3 demonstrate that (8) is an effective convex program in the sense that

(1)

the minimizer h,, is \/n consistent with respect to ho1
converges to the Bayes estimator.

, and the resultant NEB estimator

2.3 Bandwidth selection

The implementation of the quadratic program in (8) requires the choice of a tuning pa-
rameter A in the Gaussian kernel. For practical applications, A must be determined in a
data-driven fashion. For infinitely divisible random variables (Klenke, 2014) such as Pois-
son variables, Brown et al. (2013) proposed a modified cross validation (MCV) method for
choosing the tuning parameter. However, the MCV method cannot be applied to distribu-
tions with bounded support as they are not infinitely divisible (Sato and Ken-Iti, 1999) such
as the Binomial distribution. To provide a unified estimation framework for the DLE family,
we develop an alternative method for choosing A. The key idea is to derive an asymptotic

risk estimate ARES)(/\) that serves as an approximation to the true loss ,c;”(e, 5?{5)[’()\))

Then the tuning parameter is chosen to minimize ARES)(/\).
The methodology based on ARE is illustrated below under the scaled loss (see definition
2) and in Appendix A.2 we provide relevant details for choosing A under the regular squared

loss E,&O) .
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Definition 2 (ARE of JFe)b(/\) in the DLE model). Suppose Y; | 6; " pLE (0;). Under the

loss {1 (6;,-), an asymptotic risk estimate of the true loss of 6”eb()\) is

ARE(D( {Z i(A) — 2 i 6?16)%()\) }, where
i=1

Di(N) = {005 MY (g1 /ag), vi = 0,1,
with j; € {1,...,n} such that y;, = y; + 1.

We propose the following estimate of the tuning parameter A based on the ARES) A\ y):

A = argmin ARE(V (), y) (9)
AEA
In practice we recommend using A = [10,10%], which worked well in all our simulations

and real data analyses. In Section 3, we present Lemma 2 which provides asymptotic
justifications for selecting A\ using equation (9).

3. Theory

This section studies the theoretical properties for the NEB estimator under the Poisson
and Binomial models. We first investigate the large-sample behavior of the KSD measure
(Section 3.1), then turn to the performance of the estimated risk ratios w,, (Section 3.2), and
finally establish the consistency and risk properties of the proposed estimator 5?f)b (Section
3.3). The accuracy of the ARE criteria, which are used in choosing tuning parameter A, will

also be investigated.

3.1 Theoretical properties of the KSD measure

To provide motivation and theoretical support for Definition 1, we introduce the Kernelized
Stein’s Discrepancy (KSD) (Liu et al., 2016; Chwialkowski et al., 2016) and discuss its
connection to the quadratic program (8). While the KSD has been used in various contexts
including goodness of fit tests (Liu et al., 2016; Yang et al., 2018), variational inference
(Liu and Wang, 2016) and Monte Carlo integration (Oates et al., 2017), our theory on its
connection to the compound estimation problem and empirical Bayes methodology is novel.

Assume that (Y,Y”) are i.i.d. copies from the marginal pmf p. Consider hy defined in
Equation (7)! and let j denote a pmf on the support of Y, for which we similarly define h.
The KSD, which is formally defined as

S\BP) = By | {A(Y) = ho(0) } AV, V") {R(Y") = no(¥") } |, (10)
provides a discrepancy measure between p and p in the sense that (a)

S\[p)(p) = 0 and Sy[3](p) = 0 if and only if p = p,

1. In Section 3.1 we shall drop the superscript from ho, which is used to indicate whether the loss is scaled
or regular. The simplification has no impact since the general idea holds for both types of losses and the
discussion in this section focuses on the scaled loss.
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and (b) informally, S)[p](p) tends to increase when there is a bigger disparity between hg
and h (or equivalently, between p and p).

The direct evaluation of Sy[p](p) via Equation (10) is difficult because hg is unknown.
Note that while the pmf p can be learned well from a random sample {Y7,...,Y,} ~
p, we introduce an alternative representation of KSD, developed by Liu et al. (2016), in
a reproducing kernel Hilbert space (RKHS) that does not directly involve unknown hyg.

Concretely, consider a positive definite kernel function s[h(u), h(v)] where

ra[h(w), h(v)] (u, v) = h(u)h(v)Cx(u, v) + h(u) A (1, v) + A(0) Aukr(t, V) + Ay okox (1, ).

(11)
For i.i.d. copies (Y,Y”) from distribution p, it can be shown that
~ - N 7 T / /
SIAE) = By [mBO)ARE)IYY)] (12)
1 - -
= B[ Ym0 Y)]
n(n—1) 1<i#j<n
= M)\(i”)v

where {Y1,...,Y,} is a random sample from p. It can be similarly shown that My(h) = 0
if and only if h = hg. Substituting the empirical distribution p,, in place of the pmf p in
(12), we obtain the following empirical evaluation scheme for Sy[p](p)

S\ () = 3 D0 D walhle), hlws) (31, ). (13)

i=1 j=1

Note that (13) is exactly the objective function I\A/JI,\m(ﬁ) of the quadratic program (8).
The empirical representation of KSD (13) provides an extremely useful tool for solving
the discrete compound decision problem under the EB estimation framework. A key obser-
vation is that the kernel function sx[h(u), h(v)](u,v) depends on p only through h. Mean-
while, the EB implementation of the generalized Robbins’ formula [cf. Equations (4) and
(7)] essentially boils down to the estimation of hg. Hence, if Sx[p](py) is asymptotically equal

to Sx[p](p), then minimizing Sx[p](p») with respect to the unknowns b = {ﬁ(yl), e fz(yn)}

is effectively the process of finding an h that is as close as possible to hg, which yields an
asymptotically optimal solution to the EB estimation problem. Therefore our formulation
of the NEB estimator JE‘f)b()\) would be justified as long as we can establish the asymp-
totic consistency of the sample criterion Sy[p](p,) around the population criterion Sy[p](p)
uniformly over A (Theorem 1).

Our analysis in this and the following sections will be based on the hierarchical model of
equation (2): Y; | 0; ing- DLE(6;), 6; W (+) where G(+) is an unspecified prior distribution
on 6;. In this setup the marginal pmf of YV is p(y) = P(Y = y) = [p(y|0)dG(9). We
impose the following regularity conditions that are needed in our technical analysis.

(A1) Eplralh(U), h(V)](U,V)|? < oo for all A\ € A where A is a compact subset of R
bounded away from O.
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(A2) For some € € (0,1), Eg{exp(ef)} < oo where the expectation is taken with respect to
the prior distribution G of 6.

(A3) For any function g that satisfies 0 < |g||3 < oo, there exists a constant ¢ > 0 such
that lim, >0 o 9(v)K(y,y)g(y') > c||gl|3 for every A € A.

Remark 3. Assumption (Al) is a moment condition on the kernel function related to V-
statistics; see, for example, Serfling (2009). Assumption (A2) is a moment condition on the
prior distribution G. In particular, it ensures that with high probability max(Y7,...,Y,) <
logn as n — oo. This idea is formalized in Lemma 4 in Appendix B. It is likely that assump-
tion (A2) can be further relaxed but we do not seek the full generality here. Assumption
(A3) is a standard condition which ensures that the KSD Sy[p](p) is a valid discrepancy
measure (Liu et al., 2016; Chwialkowski et al., 2016).

Theorem 1. If p is a probability mass function on the support of Y then, under Assump-
tions (A1) and (A2), we have

log?n
)
In the context of our compound estimation framework, Theorem 1 is significant because it
guarantees that the empirical version of the KSD measure given by Mxn(fl) is asymptoti-
cally close to its population counterpart MA(ﬁ) uniformly in A € A. Moreover, along with
the fact that My (ho) = 0, Theorem 1 establishes that I\A/JI,\m(h) is the appropriate criteria
to minimize with respect to h = h. In Theorem 2, we further show that the resulting

estimator of the ratio functionals wz(,l) from equation (8) are consistent.

sup I\\A/JIAn(ﬁ) — M)\(il)’ = Op(
AEA

3.2 Theoretical properties of w,,

The optimization problem in (8) is defined over a convex set H,, = {h = (hi,...,hy) :
Ah < b, Ch = d} which is a subset of R". However, the dimension of H,, denoted
by dim(H,), is usually much smaller than n. Consider the Binomial case where Y;|q; ~
Bin(m,, ¢;) with ¢; € (0,1), m; <m < oo and 0; = ¢;/(1 — ¢;). Here dim(H,,) is at most m
since max(Yy,...,Y,) < m. While the boundedness of the support is not always available
outside the Binomial case, in most practical applications it is reasonable to assume that
the distribution of #; has some finite moments, which ensures that dim(H,) grows slower
than logn; see Assumption (A2). In Lemma 4 we make this precise. Moreover, as discussed
in remark 2, the linear inequality constraints Ah =< b impose structural constraints on
5?f)b()\). For the ensuing discussion and following Brown et al. (2013), we let these structural
constraints to take the form of monotonicity constraints on the NEB decision rule. Since
the Binomial and the Poisson models have the monotone likelihood ratio property, 56) is
m(()f}otone and so hg € H,. The next theorem establishes the asymptotic consistency of
Wy, (A).

Theorem 2. Let Ky(+,-) be the positive definite Gaussian kernel with bandwidth parameter
A€ A If limy, oo cun~ Y2 log?n = 0 then, under Assumptions (A1) - (A3), we have for

any A € A,
1
lim P {
n—o00 n

2
w{M(\) — w}g”H2 > c;le} =0, for any € >0,

10
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where w%l)(/\) =1- h%l)()\).
(1)

Theorem 2 shows that under the scaled squared error loss, wy, ’(\), the optimizer of

(1)

quadratic problem in equation (8), is a consistent estimator of w,, ’, the optimal shrinkage
factor in the Bayes rule (Lemma 1). In particular, the aforementioned consistency result
is related to the theoretical analysis of minimum KSD estimators in Barp et al. (2019).
While Barp et al. (2019) establish almost sure convergence and asymptotic normality of
such minimum KSD estimators, the analysis in this section is geared towards studying the
asymptotic optimality of the proposed NEB estimator in the sense of Theorem 3 below.
The proof of Theorem 2 is available in Appendix B.3 which also includes relevant details
for proving a companion result under the regular squared error loss.

Remark 4. The estimation framework in Definition 1 may be used for producing consistent
estimators for any member in the DLE family. This allows the corresponding NEB estimator
to cover a much wider class of discrete distributions than previously proposed. Compared to
the existing methods of Efron (2011) and Brown et al. (2013), our proposed NEB estimation
framework is robust against departures from the true data generating process. This is due
to the fact that the quadratic optimization problem in (8) does not rely on the specific form
of the distribution of Y|#, and that the shrinkage factors are estimated in a non-parametric
fashion. The robustness of the estimator is corroborated by our numerical results in Section
4.

