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Abstract—We propose a novel pipeline for the real-time 
detection of myocardial infarction from a single heartbeat of a 12-
lead electrocardiograms. We do so by merging a real-time R-spike 
detection algorithm with a deep learning Long-Short Term 
Memory (LSTM) network-based classifier. A comparative 
assessment of the classification performance of the resulting 
system is performed and provided. The proposed algorithm 
achieves an inter-patient classification accuracy of 95.76% (with a 
95% Confidence Interval (CI) of ±2.4%), a recall of 96.67% 
(±2.4% 95% CI), specificity of 93.64% (±5.7% 95% CI), and the 
average J-Score is 90.31% (±6.2% 95% CI). These state-of-the-art 
myocardial infarction detection metrics are extremely promising 
and could pave the wave for the early detection of myocardial 
infarctions. This high accuracy is achieved with a processing time 
of 40 milliseconds, which is most appropriate for online 
classification as the time between fast heartbeats is around 300 
milliseconds.  

Keywords—Myocardial Infarction, Machine Learning, LSTM, 
Real-time 

I. INTRODUCTION 
Heart attacks (myocardial infarctions/MIs) and heart disease 

are the leading cause of death in the United States, accounting 
for 24.2% of all male deaths and 21.8% of all female deaths in 
2017 [1]. Furthermore, over 800 thousand Americans suffer 
heart attacks every year [2], that is roughly a heart attack every 
39.42 seconds. Of these, around 75% are first-time heart attacks 
and 25% happen to people who have had at least another one in 
the past. Of all MIs, about 20% are silent and happen without 
warning or symptoms [2]. Overall, close to 50% of Americans 
are at risk of any of the many heart diseases in existence that 
could potentially lead to a myocardial infarction, costing an 
average patient $11,664 on medical expenses [3, 4]. Therefore, 
because they have significant possible complications [5], their 
early and accurate diagnosis is of extreme importance.  

However, physicians have a powerful tool in 
electrocardiograms (ECGs) to diagnose and track the progress 
of MIs. These non-invasively recorded signals can help 
clinicians and researchers assess the health and fitness of the 
hearth through the characteristics of its electrical activity [6]. As 
a result, numerous research papers have been written on the use 
of ECGs to diagnose and monitor multiple cardiac conditions, 
including myocardial infarctions [7-19].  

Across all these publications, the methods used to achieve 
classification vary wildly, from simple classifier that rely on 
prior expert knowledge like KNNs to deep-learning approaches 
that deduce the relevant features from the inherent  statistics of 
the recorded data.  Just as important are the standards followed 
in conducting the training and testing phases on these recorded 
datasets. Therefore, special attention should be given to the type 
of classifier used and the testing metrics considered before any 
meaningful comparison could be conducted on these different 
approaches, especially when it comes to delineating the data that 
is seen in the training phase from unseen data in the testing 
phase. 

In this study, we propose a novel and complete pipeline for 
the online real-time classification (40 milliseconds) of 
myocardial infarctions. We do so by using an Independent 
Component Analysis (ICA) R-spike detection method, to 
identify and localize the occurrence of ventricular depolarization 
events, alongside a multilayer LSTM network, to detect and 
classify infarcted heartbeats. We particularly use LSTM neurons 
for their long track record of positive results at classifying time-
varying signals such as speech, text, and video. The resulting 
real-time classifier could be of great value to the population at 
risk of MI and as a monitoring tool for gauging disease 
progression. 

II. DATA 
We use the popular Physikalisch-Technische Bundesanstalt 

(PTB) diagnostic ECG database [20, 21]. This dataset is 
composed of 549 12-lead ECG records from 209 men and 81 
women. There are multiple different diagnoses in the dataset, but 
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for our study we only use patients with myocardial infarctions 
(MI) and the healthy controls (HC), this brings the patient count 
to 200 patients from the original 290. Furthermore, we only use 
records from those patients that were recorded no more than 5 
days after the infarction date, except for the first 
electrocardiogram taken at admission, as after admission to the 
hospital, patients are given treatment and the heart’s electrical 
activity responds to it. 

