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Abstract

Investigating closely related species that rapidly evolved divergent feeding morphology is a
powerful approach to identify genetic variation underlying variation in complex traits. This can
also lead to the discovery of novel candidate genes influencing natural and clinical variation in
human craniofacial phenotypes. We combined whole-genome resequencing of 258 individuals
with 50 transcriptomes to identify candidate cis-acting genetic variation underlying rapidly
evolving craniofacial phenotypes within an adaptive radiation of Cyprinodon pupfishes. This
radiation consists of a dietary generalist species and two derived trophic niche specialists — a
molluscivore and a scale-eating species. Despite extensive morphological divergence, these
species only diverged 10 kya and produce fertile hybrids in the laboratory. Out of 9.3 million
genome-wide SNPs and 80,012 structural variants, we found very few alleles fixed between
species — only 157 SNPs and 87 deletions. Comparing gene expression across 38 purebred F1
offspring sampled at three early developmental stages, we identified 17 fixed variants within 10
kilobases of 12 genes that were highly differentially expressed between species. By measuring
allele-specific expression in F1 hybrids from multiple crosses, we found that the majority of
expression divergence between species was explained by trans-regulatory mechanisms. We also
found strong evidence for two cis-regulatory alleles affecting expression divergence of two genes
with putative effects on skeletal development (dync2lil and pycr3). These results suggest that
SNPs and structural variants contribute to the evolution of novel traits and highlight the utility of

the San Salvador Island pupfish system as an evolutionary model for craniofacial development.
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Introduction

Developing a mechanistic understanding of genetic variation contributing to variation in
complex craniofacial traits is a major goal of both basic and translational research. This involves
identifying genetic variants influencing natural morphological diversity as well as craniofacial
anomalies, which account for approximately one-third of all birth defects (Gorlin et al. 1990). It
is now understood that much of the natural and clinical variation in complex traits like
craniofacial morphology results from interactions among hundreds to thousands of loci across
the genome (Boyle et al. 2017; Sella et al. 2019). Genome-wide association studies (GWAS)
have shown that the vast majority of genetic variants affecting complex traits and diseases are
within non-coding regions, highlighting the importance of gene regulation influencing trait
variation (Hindorff et al. 2009; Maurano et al. 2012; Schaub et al. 2012). However, much of
what is currently known about the developmental genetic basis of craniofacial diversity comes
from mutagenesis screens and loss of function experiments in model organisms. These types of
experiments are biased to detect alleles within protein-coding regions that severely disrupt gene
function and are likely to cause lethality at early developmental stages (Nguyen and Tian 2008;
Hall 2009). Thus, complementary approaches to mutagenesis screens are necessary to identify
genes that influence craniofacial phenotypes at later stages in development though changes in
gene regulation rather than gene function.

One such approach is to harness naturally occurring genetic variation between
‘evolutionary mutants’ — closely related species exhibiting divergent phenotypes that mimic
human disease phenotypes (Albertson et al. 2008). Several fish systems have been particularly
useful as models for craniofacial developmental disorders because closely related species are
often distinguished by differences in morphological traits important for trophic niche
specialization, such as the shape and dynamics of jaws and pharyngeal elements (Albertson et al.
2008; Schartl 2014; Powder and Albertson 2016). The process of identifying candidate genes and
validating their effect on phenotypic divergence in evolutionary mutants typically involves
population genomic analyses, gene expression analyses, GWAS, and functional validation
experiments (Bono et al. 2015; Kratochwil and Meyer 2015). Using a combination of these
approaches, research in fish systems has shown that the evolution of adaptive craniofacial traits
often involve orthologs of genes implicated in human disorders (Albertson et al. 2005; Helms et

al. 2005; Roberts et al. 2011; Ahi et al. 2014; Cleves et al. 2014; Lencer et al. 2017; Erickson et
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al. 2018; Gross and Powers 2018; Martin et al. 2019). Therefore, candidate genes identified in
evolutionary mutant models that have orthologs with uncharacterized functions in humans
warrant further study into their relationship with development and disease.

Measuring relative and absolute genetic differentiation (estimated as Fst and Dxy)
between species can reveal diverged regions of the genome that may influence trait development,
but these statistics alone are insufficient to identify genetic mechanisms underlying evolutionary
mutant phenotypes (Nachman and Payseur 2012; Cruickshank and Hahn 2014). RNA sequencing
across multiple developmental stages and tissue types can provide further evidence that
differentiated regions influence phenotypic divergence if genes near genetic variants are
differentially expressed between species (Whiteley et al. 2010; Poelstra et al. 2014; McGirr and
Martin 2018; Verta and Jones 2019). However, this assumes that linked genetic variation within
cis-acting regulatory elements affects proximal gene expression levels, and does not rule out the
possibility of unlinked trans-acting regulatory variation binding regulatory regions to influence
expression levels (Wittkopp and Kalay 2011; Signor and Nuzhdin 2018).

It is possible to use RNAseq to identify mechanisms of gene expression divergence
between parental species by bringing cis elements from both parents together in the same trans
environment in F1 hybrids and quantifying allele specific expression (ASE) of parental alleles at
heterozygous sites (Cowles et al. 2002; Wittkopp et al. 2004; Signor and Nuzhdin 2018).
Determining whether a candidate gene is differentially expressed due to cis- or frans-regulatory
divergence is important to identify putatively causal alleles that can be further validated by
genome editing or transgenesis experiments. Furthermore, this type of analysis can reveal the
relative contribution of cis- and trans- variation influencing genome-wide patterns of expression
divergence. Some studies have found a larger contribution of cis-regulatory variation underlying
expression divergence between species (Graze et al. 2009; Shi et al. 2012; Schaefke et al. 2013;
Davidson and Balakrishnan 2016; Mack and Nachman 2017), whereas others have shown
expression patterns dominated by frans-acting variation (Streisfeld and Rausher 2009; McManus
et al. 2010; Hart et al. 2018). Overall, cis-acting alleles are generally thought to contribute more
to interspecific divergence and show mostly additive inheritance, while trans-acting alleles are
often more pleiotropic, contribute more to intraspecific divergence, and show non-additive

inheritance (Prud’homme et al. 2007; Lemos et al. 2008; Signor and Nuzhdin 2018).
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Here, we combine whole-genome resequencing, RNAseq, and F1 hybrid allele specific
expression analyses to identify regulatory mechanisms influencing rapidly evolving craniofacial
phenotypes within an adaptive radiation of Cyprinodon pupfishes on San Salvador Island,
Bahamas (Fig. 1). This sympatric radiation consists of a dietary generalist species (C. variegatus)
and two endemic specialist species adapted to novel trophic niches — a molluscivore (C.
brontotheroides) and a scale-eater (C. desquamator; (Martin and Wainwright 2013a)). Nearly all
forty-nine pupfish species in the genus Cyprinodon distributed across North America and the
Caribbean are dietary generalists with similar craniofacial morphology that is used for
consuming algae and small invertebrates (Fig. 1A (Martin and Wainwright 2011; Martin and
Wainwright 2013b)). The molluscivore evolved short, thick oral jaws stabilized by a nearly
immobile maxilla allowing it to specialize on hard-shelled prey including ostracods and
gastropods (Fig. 1B). This morphology results in a larger in-lever to out-lever ratio compared
with generalists, increasing mechanical advantage for strong biting (Hernandez et al. 2018). The
molluscivore is also characterized by a prominent maxillary anteriodorsal protrusion that may be
used as a wedge for extracting snails from their shells (Martin et al. 2017; St. John, et al. 2020a).
The scale-eater is a predator that evolved to bite scales and protein-rich mucus removed from
other pupfish species during rapid feeding strikes (Fig. 1C (St. John, et al. 2020b)). Scale-eaters
have greatly enlarged oral jaws, larger adductor mandibulae muscles, darker breeding coloration,
and a more elongated body compared with the generalist and molluscivore species (Martin and
Wainwright 2013a).