3.3 Properties of the NEB estimator

In this section we discuss the risk properties of the NEB estimator. Let

P (0,075 (N) = £1D(0. 875 (A Ze

We begin with Lemma 2 which shows that uniformly in A\ € A, the gap between ARE( (A)

and ]E{pn 0, é?e)b( ))} is asymptotically negligible. This justifies our proposed methodol-
ogy for choosing the tuning parameter A\ in Section 2.3. In the following lemma, we let ¢,

be a sequence satisfying lim,_,o ¢,n "4 log? n = 0.

Lemma 2. Under Assumptions (A1) - (A3), we have

(1) cosup |ARED (A, Y) — o (6, 675 (A ))] = 0,(1).

AEA
(2). casup |[ARED (A, Y) — E{pl)(0, 7P(A }]_op
AEA

In Appendices B.5 and B.6 we prove Lemma 2 for the Binomial and Poisson models
under both scaled squared error and squared error losses.

To analyze the quality of the data-driven bandwidth A [cf. Equation (9)], we consider
an oracle loss estimator 87, = ége)b()\mc) where

AJ€ = ar§erilin £y {9, 6?f)b(/\)} .

11
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The oracle bandwidth A$™ is not available in practice since it requires the knowledge of
unknown 6. However, it provides a benchmark for assessing the effectiveness of the data-
driven bandwidth selection procedure in Section 2.3. The following lemma shows that the

~
or

loss of é?f)b (M) converges in probability to the loss of 5(1).

Lemma 3. Under Assumptions (A1) - (A3), if lim, oo con~/*log?n = 0, then for both
the Poisson and Binomial models, we have

lim P[zgp {9, 5;*5;)(&)} > £0(8,6%)) + ¢;'e| =0 for any e > 0.

n—00

Obviously, the estimator d?f)b()\‘frc) is lower bounded by the risk of the optimal solution
neb

66) (Lemma 1). Next we study the asymptotic optimality of 5(1) , which aims to provide de-

cision theoretic guarantees on 6E‘1e)b in relation to 66). Theorem 3 establishes the optimality

theory by showing that (a) the average squared error between 5?f)b(/\) and 66) is asymp-
totically small, and (b) the NEB estimator is asymptotically as good as the corresponding
Bayes estimator in terms of expected loss.

Theorem 3. Under the conditions of Theorem 2, if lim, cpn /2 log4n = 0, then for
both the Poisson and Binomial models, we have

Cn

neb /3y T 2
SN = 87y |, = en().

n
Furthermore, under the same conditions, we have,

lim E[£)(8,870(1) — £(6,57))] = 0.

n—0o0

In Appendix A.2, we discuss the counterpart to Theorem 3 under the squared error loss

£

4. Numerical Results

In this section we first discuss, in Section 4.1, the implementation details of the convex
program (8) and bandwidth selection process (9) (see also (19) in Appendix A.2). Then
we investigate the numerical performance of the NEB estimator for Poisson, Binomial and
Negative Binomial compound decision problems, respectively in Sections 4.2,4.3 and 4.4. In
each case, we consider both regular and scaled squared losses. Our numerical results demon-
strate that the efficiency gain of the NEB estimator over competitive methods is substantial
in many settings.

We have developed an R package, npeb, to implement the NEB estimator in definition 1
(and definition 3 in Appendix A.1). Moreover, the R code that reproduces the numerical
results in this section can be downloaded from the following link: https://github.com/
trambakbanerjee/DLE_paper.

12
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4.1 Implementation Details

For a fixed A we use the R-package CVXR (Fu et al., 2017) to solve the optimization problem
in Equations (8) (and (15) in Appendix A.1). As discussed in remark 2 of section 2.2, under
the scaled squared error loss (k = 1) the linear inequality constraints, given by Ah =< b,

ensure that the resulting decision rule 5?5"()\) is monotonic, while the equality constraints

Ch = d handle boundary cases that involve y; = 0 and ties. Moreover, since wz()l)(y) > 0,
the inequality constraints also ensure that h; < 1 whenever y; > 0. Implementation under
the squared error loss (k = 0) follows along similar lines and the inequality constraints in
this case ensure that h; + y; > 0 whenever y; > 0.

A data-driven choice of the tuning parameter A is obtained by first solving problems (8)

and (15) over a grid of A values, i.e. {A1,...,As}, and then computing the corresponding
asymptotic risk estimate ARE%k)()\j) for j=1,...,s. Then X is chosen according to

A = argmin ARE(()),
AEfAL A}

where k € {0,1}. For all simulations and real data analyses considered in this paper, we
have fixed s = 10 and employed an equi-spaced grid over [10, 102].

4.2 Simulations: Poisson Distribution

In this section we consider the Poisson compound decision problem and generate Y; | 6; .

Poi(6;) for i =1,...,n. We vary n from 500 to 5000 in increments of 500 and simulate 0;
from the following four different scenarios:

Scenario 1: 0; "% Unif(0.5,15).
Scenario 2: 0; "% Gamma(10, 2).

In the next two scenarios we consider departures from the usual Poisson model and simulate
our data from the Conway-Maxwell-Poisson distribution (Shmueli et al., 2005) CMP(6;, v).
The CMP distribution is a generalization of some well-known discrete distributions. With v <
1, CMP represents a discrete distribution that has longer tails than the Poisson distribution
with parameter ;.

Scenario 3: We simulate 6; %" 0.5 010y + 0.5 Gamma(5, 2) for each i and let

ind.

Y; ’ 0; ~ 0.8 POi((gi) + 0.2 CMP(Qi, l/),
where we fix v = 0.8 for the CMP distribution.

Scenario 4.1: 1In this scenario we conduct estimation under the scaled squared error loss.
We let 0; "% 0.5 8g5 + 0.5 615y, vil0; = 0.8 1(6; = 5) + 1 1(6; = 15) and simulate Y;
from the CMP distribution with parameters 6; and v;. Thus, about half of the samples
arise from a Poisson distribution with mean 15 while remaining are realizations from

a CMP(5,0.8).

13
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Scenario 4.2: We consider estimation under the squared error loss and let 8 to be an
equi-spaced vector of length n in [1, 5]. We simulate Y; from the CMP distribution with
parameters 6; and v fixed at 0.8.

For each scenario, the following competing estimators of #; are considered:

1. the proposed estimator, denoted NEB and the oracle NEB estimator 68;) = JE‘S’ (X°r°),
denoted NEB OR;

2. the estimator of Poisson means from Brown et al. (2013), denoted BGR;
3. Tweedie’s formula for the Poisson model, denoted TF OR;

4. Tweedie’s formula for the Normal means problem based on transformed data, denoted
TF Gauss. The approach using transformation was suggested by Brown et al. (2013).

5. the estimator of Poisson means from Koenker and Gu (2017), denoted KM;

6. the estimator of Poisson means based on the g-modeling approach of Efron (2016),
denoted Deconv.

The risk performance of the TF OR method relies heavily on the choice of a suitable band-
width parameter h > 0. We use the oracle loss estimate hA°, which is obtained by minimiz-
ing the true loss E%O). The TF Gauss methodology is only applicable for the Normal means
problem, and uses a variance stabilization transformation on Y; to get Z; = 2v/Y; + 0.25.
The Z; are then treated as approximate Normal random variables with mean p; and vari-
ances 1. To estimate the normal means p; we rely on g-modeling and use NPMLE. Finally,
6; are estimated as 0.254;2. It is important to note that along with the NEB estimator, BGR
and TF OR are based on f-modeling while the rest in the preceding list of six competitors
are based on g-modeling. Moreover, BGR, TF OR and TF Gauss only focus on the regular

0 . . .
squared error loss E% ), Nevertheless, in our simulation we assess the performance of these

estimators for estimating 8 under both [,gLO) and ££}).
Table 1: Poisson compound decision problem  Table 2: Poisson compound decision prob-
under scaled squared error loss: Risk ratios lem under squared error loss: Risk ratios

R%”(B,')/RS)(B,JE‘S’) at n = 5000 for esti- RSLO)(B,)/RSLO)(B,SE‘S%’) at n = 5000 for esti-

mating 6. mating 6.
Scenario Scenario
Method 1 2 3 4.1 Method 1 2 3 4.2
KM 0.94 1.00 1.11 1.00 KM 1.00 1.01 1.59 1.21
Deconv 1.00 1.06 1.03 1.11 Deconv 1.02 1.08 1.43 1.21
TF Gauss 1.03 1.03 1.23 1.18 TF Gauss 1.00 1.01 1.51 1.08
TF OR 1.00 1.02 1.28 1.10 TF OR 1.07 1.03 1.66 1.12
BGR 1.22 1.07 1.28 1.25 BGR 1.01 1.02 1.55 1.15
NEB 1.00 1.00 1.00 1.00 NEB 1.00 1.00 1.00 1.00
NEB OR 1.00 1.00 0.98 1.00 NEB OR 1.00 1.00 0.90 1.00

The performances of these six estimators are presented in figures 1 and 2 wherein the
risk Rﬁf)(e), -) is estimated using 50 Monte Carlo repetitions for varying n. Tables 1 and 2
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Deconv = NEB TF Gauss Deconv -+ NEB TF Gauss
KM —+ NEB OR TF OR KM —+ NEB OR TF OR
0.90
0.72
0.85 0.71
] $0.70
0.80
/\ _ = . ——— 0.69
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‘ | ] ‘ ‘ 0.67 : : : ‘ ;
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
n n
. . . 1 . . . 1
(a) Scenario 1: Estimation of # under loss b (b) Scenario 2: Estimation of 8 under loss as
where 6; '~ Unif(0.5, 15). where 0, "~ Gamma(10, 2).
Deconv = NEB TF Gauss
Deconv —=- NEB TF Gauss KM — NEB OR TFOR
KM — NEB OR TF OR
4.0
16
3.5
15
~ % 3.0
L2
=14
25
13
2.0
1.2 T~ P—
1000 2000 3000 4000 5000
n

1000 2000 3000 4000 5000
n

(¢) Scenario 3: Estimation of 6 under loss £ ((1()1>Scenario 4-1: Estimation of 6 under loss
Ly’ where 0 is an equi-spaced vector of length

iid.
where 0; 0.5 (105 + 0.5 Gamma(5, 2). nin [1,5] and Yi[6; " cMP(6;,0.8) .

Figure 1: Poisson compound decision problem under scaled squared error loss: Risk estimates of
the various estimators for scenarios 1, 2, 3 and 4.1.

report the ratios Rgf)(ﬂ, ~)/R1(f)(0, 6?,?;’) of the average risks at n = 5000 and for k¥ = 1,0
respectively, where a risk ratio bigger than 1 indicates a smaller estimation risk for the NEB
estimator. For BGR the modified cross validation approach of choosing the bandwidth pa-
rameter was extremely slow in our simulations and we therefore report its risk performance

only at n = 5000.

