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Abstract—We propose a novel pipeline for the real-time
detection of myocardial infarction from a single heartbeat of a 12-
lead electrocardiograms. We do so by merging a real-time R-spike
detection algorithm with a deep learning Long-Short Term
Memory (LSTM) network-based classifier. A comparative
assessment of the classification performance of the resulting
system is performed and provided. The proposed algorithm
achieves an inter-patient classification accuracy of 95.76% (with a
95% Confidence Interval (CI) of +2.4%), a recall of 96.67%
(£2.4% 95% CI), specificity of 93.64% (£5.7% 95% CI), and the
average J-Score is 90.31% (£6.2% 95% CI). These state-of-the-art
myocardial infarction detection metrics are extremely promising
and could pave the wave for the early detection of myocardial
infarctions. This high accuracy is achieved with a processing time
of 40 milliseconds, which is most appropriate for online
classification as the time between fast heartbeats is around 300
milliseconds.

However, physicians have a powerful tool in
electrocardiograms (ECGs) to diagnose and track the progress
of Mls. These non-invasively recorded signals can help
clinicians and researchers assess the health and fitness of the
hearth through the characteristics of'its electrical activity [6]. As
a result, numerous research papers have been written on the use
of ECGs to diagnose and monitor multiple cardiac conditions,
including myocardial infarctions [7-19].

Across all these publications, the methods used to achieve
classification vary wildly, from simple classifier that rely on
prior expert knowledge like KNNss to deep-learning approaches
that deduce the relevant features from the inherent statistics of
the recorded data. Just as important are the standards followed
in conducting the training and testing phases on these recorded
datasets. Therefore, special attention should be given to the type
of classifier used and the testing metrics considered before any
meaningful comparison could be conducted on these different
approaches, especially when it comes to delineating the data that
is seen in the training phase from unseen data in the testing
phase.

Keywords—Myocardial Infarction, Machine Learning, LSTM,
Real-time

1. INTRODUCTION

Heart attacks (myocardial infarctions/MIs) and heart disease
are the leading cause of death in the United States, accounting
for 24.2% of all male deaths and 21.8% of all female deaths in
2017 [1]. Furthermore, over 800 thousand Americans suffer
heart attacks every year [2], that is roughly a heart attack every
39.42 seconds. Of these, around 75% are first-time heart attacks
and 25% happen to people who have had at least another one in
the past. Of all Mls, about 20% are silent and happen without
warning or symptoms [2]. Overall, close to 50% of Americans
are at risk of any of the many heart diseases in existence that
could potentially lead to a myocardial infarction, costing an
average patient $11,664 on medical expenses [3, 4]. Therefore,
because they have significant possible complications [5], their
early and accurate diagnosis is of extreme importance.

In this study, we propose a novel and complete pipeline for
the online real-time classification (40 milliseconds) of
myocardial infarctions. We do so by using an Independent
Component Analysis (ICA) R-spike detection method, to
identify and localize the occurrence of ventricular depolarization
events, alongside a multilayer LSTM network, to detect and
classify infarcted heartbeats. We particularly use LSTM neurons
for their long track record of positive results at classifying time-
varying signals such as speech, text, and video. The resulting
real-time classifier could be of great value to the population at
risk of MI and as a monitoring tool for gauging disease
progression.

II. DATA

We use the popular Physikalisch-Technische Bundesanstalt
(PTB) diagnostic ECG database [20, 21]. This dataset is
composed of 549 12-lead ECG records from 209 men and 81
women. There are multiple different diagnoses in the dataset, but
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Figure 1: Frequency Power Spectrum of unfiltered (left) and filtered (right) data

for our study we only use patients with myocardial infarctions
(MI) and the healthy controls (HC), this brings the patient count
to 200 patients from the original 290. Furthermore, we only use
records from those patients that were recorded no more than 5
days after the infarction date, except for the first
electrocardiogram taken at admission, as after admission to the
hospital, patients are given treatment and the heart’s electrical
activity responds to it.
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Figure 2: Sample Filtered and Centered Heartbeat

The data is filtered using a SOHz band-stop cascade IIR filter
to remove any powerline interference that might be left over
after the initial recording, and a 500 milliseconds moving
average filter to remove baseline wander as an inherent ECG
artifact. Frequency spectrums of the signal are shown in Fig. 1
before and after the filtering step. After filtering, we apply the
real-time R-peak detection algorithm described in [22] to
produce near instantaneous ventricular depolarization detection.
Heartbeats are segmented into 1-second samples, centered at the
R-peaks, and separated into training and testing datasets. We
have followed the Patient-Split dataset generation procedures as
the performance metrics obtained from it on the testing dataset
will most closely resemble those of the system’s deployment in
real-unseen data. That is, we have taken special care to ensure
that any data from patients seen during training is not used for

R-peak
location

12-lead
Electrocardiogram of
variable length.
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testing. A segmented sample of a processed heartbeat can be
seen in Fig. 2.