The data is filtered using a 50Hz band-stop cascade IIR filter 
to remove any powerline interference that might be left over 
after the initial recording, and a 500 milliseconds moving 
average filter to remove baseline wander as an inherent ECG 
artifact. Frequency spectrums of the signal are shown in Fig. 1 
before and after the filtering step. After filtering, we apply the 
real-time R-peak detection algorithm described in [22] to 
produce near instantaneous ventricular depolarization detection. 
Heartbeats are segmented into 1-second samples, centered at the 
R-peaks, and separated into training and testing datasets. We 
have followed the Patient-Split dataset generation procedures as 
the performance metrics obtained from it on the testing dataset 
will most closely resemble those of the system’s deployment in 
real-unseen data. That is, we have taken special care to ensure 
that any data from patients seen during training is not used for 

testing. A segmented sample of a processed heartbeat can be 
seen in Fig. 2. 

III.  METHODS 
The simplified system architecture of the proposed system 

for online and real-time diagnosis of myocardial infarctions is 
shown in Fig. 3. The first step is to filter the incoming data to 
remove undesired frequency components and noise. 
Subsequently, the ICA R-Spike detector is used to identify the 
center of the ventricular depolarization event and to use it as a 
reference for segmenting and centering samples to be passed to 
the MI classifier. 

The proposed architecture continuously generates 
classification outputs for each detected heartbeat. The filter and 
the R-Peak detection stage run non-stop seeking out new 
samples to be processed. While the classifier produces a 
classification label (MI/HC) for every point in the input sample, 
only the last 80ms are used. This is because the classification 
does not become valid until the classifier has had a chance to 
look at the complete heartbeat (after the T wave). 

For our classifier we use a deep LSTM neural network with 
five layers. The size of the network is chosen so that the 
network is big enough to accommodate a significant number of 
features and dropout is used during training on every other layer 
to minimize overfitting. A more detailed view of the network 
architecture can be seen in Fig. 4. This neural network 
architecture is particularly suited for this problem as it can 
handle time-varying data, does not require prior expert 
knowledge of the signal at hand, and is simpler than other 
previously proposed architectures. Furthermore, its simplicity 
makes it less prone to overfitting and yields low inference 
times. 

The proposed model is built with Graves’ LSTM [23] units 
and initialized using Glorot and Bengio’s proposed 

Figure 1: Frequency Power Spectrum of unfiltered (left) and filtered (right) data 

Figure 3: Simplified System Architecture

 
Figure 2: Sample Filtered and Centered Heartbeat 
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initialization [24]. It uses stochastic gradient decent with L2 
regularization [25], RMSProp [26] as the optimizer, and 
gradient clipping to avoid exploding gradients due to excessive 
weight updates. A more detailed view of the network’s training 
behavior and the influence of dropout can be appreciated in Fig. 
5, where the first and third layer implement different dropout 
rates. By using dropout during training, we force the network 
to prioritize and create redundant copies of important latent 
features in large layers. We do so by randomly zeroing out, or 
dropping, the outputs of 80% of the neurons in the first layer 
and 50% of the neurons in the third one, thereby effectively 
reducing the amount of data available to the subsequent layers. 

IV. RESULTS 
The network is trained using early stopping, where after 10 

epochs of no performance improvements we stop training and 
back up to the best set weights. A 10-fold cross validation 
approach is performed to avoid reporting on a particularly 
beneficial or detrimental dataset split due to their small sizes. 
We train the model in a 64-bit Windows 10 PC with an AMD 

FX-8350 Eight-Core Processor, 32 GB of DDR3 RAM, and an 
NVIDIA GeForce GTX1070 graphics card. The system 
proposed herein was implemented and deployed using Java and 
DeepLearning4J version 0.9.1 as the machine learning library. 