Exceptional craniofacial divergence despite extremely recent divergence times and low
genetic differentiation between molluscivores and scale-eaters make this system a compelling
evolutionary model for human craniofacial developmental disorders. These trophic specialist
species rapidly diverged from an ancestral generalist phenotype within the last 10-15k years
(Turner et al. 2008; Martin and Feinstein 2014). Molluscivores and scale-eaters readily hybridize
in the laboratory to produce fertile F1 offspring with approximately intermediate craniofacial
phenotypes between the parents and no obvious sex ratio distortion (Martin and Wainwright
2013b; Martin and Feinstein 2014). These species show evidence of pre-mating isolation in the
laboratory (West and Kodric-Brown 2015) and are genetically differentiated in sympatry
(genome-wide mean Fst = 0.14 across 12 million SNPs; (McGirr and Martin 2017)).
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We previously identified 31 genomic regions (20 kb) that contained SNPs fixed between
species (Fst = 1), showed signs of a hard selective sweep, and were significantly associated with
oral jaw size using multiple genome-wide association mapping approaches (McGirr and Martin
2017). A subset of these fixed SNPs fell within significant QTL explaining 15% of variation in
oral jaw size and were near genes annotated for effects on skeletal system development (Martin
et al. 2017). Here we use complementary approaches to identify candidate causal variants
putatively influencing craniofacial divergence by 1) incorporating transcriptomic data from 122
individuals sampled at three developmental stages (McGirr and Martin 2018; McGirr and Martin
2019), 2) applying genome divergence scans to a much larger sample of whole genomes from
San Salvador Island and surrounding Caribbean outgroup populations (increasing n = 37 to 258)
aligned to a new high-quality de novo genome assembly (Richards et al. 2020), 3) identifying
structural variation fixed between species for the first time in this system, and 4) inferring cis and
trans regulatory mechanisms underlying gene expression divergence between species using 12
F1 hybrid transcriptomes. Overall, we found that trans-regulatory divergence was responsible for
more expression divergence between species than cis-regulatory mechanisms. We also identified
two genes showing cis-regulatory divergence that were near just one fixed variant each: a
deletion upstream of a gene known to influence skeletal development (dync2lil) and a SNP
downstream of a novel skeletal candidate gene (pycr3). Our results highlight the utility of using
these closely related species replicated across isolated lake populations as an evolutionary model
for craniofacial development and provide highly promising candidate variants for future

functional validation experiments.

Results

Few fixed variants between young species showing drastic craniofacial divergence

We analyzed whole genome resequencing samples for 258 Cyprinodon pupfishes (median
coverage = 8%; (Richards et al. 2020)). This included 114 individuals from multiple isolated lake
populations on San Salvador Island (33 generalists, 46 molluscivores, and 35 scale-eaters) and
140 outgroup generalist pupfishes from across the Caribbean and North America. Libraries for
150PE Illumina sequencing were generated from DNA extracted from muscle tissue and the
resulting reads were mapped to the C. brontotheroides reference genome (v 1.0; total sequence

length = 1,162,855,435 bp; number of scaffolds = 15,698, scaffold N50, = 32,000,000 bp; L50 =
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15 scaffolds; (Richards et al. 2020)). Variants were called using the Genome Analysis Toolkit
(GATK v 3.5 (DePristo et al. 2011)) and filtered to include SNPs with a minor allele frequency
above 0.05, genotype quality above 20, and sites with greater than 50% genotyping rate across
all individuals.

Out of 9.3 million SNPs identified in our dataset, we found a mere 157 SNPs fixed
between molluscivore and scale-eater specialist species showing Fst = 1 (Fig. 2A; mean genome-
wide Fst = 0.076). Of these 157 variants, 46 were within 10 kb of 27 genes and none were in
coding regions. These 27 genes were enriched for 27 biological processes (P < 0.05), including
several ontologies describing neuronal development and activity of cell types within bone
marrow (Fig. 2B; Table S1).

Structural variants (including insertions, deletions, inversions, translocations, and copy
number variants) have been traditionally difficult to detect in non-model systems and ignored by
many early whole-genome comparative studies (Stapley et al. 2010; Ho et al. 2019;
Wellenreuther et al. 2019). We identified 80,012 structural variants across eight molluscivore
and scale-eater individuals using a method that calls variants based on combined evidence from
paired-end clustering and split read analysis (Rausch et al. 2012). Just 87 structural variants were
fixed between species and, strikingly, all structural variants were deletions fixed in scale-eaters.
This may reflect differences in the position of fitness optima between scale-eaters and
molluscivores relative to the putative ancestral optimum. We expect larger effect mutations, such
as deletions, to be more likely to fix in scale-eaters than molluscivores due to the more distant
position of the fitness optimum for scale-eating (Martin et al. 2017). Differences in population
size may also explain why all deletions are fixed in scale-eaters, which have a smaller effective
population size than molluscivores (Richards and Martin 2017; Richards et al. 2020). These
deletions ranged in size between 55 bp and 4,703 bp (Fig. 2C). Of these, 34 fixed deletions were
near 34 genes (Table S1). Only a single fixed deletion (1,256 bp) was found within a protein
coding region, spanning the entire fifth exon of gpa33 (Fig. 3). The 34 genes near fixed deletions
were enriched for 36 biological processes (P < 0.05), including ontologies describing bone
development, mesenchyme development, fibroblast growth, and digestive tract development
(Fig. 2D).

Including SNPs and deletions, we found a total of 80 fixed variants within 10 kb of 59
genes (Table S1). Encouragingly, 41 of these genes (70%) also showed high between population
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nucleotide divergence (Dxy > 0.0083 (genome-wide 90" percentile)), strengthening evidence for
adaptive divergence at these loci. Variants with larger effect sizes are predicted to fix faster than
variants with smaller effects. (Griswold 2006; Yeaman and Whitlock 2011; Stetter et al. 2018).
However, there are likely many alleles contributing to craniofacial divergence that are
segregating between populations of molluscivores and scale-eaters. We also identified genes near
SNPs showing lower values of Fs¢ that were still highly differentiated between species (Fst >
0.72 (genome-wide 99'" percentile) and Dxy > 0.0083 (genome-wide 90™ percentile)) and within
20 kb of a gene. Using these thresholds, we found 63,542 SNPs near 1,940 genes. This gene set
was enriched for 420 biological processes (P < 0.01), including embryonic cranial skeleton
morphogenesis, bone mineralization, muscle structure development, and forebrain development

(Table S2).