Figure 1 and table 1 present the risk performances of the competing estimators under
the scaled squared error loss. Under scenarios 1 and 2 all estimators, with the exception
of BGR in scenario 1 (table 1), exhibit competitive risk performance. For scenarios 3 and
4.1, which represent departures from the Poisson model, the NEB estimator demonstrates
a substantially better performance than TF Gauss, TF OR and BGR. We note that KM and
Deconv are competitive in scenarios 4.1 and 3, respectively, which indicates that along
with the NEB estimator these g-modeling based approaches are potentially robust to mis-
specifications of the Poisson model considered in scenarios 3 and 4.1. Figure 1 reveals that
the risk profile of Deconv is affected by its poorer estimates of @ at various sample sizes
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Deconv -+ NEB TF Gauss Deconv -+ NEB TF Gauss
KM — NEB OR TF OR KM ~+ NEB OR TF OR
5.6
54 14.4
5.2
I B 14.0
5.0
13.6
4.8 Mm —— _
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
n n
. . . 0 . . . 0
(a) Scenario 1: Estimation of # under loss £ (b) Scenario 2: Estimation of 8 under loss i
where 6; ~ Unif(0.5,15). where 0, "~ Gamma(10, 2).
Deconv —=- NEB TF Gauss
Deconv -=- NEB TF Gauss KM —~ NEBOR TF OR
KM —+ NEB OR TFOR
3.25
175 3.00
15.0 %275

risk

12.5 2.50 \\
10.0 \\
\\v_/\// A 2.25

‘ ! ‘ ‘ ; 1000 2000 3000 4000 5000
1000 2000 3000 4000 5000 n
n

(¢) Scenario 3: Estimation of 6 under loss £ (d(%))Scenario 4-2: Estimation of 6 under loss
Ly’ where 0 is an equi-spaced vector of length

iid.
where 0; 0.5 (105 + 0.5 Gamma(5, 2). nin [1,5] and Yi[6; " cMP(6;,0.8) .

Figure 2: Poisson compound decision problem under squared error loss: Risk estimates of the
various estimators for scenarios 1, 2, 3 and 4.2.

and especially at the smaller sample sizes for scenarios 3 and 4.1. This behavior continues
to appear even when the number of Monte Carlo repetitions are increased.

The risk performance of the competing estimators under the squared error loss is pre-
sented in figure 2 and table 2. Under scenarios 1 and 2 all estimators continue to exhibit
a competitive performance. BGR, in particular, demonstrates a substantially improved per-
formance now that estimation is conducted under squared error loss. Scenarios 3 and 4.2
consider departures from the Poisson model and in these settings the NEB estimator has a
substantially better risk performance than all other competing methods considered here.
We note that in scenarios 3, 4.1 and 4.2 the NEB estimator is robust to departures from the
Poisson model. Proposition 7 in Barp et al. (2019) guarantees that, in general, the influence
function of minimum KSD estimators, such as the NEB estimator, is bounded under data
corruption and the behavior of the proposed NEB estimator in scenarios 3, 4.1 and 4.2 is
potentially an example of such robustness property of minimum KSD estimators.
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4.3 Simulations: Binomial Distribution

In this section we consider the Binomial compound decision problem and generate Y; | g; ind-
Bin(m;, q;) fori =1,...,n. We vary n from 500 to 5000 in increments of 500 and simulate

0; = qi/(1 — g;) from the following four different scenarios:
Scenario 1: g; i1 Unif(0.1,0.7) and m; = 10.

Scenario 2: 0; "5 (1/3) 6105 + (1/3) 61y + (1/3) bay and m; = 10.

Scenario 3: g; bl Beta(1,6) and m; = 10.

Scenario 4: 6; b Exp(2) and m; = 5.

Unlike scenarios 1 and 3, the data generating process in scenarios 2 and 4 directly sample
the odds. Moreover the compound estimation problem in scenarios 3 and 4 is challenging
because in these settings the distribution of 6; has a mean that is substantially smaller in
magnitude to the mean of 6; in scenarios 1 and 2. For example in scenario 2 the mean of
0; is about 1.16 while that in scenario 4 is 0.5. We consider the following five competing
estimators of 6;:

1. the proposed estimator NEB and its oracle version NEB OR;
2. Tweedie’s formula for Binomial log odds, denoted TF OR;

3. Tweedie’s formula for the Normal means problem based on transformed data, denoted
TF Gauss.

4. the estimator of Binomial odds from Koenker and Gu (2017), denoted KM;
5. the estimator of Binomial odds from Efron (2016), denoted Deconv.

For TF OR, analogous to the Poisson case, we continue to use the oracle loss estimate h° as
a choice for the bandwidth parameter. Since the TF Gauss methodology is only applicable
for the Normal means problem, it uses a variance stabilization transformation on Y; to
get Z; = arcsiny/(Y; + 0.25)/(m; + 0.5). The Z; are then treated as approximate Normal
random variables with mean pu;, variances (4mi)_1, and estimate of the means p;’s are
obtained using NPMLE. Finally, ¢; is estimated as {sin(fi;)}?>. We note that the competitors
TF OR and TF Gauss to our NEB estimator do not directly estimate the odds 6;. For instance
under the squared error loss, TF Gauss estimates the success probabilities g; while TF OR
estimates log 6;. Nevertheless, in this simulation experiment we assess the performance of
these two estimators for estimating the odds under both squared error loss and its scaled
version. The simulation results are presented in Figures 3 and 4 wherein the risks of
various estimators are calculated by averaging over 50 Monte Carlo repetitions for varying
n. Tables 3 and 4 report the risk ratios ’R,(lk)(B, )/Rglk) (0, éz‘g)b) at n = 5000 and for £k = 1,0
respectively, where a risk ratio bigger than 1 indicates a smaller estimation risk for the NEB
estimator.

Under the scaled squared error loss (figure 3 and table 3) KM and Deconv demonstrate
a superior risk performance for scenarios 1 and 2 while the NEB outperforms them for the
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Deconv - KM -= NEB -+~ NEB OR TF Gauss Deconv - KM -= NEB -+ NEB OR TF Gauss
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(a) Scenario 1: Estimation of odds € under (b) Scenario 2: Estimation of odds 6 un-
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loss £ where ¢; "X Unif(0.1,0.7) and m; = der loss £ where 6; "X (1/3) dg05y +
10. (1/3) 5{1} +(1/3) 6{2} and m; = 10.
| Deconv - KM -= NEB —+ NEBOR TF Gaussl | Deconv - KM -=- NEB -+ NEB OR TF Gaussl
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(¢c) Scenario 3: Estimation of odds @ under (d) Scenario 4: Estimation of odds € under
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loss £ where ¢; "% Beta(1,6) and m; = 10. loss £ where 6; "X Exp(2) and m; = 5.

Figure 3: Binomial compound decision problem under scaled squared error loss: Risk estimates of
the various estimators for Scenarios 1 to 4.

challenging settings of scenarios 3 and 4. The two Tweedie’s formula based estimators, TF
Gauss and TF OR, exhibit relatively poorer performance which is not surprising because
these two estimators are designed to estimate ¢; and log 6; under loss [,,(10). For the squared
error loss (figure 4 and table 4) the simulation results reveal that with the exception of
scenario 3, the NEB estimator and KM demonstrate competitive risk performance. Scenario
3, along with scenario 4, is a challenging setting wherein the mean of the distribution of
; is substantially smaller in magnitude to the mean of 6; in scenarios 1 and 2. Across
the four scenarios, TF OR exhibits the poorest performance and appears to suffer from the
fragmented approach of estimating the gradient of the log density log p(y) wherein p(y) and
its first derivative with respect to y are estimated separately using a Gaussian kernel with
common bandwidth h°*°. Between the two g-modeling based approaches considered in this
section, Deconv exhibits a relatively poorer risk performance than KM and for scenario 3 in
particular the average risk of Deconv is substantially larger.
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Deconv - KM -== NEB -+ NEB OR TF Gauss Deconv - KM -= NEB -+ NEB OR TF Gauss
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Figure 4: Binomial compound decision problem under squared error loss: Risk estimates of the
various estimators for Scenarios 1 to 4.

Table 3: The Binomial compound decision  Table 4: The Binomial compound decision
problem under scaled squared error loss: Risk problem under the squared error loss: Risk ra-

ratios Ri(8,)/RS (0, 00¢) at n = 5000 for tios Ri(8,)/RE (8, 67cb) at n = 5000 for es-

(0)
estimating 6. timating 6
Scenario Scenario
Method 1 2 3 4 Method 1 2 3 4
KM 0.95 094 1.85 1.00 KM 1.01 1.00 1.15 1.02
Deconv 0.95 097 1.59 1.06 Deconv 1.06 1.09 1.42 1.03
TF Gauss 1.01 1.09 &8.52 4.30 TF Gauss 1.21 1.23 1.27 1.10
TF OR >10 >10 >10 >10 TF OR >10 >10 >10 >10
NEB 1.00 1.00 1.00 1.00 NEB 1.00 1.00 1.00 1.00
NEB OR 0.99 1.00 1.00 1.00 NEB OR 1.00 1.00 0.98 1.00
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4.4 Simulations: Negative Binomial Distribution

In this section we investigate the numerical performance of the NEB estimator for compound
decision problems involving the Negative Binomial (NB) distribution. We generate obser-

vations Y; | ¢; ing NBinom(r;, q;) for i = 1,...,n and vary n from 500 to 5000 in increments
of 500. Here the goal is to estimate §; = 1 — ¢; and we consider the following three different
scenarios for simulating ¢; for i = 1,... n:

Scenario 1: g; M 0.4 d50.53 + 0.6 Beta(1,1) and fix r; = 3.

Scenario 2: ¢; "% (1/3) 6053 + (1/3) dg0.73 + (1/3)840.9y and fix r; = 5.

i.4.d
~Y

Scenario 3: ¢; ~ Beta(h,2) and fix r; = 10.

In scenarios 2 and 3 the median 6; is substantially smaller than 0.5 which represents a
challenging estimation setting for the following competing estimators:

1. the proposed estimator, denoted NEB and the oracle version NEB OR;
2. Tweedie’s formula for log §; under the NB model, denoted TF OR;

3. Tweedie’s formula for the Normal means problem based on transformed data, denoted
TF Gauss;

4. the naive estimator 1 — (r; — 1)/(r; +Y; — 1) of 6; where (r; —1)/(r; +Y; — 1) is the
minimum variance unbiased estimator (MVUE) of ¢;.

We continue to use the oracle loss estimate h°© as the bandwidth choice for TF OR. For TF
Gauss we use a variance stabilization transformation on Y; to get Z; = 2 arcsiny/Y;/r;. The
Z; are then treated as approximate Normal random variables with mean p; and variances
1/r;. To estimate the normal means p; we rely on g-modeling and use NPMLE. Finally,
0; are estimated as 1 — {1 + [sinh(0.57;)]?}~!. It is important to note that unlike the
NEB estimator, the remaining competing estimators only focus on the regular squared error
loss L’%O). Nevertheless, in our simulation we assess the performance of these estimators for
estimating @ under both E%O) and £§3).

Figure 5 and tables 5, 6 report the performance of the competing estimators of 8 for the
NB compound estimation problem. Under the squared error loss table 6 and right panel of
figure 5 reveal that across all sample sizes performance of the NEB estimator is substantially
better than the competing estimators considered in this experiment. In this setting TF
OR is the next best while the naive estimator of € is outperformed by the three shrinkage
estimators. Under the scaled squared error loss (table 5 and left panel of figure 5), the NEB
estimator continues to be better than the competing estimators although the performance
of TF Gauss is impressive given that it is based on Normality transformed data under the
usual squared error loss.