Performance was measured by using the following standard 
metrics: Accuracy, F1-Score, Precision, Recall, Specificity, and 
Youden’s J statistic (J-Score/J-Measure) as defined in (1) 
through (6). 

                                   (1) 

                                      (2)  

                                               (3) 

                                               (4) 

                                               (5) 

                           (6) 

Figure 4: Classifier Architecture

Figure 5: Classifier Architecture during Training
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Where TP represent true positives (patients with MI 
diagnosed as MI), TN as true negatives (HC diagnosed as HC), 
FP as false positives (HC diagnosed as MI), and FN as false 
negatives (MI diagnosed as HC). 

We trained our system seeking two important measures and 
report these values in Table 1: highest classification accuracy 
and highest J-Score. 

The forward inference time, the time required for the 
network to process a sample, is 12.3 milliseconds on average, 
while the whole system requires around 40 milliseconds to 
process a sample when accounting for preprocessing time. 
Training took on average 5 hours and covered around 30 
thousand 1-second samples per epoch (a single run through all 
training instances). From Table 1, the maximum number of 
training epochs was 50 for the slowest converging training fold 
and 3 for the fastest, with an average of 19.44 epochs when 
looking for the maximum accuracy and 21.33 when looking for 
the best balance between specificity and sensitivity. The 
average accuracy across the 10-fold cross validation is 95.76% 

with a 95% confidence interval (CI) from 93.36% to 98.16% 
and the average J-Score is 90.31% with a 95% CI from 84.11% 
to 96.51%. 

V. COMPARISON AND DISCUSSION 
Although the literature on myocardial infarction detection 

and classification is abound, the way in which they create their 
training and testing datasets are not uniformly consistent, 
resulting in intra- and inter- patient classifiers that are not 
directly comparable. Therefore, in this section we will attempt 
to compare our results to those from other methods that most 
closely resemble the data splitting method we use, that is inter-
patient classifiers. We will also explain why we believe that the 
proposed method is not directly comparable to some of the 
references we consider in this section. 

As can be appreciated from Table 2, our proposed method 
has some of the highest metrics in comparison to other 
approaches. These are methods that use the same number of 
Electrocardiogram leads (12) and are trained on the same 
database (although not specifically the same dataset). However, 

TABLE I: PERFORMANCE RESULTS OF TWO TRAINING SCENARIOS 

 Accuracy F1 Precision Recall Specificity J Train Epochs 
Max Acc 0.9576 

(±0.024) 
0.9673 

(±0.021) 
0.9686 

(±0.027) 
0.9667 

(±0.024) 
0.9364 

(±0.057) 
0.9031 

(±0.062) 
19.44  

(±18.9) 
Max J 0.9566 

(±0.025) 
0.9664 

(±0.022) 
0.9713 

(±0.028) 
0.9627 

(±0.026) 
0.9438 

(±0.055) 
0.9064 
(±0.06) 

21.33  
(±17.5) 

*Values in parenthesis represent the 95% confidence interval  

TABLE II: COMPARATIVE ASSESSMENT OF THE PROPOSED METHOD 

Study Dataset # Leads Sample 
Length Method Accuracy Recall Specificity J 

[27] 

PTB 
52 HC 

(10,646 samples) 
128 MI 

(48,690 samples) 

12 0.6 seconds MFB-CNN 98.79% 98.73% 99.35% 98.08% 

[28] 

PTB 
52 HC 

(10,638 samples) 
148 MI  

(53,712 samples) 

12 0.6 seconds CNN and 
BLSTM 93.08% 94.42% 86.29% 80.71% 

[29] 

PTB 
52 HC 

(6,945 samples) 
113 MI 

(17,212 samples) 

12 4 seconds ML-ResNet 95.49% 94.85% 97.37% 92.22% 

[30] 

PTB 
52 HC 

(5,373 samples) 
148 MI 

(28,213 samples) 

12 4 seconds PCA, SVM 92.69% 80.96% 80.96% 61.92% 

[31] 