Genes near fixed variants are differentially expressed throughout development
All but one of the 80 variants fixed between species were in non-coding regions, suggesting that
these variants may affect species-specific phenotypes through regulation of nearby genes. In
order to identify patterns of gene expression divergence between species, we combined two
previous transcriptomic datasets spanning three developmental stages and three San Salvador
Island lake populations (McGirr and Martin 2018; McGirr and Martin 2019). F1 offspring were
sampled at 2 days post-fertilization (dpf), 8 dpf, and 20 dpf. RNA was extracted from whole
body tissue at 2 dpf and 8 dpf; whereas 20 dpf samples were dissected to only extract RNA from
craniofacial tissues (Table S3). The earlier developmental stages are described as stage 23 (2
dpf) and 34 (8 dpf) in a recent embryonic staging series of C. variegatus (Lencer and McCune
2018). The 2 dpf stage is comparable to the Early Pharyngula Period of zebrafish, when
multipotent neural crest cells have begun migrating to pharyngeal arches that will form the oral
jaws and most other craniofacial structures (Schilling and Kimmel 1994; Furutani-Seiki and
Wittbrodt 2004; Lencer et al. 2017). Embryos usually hatch six to ten days post fertilization, with
similar variation in hatch times among species (Lencer et al. 2017; McGirr and Martin 2018).
While some cranial elements are ossified prior to hatching, the skull is largely cartilaginous at 8
dpf and ossified by 20 dpf (Lencer and McCune 2018).

We used DEseq2 (Love et al. 2014) to contrast gene expression in pairwise comparisons

between species grouped by developmental stage (sample sizes for comparisons (molluscivores



239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

vs. scale-eaters): 2 dpf =6 vs. 6, 8 dpf=8 vs. 10, 20 dpf = 6 vs. 2). Out of 19,304 genes
annotated for the C. brontotheroides reference genome, we found 770 (5.93%) significantly
differentially expressed at 2 dpf, 1,277 (9.48%) at 8 dpf, and 312 (2.50%) at 20 dpf (Fig. 4A-D).
The lower number of genes differentially expressed at 20 dpf likely reflects reduced power to
detect expression differences due to the small scale-eater sample size. Nonetheless, we found
four genes differentially expressed throughout development at all three stages (filip1, clgaltl,
klhl24, and 0it3) and 248 genes were differentially expressed during two of the three stages
examined. Of the 59 genes within 10 kb of SNPs or deletions fixed between species, we found
12 differentially expressed during at least one developmental stage (Table 1; Fig. 4E). Two of
these genes (dync2lil and pycr3) were differentially expressed at 2 dpf and 8 dpf.

Since this is a young radiation, many other candidate adaptive loci are likely segregating
between species due to incomplete hard sweeps or because multiple adaptive haplotypes exist
causing signatures of soft sweeps. We also evaluated whether highly differentiated variants that
were not fixed between species may influence expression divergence. Of the 1,940 genes within
20 kb of highly differentiated SNPs (Fs¢z > 0.72 and Dxy > 0.0083), 384 were differentially
expressed during at least one developmental stage (Fig. S1). This gene set was enriched for 87
biological processes, including pigment accumulation, vasculature development, lipid

localization, and regulation of keratinocyte differentiation (P < 0.05; Table S4 and S5).

Regulatory mechanisms underlying expression divergence between species
Despite overall low genetic differentiation observed between species (genome-wide mean Fst =
0.076), we identified thousands of genes expressed in F1 hybrids containing heterozygous sites
that were alternately homozygous between parental populations (ranging between 18.5% —
28.5% of all genes expressed in F1 hybrids; Table S6). We measured allele specific expression
(ASE) for these genes using MBASED (Mayba et al. 2014) and inferred mechanisms of
regulatory divergence by comparing the ratio of maternal and paternal allelic expression in F1
hybrids with the ratio of molluscivore and scale-eater gene expression in purebred F1 offspring
(Fig. 5; (Cowles et al. 2002; Wittkopp et al. 2004; McManus et al. 2010; Mack et al. 2016)).
Most genes were expressed at a similar level in each species, as well as in F1 hybrids,
indicating conserved regulation (88.46% — 93.33%; Fig. 6). The majority of genes that were

differentially expressed between species showed frans-regulatory divergence (3.90% — 6.21%),
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which accounted for more than three times the number of genes influenced by cis-regulatory
divergence (1.08% — 1.67%). Trans-regulatory divergence was also more prevalent than
expression influenced by a combination of cis and frans effects. The number of genes influenced
by cis x trans compensatory changes (0.80% — 2.25%) was similar to the number of genes
influenced by cis + trans reinforcing changes (0.76% — 2.01%).

Cis-regulatory variants are expected to contribute to additive inheritance of gene
expression in F1 hybrids, while frans-regulatory variants are expected to influence patterns of
dominance (Prud’homme et al. 2007; Lemos et al. 2008; Signor and Nuzhdin 2018).
Furthermore, cis X trans compensatory changes can result in transgressive gene expression,
where expression is significantly higher or lower in F1 hybrids compared to parental populations
(Landry et al. 2005; Landry et al. 2007; Mack and Nachman 2016; McGirr and Martin 2019).
We found additive, dominant, and transgressive patterns of gene expression inheritance in F1
hybrids at both developmental stages. Despite the overall lower contribution of cis-regulatory
divergence compared to trans-regulatory divergence, we found that slightly more genes showed
additive inheritance than dominant inheritance (Fig. S2; 2 dpf: additive = 4.49% dominant =

1.90%; 8 dpf: additive = 5.84% dominant = 3.85%).

Fixed variants near genes showing cis-regulatory divergence
While most differential expression between species was explained by trans-regulatory
divergence, it is difficult to identify the down-stream targets of trans-acting alleles because they
are necessarily unlinked from the genes they regulate. Furthermore, it is unknown whether the
predominance of trans-regulatory divergence was driven by few alleles with numerous effects or
many alleles distributed throughout the genome. Thus, in order to identify candidate variation
causing differences in gene expression between molluscivores and scale-eaters, we examined
genes in highly differentiated regions of the genome that were differentially expressed due to cis-
regulatory divergence. We found a total of 148 genes showing cis-regulatory divergence among
all four F1 hybrid crosses (Fig. 6). We identified 37 of these genes (25%) within the set of 384
genes that were differentially expressed between species and within 20 kb of highly
differentiated SNPs (Fs¢ > 0.72 and Dxy > 0.0083; Table S7).

We also found differentially expressed genes showing cis-regulatory divergence that

were near the most highly differentiated regions of the genome containing variants fixed between
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species. Of the 12 genes that were within 10 kb of fixed variants, five contained heterozygous
sites that could be used to measure ASE (Fig. 7 and S3). Three of these (eefld, washc5, and pxk)
showed trans-regulatory divergence (Fig. S3). The other two genes which were differentially
expressed at 2 dpf and 8 dpf (dync2lil and pycr3) showed cis-regulatory divergence (Fig. 7).
This provided strong evidence that differential regulation of these genes was influenced by
genetic divergence within putative cis-regulatory elements.