5. Real Data Analyses

This section illustrates two real data applications that use the proposed method for esti-
mating Juvenile Delinquency rates from Poisson models and news popularity from Binomial
models.
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Figure 5: Negative Binomial compound decision problem: Risk estimates of the various estimators

for Scenarios 1 to 3.
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Table 5: The NB compound decision prob-
lem under scaled squared error loss: Risk ratios
Rgzl)(a, -)/’RS)(B, Jz‘f)b) at n = 5000 for estimat-
ing 6.

Table 6: The NB compound decision prob-
lem under the squared error loss: Risk ratios
Rg?)(07~)/7€5?)(0,6?§§’) at n = 5000 for esti-
mating 6.

Scenario Scenario
Method 1 2 3 Method 1 2 3
Naive 1.27 1.38 1.23 Naive 2.31 2.02 1.53
TF Gauss 1.09 1.25 1.14 TF Gauss 1.74 1.55 1.23
TF OR 494 1.25 1.11 TF OR 1.36 1.33 1.12
NEB 1.00 1.00 1.00 NEB 1.00 1.00 1.00

NEB OR 1.00 1.00 1.00 NEB OR 0.99 1.00 0.99

5.1 Estimation of Juvenile Delinquency rates

We consider an application for analysis of the Uniform Crime Reporting Program (UCRP)
Database (US Department of Justice and Federal Bureau of Investigation, 2014) that holds
county-level counts of arrests and offenses ranging from robbery to weapons violations
in 2012. The database is maintained by the National Archive of Criminal Justice Data
(NACJD) and is one of the most widely used database for research related to factors that af-
fect juvenile delinquency (JD) across the United States (see for example (Aizer and Doyle Jr,
2015; Damm and Dustmann, 2014; Koski et al., 2018)). A preliminary and important goal
in these analyses is to estimate the JD rates based on observed arrest data and determine
the counties that are amongst the worst or least affected. However with almost 3,000 coun-
ties being evaluated the observed JD counts are susceptible to selection bias, wherein some
of the data points are in the extremes merely by chance and traditional estimators may
underestimate or overestimate the corresponding delinquency rates, especially in counties
with fewer total number of arrests across all age groups.

For the purpose of our analyses, we use the 2012 UCRP data that spans n = 3,178
counties in the U.S. and consider estimating the JD rate 6; for county ¢ = 1,...,n. The
observed data for county 7 in the year 2012 is the pair (y;1, mi1) which represent, respectively,
the number of juvenile arrests and total arrests in county ¢ during that year. We assume
that Y1 | mi1, 0; ind- Poi(m;10;) and use the following six competing estimators of 6 =
(61,...,60,) from section 4.2: NEB, BGR, KM, TF OR, TF Gauss and Deconv. To assess the
performance of the aforementioned estimators we consider predicting the 2014 county level
JD counts Yo = (Y12, ...

and /J%l) losses. In particular for any estimate 5; of 0;, the 2014 predicted JD counts are
YQ = (51m12, ... ,3nmn2) where m;o is the total number of arrests in county ¢ during 2014.
The prediction performance of & is then evaluated under loss P (Y, Ys) for k € {0,1}.
The data were cleaned prior to any analyses which ensured that all counties in the year
2012 had at least one arrest (juvenile or not). This resulted in n = 2803 counties where

all methods are applied to. Let YQ"(e,?) denote the n vector of predicted JD counts for 2014

using (56‘3’ . Table 7 reports the loss ratios E%k)(YQ, Ys)/ E%k)(Yg, YQ"(e,S)) where a ratio bigger
neb

than 1 indicates a smaller prediction loss for d(k). We see that under the scaled squared

, Yi2) and compare their prediction performance under both E,(lo)
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Table 7: Loss ratios of the competing methods for predicting Y.

(n=2,803) Loss ratios

Method k=1 k=0
BGR 1.09 0.97
KM 1.04 1.01
Deconv 3.18 1.01
TF Gauss 1.07 1.00
TF OR 1.19 1.08
NEB 1.00 1.00

error loss (k = 1) all five competing estimators to NEB exhibit loss ratios bigger than 1
while BGR outperforms all others under the squared error loss (kK = 0). Under this loss,
however, the NEB estimator continues to provide a better prediction accuracy than TF OR
and demonstrates a competitive performance against KM, Deconv and TF Gauss.

5.2 News popularity in social media platforms

Journalists and editors often face the critical task of assessing the popularity of various news
items and determining which articles are likely to become popular; hence existing content
generation resources can be efficiently managed and optimally allocated to avenues with
maximum potential. Due to the dynamic nature of the news articles, popularity is usually
measured by how quickly the article propagates (frequency) and the number of readers
that the article can reach (severity) through social media platforms like Twitter, Youtube,
Facebook and LinkedIn. As such predicting these two aspects of popularity based on early
trends is extremely valuable to journalists and content generators (Bandari et al., 2012).
In this section, we assess the popularity of several news items based on their frequency

Table 8: Loss ratios of the competing meth- Table 9: Loss ratios of the competing meth-
ods for estimating 8. News article genre: ods for estimating 8. News article genre:
Economy and social media: Facebook Microsoft and social media: LinkedIn

(n=3,972) Loss Ratios (n=3,850) Loss Ratios

Method k=1 k=0 Method k=1 k=0

NEB 1.00 1.00 NEB 1.00 1.00

KM 6.98 > 10 KM >10 >10

Deconv >10 >10 Deconv >10 >10

TF Gauss 413  3.33 TF Gauss 9.26 7.34

TF OR >10 >10 TF OR >10 >10

of propagation and analyze a dataset from Moniz and Torgo (2018) that holds 48 hours
worth of social media feedback data on a large collection of news articles since the time of
first publication. For the purposes of our analysis, we consider two popular genres of news
from this data set: Economy and Microsoft, and examine how frequently these articles
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were shared in Facebook and LinkedIn, respectively, over a period of 48 hours from the
time of their first publication. Each news article in the data has a unique identifier and 16
consecutive time intervals, each of length 180 minutes, to detect whether the article was
shared at least once in that time interval. Let Z;; = 1 if article ¢ was shared in time interval
j and 0 otherwise, where i = 1,...,n and j = 1,...,16. Suppose g;; € [0, 1] denotes the
probability that news article ¢ is shared in interval j. Note that in general g;; depends
on j since the popularity of any news article evolves with time and therefore Z;; are not
independently distributed for j = 1,...,16. However for the purposes of this analysis, we

let g;; = ¢; for j = 1,...,16 and assume that for each i, Z;; are independent realizations
ind.

from Ber(g;). It then follows that Y;; = Z 1Zij ~ Bin(8,q;). To assess the popularity
of article ¢ we estimate its odds of sharing in the remaining 8 time intervals (5 =9,...,16)
and consider the following 5 estimators from section 4.3: NEB, KM, Deconv, TF Gauss and
TF OR. Tables 8 and 9 report the loss ratios E%k)(B,é) / P 9, 5?,‘:%’) for any estimator
of @ where 0; = Y;2/(8 — Yi2) and Yo = 2;6:9 Zi;. We observe that all four competitors
to the NEB estimator exhibit loss ratios substantially bigger than 1 under both the losses.
The relatively poorer performance of KM and Deconv in this example stems from the fact
that in this application Y;; = 8 for several news articles. For those news articles both KM
and Deconv return disproportionately bigger estimates of #; which explains their relatively
larger estimation loss.

6. Discussion

In this paper we propose a Nonparametric Empirical Bayes framework for compound esti-
mation in the discrete linear exponential family. The proposed estimator is consistent and
presents a unified framework for compound estimation in the DLE family by estimating the
Bayes shrinkage factors via a convex program that can easily incorporate various structural
constraints, such as monotonicity, into the data driven decision rule. Our numerical evi-
dence suggests that across many settings the NEB estimator has a substantially better risk
performance than the competing approaches considered here.

We conclude this article with two open issues. First, in large scale compound estimation
problems, one is often interested in constructing confidence intervals for the EB shrinkage
estimators. Recall that for any coordinate 1, 6?3’ is non-linear and a biased estimate of 6;.
While the CLT for minimum KSD estimators in Barp et al. (2019) will be important for
deriving the asymptotic distribution of the NEB estimator, the main challenge in constructing
confidence intervals lies in accounting for the bias in 5?e)b for estimating 6;. In the absence
of any information on the prior G, it is not immediately clear how to accurately characterize
this bias. Notable recent developments include “de-biasing” the EB estimator (Ignatiadis
and Wager, 2019) or assuming a Normal distribution on G but using a carefully constructed
larger critical value to account for the bias due to shrinkage (Armstrong et al., 2020).
Secondly, the NEB estimation framework handles both regular and scaled squared error
losses and it is desirable to construct such empirical Bayes shrinkage estimators for other
asymmetric losses such as the Linex loss (Varian, 1975) and the Generalized absolute loss
function (Koenker and Bassett Jr, 1978). As part of our future research, we will be interested
in pursuing these aforementioned directions.
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Supplementary Material for “EB Estimation in Discrete
Linear Exponential Family”

In this supplement, we first present in Appendix A the results for the NEB estimator under
the squared loss, then in Appendix B we provide the proofs and technical details of all
theories in the main text and Appendix A.

A. Results Under the Squared Error Loss

A.1 The NEB estimator

In this section we discuss the estimation of 'wz(,o) that appear in lemma 1 under the usual

squared error loss (k = 0). Let Y be a non-negative integer-valued random variable with
probability mass function (pmf) p and define

y+1
h(()O) (y) )

—y,y€{0}UN (14)
wp - (y

Suppose K (y,y') = exp{—0.5A"1(y — /)?} be the positive definite Gaussian kernel with
bandwidth parameter A € A where A is a compact subset of RT bounded away from 0.
Given observations y = (y1,...,yn) from model (2), let héo) = (héo) (y1),.--, h(()o) (yn)) and
define the following n x n matrices: n*K) = [K(yi,y;)lij» n?AKx = [Ay,Kx(vi,y; +
1));; and n?AsK ) = (A, Kx (i, y5)]ij where AyKx(y, ') = Ka(y + 1,9") — Ka(y,v') and

Ay,y’lc)\(ya y/) = Ay’Ay’Cz\(y7 y/) = AyAy’IC)\(ya y/)'

Definition 3 (NEB estimator of 6;). Consider the DLE Model (2) with loss £(9)(6;,6;). For
a fived X € A, let ' (\) = (y; +1)/(yi + V(N and A (\) = {1350)(», .. ,ﬁg%)} be
the solution to the following quadratic optimization problem:

hmgl RTKy\h + 2" AK y +yT A2 Ky, (15)
cH,

where Hy, = {h = (h1,...,hy) : Ah 2 b, Ch = d} is a convez set and A,C,b,d are known
real matrices and vectors that enforce linear constraints on the components of h. Then the

NEB estimator for a fived X is given by d?g)b()\) = {5?5)13’1.()\) 1< < n}, where

5[50 (A) = e S R
S a0
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Remark 5. In problem (15) the linear inequality constraints Ah < b can be used to

impose structural constraints on the NEB decision rule 5?§)b()\). The structural constraints

(0

Ya) = Y@ = -+ < Y(n)- In particular, when Y | 6; ~ Poi(6;) then 57¢2,(A) = y; + iLZ(-O)()\)

may take the form of monotonicity constraints so that 5”e)b(1)()\) > > 5?§)b(n)()\) for
‘ (0),i
and the monotonicity constraints in this setting will imply

7 (0 7 (0 .
—R ) + AL () <y — gy, for 1 <0< (n—1)

These n — 1 linear inequality constraints may be imposed with an (n — 1) x n matrix A and
an n — 1 column vector b such that for 1 <i < (n—1)and 1 <r <mn,

—1, when y, =y
A(i,r) = (1, when y, = y(q1)
0, otherwise

and bj = Yu) — Y@r1)-

The equality constraints Ch = d may accommodate instances of ties for which we require
h(o)()\) = hg-o)()\) whenever y; = y;.