[II. METHODS

The simplified system architecture of the proposed system
for online and real-time diagnosis of myocardial infarctions is
shown in Fig. 3. The first step is to filter the incoming data to
remove undesired frequency components and noise.
Subsequently, the ICA R-Spike detector is used to identify the
center of the ventricular depolarization event and to use it as a
reference for segmenting and centering samples to be passed to
the MI classifier.

The proposed architecture continuously generates
classification outputs for each detected heartbeat. The filter and
the R-Peak detection stage run non-stop seeking out new
samples to be processed. While the classifier produces a
classification label (MI/HC) for every point in the input sample,
only the last 80ms are used. This is because the classification
does not become valid until the classifier has had a chance to
look at the complete heartbeat (after the T wave).

For our classifier we use a deep LSTM neural network with
five layers. The size of the network is chosen so that the
network is big enough to accommodate a significant number of
features and dropout is used during training on every other layer
to minimize overfitting. A more detailed view of the network
architecture can be seen in Fig. 4. This neural network
architecture is particularly suited for this problem as it can
handle time-varying data, does not require prior expert
knowledge of the signal at hand, and is simpler than other
previously proposed architectures. Furthermore, its simplicity
makes it less prone to overfitting and yields low inference
times.

The proposed model is built with Graves’ LSTM [23] units

and initialized wusing Glorot and Bengio’s proposed
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Figure 3: Simplified System Architecture
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Figure 5: Classifier Architecture during Training

initialization [24]. It uses stochastic gradient decent with L2
regularization [25], RMSProp [26] as the optimizer, and
gradient clipping to avoid exploding gradients due to excessive
weight updates. A more detailed view of the network’s training
behavior and the influence of dropout can be appreciated in Fig.
5, where the first and third layer implement different dropout
rates. By using dropout during training, we force the network
to prioritize and create redundant copies of important latent
features in large layers. We do so by randomly zeroing out, or
dropping, the outputs of 80% of the neurons in the first layer
and 50% of the neurons in the third one, thereby effectively
reducing the amount of data available to the subsequent layers.

IV. RESULTS

The network is trained using early stopping, where after 10
epochs of no performance improvements we stop training and
back up to the best set weights. A 10-fold cross validation
approach is performed to avoid reporting on a particularly
beneficial or detrimental dataset split due to their small sizes.
We train the model in a 64-bit Windows 10 PC with an AMD
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FX-8350 Eight-Core Processor, 32 GB of DDR3 RAM, and an
NVIDIA GeForce GTX1070 graphics card. The system
proposed herein was implemented and deployed using Java and
DeepLearning4]J version 0.9.1 as the machine learning library.

Performance was measured by using the following standard
metrics: Accuracy, F1-Score, Precision, Recall, Specificity, and
Youden’s J statistic (J-Score/J-Measure) as defined in (1)
through (6).

TP+TN

Acc = ———— (1)
TP+TN+FP+FN
F1 = __ TP ?)
2+TP+FP+FN
TP
Prec = P 3)
Recall = —~— 4)
TP+FN
TN
Spec = m (5)
J = Recall + Spec — 1 (6)
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TABLE I: PERFORMANCE RESULTS OF TWO TRAINING SCENARIOS

Accuracy F1 Precision  Recall  Specificity J Train Epochs
Max Acc 0.9576 0.9673 0.9686 0.9667 0.9364 0.9031 19.44
(£0.024) | (£0.021) | (£0.027) | (£0.024) | (x0.057) | (£0.062) (=18.9)
Max J 0.9566 0.9664 0.9713 0.9627 0.9438 0.9064 21.33
(£0.025) | (£0.022) | (+0.028) | (+0.026) | (£0.055) (0.06) (£17.5)
*Values in parenthesis represent the 95% confidence interval

Where TP represent true positives (patients with MI
diagnosed as MI), TN as true negatives (HC diagnosed as HC),
FP as false positives (HC diagnosed as MI), and FN as false
negatives (MI diagnosed as HC).

We trained our system seeking two important measures and
report these values in Table 1: highest classification accuracy
and highest J-Score.

The forward inference time, the time required for the
network to process a sample, is 12.3 milliseconds on average,
while the whole system requires around 40 milliseconds to
process a sample when accounting for preprocessing time.
Training took on average 5 hours and covered around 30
thousand 1-second samples per epoch (a single run through all
training instances). From Table 1, the maximum number of
training epochs was 50 for the slowest converging training fold
and 3 for the fastest, with an average of 19.44 epochs when
looking for the maximum accuracy and 21.33 when looking for
the best balance between specificity and sensitivity. The
average accuracy across the 10-fold cross validation is 95.76%

with a 95% confidence interval (CI) from 93.36% to 98.16%
and the average J-Score is 90.31% with a 95% CI from 84.11%
t0 96.51%.