These two genes showing cis-regulatory divergence were near just one fixed variant each:
a 91 bp deletion located 7,384 bp upstream of dync2lil and an A-to-C transversion 1,808 bp
downstream of pycr3 (Fig. 7). The next closest fixed variants were separated by greater than 600
kb and 31 kb, respectively. We searched the JASPAR database (Fornes et al. 2019) to identify
potential transcription factor binding sites that could be altered by these candidate cis-acting
variants. The 91 bp deletion near dync2lil contained binding motifs corresponding to seven
transcription factors (nfia, nfix, nfic, znf384, hoxal, gatal, myb; Table S8). Two binding motifs
spanned the pycr3 SNP region (gata2, mzfI), one of which, mfz1, was altered by the alternate
allele in scale-eaters. The scale-eater allele created a new potential binding motif matching the
transcription factor plagl2. Sanger sequencing confirmed the A-to-C transversion near pycr3 in

four additional individuals not included in the whole-genome resequencing dataset (Fig. 8).

Discussion

Understanding the developmental genetic basis of complex traits by investigating natural
variation among closely related species is a powerful complementary approach to traditional
genetic screens in model systems. The San Salvador Island Cyprinodon pupfish system is a
useful evolutionary model for understanding the genetic basis of craniofacial defects and natural
diversity given extensive morphological divergence between these young species (Fig. 1). We
found thousands of genetic variants that were highly differentiated between molluscivore and
scale-eater species that were near genes that were differentially expressed at multiple
developmental stages. Just 244 variants were fixed between species across 9.3 million SNPs and
80,012 structural variants (Fig. 2A and C). Almost all fixed variants were in non-coding regions,
with the exception of an exon-spanning deletion (Fig. 3). In support of these variants affecting
divergent adaptive phenotypes, 80 variants were near 59 genes that were enriched for

developmental functions related to divergent specialist traits (Fig. 2B and D). Furthermore,
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twelve of these genes were highly differentially expressed between species across three
developmental stages (Fig. 4E). By measuring allele-specific expression (ASE) in F1 hybrids
from multiple crosses between species, we found that trans-regulatory divergence explained
most patterns of expression divergence. We also identified two highly differentiated variants that
may act as cis-regulatory alleles affecting expression divergence between species: a fixed

deletion near dync2lil and a fixed SNP near pycr3 (Fig. 7).

Gene regulatory divergence during rapid speciation
Other studies investigating cis and frans-regulatory mechanisms have found that cis-acting
alleles contribute more to interspecific divergence, whereas frans-acting alleles contribute more
to intraspecific divergence (Prud’homme et al. 2007; Lemos et al. 2008; Signor and Nuzhdin
2018). Importantly, many of the studies supporting this pattern examine interspecific hybrids
generated by species pairs with much greater divergence times (Graze et al. 2009: Drosophila
melanogaster and D. simiulans diverged 2.5 mya; Tirosh et al. 2009: Saccharomyces cerevisiae
and S. paradoxus diverged 5 mya; Shi et al. 2012: Arabidopsis thaliana and A. arenosa diverged
5.3 mya). Given that molluscivores and scale-eaters rapidly diverged within the past 10,000
years and are known to hybridize in the wild, we may see trans-effects dominating for the same
reasons trans-effects are thought to contribute more to intraspecific divergence. This is because,
both within species and between young species pairs, the larger mutational target of trans-
regulatory factors results in the observed excess of trans-effects (Wittkopp et al. 2008; Emerson
et al. 2010; Suvorov et al. 2013).

Similar to other studies, we found predominately additive patterns of gene inheritance in
F1 hybrids (Hughes et al. 2006; Rottscheidt and Harr 2007; Davidson and Balakrishnan 2016).
However, this contrasts with our finding of wide-spread trans-regulatory divergence, which is
expected to contribute to dominant and recessive patterns of inheritance (Lemos et al. 2008;
Signor and Nuzhdin 2018). Since genes were required to contain heterozygous sites in F1
hybrids for ASE analyses, we were only able to classify mechanisms of regulatory divergence
for a subset of genes used to classify modes of inheritance (Table S6). It is possible that
heterozygous genes were biased to show trans-regulatory divergence. It is also possible that we
underestimated the number of genes showing cis-regulatory divergence between species. We

required that genes show ASE across the entire coding region to assign cis-regulatory
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divergence, which ignored the possibility of alleles affecting the expression of specific transcript

1soforms.

Fixed genetic variation influencing trophic specialization

In a previous analysis of SNPs from a smaller whole genome dataset, dync2lil was one of 30
candidate genes that showed signs of a hard selective sweep and was significantly associated
with variation in jaw size between molluscivores and scale-eaters using multiple genome-wide
association mapping approaches (McGirr and Martin 2017). Here we show that a fixed deletion
near dync2lil may influence expression divergence between species through cis-acting
regulatory mechanisms. This gene (dynein cytoplasmic 2 light intermediate chain 1) is known to
influence skeletal morphology in humans (Kessler et al. 2015; Taylor et al. 2015; Niceta et al.
2018). It is a component of the cytoplasmic dynein 2 complex which is important for
intraflagellar transport — the movement of protein particles along the length of eukaryotic cilia
(Cole 2003; Pfister et al. 2006). Due to the vital role that cilia play in the transduction of signals
in the hedgehog pathway and other pathways important for skeletal development, disruptions in
dynein complexes cause a variety of skeletal dysplasias collectively termed skeletal ciliopathies
(Huber and Cormier-Daire 2012; Taylor et al. 2015). Mutations in dync2lil have been linked
with ciliopathies that result from abnormal cilia shape and function including Ellis-van Creveld
syndrome, Jeune syndrome, and short rib polydactyly syndrome (Kessler et al. 2015; Taylor et
al. 2015; Niceta et al. 2018). These disorders are characterized by variable craniofacial
malformations including micrognathia (small jaw), hypodontia (tooth absence), and cleft palate
(Brueton et al. 1990; Ruiz-Perez and Goodship 2009; Taylor et al. 2015). The discovery of
dync2lil as a candidate gene influencing differences in oral jaw length between molluscivores
and scale-eaters suggests that this system is particularly well-suited as an evolutionary mutant
model for clinical phenotypes involving jaw size, such as micrognathia and macrognathia.

We also identified a fixed SNP near the gene pycr3 (pyrroline-5-carboxylate reductase 3;
also denoted pycrl) which showed cis-regulatory divergence. This gene is not currently known to
influence craniofacial phenotypes in humans or other model systems. However, one study
investigating gene expression divergence between beef and dairy breed bulls found that pycr3
was one of the most highly differentially expressed genes in skeletal muscle tissues. The authors

found nearly a three-fold difference in expression of pycr3 between the two bull breeds that are
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primarily characterized by differences in muscle anatomy (Sadkowski et al. 2009). Similarly,
expression changes in this gene may influence skeletal muscle development in specialists
species, which differ in the size of their adductor mandibulae muscles (Martin and Wainwright
2011; Hernandez et al. 2018). The A-to-C transversion near pycr3 could influence differences in
expression by altering transcription factor binding. We found that the molluscivore allele
matches the binding motif of mzf1 (myeloid zinc finger 1; Fig. 8), a transcription factor known to
influence cell proliferation (Gaboli et al. 2001), whereas the scale-eater allele alters this motif.
This type of binding motif analysis has a high sensitivity (mzfI is known to bind this motif) but
extremely low selectivity (mzfI does not bind nearly every occurrence of this motif, which
appears 1,430,540 times in the molluscivore reference genome).