PTB 
52 HC 

(1,886 samples) 
148 MI 

(11,355 samples) 

12 5 seconds DWT-PCA-
ANN 98.21% 99.40% 98.22% 97.62% 

[31] 

PTB 
52 HC 

(1,886 samples) 
148 MI 

(11,355 samples) 

12 5 seconds 
Deep 

Residual 
CNN 

100% 100% 100% 100% 

Proposed 

PTB 
52 HC 

 (10,296 samples) 
148 MI  

(24,664 samples) 

12 1 second Deep LSTM 95.66% 96.27% 94.38% 90.64% 
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not all the methods covered in this table are directly comparable 
as detailed below.  

Liu et al., in [27], introduce a Multiple-feature-branch CNN 
classifier, that produces a particularly good inter-patient MI 
classifier, but they use data from the patients in the testing set 
during training (the first 32 beats of each patient), effectively 
contaminating it and no longer producing a pure inter-patient 
classifier and rather something that is somewhat in between 
intra- and inter- patient.  

In [28], Liu et al. expand on their previous work on 
multiple-feature-branch CNN classifiers and add bidirectional 
LSTMs, producing an MFB-CBRNN. This time around, they 
avoided contamination of their training sets and did produce a 
truly inter-patient MI classifier. Their approach classifies single 
heartbeats, just like ours, but produces less accuracy, 93.08% 
compared to 95.66% for ours, and lower J-Score, 80.71% vs. 
ours at 90.64%. 

Han and Shi produced two good classifiers in [29] and [30], 
however, even though they claim to produce inter-patient 
classifiers, it is unclear from their dataset generation 
descriptions that they took special care to ensure that data from 
patients seen during training was not used for testing. It appears 
that their dataset generation method resembles that of a File-
Split instead. They also require particularly long sample sizes 
that encompass more than a single heartbeat. 

Perhaps the best classifier in terms of accuracy is reported  
by Jafarian et al.[31], achieving 100% accuracy in their end-to-
end deep neural network model, but their method requires five 
(5) second samples and is perhaps resource intensive to deploy. 
Nevertheless, they do take particularly good care to avoid cross-
contamination of their training and testing sets, yielding truly 
inter-patient classifiers. 

VI. CONCLUSIONS 
We have put forward a novel pipeline for the real-time 

online detection of myocardial infarction from a single 
heartbeat of a 12-lead electrocardiogram. Our pipeline 
combines a real-time R-spike detector with a novel deep LSTM 
classifier to produce highly accurate and fast detection results 
(40 milliseconds when accounting for preprocessing time). The 
proposed system achieves state-of-the-art performance with an 
accuracy of 95.76% (with a 95% Confidence Interval of ±2.4%) 
and a balance between specificity and recall of 90.31% (±6.2% 
95% CI). The uses and benefits of the proposed system are far 
reaching as they can have significant societal and clinical 
impacts in the lives of not only at-risk patients but also the 
population at large. 

However, as mentioned before in the literature, the true 
benefits of any MI detector would depend on the numbers of at-
risk individuals. Because a significant portion of MI’s mortality 
is due to the lack of awareness to the condition and therefore 
the lack of immediate medical attention. Consequently, such an 
approach could significantly improve the odds of detecting 
silent MIs by monitoring at risk individuals and providing them 
with an early diagnosis. Determining the early sign of MI could 
help in the planning of early treatment and extending the time 
available for doctors to plan ahead on an individual basis in case 
of an emergency. 

REFERENCES 
[1] Heron, M. “Deaths: Leading causes for 2017”. National Vital Statistics 

Reports;68(6). Accessed Nov. 19, 2019.  
[2]  “Heart Attack” Aug. 18,2017. [Online] Available: 

https://www.cdc.gov/heartdisease/heart_attack.htm 
[3]  “Heart Disease Fact Sheet”.: 

https://www.cdc.gov/dhdsp/data_statistics/fact_sheets/fs_
heart_disease.htm, 2017  

[4] G. Nicholson, S. R. Gandra, R. J. Halbert, A. Richhariya, R. J. Nordyke 
“Patient-level costs of major cardiovascular conditions: a review of the 
international literature.” ClinicoEconomics and Outcomes Research, vol. 
8, pp. 495-506, September 2016.  