(2

Theorem 4. Let IC)(+,-) be the positive definite Gaussian kernel with bandwidth parameter
e A Iflimy, oo con™?loghn = 0 then, under assumptions (A1) — (A3), we have for any
AEA,

) 1
lim P [—

n—00 n

where Y () = [(¥; +1) /(A" (V) + i)}

2
wO(\) — wf(DO)H2 > c;le} =0, for any e >0

We now provide some motivation behind the minimization problem in definition 3 for
estimating the ratio functionals w}f’). Let MA’n(h) =hT"K\h+2hTAK\y +yT Ay K,y be
the objective function in equation (15). Suppose p be a probability mass function on the
support of Y and define

S\FP) = By [(RO (V) = B (V)N + 1LY + )(RO) - n (v))] - (16)

where héo), h(® are as defined in equation (14) and Y,Y” are i.i.d copies from the marginal
distribution that has mass function p. Sx[p](p) in equation (16) is the Kernelized Stein’s
Discrepancy (KSD) measure that can be used to distinguish between two distributions with
mass functions p, p such that S\[p](p) > 0 and Sy\[p](p) = 0 if and only if p = p (Liu et al.,
2016; Chwialkowski et al., 2016; Yang et al., 2018). Moreover for i.i.d. copies (Y,Y”) from
p, it can be shown that

1 - -
S(m) — OB ANIVR AR
S = B 2 mEO0D AW, Y))
1<i#j<n
where Y = (Y1,...,Y,) is a random sample from the marginal distribution with mass

function p and under the squared error loss k[h(9 (), RO (v)](u, v) is the positive definite
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kernel function

RO (w)h O (0) K (1, v) + O (w)v A K (u+ 1, v) + O (0)uA Ky (u, v+ 1) + wv Ay o Kx (1, v).
(17)
An empirical evaluation scheme for Sy[p](p) is given by S\[p](pn) where

SFn) = 5 D B0 ), B )] s 1) (18)
i,j=1

where p,, is the empirical CDF. Note that xx[A(© (u), h(9) (v)](u,v) in equation (17) involves
p only through 2(®) and may analogously be denoted by k[h(u), h(v)](u,v) where we have
dropped the superscript from h that indicates that the loss in question is the regular squared
error loss. This slight abuse of notation is harmless as the discussion in this section is geared
towards the squared error loss only.

Under the compound estimation framework of model (2), our goal is to estimate h(()o).
To do that we minimize S\[p](pn) in equation (18) with respect to the unknowns h =
(h(y1), ..., h(yn)). Note that Sy[p](pn) is exactly the objective function My, (k) of the
quadratic program (15) with optimisation variables h; = h(y;) for i =1,...,n.

A.2 Bandwidth choice and asymptotic properties

We propose the following asymptotic risk estimate AREY (A) of the true loss of 6?5;’(/\) in

the DLE model (2).

Definition 4 (ARE of (5?5)13()\) in the DLE model). Suppose Y; | 6; % pLE (0;). Under the

loss £O)(6;,-) an asymptotic risk estimate of the true loss of é?g)b()\) is

1 n . n
AREY (A, y) = ~{ Y[ (012 =2 wi(n) }
i=1 i=1
where
Tl)z()\) = 5?(()3)*),ji()‘)(ay¢*1/ayi)a Yi = ]-a 2...
with j; € {1,...,n} such that y;, = y; — 1.

An estimate of the tuning parameter \ based on ARE%O)()\, y) is given by:

A = argmin AREQ) (A, y) (19)
A€A
where a choice of A = [10,10%] worked well in the simulations and real data analyses of

sections 4 and 5. Lemma 2 continues to provide the large-sample properties of the proposed
ARE%O) criteria for the Poisson and Binomial distributions provided ¢, is a sequence that
satisfies lim,,_ o0 cnn_1/4 log4 n = 0.

To analyze the quality of the estimates \ obtained from equation (19), we consider an
oracle loss estimator & ‘= é?g)b (A8™¢) where

A§© = argmin £1(0, 557 (M)
AEA
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and Lemma 3 establishes the asymptotic optimality of )\ obtained from equation (19). In
theorem 5 below we provide decision theoretic guarantees on the NEB estimator and show
that the average squared error between 5?§)b( ) and 5?0) is asymptotically small.
Theorem 5. Under the conditions of Theorem 4, if limy_yo0 cnn~/210g®n = 0 then, for
the Poisson and the Binomial model,

neb 3y T 2
5(0) (A) — 5(0)H2 = op(1).

Furthermore, under the same conditions, we have,

tim [ £0)(6.,8722(3) — £0(0.87,)] = 0

n—o0

B. Technical Details and Proofs

We will begin this section with some notations and then state three lemmata that will be
used in proving the statements discussed in Section 3.

Let ¢g, c1, ... denote some generic positive constants which may vary in different state-
ments. Let D,, = {0,1,2,...,[Clogn]} where [z] denotes the smallest integer greater or
equal to z. Given a random sample (Y7,...,Y,,) from model (2) denote B,, to be the event

{max;<i<, ¥; < Clogn} where C is the constant given by lemma 4 below under assumption

(A2).

Lemma 4. Assumption (A2) implies that with probability tending to 1 as n — oo,
max(Y1,...,Y,) < Clogn

where C' > 0 is a constant depending on €.

Our next lemma below is a statement on the pointwise Lipschitz stability of the optimal
solution ﬁglk)()\) under perturbations on the parameter A € A. See, for example, Bon-
nans and Shapiro (2013) for general results on the stability and sensitivity of parametrized
optimization problems.

Lemma 5. Let iz(k)()\o) be the solution to problems (8) and (15), respectively, for k € {0,1}
and for some \g € A. Then, under Assumption (A3), there erists a constant L > 0 such

that for any A € A the solution h7(1 )()\) to problems (8) and (15) satisfies

AP = AP ()| < LIA =

Lemma 6. Suppose Y | 0 % pLE (0). Then the following hold:

EYI@{[‘SETI)(Y + 1)]2 <GZ;1> - [66)5/)]2} =0 and
Evio {07y (v - 1)) - 06,1} =

The proofs of Lemmata 4, 5 and 6 are available in appendix B.8.
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B.1 Proof of Lemma 1

First note that for any coordinate i, the integrated Bayes risk of an estimator () ; of 6;

is 32, [ p(yil6:)e k)(ﬁz, d(k),:)dG(0;) which is minimized with respect to d(y); if for each y;,
O(k),i (yl) is defined as

57 4(yi) = arg min / (3al02) 0 (61, 5,00, )AG(0:)

O(k),i
However, [ p(yi|0;)¢ k)(ﬁz, (k),:)dG(0;) is a minimum with respect to d); when

[ p(y;|6:)0;*dG(6;)
[ p(yil6;)0; %dG(6;)

The result then follows by noting that p(y; — k) f Ay, —k Hyl /g(6;)dG(6;), and p(y; +1 —
= J ay1k07 T 9(0)AG0) for yi =k ki +1,.

Erk),i(yi) =

B.2 Proof of Theorem 1
Define M (h) = > ijeDy ra[h(@), h()](i, /) P(Y = i) P(Y = j) and re-write M;Hn(fz) as
. = 1 o TN VI
Mn(h) = — > walhl@), h(7)](, §)Cij,
ij=1
where C;; is the number of pairs (Y;,Y) in the sample that has ¥, =4,Y; = j and P(Y =
= [ p(i|0)dG(). Now, we have

sup [y, (R) — M ()| <
AEA

W () = Mz ()| + sup [Mn(R) = MA(R)|  (20)

AEA AEA

Consider the first term on the right hand side of the inequality in equation (20). Let
P; == P(Y = i) and note that assumption (A2) and lemma 4 imply

Ep sup [V (R) ~ My (B)] < PaL [sup (0. )15 — P | {1+ 0(0))
< % (B [ el 10160 B[54 - 2} {1 o) 21

1,7€Dn

In equation (21) above, E,|n~2C;; — P;Pj|> is O(1/n). Moreover, assumption (Al) to-
gether with the compactness of A and the continuity of ry[h(i), h(])](z Jj) with respect to
A imply that E,[supycy [#a[R(i), h(7)](4,§)[]?> < oo. Thus E,supyep [My,(h) — My(h)] is

O(log?n/\/n).
Now consider the second term on the right hand side of the inequality in equation (20)
and note that it is bounded above by the following tail sums

2 Y suplmalh(e), h(DIG )PP + Y sup |ralh(d), h(7))(G §) PP

i€Dn,j¢ Dy *N i,j¢Dn NN
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But from assumption (A1), E,supycp |salh(U), h(V)](U, V)| < oo and together with as-
sumption (A2) and proof of lemma 4, it follows that the terms in the display above are
O(n™") for some v > 1/2.

Now fix an ¢ > 0 and let ¢, = /n/log?n. Since E,supycy |I\7JI,\n(l~z) M)\( )| is
O(log n/+/n) there exists a finite constant M > 0 and an Ny such that ¢, E, supyep \MA n(h)—
M\ (h)| < M for all n > Ni. Moreover since supyecp [Ma(h) — M (h)| — 0 as n — oo, there
exists an Ny such that supy¢y \MA( )—M A(h)| < M/c, for allm > Ny. Thus with ¢t = 4M/e
we have P(c,, supyey [My . (h) — My (h)| > t) < ¢ for all n > max(Ny, Ny) which suffices to
prove the desired result.

B.3 Proofs of Theorems 2 and 4
We will first prove Theorem 2. Note that from equation (7),

A () — thHj.