While oral jaw size is the primary axis of phenotypic divergence in the San Salvador
Island pupfish system, adaptation to divergent niches required changes in a suite of
morphological and behavioral phenotypes (St John et al. 2019; St. John, Holzman, et al. 2020).
Most genes differentially expressed between species were found within whole embryo tissues
(Fig. 4A-D), suggesting we should find candidate genes influencing the development of
craniofacial phenotypes and other divergent traits. Of the 244 variants fixed between species, the
only coding variant was a 1,256 bp deletion that spanned the fifth exon of gpa33 (glycoprotein
A33), which is expressed exclusively in intestinal epithelium (Fig. 3). Knockouts of this gene in
mice cause increased hypersensitivity to food allergens and susceptibility to a range of related
inflammatory intestinal pathologies (Williams et al. 2015). The gut contents of wild-caught
scale-eaters are comprised of 40-51% scales (Martin and Wainwright 2013c). The exon deletion
of gpa33 may play a metabolic role in this unique adaptation that allows scale-eaters to occupy a
higher trophic level than molluscivores. Future studies in this system will benefit from
sequencing and analyses that target specific tissues and cell types to determine whether candidate

variants affect a single phenotype or have pleiotropic effects.

The effectiveness of Cyprinodon pupfishes for identifying candidate cis-regulatory variants
One major advantage of investigating the genetic basis of craniofacial divergence between
molluscivores and scale-eaters is the low amount of genetic divergence between species.
Species-specific phenotypes are replicated across multiple isolated lake populations that exhibit

substantial ongoing gene flow. This has resulted in small regions of the genome showing strong
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genetic differentiation (63,542 SNPs showing Fst > 0.72 and Dxy > 0.0083), with some regions
containing just a single variant fixed between species. The low number of fixed variants
dispersed across the genome makes this system relatively unique compared to other systems with
similar divergence times (Whiteley et al. 2010; Jones et al. 2012; Martin et al. 2019).

A previous study found a significant QTL explaining 15% of variation in oral jaw size
and three more potential moderate-effect QTL, suggesting that we may expect to find variants
with moderate effects on craniofacial divergence. Variants with larger effect sizes are predicted
to fix faster than variants with smaller effects, especially given short divergence times (Griswold
2006; Yeaman and Whitlock 2011; Stetter et al. 2018), which may suggest that the fixed variants
near dync2lil and pycr3 have larger effects than segregating candidate alleles. However, these
fixed alleles are tightly linked with other highly differentiated alleles and may affect phenotypic
divergence through combined small effects with many closely clustered variants. Furthermore,
the fixation rate of mutations is not only dependent on effect size, but also dominance, which is
an important mode of gene expression inheritance in this system (Fig. S2) and other systems
(Gibson et al. 2004; Lemos et al. 2008; Signor and Nuzhdin 2018). While the fixed variants near
dync2lil and pycr3 represent promising candidate alleles, adaptive differences in craniofacial
morphology are likely influenced by many loci, similar to polygenic traits studied in other

systems (Bergland et al. 2014; Boyle et al. 2017; Barghi et al. 2019; Sella et al. 2019).

Conclusions

Overall, our results highlight the utility of the San Salvador Island pupfish system as an
evolutionary mutant model for natural and clinical variation in human craniofacial phenotypes.
Similar rapid speciation replicated across many environments can be found in other adaptive
radiations (Martin et al. 2019; Martin and Richards 2019; Levin et al. 2020), which could also
prove useful as evolutionary models for a variety of other human traits. We found that a
combination of structural variant likely contribute to the evolution of highly divergent
craniofacial morphology, and that trans-regulatory mechanisms dominate patterns of expression
divergence between these young species. Future studies will attempt to validate the effect of

candidate variation on gene expression and craniofacial development in vivo.

Methods
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Identifying genomic variation fixed between specialists
In order to identify SNPs fixed between molluscivores and scale-eaters, we analyzed whole
genome resequencing samples for 258 individuals from across the Caribbean (median coverage =
8%; (Richards et al. 2020)). Briefly, 114 pupfishes from 15 isolated hypersaline lakes and one
estuary on San Salvador Island were collected using hand and seine nets between 2011 and 2018.
This included 33 generalists, 46 molluscivores, and 35 scale-eaters. Eight of these individuals
were bred to generate F1 offspring sampled for RNA sequencing (Table S3). This dataset also
included 140 outgroup generalist pupfishes from across the Caribbean and North America,
including two individuals belonging to the pupfish radiation in Lake Chichancanab, Mexico, and
two individuals from the most closely related outgroups to Cyprinodon (Megupsilon aporus and
Cualac tessellatus (Echelle et al. 2005)). Libraries for 150PE Illumina sequencing were
generated from DNA extracted from muscle tissue and the resulting reads were mapped to the C.
brontotheroides reference genome (v 1.0; total sequence length = 1,162,855,435 bp; number of
scaffolds = 15,698, scaffold N50, = 32,000,000 bp; L50 = 15 scaffolds; (Richards et al. 2020)).
Variants were called using the HaplotypeCaller function of the Genome Analysis Toolkit
(GATK v 3.5 (DePristo et al. 2011)). The GATK best practices workflow suggests using high-
quality known variants to act as a reference to recalibrate variant quality scores. Due to the lack
of a high confidence variant call set for this system, SNPs were filtered using conservative hard-
filtering parameters (Richards and Martin 2020; DePristo et al. 2011). SNPs were further filtered
to include SNPs with a minor allele frequency above 0.05, genotype quality above 20, and sites
with greater than 50% genotyping rate across all individuals, resulting in 9.3 million SNPs.
Measuring relative genetic differentiation (Fs7) between species can point to regions of
the genome containing variation affecting divergent phenotypes (Jones et al. 2012; Poelstra et al.
2014; Lamichhaney et al. 2015). However, Fist is dependent on the many potential forces acting
to reduce within-population nucleotide diversity, including selective sweeps, purifying selection,
background selection, and low recombination rates (Noor and Bennett 2009; Cruickshank and
Hahn 2014). Measuring between-population divergence (Dxy) can help distinguish between
these possibilities because nucleotide divergence between species increases at loci under
different selective regimes (Nachman and Payseur 2012; Cruickshank and Hahn 2014; Irwin et
al. 2016). We measured F'st between species with vcftools (v. 0.1.15; weir-fst-pop function) and

identified fixed SNPs (Fst = 1). We also measured Fst and Dxy in 10 kb and 20 kb windows
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using the python script popGenWindows.py created by Simon Martin
(github.com/simonhmartin/genomics_general; (Martin et al. 2013)).