[5] R. Barnett “Case Histories Acute Myocardial Infarction.” Lancet, 
vol.393, no. 10191, pp. 2580, Jun. 2019 

[6] P. Kligfield, L.S. Gettes, J.J. Bailey, R. Childers, B.J. Deal, E.W. 
Hancock, G. van Herpen, J.A. Kors, P. Macfarlane, D.M. Mirvis, O. 
Pahlm, P. Rautaharju, G.S. Wagner “Recommendations for the 
standardization and interpretation of the electrocardiogram”, Circulation, 
Vol. 25 (10), pp. 1306-1324, March 2007. 

[7] U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan, M. Adam; 
“Application of deep Convolutional Neural Network for Automated 
Detection of Myocardial Infarction using ECG Signals.” Information 
Sciences, vol. 415, pp. 190-198, Nov. 2017. 

[8] P. Kora; “ECG based Myocardial Infarction Detection Using Hybrid 
Firefly Algorithm.” Computer Methods and Programs in Biomedicine, 
vol.152, pp. 141-148, Dec. 2017. 

[9] L. D. Sharma, R. K. Sunkaria; “Inferior Myocardial Infarction Detection 
Using Stationary Wavelet Transform and Machine Learning Approach.” 
Signal Image and Video Processing, vol. 12, issue 2, pp. 199-206, Feb 
2018 

[10] W. Liu, Q. Huang, S. Chang, H. Wang, J. He; “Multiple-Fracture-branch 
Convolutional Neural Network for Myocardial Infarction Diagnosis 
Using Electrocardiogram.” Biomed. Signal Proc. Control, Vol. 45, pp: 22-
32, 2018. 

[11] A. K. Dohare, V. Kumar, R. Kumar; “Detection of Myocardial Infarction 
in 12 lead ECG using Support Vector Machine.” Applied Soft Computing, 
Vol. 64, pp. 138-147, March 2018. 

[12] L. Sun, Y. Lu, K. Yang, S. Li “ECG Analysis Using Multiple Instance 
Learning for Myocardial Infarction Detection.” IEEE Transaction on 
Biomedical Engineering, Vol. 59, no. 12, pp. 3348-3356, December 2010. 

[13] W. Liu, M. Zhang, Y. Zhang, Y. Liao, Q. Huang, S. Chang; “Real-Time 
Multilead Convolutional Neural Network for Myocardial Infarction 
Detection.” IEEE J. of Biomed. and Health Info, Vol. 22, issue 5, pp. 
1434-1444, 2018. 

[14] D. Sopic, A. Aminifar, D. Atienza; “Real-Time Event-Driven 
Classification Technique for Early Detection and Prevention of 
Myocardial Infarction on Wearable Systems.” IEEE transactions on 
Biomedical Circuits and Systems, Vol. 12, issue 5, pp. 982-992, Oct. 
2018. 

[15] D. Sadhukhan, S. Pal, M. Mitra; “Automated Identification of Myocardial 
Infarction Using Harmonic Phase Distribution Pattern of ECG Data.” 
IEEE Trans. Instrumentation Measures, Vol. 67 (10), pp. 2303-2313, 
2018 

[16] S. Padhy, S. Dandapat; “Third-order tensor based analysis of multilead 
ECG for classification of myocardial infarction.” Biomedical Signal 
Processing and Control, Vol. 31, pp. 71-78, Jul. 2016 

[17] W.G Baxt, J. Skora “Prospective Validation of Artificial Neural Network 
Trained to Identify Acute Myocardial Infarction.” Lancet, Vol. 347, issue 
8993, pp. 12-15, Jan. 1996 