2
"
Now from assumption (A3) and for any € > 0, there exists a 0 > 0 such that for any A € A,

P[i”

n

RO~ hY|| > o < Plen{br (D)~ My(hi)} > 5],

But the right hand side is upper bounded by the sum of P[CH{M,\(ES)) — MM(ES))} >

5/3], P[CH{MM(ES)) - M&n(hg”)} > 5/3} and P[cn{MM(hél)) - Mx(hél))} > 5/3]
From theorem 1, the first and third terms go to zero as n — oo while the second term is

zero since I\\A/JIAm(fALq(Il)) < M&n(h(()l)) as h(()l) € H,,. This proves the statement of theorem 2.
To prove theorem 4 first note that from equation (14),

W) ], = z";{ ¥ + ﬁiO;(iA; [11@ + 1) RUASEUHE

From assumption (A2) and Lemma 4, there exists a constant ¢y > 0 such that for large
n, maxj<i<n(Y; + 1) < ¢ologn with high probability. Moreover for i = 1,--- ,n, since

’zf)(o)()\) > 0 for every A € A and w(o-) > 0, equation (14) implies ﬁgoz()\) +Y;, > 0 and

mn,t
h(o) +Y; > 0. Thus, conditional on the event {max;<;j<,(Y; + 1) < ¢ologn} we have for
some constant c1 >0,

O () - w}f’Hz < cilog”n| A (V) - héO)HQ

2

and for any € > 0,

IP’[ o
nlog“n

BO M) - w® H2

12 <ol )

2

- <vla

26}-

The proof of the statement of theorem 4 then follows from the proof of theorem 2 above
and lemma 4.
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B.4 Proofs of Theorems 3 and 5

We will prove Theorem 3 while the proof of Theorem 5 will follow using similar arguments
and Theorem 4.
Note that,

Now, 1217(112()\) > 0 for every A € A and w,; > 0. This fact along with assumption (A2)
and lemma 4 imply that there exists a constant co > 0 such that H&E‘f)b()\) - 6?1)||2 <

Sty (V) — oy

=2 Ll ot - ol

p

(1 )

co log? n||'w(1)()\) 1(01)”% The first result thus follows from the above inequality and
Theorem 2.

To prove the second part of the theorem, note that |£,(11) (o, 6?1)) M (6, 5?f)b(5\))] equals

0.8 2800 o] 0,05 e o)

and Triangle inequality implies

oy - oo < inim i i
=1
< f SN — (1)‘ OP(%) (22)

from the first part of theorem 3. Thus, it follows from equation (22) that

(1) p sneb/3 W/ sr log® n
\/cn (8,575 (3) < \/En (8.97)) + Op(—577")

and

£000.57)) — £00.57 )| < 4y /200,57 /600,57, £ 0. 7800 29

Now from assumption (A2) and the proof of Lemma 4, L’g)(O,(SETI)) < ¢1log? n for some
constant ¢; > 0. Therefore, together with equations (22) and (23) we have

log®n

(1) T neb g

L,7(6,07)) — oy ( ‘— p<7n1/4 )

Define Zy() = £4(8,67,)) - ,c;”(e,a(nf)b(ﬂ)). We have already shown that Z, (1) — 0

in probabﬂity as n — 0o. Moreover, under the Poisson model with 5?16‘)[’ ( ) <Y;/dy and

o

. <Yi i/ wp ( 3) where w( )( Y;) > 0, we have for some positive constants cg, ¢

1Z, (V)] < iznj{coy - clY2} Up,. (24)

i=1
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Now, under the Poisson model and from assumption (A2), sup,, E( %+7) < oo for some

v > 0. Thus {U,} is uniformly integrable. Therefore, from equation (24), {Z, (M)} is
uniformly integrable and along with the fact that Z,(A) — 0 in probability as n — oo, we
have E|Z,(\)| = 0 as n — oo. This proves the desired result under the Poisson model. For

the Binomial model, with m < oo, the result continues to hold since 5?f)bi()\) < m/dy and

01y, < m/wz(,l)(Yi) where wl(,l)(Yi) > 0. Thus, | Z,(A\)| < 0o and so0 {Z, ()} is still uniformly
integrable.

B.5 Proof of Lemma 2 - Binomial model

We will first prove the two statements of lemma 2 under the scaled squared error loss and
conditional on the event B,, which is the event that {maxj<i<, ¥; < C'logn}. Under as-
sumption (A2), lemma 4 guarantees that B, holds with high probability. Throughout the
proof, we shall denote d; := infcp inflgign(l—ingl’z()\)) > 0, dg := inf)ep inf1<i<p w(o).()\) >

n,0

0 and assume m < oco. Moreover, we will use the fact that under the Binomial model,
|iL7(IkZ) (A)| < oo uniformly in A € A. This is a consequence of d; > 0, d2 > 0 and m < oo.
The proof for the squared error loss will follow from similar arguments and we will highlight
only the important steps.

Proof of statement 1 (Binomial model) for the scaled squared error loss (k= 1)

First note that under the Binomial model, y; < m and ay,11/ay, = (m —y;)/(yi +1) < m.
Now,

[6nebi(>\)]2
)- Ty

0;

1w Qy,
(1) _ M neb — - neb 2 ( Qy;+1
ilélg(AREn A Y) = p,,7(6, 6717 (V) ilélin‘ El{w(l),ﬁ(k)] ( -

< sup| i{[é{fﬁjiu)}? — 0757} + sup | i{[ézfu,f — g |
i=1 i=1

AEA T AEA T
T i{[(sa)’ji]z (azyﬂ) _ [5?1917@‘]2 =T+ m+ T (25)

Here we have used the fact that a,,41/a,, < m and since §; > 0, 1/6; < ¢o for some positive
constant cyg. Consider the term 73 in equation (25) above and define

Ve = 07, () - |

Note that from lemma 6, EV; = 0. Moreover, V; are independent and E|V;|? < oo since
|Vi| < eym? for some constant ¢; > 0. The bound on |V;| follows from the fact that for any

i 8y = (5?1)’i(yi) < m/w,(yl)(yi) where wz(gl)(yi) > 0. So, Ty is Op(n~1/2).
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We now consider the second term T in equation (25) and define Z,,(\) = n~! 2?21{5?1) i

5"eb ;(A)}. Note that under the Binomial model 5?6)" (A) <m/d; and so for any A\ € A

CO‘Z{ foal? = B OP Y| < ol a0 < 2] N -

S -

\F

(26)
for some constant c; > 0. The last term in the inequality above is Op(log2 n/n'/*) from the
first part of theorem 3. Next for a perturbation X of A such that (A, ) € A == [\, A\y], we
will bound the increments |Z,,(\) — Z,(XN')|. To that effect, note that

<|

Now from lemma 5 we know that

0| Zn(A\) = Zu(N) Zlad o) RO W)

5?1e)b()\) - 5?1e)b(/\/)

d2 1

IR () = RPNl < o2 A = X sup V3
heNs (AL (V)

(D()\) /\M)\/’n(h) + 0(]‘)”2

However, under the Binomial model with m < oo, |ﬁgz()\)] < oo uniformly in A € A. Thus,
the supremum in the display above is finite. So,

20N = ZaV)| <
Thus Z,(\) is Lipschitz continuous in A € A and, along with the compactness of A, it im-
plies that there exists a (A1, A2) € A such that supycp Zn(A) = Z,, (A1) and infyep Z,(N) =
Zn(A2). Therefore, taking the supremum with respect A in equation (26) and using the
first part of theorem 3 suffice to prove that Ty is Op(log2 n/n'/*). Finally, the first term
Ty in equation (26) is O,(log®n/n'/*) which follows using similar arguments for the term
T. Therefore, we have the desired result that supycy |ARE$11)(/\,Y) - p,(})(a,aneb(Am is

(1)
O, (log®n/n'/4).

A= N|.

Proof of statement 2 (Binomial model) for the scaled squared error loss (k = 1)

From Triangle inequality, supyep |ARE(1)(/\ Y)- Epv(@ CA J”eb( )| < T1+T5+T5+T4 where
1)

T = SupkeA\ARE“)(A Y) = pi (8,87 (N)|, Ty = supAeA|pn (0, 87(N) — £ (8,871,

|pn (0, 5?)) Epv(@)(e 6?))‘ and Ty := supyep |Epn (0,56)) EP( )( aégf)b()‘))‘-
From statement 1 of lemma 2, Ty is O,(log®n/n'/*). Moreover, under the Binomial

model \,On (9,56))| < com? and so T is Op(n~1/?).

We will now consider the term T,. Define Z,(\) = p%)(e 6E‘e)b( )) — ,07(@1)(0,52’1)) and
note that for the Binomial model the proof of the second part of theorem 3 implies that
|Zn (V)| is Op(log® n/n'/*) for any X € A. Moreover, for (A, \') € A

Zn()‘) - Zn()‘/)

< A () = RPN

€0 || ¢neb neb/y/
<N _
< [0 (A = 6y (V)|

01‘

1.
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Now using Lemma 5 and the fact that under the Binomial model with m < oo, ]ﬂgz (N)] < o0
uniformly in A € A, we conclude ’
Zn(\) — Zo(V)| < %\)\ — V.

Thus Z,,(\) is Lipschitz continuous in A € A and, along with the compactness of A, it implies
that there exists a (A1, A2) € A such that supycp Z,(A) = Zp(A1) and infyep Zp(N) =

Zn(X2). Therefore, Ty is O,(log®n/n'/4).

Our desired result will follow if we can now show that 7y — 0 as n — oo. To do
that we consider the proof of the second part of theorem 3 which shows that for any
A €A, Z,(\) — 0 in probability as n — co. Moreover, under the Binomial model with
(5E‘f)b (A) < m/dy and 81y < m/w,(,l)(yi) where w,(,l)(yi) > 0, we have |Z,(\)| < oco. Thus
{Z,(\)} is uniformly integrable and along with the fact that Z,(\) — 0 in probability
as n — oo, we have E|Z,(\)] — 0 as n — oo. Therefore, for any A € A we have
shown that |Epg)(0,6zr1)) Epgl)(e d?e)b( ))] = 0 as n — oco. To prove the result uni-
formly in A we note that Z,(\) is Lipschitz continuous in A € A and A is compact. So
Ty < Esupycp |Zn(N)| = E|Z,(X*)] where A\* € A is such that supyep [Zn(N)]| = [Zn(N)*].
Thus Ty — 0 as n — oo which completes our proof.

Proof of statement 1 (Binomial model) for the squared error loss (k = 0)

Under the Binomial model, y; < m and ay,—1/ay, = yi/(m —y; +1) < m. Now,

sup ARED (A, Y) — pi(8, 8757 (V)| = = sup 5’ Z{5neb i = 85y, (V) (azy_l ) H

L S0 2 0 (52}

n \eA
2m "

+ —sup‘ {5“ O H_T1+T2+T3 27
S 2 (0.3~ 9(0)5 (27)

Consider the term T3 in equation (27) above and define

Vi = 0(g)i0i — %m(ayi_l)'

Qy;

Note that from lemma 6 and conditional on 6;, Ey;}y,V; = 0. Moreover, V; are independent

and |V;| < ¢of; for some constant co > 0. The bound on |V;| follows from the fact that
for any 1, 5?0) = 5(0) (y;) < m/wp (y;) where wz(, )(yz) > 0. Thus, applying Hoeffding’s
inequality to n™1| Y7, Vi| we get that T2 is O,(||@]|2/n). Now, from assumption (A2) the
distribution of @ has finite second moments which implies T2 is O,(n~1/?).