We identified structural variation (insertions, deletions, inversions, translocations, and
copy number variants) fixed between specialist species with DELLY (v 0.8.1; (Rausch et al.
2012)). Unlike GATK HaplotypeCaller which is limited to identifying structural variants smaller
than half the length of read size (DePristo et al. 2011), DELLY can identify small variants in
addition to variants larger than 300 bp using paired-end clustering and split read analysis. We
used DELLY to identify structural variants across eight whole genomes from the breeding pairs
used to generate F1 hybrid RNA samples (four scale-eaters from two lake populations and four
molluscivores from the same two lake populations; Table S3). First, we trimmed reads using
Trim Galore (v. 4.4, Babraham Bioinformatics), aligned them to the C. brontotheroides reference
genome with the Burrows-Wheeler Alignment Tool (v 0.7.12; (Li and Durbin 2011), and
removed duplicate reads from the resulting .bam files with Picard MarkDuplicates
(broadinstitute.github.io/picard). Second, we called variants with DELLY by comparing an
individual of one species with all individuals of the other species, resulting in eight variant call
files. Third, we identified structural variants fixed between species that were shared across all
eight files, in which all molluscivores showed the reference allele and all scale-eaters showed the

same alternate allele.

Transcriptomic sequencing, alignment, and variant discovery

Our transcriptomic dataset included 50 libraries from 122 individuals sampled across three early
developmental stages (Table S3; (McGirr and Martin 2018; McGirr and Martin 2019)). Breeding
pairs used to generate F1 hybrids and purebred F1 offspring were collected from three
hypersaline lakes on San Salvador Island: Crescent Pond, Osprey Lake, and Little Lake. For
purebred crosses, we collected F1 embryos from breeding tanks containing multiple breeding
pairs from a single lake population. For F1 hybrid samples, we crossed a single individual of one
species with a single individual of another species from the same lake population.

RNA was extracted from samples collected two days after fertilization (2 dpf) eight days
after fertilization (8 dpf), and 17-20 days after fertilization (20 dpf) using RNeasy Mini Kits
(Qiagen catalog #74104). For samples collected at 2 dpf, we pooled 5 embryos together and
pulverized them in a 1.5 ml Eppendorf tube using a plastic pestle washed with RNase Away
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(Molecular BioProducts). We used the same extraction method for samples collected at 8 dpf but
did not pool larvae and prepared a library for each individual separately. We dissected samples
collected at 20 dpf to isolate tissues from the anterior craniofacial region containing the dentary,
angular articular, maxilla, premaxilla, palatine, and associated craniofacial connective tissues
using fine-tipped tweezers washed with RNase AWAY. All samples were reared in breeding
tanks at 25-27°C, 10-15 ppt salinity, pH 8.3, and fed a mix of commercial pellet foods and
frozen foods.

Methods for total mRNA sequencing were previously described (McGirr and Martin
2018; McGirr and Martin 2019). Briefly, 2 dpf and 8 dpf libraries were prepared using TruSeq
stranded mRNA kits and sequenced on 3 lanes of Illumina 150 PE Hiseq4000 at the Vincent J.
Coates Genomic Sequencing Center (McGirr and Martin 2019). All 20 dpf libraries were
prepared using the KAPA stranded mRNA-seq kit at the High Throughput Genomic Sequencing
Facility at UNC Chapel Hill and sequenced on one lane of [llumina 150PE Hiseq4000 (McGirr
and Martin 2018). We filtered raw reads using Trim Galore (v. 4.4, Babraham Bioinformatics) to
remove I[llumina adaptors and low-quality reads (mean Phred score < 20) and mapped
122,090,823 filtered reads to the C. brontotheroides reference genome (Richards et al. 2020)
using the RNAseq aligner STAR with default parameters (v. 2.5 (Dobin et al. 2013)). We
assessed mapping and read quality using MultiQC (Ewels et al. 2016) and quantified the number
of duplicate reads and the median percent GC content of mapped reads for each sample using
RSeQC (Wang et al. 2012). Although all reads were mapped to a molluscivore reference
genome, we did not find a significant difference between species in the proportion of reads
uniquely mapped with STAR (Fig. S4 A; Student’s t-test, P = 0.061). Additionally, we did not
find a difference between species in the proportion of multimapped reads, GC content of reads,
or number of duplicate reads (Fig. S4 B-D; Student’s t-test, P > 0.05).

We used GATK HaplotypeCaller function to call SNPs across 50 quality filtered
transcriptomes. We refined SNPs using the allele-specific software WASP (v. 0.3.3) to correct
for potential mapping biases that would influence tests of allele-specific expression (ASE; (Van
De Geijn et al. 2015)). WASP identified reads that overlapped SNPs in the initial .bam files and
re-mapped those reads after swapping the genotype for the alternate allele. Reads that failed to

map to exactly the same location were discarded. We re-mapped unbiased reads to create our
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final .bam files used for differential expression analyses. Finally, we re-called SNPs using

unbiased .bam files for allele specific expression analyses.

Differential expression analyses

We used the featureCounts function of the Rsubread package (Liao et al. 2014) requiring paired-
end and reverse stranded options to generate read counts across 19,304 genes and 156,743 exons
annotated for the molluscivore (C. brontotheroides) reference genome (Richards et al. 2020). We
used DESeq2 (v. 3.5 (Love et al. 2014)) to normalize raw read counts for library size and
perform principal component analyses, and identify differentially expressed genes. DESeq? fits
negative binomial generalized linear models for each gene across samples to test the null
hypothesis that the fold change in gene expression between two groups is zero. Significant
differential expression between groups was determined with Wald tests by comparing
normalized posterior log fold change estimates and correcting for multiple testing using the
Benjamini—-Hochberg procedure with a false discovery rate of 0.01 (Benjamini and Hochberg
1995).

We constructed a DESeqDataSet object in R using a multi-factor design that accounted
for variance in F1 read counts influenced by parental population origin and sequencing date
(design = ~sequencing_date + parental breeding pair populations). Next, we used a variance
stabilizing transformation on normalized counts and performed a principal component analysis to
visualize the major axes of variation in 2 dpf, 8 dpf, and 20 dpf samples (Fig. S5). We contrasted
gene expression in pairwise comparisons between species grouped by developmental stage
(sample sizes for comparisons (molluscivores vs. scale-eaters): 2 dpf = 6 vs. 6, 8 dpf =8 vs. 10,

20 dpf=6vs. 2).

We used plyranges (v. 1.6.5; (Lee et al. 2019)) to identify genetic variants overlapping
with gene regions. For each gene we identified variants within 10 kb of the start of the first exon
and within 10 kb of the end of the last exon). We also searched within 20 kb of genes, which is
the distance at which linkage disequilibrium decays to background levels (McGirr and Martin
2017). Using these window sizes, we were only able to identify differentiated regions of the
genome as candidate cis-regulatory regions that may influence expression levels of linked genes.
This approach does not take into account the action of distal regulatory regions acting at longer

ranges.
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Allele specific expression analyses

Our SNP dataset included every parent used to generate F1 hybrids between populations (n = 8).
We used the GATK VariantsToTable function (DePristo et al. 2011) to output genotypes across
9.3 million SNPs for each parent and overlapped these sites with the variant sites identified in F1
hybrid transcriptomes. We used python scripts (github.com/joemcgirr/fishfASE) to identify
SNPs that were alternatively homozygous in breeding pairs and heterozygous in their F1
offspring. We counted reads across heterozygous sites using ASEReadCounter (-minDepth 20 --
minMappingQuality 10 --minBaseQuality 20 -drf DuplicateRead) and matched read counts to
maternal and paternal alleles.