[18] W.G. Baxt, F.S. Shofer, F.D. Sites, J.E. Hollander “A neural 
computational aid to the diagnosis of acute myocardial infarction.” 
Annals of Emergency Medicine, Vol. 39, no. 4, pp. 366-373, Apr. 2002 

[19] B. Heden, H. Ohlin, R. Rittner, L. Edenbrandt “Acute myocardial 
infarction detected in the 12-lead ECG by artificial neural networks.” 
Circulation, vol. 96, no. 6, pp. 1798-1802, Sep. 1997 

[20] R. Bousseljot, D. Kreiseler, A. Schnabel, “Nutzung der EKG-
Signaldatenbank” CARDIODAT der PTB über das Internet. 
Biomedizinische Technik, Band 40, Ergänzungsband 1 (1995) S 317. 

786

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 06,2021 at 18:59:10 UTC from IEEE Xplore.  Restrictions apply. 



[21] A.L. Goldberger, L.A.N Amaral, L Glass, J.M. Hausdorff, P.C. Ivanov, 
RG Mark, J.E. Mietus, G.B. Moody, C-K Peng, H.E. Stanley. 
PhysioBank, PhysioToolkit, and PhysioNet: Components of a New 
Research Resource for Complex Physiologic Signals. Circulation 
101(23): e215-e220 [Circulation Electronic Pages; 
http://circ.ahajournals.org/content/101/23/e215.full]; 2000 (June 13). 

[22] H. Martin, W. Izquierdo, M. Cabrerizo, M. Adjouadi “Real-time R-spike 
detection in the cardiac waveform through independent component 
analysis.” 2017 IEEE Signal Processing in Medicine and Biology 
Symposium (SPMB), PA, USA, Dec. 2017. 

[23] A. Graves “Supervised Sequence Labelling with Recurrent Neural 
Networks”, PhD Dissertation, U. of Toronto. 

[24] X. Glorot, Y. Bengio “Understanding the difficulty of training deep 
feedforward neural networks” Journal of Machine Learning Research, 
Vol. 9, pp. 249-256, Jan. 2010. 

[25] A.E. Hoerl, R.W. Kennard “Ridge Regression: Biased Estimation for 
Nonorthogonal Problems” TECHNOMETRICS, Vol 12, pp 55-67, Feb. 
1970. 

[26] G. Hinton, N. Srivastava, K. Swersky “Neural Networks for Machine 
Learning.” pp. 29, [Online]. Available: 

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf 
[Accessed: Apr. 18, 2019] 

[27] W. Liu, Q. Huang, S. Chang, H. Wang, J. He, “Multiple-feature-branch 
convolutional neural network for myocardial infarction diagnosis using 
electrocardiogram.” Biomedical Signal Processing and Control, Vol. 45, 
pp. 22-32, August 2018. 

[28] W. Liu, F. Wang, Q. Huang, S. Chang, H. Wang, J. He, “MFB-CBRNN: 
A Hybrid Network for MI Detection Using 12-Lead ECGs.” IEEE Journal 
of Biomedical and Health Informatics, Vol. 24, issue 2, pp. 503-514, Feb. 
2020. 

[29] C. Han and L. Shi “ML-ResNet: A novel network to detect and locate 
myocardial infarction using 12 leads ECG.” Computer Methods and 
Programs in Biomedicine. Vol. 185, March 2020. 

[30] C. Han and L. Shi “Automated Interpretable detection of myocardial 
infarctions fusion energy entropy and morphological features.” Computer 
Methods and Programs in Biomedicine, Vol. 175, pp. 9-23, Jul. 2019  

[31] K. Jafarian, V. Vahdat, S. Salehi, and M. Mobin, “Automating detection 
and localization of myocardial Infarction using shallow and end-to-end 
deep neural networks.” Applied Soft Computing Journal, Vol. 93, August 
2020.

 

787

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 06,2021 at 18:59:10 UTC from IEEE Xplore.  Restrictions apply. 