We now consider the second term 77 in equation (27) and define Z,(A\) = n=1 Y"1 | Gi{é?g)bi()\)—

5%) ;1. For any A € A, we have

\Z"{ TN = Ty f < o

Z.)| < % lo]], |5t

neb )\) o 6?’0)

)2 (28)
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for some constant ¢3 > 0. From assumption (A2) and the proof of theorem 5, the last
term in the inequality above is Op(log3 n/n'/*). Next for a perturbation X’ of A such that
(A XN) € A= [\, Ay, we will bound the increments |Z,(\) — Z,,(\')|. To that effect, note
that

=

1 Zn(A) = Zn( D) — AP

< oll, &7

neb )\) . 5&))

.
Now from lemma 5 we know that

IRO) = ROW)ll2 < =X sup T2, Flya(h) + o1

heNs (R (V) T
and the supremum in the display above is finite since ]iz,(loz(/\)] < oo uniformly in A € A.
So, from assumption (A2) and Lemma 4

logn

N

for n sufficiently large. Thus Z,, () is Lipschitz continuous in A € A and, along with the com-
pactness of A, it implies that there exists a (A1, A\2) € A such that supycp Z,(A\) = Zp (A1)
and infyep Z,,(A) = Z,(A2). Therefore, taking the supremum with respect A in equation (28)
and using the first part of theorem 5 suffice to prove that T1 is O,(log®n/n'/4). Finally,
the third term T3 in equation (28) is Op(log3 n/n*/*) which follows using similar argu-
ments for the term T7. Therefore, we have the desired result that supyc, |ARE£LO)()\, Y) -

(O, SisP (V)] is Op(log® n/nl/4).

Zn(N) = Zn(X)| < 5 A =N,

Proof of statement 2 (Binomial model) for the squared error loss (k = 0)

From Triangle inequality, supycp |ARE(O)()\ Y)- Ep% )(0 é?eb( ))| < Th+T5+T3+T, where

Ty = supAeA\ARE”)(A Y) — (8,872 (N)|, Tz i= supyep |08 (8, 872 (V) — i (8, 07,

(0) (0) 7 7(0)
= |1 (8.8%,)) ~ Epi (6. 67,))| and Ty = supc, [Epil’ (6. 8 —Epi (6 ,6neb<A>>\.

0

Under squared error loss, statement 1 of lemma 2 implies 77 is Op(log n/ 1(11)/ 4). More-
over, under the Binomial model, ]pg))(e,&%))\ < con71||@]];. Thus, applying Hoeffding’s
inequality to T3 and using assumption (A2) we get that Tj is Op(n~'/?).

We will now consider the term T,. Define Z,(\) = p%o)(a,d?g)b(A)) ( )(0 o7) and

77(0)
note that for the Binomial model, the proof of the second part of theorem 5 implies that

|Z, (V)] is Op(log® n/n'/4) for any A € A. Moreover, for (A, \) € A

Zn(N) = Zn(N) A (A) — R (N)

el |

5P () — TP (V)

< et

.
Now under the Binomial model and along with Lemmata 4 and 5, we conclude

logn
A=)
o

<c

Zn(A) — Zn(N)
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for n sufficiently large. Thus Z,(\) is Lipschitz continuous in A € A and, along with the
compactness of A, it implies that there exists a (A1, A2) € A such that supyep Zp(A\) =
Zn(M1) and infyep Zn(A) = Z,(A2). Therefore, Ty is Op(log® n/n'/4).

Our desired result will follow if we can now show that Ty — 0 as n — co. We already
know from the proof of the second part of theorem 5 that for any A € A, Z,(\) — 0 in
probability as n — oo. Moreover, under the Binomial model with 5?5)[’72.()\) < c3m and

5Ero),i < m/w,() (yi) where w,(, )(yz) > 0, we have

Cq
SEZW -

=1

Now, from assumption (A2), sup, E(Uy") < oo for some v > 0. Thus {U,} is uniformly
integrable. Therefore, {Z,(\)} is uniformly integrable and along with the fact that Z, (\) —

0 in probability as n — oo, we have E|Z,(\)| — 0 as n — oo. Therefore, for any A € A
we have shown that |IE,0£10)(9, 62’0)) Ep% )(9 JE‘eb( ))| = 0 as n — oo. To prove the result

uniformly in A we note that Z, () is Lipschitz continuous in A € A and A is compact. So
Ty < Esupyep |Zn(N)| = E|Z,(X*)| where A* € A is such that supyep [Zn(N)| = [Zn(N)*].
Thus Ty — 0 as n — oo which completes our proof.

B.6 Proof of Lemma 2 - Poisson model

Here we will prove the two statements of lemma 2 under the Poisson model. As in the Bino-
mial case, the statements will be proved first under the scaled squared error loss and condi-
tional on the event B,, which is the event that {max;<;<, ¥; < C'logn}. Under assumption
(A2), lemma 4 guarantees that B,, holds with high probability. Throughout the proof, we
will denote d1 = inf/\eA inflgign(l — iLS’E ()\)) > 0 and d2 = inf)\eA inflgign 11)7(32 ()\) > 0.
Moreover, in the proof we will use \ﬁggl) (M| < cglogn uniformly in A € A which is a conse-
quence of lemma 4. The proof for the ’squared error loss will follow from similar arguments
and we will highlight only the important steps.

Proof of statement 1 (Poisson model) for the scaled squared error loss (k= 1)

First note that under the Poisson model ay,+1/ay, = 1/(Y; +1) < 1. Now,

igR‘ARE(I) A Y) = o, 6?e)b _ ign‘ Z{ nebm (a:.;1) B [5?f>tf;fA)]2}‘
< sup o {0, 00— 9} s | 1 0|
- <az;?>—“@” fon e .
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Here we have used the fact that a,,11/ay, <1 and since §; > 0, 1/6; < ¢; for some positive
constant c;. Consider the term 73 in equation (29) above and define

Vi = [6T 2 ( Qy;+1 [5?1):i]2
=17 0, ) -5

Note that from lemma 6, EV; = 0. Moreover, V; are independent and |V;| < co log? n for
some constant co > 0. The bound on |V;| follows from the fact that for any 7 and conditional
on By, 0y ;= 5?1)72.(%) < ¢ log n/wz(,l)(yi) where w,(gl)(yi) > 0. Thus, applying Hoeffding’s
inequality to n= .1, V;| we get that T3 is O,(log® n//n).

We now consider the second term T in equation (29) and define Z,,(\) = n~! 2?11{56) i~

(5”eb ;(A)}. Note that under the Poisson model 5?e)b (A) <Y;/d; and so for any A € A

C1

n

c3 logn‘

Z(V)| <

3y (V) — 07y

@

n

Z{[éa),i]Z - [ﬁfﬂ(”?}‘ < cglogn
i=1

for some constant cg > 0. In equation (30), we have used the fact that under assumption
(A2) and lemma 4, Y; < ¢plogn with high probability. Moreover, the last term in the
inequality in (30) is Op(log®n/n'/*) since ||5?f)b()\) - 57‘)||1 < n1/2||6”eb( ) — 5?1)”2 and

_1/2H6"eb()\) — E?I)HQ is Op(log®n/n'/*) from the first part of theorem 3. Next for a

perturbatlon A of X such that (A, \) € A, we will bound the increments |Z,(\) — Z,(\)].
To that effect, note that conditional on B,

<|

Now from lemma 5 we know that

< logn ||,

n|Zn(A) — Zn()\/) < =
1 d3

LY (A) — 675 (N)

RO ) = RPN <02 N =X sup VR \Mya(h) +o(1)]2.
heN; (RS (V)

However, under the Poisson model, assumption (A2) and lemma 4, |ﬁ7(112()\)| < cqlogn
uniformly in A € A. Thus for n sufficiently large, the supremum in the display above is
much smaller than logn. So,

log?n
f

Thus Z,(\) is Lipschitz continuous in A € A and, along with the compactness of A, it im-
plies that there exists a (A1, A2) € A such that supycy Zn(A) = Z,, (A1) and infyep Z,(N) =
Zn(A2). Therefore, taking the supremum with respect A in equation (30) and using the
first part of theorem 3 suffice to prove that Ts is Op(log3 n/n/*). Finally, the first term
Ty in equation (30) is O,(log®n/n'/*) which follows using similar arguments for the term

T. Therefore, we have the desired result that supycy |ARE7(11)(/\,Y) - p,&)(a dge)b(/\))\ is
O, (log3 n/nl/4).

Zn(\) = Zn(N)| < 5 IA— V.
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Proof of statement 2 (Poisson model) for the scaled squared error loss (k= 1)

From Triangle inequality, supycp |ARE(1)()\ Y)- Epg )(0 EE‘e)b( )| < T1+T2+T5+T4 where

T«:smneuAREmLXYd P (8,872 ()], T 1= supyen ok (0, 8752 (V) — i (8, 07,

IWW%)MW$MMﬂ~MmMWMWWW&WWN

From statement 1 of lemma 2, T} is O,(log® n/nl/ 4) for the Poisson model. Moreover,
under the Poisson model and conditional on By, | ,on (0, 66))| < ¢plog?n. Thus, applying
Hoeffding’s inequality to T3 we get that T3 is Op(log n/n~1/?).

We will now consider the term T5. Define Z,(\) = pg)(a 8MEP(N)) — pg)(a,é”)) and

(1) (1
note that from the proof of the second part of theorem 3 |Z,(\)| is O,(log® n/n'/4) for any

A € A. Moreover, for (A, \') € A and conditional on B,

<

<

c1 1og2n‘ .
1 n

R (V) — RPN

n

1
Zn(N) = Zn(N)| < 82|

P (N) — 80P (V)

g
Thus, from Lemma 5, the Poisson model and assumption (A2) we have

log® n

Za(N) = Zu(V)| < e A = N,

Therefore, Z,(A) is Lipschitz continuous in A € A and, along with the compactness of A, it
implies that there exists a (A1, A2) € A such that supyep Z,(A) = Zp (A1) and infyep Z,(N) =
Zn(X2). Thus, Ty is Op(log® n/nl/4).

Our desired result will follow if we can now show that Ty — 0 as n — oo. To do
that we consider the proof of the second part of theorem 3 which shows that for any
A € A, Z,(\) — 0 in probability as n — oco. Moreover, under the Poisson model with
5?{")[”7;()\) <Y;/d; and 01y < Yz-/wl()l)(Y;) where wél)(Y;) > 0, we have for some positive
constants cg, c1

1 n
Za(V)] < = Z;{C()Y; + clyf} = U, (31)

1=
Now, the Poisson model and assumption (A2) imply that sup, E(Un ™) < oo for some v > 0.
Thus {U, } is uniformly integrable. Therefore, from equation (31), {Z,(\)} is uniformly inte-
grable and along with the fact that Z,(\) — 0 in probablhty as n — oo, we have E|Z,(\)| —

0 as n — oo. So, for any A € A we have shown that |Epn )(0,5(”1)) Ep%)(e 6E‘f)b( )| —0

as n — oo. To prove the result uniformly in A we note that Z,()) is Lipschitz continuous
in A € A and A is compact. Therefore, Ty < Esupycp |Z,(N\)| = E|Z,(A\*)| where A* € A is
such that supyep |Zn(A)| = |Zn(A)*]. Thus Ty — 0 as n — oo which completes our proof.