We identified significant allele-specific expression (ASE) using a beta-binomial test
comparing the maternal and paternal counts at each gene with the R package MBASED (Mayba
et al. 2014). For each F1 hybrid sample, we performed a 1-sample analysis with MBASED using
default parameters run for 1,000,000 simulations to determine whether genes showed significant
ASE in hybrids (P < 0.05). To test whether certain types of genes were disproportionally
included or excluded from ASE analyses due to the requirement that a gene contain heterozygous
sites in F1 hybrids, we determined how many of these genes were annotated for effects on
cranial skeletal system development (GO:1904888) and skeletal system development
(GO:0048705). We performed Fisher’s exact tests for each cross, testing the null hypothesis that
the proportion of heterozygous genes within an ontology was equal to the proportion of non-
informative genes within an ontology. We did not find that genes involved in skeletal
development were disproportionally excluded from ASE analyses due to the requirement that a

gene contain heterozygous sites (Fisher’s exact test, P > 0.05; Table S9).

Classifying regulatory mechanisms and inheritance in F1 hybrids

It is possible to identify mechanisms of gene expression divergence between parental species by
bringing cis elements from both parents together in the same trans environment in F1 hybrids
and quantifying allele specific expression (ASE) of parental alleles at heterozygous sites (Fig. 5;
(Cowles et al. 2002; Wittkopp et al. 2004)). A gene that is differentially expressed between

parental species that also shows ASE biased toward one parental allele is expected to result from
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cis-regulatory divergence. A gene that is differentially expressed between parental species that
does not show ASE in F1 hybrids is expected to result from #rans-regulatory divergence.

In order to determine regulatory mechanisms controlling expression divergence between
parental species, a gene had to be included in differential expression analyses and ASE analyses.
We required that genes had at least two informative SNPs with >10x coverage to assign
regulatory mechanisms. We calculated H — the ratio of maternal allele counts compared to the
number of paternal allele counts in F1 hybrids, and P — the ratio of normalized read counts in
purebred F1 offspring from the maternal population compared to read counts in purebred F1
offspring from the paternal population. We performed a Fisher’s exact test using H and P to
determine whether there was a significant ¢trans- contribution to expression divergence (T),
testing the null hypothesis that the ratio of read counts in the parental populations was equal to
the ratio of parental allele counts in hybrids (Wittkopp et al. 2004; McManus et al. 2010;
Goncalves et al. 2012; Mack et al. 2016).

For each lake population at each developmental stage, we classified expression
divergence due to cis-regulation if a gene showed significant ASE in all F1 hybrids, significant
differential expression between parental populations of purebred F1 offspring, and no significant
T. We identified expression divergence due to trans-regulation if genes did not show ASE, were
differentially expressed between parental populations, and showed significant T. We defined cis
x trans regulatory divergence if a gene showed H and P with opposing signs (cis- and trans-
regulatory factors had opposing effects on expression), significant ASE, significant T, and was
not differentially expressed between parental populations. We defined cis + trans regulatory
divergence if a gene showed H and P with the same sign (cis- and trans-regulatory factors had
the same effect on expression), significant ASE, significant T, and was not differentially
expressed between parental populations (McManus et al. 2010; Coolon et al. 2014; Mack et al.
2016).

For each developmental stage, we grouped species and F1 hybrids by lake population and
compared expression in F1 hybrids to expression in purebred offspring to determine whether
genes showed additive, dominant, or transgressive patterns of inheritance in hybrids. We
conducted four pairwise differential expression tests with DESeq2: 1) molluscivores vs. scale-
eaters 2) molluscivores vs. F1 hybrids 3) scale-eaters vs. F1 hybrids 4) mollluscivores and scale-

eaters vs. F1 hybrids. Hybrid inheritance was considered additive if hybrid gene expression was



640 intermediate between parental populations and significantly different between parental

641  populations. Inheritance was dominant if hybrid expression was significantly different from one
642  parental population but not the other. Genes showing misexpression in hybrids showed

643  transgressive inheritance, meaning hybrid gene expression was significantly higher

644  (overdominant) or lower (underdominant) than both parental species.

645

646  Gene ontology enrichment and transcription factor binding site analyses

647  We performed gene ontology (GO) enrichment analyses for genes near candidate adaptive

648  variants using ShinyGo v.0.51 (Ge et al. 2019). The C. brontotheroides reference genome was
649  annotated using MAKER, a genome annotation pipeline that annotates genes, transcripts, and
650  proteins (Cantarel et al. 2008). Gene symbols for orthologs identified by this pipeline largely
651  match human gene symbols. Thus, we searched for enrichment across biological process

652  ontologies curated for human gene functions.

653 We searched the JASPAR database (Fornes et al. 2019) to identify whether fixed

654  variation near genes showing cis-regulatory divergence altered potential transcription factor

655  binding sites. We generated fasta sequences for the molluscivore containing the variant site and
656 20 bp on either end of the site and searched across all 1011 predicted vertebrate binding motifs in
657  the database using a 95% relative profile score threshold. We then preformed the same analysis
658  for scale-eater fasta sequences containing the alternate allele.

659

660  Genotyping fixed variants

661  In order to confirm the genotypes of putative cis-acting variants, we performed Sanger

662  sequencing on four additional individuals that were not included in our whole-genome dataset.
663  We extracted DNA from muscle tissue using DNeasy Blood and Tissue kits (Qiagen, Inc.) from
664  two molluscivores and two scale-eaters (wild samples were collected from Crescent Pond and
665  Osprey Lake for both species). We designed primers targeting the regions containing variation
666  fixed between species near the two genes showing evidence for cis-regulatory divergence (pycr3
667  and dync2lil) using the NCBI primer design tool (Ye et al. 2012). We designed primers targeting
668  a 446 bp region containing the SNP fixed between species (scaffold: HiC scaffold 16 ; position:
669  1,0043,644) that was 1,808 bp downstream of pycr3 (forward: 5'-

670 ACCATTCCAGAAGACAAAAAGCG-3'; reverse: 5'-GGCCCTATATATGGGATGCACAA-



671
672
673
674
675
676
677
678
679
680

681
682
683
684
685
686
687
688

689

690

691

692

693

694
695
696
697

698

3"). Sequences were amplified with PCR using New England BioLabs Tag polymerase (no.
0141705) and ANTP solution (no. 0861609) and Sanger sequencing was performed at Eton
Bioscience Inc. (Research Triangle Park, North Carolina). Aligning the resulting sequences using
the Clustal Omega Multiple Sequence Alignment Tool (Madeira et al. 2019)) confirmed the A-
to-C transversion in scale-eaters (Fig. 8). We designed two additional primer sets targeting the
deletion region near dync2lil (scaffold: HiC scaffold 43 ; position: 26,792,380-26,792,471).
While both primer sets amplified the sequence in molluscivore samples (not shown), we were

unable to amplify this region in scale-eaters, potentially due to high polymorphism in this region.
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Table 1. Twelve genes differentially expressed between molluscivores and scale-eaters at 2 days
post fertilization (dpf), 8 dpf, and/or 20 dpf (P < 0.01 in bold). MNC = mean normalized counts
across all samples. LFC = log2 fold change in expression (positive values indicate higher
expression in scale-eaters than molluscivores). P = adjusted P-value for differential expression
(DESeq2).