V. COMPARISON AND DISCUSSION

Although the literature on myocardial infarction detection
and classification is abound, the way in which they create their
training and testing datasets are not uniformly consistent,
resulting in intra- and inter- patient classifiers that are not
directly comparable. Therefore, in this section we will attempt
to compare our results to those from other methods that most
closely resemble the data splitting method we use, that is inter-
patient classifiers. We will also explain why we believe that the
proposed method is not directly comparable to some of the
references we consider in this section.

As can be appreciated from Table 2, our proposed method
has some of the highest metrics in comparison to other
approaches. These are methods that use the same number of
Electrocardiogram leads (12) and are trained on the same
database (although not specifically the same dataset). However,

TABLE II: COMPARATIVE ASSESSMENT OF THE PROPOSED METHOD

Sample

# Leads Length

Study Dataset

Method

Accuracy Recall Specificity J

PTB
52 HC
(10,646 samples)
128 MI
(48,690 samples)

12 0.6 seconds

27

MFB-CNN

98.79% 98.73% 99.35% 98.08%

PTB
52 HC
(10,638 samples)
148 MI
(53,712 samples)

0.6 seconds

[28]

CNN and
BLSTM

93.08% 94.42% 86.29% 80.71%

PTB

52 HC
(6,945 samples)

113 MI
(17,212 samples)

4 seconds

[29]

ML-ResNet

95.49% 94.85% 97.37% 92.22%

PTB
52 HC
(5,373 samples)
148 M1
(28,213 samples)

4 seconds

1301

PCA, SVM

92.69% 80.96% 80.96% 61.92%

PTB
52 HC
(1,886 samples)
148 M1
(11,355 samples)

12 5 seconds

31

DWT-PCA-
ANN

98.21% 99.40% 98.22% 97.62%

PTB
52 HC
(1,886 samples)
148 MI
(11,355 samples)

5 seconds

31

Deep
Residual
CNN

100% 100% 100% 100%

PTB
52 HC
(10,296 samples)
148 MI
(24,664 samples)

Proposed 1 second

Deep LSTM

95.66% 96.27% 94.38% 90.64%
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not all the methods covered in this table are directly comparable
as detailed below.

Liu et al., in [27], introduce a Multiple-feature-branch CNN
classifier, that produces a particularly good inter-patient MI
classifier, but they use data from the patients in the testing set
during training (the first 32 beats of each patient), effectively
contaminating it and no longer producing a pure inter-patient
classifier and rather something that is somewhat in between
intra- and inter- patient.

In [28], Liu et al. expand on their previous work on
multiple-feature-branch CNN classifiers and add bidirectional
LSTMs, producing an MFB-CBRNN. This time around, they
avoided contamination of their training sets and did produce a
truly inter-patient MI classifier. Their approach classifies single
heartbeats, just like ours, but produces less accuracy, 93.08%
compared to 95.66% for ours, and lower J-Score, 80.71% vs.
ours at 90.64%.

Han and Shi produced two good classifiers in [29] and [30],
however, even though they claim to produce inter-patient
classifiers, it is unclear from their dataset generation
descriptions that they took special care to ensure that data from
patients seen during training was not used for testing. It appears
that their dataset generation method resembles that of a File-
Split instead. They also require particularly long sample sizes
that encompass more than a single heartbeat.

Perhaps the best classifier in terms of accuracy is reported
by Jafarian et al.[31], achieving 100% accuracy in their end-to-
end deep neural network model, but their method requires five
(5) second samples and is perhaps resource intensive to deploy.
Nevertheless, they do take particularly good care to avoid cross-
contamination of their training and testing sets, yielding truly
inter-patient classifiers.

VI. CONCLUSIONS

We have put forward a novel pipeline for the real-time
online detection of myocardial infarction from a single
heartbeat of a 12-lead -electrocardiogram. Our pipeline
combines a real-time R-spike detector with a novel deep LSTM
classifier to produce highly accurate and fast detection results
(40 milliseconds when accounting for preprocessing time). The
proposed system achieves state-of-the-art performance with an
accuracy of 95.76% (with a 95% Confidence Interval of +2.4%)
and a balance between specificity and recall of 90.31% (£6.2%
95% CI). The uses and benefits of the proposed system are far
reaching as they can have significant societal and clinical
impacts in the lives of not only at-risk patients but also the
population at large.

However, as mentioned before in the literature, the true
benefits of any MI detector would depend on the numbers of at-
risk individuals. Because a significant portion of MI’s mortality
is due to the lack of awareness to the condition and therefore
the lack of immediate medical attention. Consequently, such an
approach could significantly improve the odds of detecting
silent MIs by monitoring at risk individuals and providing them
with an early diagnosis. Determining the early sign of MI could
help in the planning of early treatment and extending the time
available for doctors to plan ahead on an individual basis in case
of an emergency.
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