Proof of statement 1 (Poisson model) for the squared error loss (k =0)

First note that under the Poisson model ay,_1/ay, = Y;. Now,

sup AREL (A, Y) — p{(6, 8752 (V)| = = sup n’ Z{(S"eb — 80575, (A) (ayi__l ) H
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< o] {5} 2 (o ()

n xeA
c1logn ‘ { - neb
sup § 5 H =Ty + Ty + Ts. 32
n AEA ( )

Here we have used the fact that we have used the fact that conditional on event B,,
ay,—1/ay, <Y; < cplogn for some positive constant ¢yp. Consider the term 75 in equation
(32) above and define

Vi = 0(0),:0i _%,j@-(ayi_l)'

Qy;
Note that from lemma 6 and conditional on 6;, Ey;}y,V; = 0. Moreover, V; are independent
and |V;| < ¢20; log? n for some constant ¢o > 0. The bound on |V;| follows from the fact that
for any i and conditional on By, &(, ; = (5?0)’7;(%) < c3log n/w,go) (yi) where wl(,o) (yi) > 0.
Thus, applying Hoeffding’s inequality to n =1 S°1", Vi| we get that T2 is O,(]|6]2log? n/n).
Now, from assumption (A2) the distribution of 6 has finite second moments which implies

T2 is Op(log®n//n).

We now consider the T in equation (32) and define

ZH {5neb }

Note that for any A € A,

%’ z”: 91’{5?5)%(/\) - 5?6),1-}‘ <
=1

for some constant ¢y > 0. From assumption (A2) and the proof of theorem 5, the last
term in the inequality in (33) is Op(log3 n/n/*). Next for a perturbation X' of A such
that (A, \) € A, we will bound the increments |Z,(\) — Z,(\')|. To that effect, note that
conditional on event B,

neb()\) _ 6?&])

Zn(N) ] 21l ]

‘2 (33)

1| Za(0) = Za(X) < 6], ||o

6neb )\) _ 5?5_)b()\/)

) < cllognHHH2 Hfzﬁ?)(k) - ilglo)()\/) 9

Now from lemma 5 we know that

RO = RO 2 <cHA=N|  sup V3, My a(h) + o(1)]]2,
heNs (R (\)

and for n sufficiently large, the supremum in the display above is much smaller than logn.
So, with assumption (A2)

1 2
Zn(\) = Zn(N)| < e Oiﬁnu ~ .

Thus Z,(\) is Lipschitz continuous in A € A and, along with the compactness of A, it im-
plies that there exists a (A1, A2) € A such that supycy Zn(A) = Z,, (A1) and infyep Z,(N) =
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Zn(A2). Therefore, taking the supremum with respect A in equation (33) and using the
first part of theorem 5 suffice to prove that 77 is Op(log3 n/n*/*). Finally, the third term
T3 in equation (33) is O, (log®n/n'/*) which follows using similar arguments for the term

Ti. Therefore, we have the desired result that supycy \ARE;O)(/\,Y) - p%)(e d?e)b(/\))\ is
O, (log3 n/nl/4).

Proof of statement 2 (Poisson model) for the squared error loss (k =0)

From Triangle inequality, supycy |ARE(0)(>\ Y)- IEp% (0, J”eb( )| < Th+T>+T3+Ty where
za-::muueA\ARE”RA Y) - pi(0, 6mb<>>rza-—supxaan>ax6“*<A» P (0,07,

(0) (0) 7 7(0)
= 19 (8,87)) — Ep)(8,87,))| and Ty = supye, [Epl’ (6, 87,)) — Epl’ (8, 872 (N))].

0 0

Under squared error loss, statement 1 of lemma 2 implies T(l)is O,(log*n/ ’r(Ll)/ ). More-
over, under the Poisson model and assumption (A2), |p7(10)(0,6%))\ < con~'log?n||0)|;.
Thus, applying Hoeffding’s inequality to 73 and using assumption (A2) we get that T3 is
Oplog? /).

We will now consider the term T5. Define Z,(\) = p%)(a 6?e)b(/\)) (0)(0,5(”0)) and
note that from the second part of theorem 5 |Z,(\)| is Op(log? n/n'/*) for any A € A.

Moreover, for (A, ') € A

< —

2,0 ~ Z,(X)| <

T - )

{16112+ o[ Y12}

Now conditional on the event B,, [|[Y |2 < c1y/nlogn and assumption (A2) implies that
with high probability ||@||2/v/n < cav/logn. Thus, for n sufficiently large

n

Z.(\) — Z,, N\ < cglogn Sneb(\) _ gneb(y/ < C4 loan 7(0) A _iL(O) N :
NG (0) (0) 9 vn n n 9
and together with Lemma 5, we have
1 3
Zn(N) — Zp(V)] < %L\g/ﬁnm =Y

Thus Z,,(\) is Lipschitz continuous in A € A and, along with the compactness of A, it implies
that there exists a (A, A2) € A such that supycp Zn(A) = Z,(A1) and infyep Z,(N) =
Zn(X2). Therefore, Ty is O, (log* n/n'/4).

Our desired result will follow if we can now show that Ty — 0 as n — oco. We already
know from the proof of the second part of theorem 5 that for any A € A, Z,(\) — 0 in
probability as n — co. Moreover, under the Poisson model with 5?5)%()\) < (Y;+1)/dy and

80y, < (Y; + 1)/w1(, (yi) where wl(, )(yl) > 0, we have

1Za(M)| < % Zn:{coem + clYf} = U,.

i=1

Now, the Poisson model and assumption (A2) imply that sup, E(Up'7) < oo for some
v > 0. Thus {U,} is uniformly integrable. Therefore, {Z,,(\)} is uniformly integrable and
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along with the fact that Z,(\) — 0 in probability as n — oo, we have E|Z,(\)| — 0 as
n — 0o. Therefore, for any A € A we have shown that |Ep7(10)(0, (5(75)) —Ep%o)(e, 5?§)b(/\))\ —0
as n — oo. To prove the result uniformly in A we note that Z,()) is Lipschitz continuous
in A € A and A is compact. So Ty < Esupycp |Zn(N\)| = E|Z,(X*)| where \* € A is such
that supycp [Zn(N)| = [Zn(A)*|. Thus Ty — 0 as n — oo which completes our proof.

B.7 Proof of Lemma 3

The statement of this lemma follows from part (1) of Lemma 2. First note that by defi-
nition ARE” (1, Y) < ARES (A Y). So for any € > 0 and k € {0,1}, the probability

P[ﬁgk)(& 5?,:')[’(5\)) > E,(qk)(é?, 58;)) + cgle} is bounded above by

n n

P[ﬁﬁl’“) (0, 87(A) — AREW (A, Y) > £, 8%,) — ARED (A2, Y) + c*le} .
The above display converges to 0 by part (1) of Lemma 2.

B.8 Proofs of Lemmata 4, 5 and 6

Proof of Lemma 4

First note that from assumption (A2) and for some § > 0, 6 < ¢~ (149) Jog n with high prob-
ability. We will now prove the statement of lemma 4 for the case when Y;|0; g Poi(#;). For
distributions with bounded support, like the Binomial model, the lemma follows trivially.

Under the Poisson model, we have P(Y; > 0; +t) < exp{—0.5t2/(0; + t)} for any t > 0.
The above inequality follows from an application of Bennett inequality to the Poisson MGF
(see Pollard (2015)). Now consider P(max;—1 ., Y; < 6; +t) and note that since Y; are all
independent, this probability is given by []i[1 — exp{—0.5t/(6; + t)}]. Take t = slogn
where s2/{s+ e~ (119} > 4. Then with §; < e (119 logn, the above probability is bounded
above by a, = {1 — n~(*")}" for some v > 0. As n — oo, a, — 1 which proves the
statement of the lemma.

Proof of Lemma 5

We begin with some remarks on the optimization problems (8) and (15). Note that the
feasible set H,, in equation (8) (and (15)) is compact and independent of A\. Moreover, the
optimization problem in definitions 1 and 3 is convex. Consequently, (i) for all A € A, the
optimization takes place in a compact set, and (ii) the optimal solution set corresponding

to any A € A is a singleton, {iz,(lk)(/\)} Now fix an € > 0. Then for any A € N.(Ag) N A
there exists a § > 0 such that the optimal solution h, = ﬁ%k)()\) € Ng(ﬁ%k)()\o)) and
MA,n{hn} — I\\AAIAm{fAL%k)()\O)} < 0. Moreover, we can re-write MAO’n{hn} — Mxo,n{ﬁ%k)()\o)}
as

Mko,n{hn} - M/\,n{hn} - Mko,n{ﬁ%k)(/\O)} + MA,n{ﬁv(f)()‘O)} + M/\,n{hn} - Mx,n{ﬁ,(f)()\o)}
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The last term in the display above is negative and thus we can upper bound MAO’n{hn} —
o > (k
Mg o {Feft” (30)} By

Mg {Pn} = Mxn{hn} = My, {2 (M)} + My {h{ (N0)}

Now apply the mean value theorem with respect to h,, to the function M Ao,n{hn}—M anibn}
in the display above and notice that My, , {h,} — MAO’n{ﬁ%k)()\o)} is bounded above by

[Fn {70 ) = W5 ()} | [ = B8 (00)]

where h, = fz%k)()\o) + 7{h, — ﬁ%k)(/\o)} for some 7 € (0,1) and VpMy,(h) is the
partial derivative of M, (h) with respect to h. Using Vj, [MAO,n(hn) — My p(h,)] =
v%n,AMAom(hn)()\ — o) +o(|]A = Ao|) we get

Mg (o} =Wy R Qo) € sup [ VR, alagn(R)+o(1)| ][ A=ol [ a=RE )
heNs(hi” (%)

Moreover assumption (A3) implies that
. . B . 2
W n{Fn} = Mg {h (M0)} = ¢ B
The desired result thus follows from the above two displays with

L= sup V7, AMxgn(R) + o(1)]|2/c.
heNs (R4 (A0))

Proof of Lemma 6

To prove the first statement of lemma 6, note that from equation (4)

ay—1/a
oy (y) = %/y, for y > 1.
wp *(y)

Now let V(y) = ay_1/(ay[w” (y)]2). Then,

Byo[57(Y)] = Evo[ V()] = Z Ly “y - GZV RV eEm[ww bl
y=1
where V(y + 1) = ay/(ay+1[wp (y+1)?) = [ )y + 1)]*(ay+1/ay). This proves the first

statement of lemma 6.
To prove the second statement, note that from equation (4)

57 () = LU gy s,

wy ()

Let V(y +1) = ay/[ay 1wl (y)] = 0 (y). Then,

1 o0
ay+10Y" ay—1 ay 1

> ay Y _
OEy [V(Y + 1)} = yZ:;) - Viy+ 1)W = > Tyv(y)m =Eyy [?

V().

where a_1 = 0 and (ay—1/ay)V(y) = (ay,l/ay)é 0) (y—1). This proves the second statement
of lemma 6.
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