2 dpf 8 dpf 20 dpf
gene MNC LFC P MNC  LFC P MNC LFC P
dync2lil 96.09 -0.70  3.7E-05 34.05 -1.05 S5.2E-05 23.83 -1.10  1.2E-01
pyer3 22191 049  2.5E-03 56.19 1.09 1.5E-08 38.16 0.13 8.9E-01
eefld 1984.23 0.18 1.3E-01 1076.82 0.51 8.8E-07 126539 0.08 8.9E-01
washc) 293.53  -0.14 5.0E-01 14155 -0.40 9.2E-04 14395 -0.03  9.6E-01
pxk 20536 0.19 29E-01 183.15 0.67 1.9E-04 120.35 0.65 7.3E-02
hintl 171970 0.28  2.6E-01 824.17 046 9.4E-03 336.79 -1.03  9.7E-03
nsmce2 260.89  -0.48 1.4E-04 79.51 -0.44 1.5E-02 8297 -0.80  6.1E-02
gimap?2 17.46 2.14 5.5E-04 46.44 0.04 9.5E-01 5794 1.89 1.6E-02
cdksrl 106.52  -0.59 3.7E-03 292.02 0.31 9.2E-02 7.22 -1.18  3.6E-01
dph5 34439 051 2.8E-03 108.03 0.20 29E-01 63.25 -0.28  6.4E-01
pdhb 662.23 041  6.9E-03 2359.84 0.06 8.1E-01 680.86 -0.29 5.8E-01

irfl 5.62 032  7.6E-01 142.62 -1.19 29E-04 36024 1.17 1.0E-01
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Fig. 1. San Salvador Island pupfishes exhibit exceptional craniofacial divergence despite
recent divergence times. A) Cyprinodon variegatus (generalist), B) C. brontotheroides
(molluscivore), C) C. desquamator (scale-eater). uCT scans modified from (Hernandez et al.
2018) show major craniofacial skeletal structures diverged among species including the maxilla
(blue), premaxilla (red), dentary (green), and articular (brown).
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Fig. 2. Very few SNPs and structural variants are fixed between trophic specialists. A)
Distribution of Weir and Cokerham Fist values across 9.3 million SNPs. 157 were fixed between
species (Fst = 1). B) 46 of the 157 SNPs were located near 27 genes that were enriched for 27
biological processes (FDR < 0.05). C) Size distribution of the 87 deletions are fixed between
species out of 80,012 structural variants. D) 34 of the 87 fixed deletions were within 10 kb of 34
genes that were enriched for 36 biological processes.
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Fig. 3. The only fixed variant within a protein coding region is an exon deletion of gpa33.
A) A 1,256 bp deletion (red) identified by DELLY spans the entire fifth exon of gpa33 and is
fixed in scale-eaters. B and C) The gene is not significantly differentially expressed between
molluscivores (red) and scale-eaters (blue) at 2 days post fertilization (dpf) or 8 dpf when
considering read counts across all exons (P > 0.05). D and E) However, when only considering
the fifth exon, scale-eaters show no expression and F1 hybrids (grey) show reduced expression,
supporting evidence for the deletion.
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Fig. 4. Genes near fixed variants are differentially expressed between species across three
developmental stages. Genes differentially expressed (red; P < 0.01) between molluscivores and
scale-eaters at A) 2 days post fertilization (dpf), B) 8 dpf, and C) 20 dpf. Positive log2 fold
changes indicate higher expression in scale-eaters relative to molluscivores. D) Proportion of
genes differentially expressed out of the total number of genes expressed across three stages. E)
UpSet plot (Conway et al. 2017) showing intersection across five sets: genes differentially
expressed at each of the three stages, genes within 10 kb of fixed SNPs, and genes within 10 kb
of fixed deletions. The twelve labeled genes were differentially expressed during at least one
stage and within 10 kb of fixed variants.
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Fig. 5. Deciphering between cis- and trans-regulatory divergence influencing gene
expression. Diagrams show protein coding gene regions (yellow) regulated by linked cis-acting
elements (grey) and trans-acting binding proteins (green). In the examples, a female
molluscivore is crossed with a male scale-eater to produce an F1 hybrid. The two species are
alternatively homozygous for an allele within the coding region of a gene that shows higher
expression in the molluscivore than the scale-eater. A) A cis-acting variant causing reduced
expression results in low expression of the scale-eater allele in the F1 hybrid. B) Lower
expression in the scale-eater is caused by a trans-acting variant, resulting in similar expression
levels of both parental alleles in the F1 hybrid.
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Fig. 6. Regulatory mechanisms underlying expression divergence between species. The ratio
of maternal and paternal allelic expression in F1 hybrids (H) relative to the ratio of molluscivore
and scale-eater gene expression in purebred F1 offspring (P) for genes containing heterozygous
sites. Left panels show expression in Crescent Pond samples and right panels show Osprey Lake
samples. Red = cis (significant ASE in F1 hybrids, significant differential expression between
species, and no significant frans- contribution), black = trans (significant ASE in hybrids,
significant differential expression between species, and significant trans- contribution), blue =
cis x trans (cis and trans effects show opposing signs, significant ASE, no significant differential
expression between species, significant trans- contribution), yellow = cis + trans (cis and trans
effects show the same sign, significant ASE, no significant differential expression between



species, significant frans- contribution), grey = conserved (No differential expression between
species and no ASE).
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Fig. 7. Two genes near fixed variants show cis-regulatory divergence between trophic
specialists. A-D) Mean counts for reads spanning dync2lil and pycr3 that match parental alleles
at heterozygous sites are shown for crosses between Crescent Pond molluscivores (red) and
scale-eaters (blue) at 2 dpf (A and C) and 8 dpf (B and D). E-H) Normalized read counts for F1
offspring from Crescent Pond (circles) and Osprey Lake (triangles) crosses. Both genes are
differentially expressed between molluscivores (red) and scale-eaters (blue) at both
developmental stages and show additive inheritance in F1 hybrids (grey; P < 0.01*, 0.001*%*,
0.0001*** P> 0.01 ns). For both genes, F1 hybrids show higher expression of alleles derived
from the parental species that shows higher gene expression in purebred F1 offspring (MBASED
P <0.05) and show cis-regulatory divergence between species. I-L) Both genes (green lines) are
within regions showing high relative genetic differentiation (Fis¢; I and K) and high absolute
genetic divergence (Dxy; J and L). Red triangle shows fixed deletion. Red points show fixed
SNPs (Fst=1).
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Fig. 8. Sanger sequencing confirms fixed SNP that could alter transcription factor binding
near pycr3. Chromatograms on the right confirm the A-to-C transversion fixed in scale-eaters
that falls between eef1d (Fig. S3) and pycr3 (Fig. 7). The myeloid zinc finger transcription factor
binds a motif that matches the molluscivore (JASPAR database matrix ID: MA0056.1), however,
the scale-eater allele alters this motif.



