Unusual isothermal hysteresis in DNA i-motif pH-transitions: A study of the *RAD17* promoter sequence

Running Head: Unusual hysteresis of the DNA i-motif

R. Aaron Rogers, Aaron M. Fleming, Cynthia J. Burrows*

Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, Utah 84112-0850, United States

*burrows@chem.utah.edu

Abstract

We have interrogated the isothermal folding behavior of the DNA i-motif of the human telomere, dC₁₉ and a high-stability i-motif-forming sequence in the promoter of the human DNA repair gene *RAD17* using human physiological solution and temperature conditions. We developed a CD spectroscopy-based pH titration method that is followed by analysis of titration curves in the derivative domain and found that the observed pH-dependent folding behavior can be significantly different and in some cases multiphasic, with a dependence on how rapidly i-motif folding is induced. Interestingly, the human telomere sequence exhibits unusual isothermal hysteresis in which the unfolding process always occurs at a higher pH than the folding process. For the RAD17 i-motif, rapid folding by injection into a low pH solution results in triphasic unfolding behavior that is completely diminished when samples are slowly folded in a step-wise manner via pH titration. Chemical footprinting of the RAD17 sequence and pH titrations of dT-substituted mutants of the RAD17 sequence were used to develop a model of RAD17 folding and unfolding. These results may provide valuable information pertinent to i-motif use in sensors and materials, as well as insight into the potential biological activity of i-motif-forming sequences under step-wise or instantaneous changes in pH.

Introduction

The DNA i-motif is a non-canonical tetraplex structure typically formed under conditions of low pH (1, 2) in sequences with proximal homopolymer tracks of 2`-deoxycytidine (dC). Currently, research involving DNA i-motif structures ranges from gene regulation (3–5) to

smart sensors, DNA switches and nanoparticle assembly techniques (6, 7). A commonality in i-motif relevance and/or utility for any field relies heavily on the pH-dependent folding and unfolding behavior of i-motif-forming sequences and the conditions that influence it. Intrinsic factors that affect folding behavior are the length of the oligodeoxynucleotide (8), the length and number of the poly-dC tracks (9) and the length and nucleotide composition of intervening, non-poly-dC tracks (10–13). Extrinsic factors influencing i-motif structural transitions include salt concentration and identity (1, 14–16), temperature (11, 17) and molecular crowding (18–20).

The aforementioned factors generate a complex set of experimental variables that one must consider when characterizing i-motif-forming sequences *in vitro*. Physiological salt and buffer conditions are typically mimicked for investigations into the folding behavior and structure of biologically pertinent sequences, while alternative conditions may be used for other applications. For any new i-motif-forming sequence, however, the focus first centers on a parameter called the transition pH (pH_T), defined as the pH at a given temperature at which 50% of the oligodeoxynucleotide resides in the intramolecularly folded state.

Evaluating the pH_T for a potential i-motif-forming DNA sequence is usually performed using either ultraviolet (UV), circular dichroism (CD) or nuclear magnetic resonance (NMR) spectroscopy (21–23). In a typical experiment, the spectrum of a set of isothermally equilibrated sample solutions, each at a unique pH value, are recorded. The absorbance (UV) or molar ellipticity (CD) of the samples at a characteristic wavelength maximum, ~260 nm in the UV spectrum and ~285 nm in the CD spectrum, or the intensity of a characteristic chemical shift in the NMR spectrum, are then collected for each sample

at each pH. Absorbance or rotation values may then be normalized and fit to a sigmoid equation model, directly fit to a sigmoid equation model or interpolated with a spline curve to determine the pH_T value. These approaches give a steady state transition curve that is rapidly obtained and can be easily used to compare the pH-dependent stability of a set of sequences of interest.

Though useful for surveys of potential i-motif-forming sequences, typical sampling pH intervals are too wide to provide a complete picture of i-motif folding behavior under pertinent condition changes such as one-directional decreases or increases in solution pH, especially when the rate of pH change varies. Examination of the detailed folding and unfolding structural transitions of i-motif forming sequences can, as we have found, reveal unusual multiphasic structural transition behavior. For any applications in which the i-motif is the primary sensing element, multiphasic structural transition behavior could be exploited to give highly specific information about environmental changes within narrow pH ranges. Further, knowledge of hysteresis in i-motif structural transitions under various conditional constraints can be used to enhance the accuracy of i-motif sensors. This is of particular interest for applications of i-motif forming oligodeoxynucleotides in cellular environments, such as those developed by Modi, et. al for DNA nanomachines employed to sense pH changes in living cells (24, 25).

Biomolecular folding behavior and conformational states can be interrogated by a variety of experimental techniques such as nuclear magnetic resonance spectroscopy (NMR), Förster resonance energy transfer (FRET) and x-ray crystallography, but each has pitfalls compared to CD spectroscopy. NMR utilizes uses high oligodeoxynucleotide concentrations, well above what is physiologically relevant, which could alter the

equilibrated state or structure of folded conformations. FRET employs the use of oligodeoxynucleotides covalently modified with large, hydrophobic dyes, which result in a non-native biomolecule and x-ray crystallography does not allow the conclusive determination of solution phase structure or the interrogation of structural transitions. In comparison, CD spectroscopy is a simple and widely available solution phase technique that enables the use physiological conditions, low oligodeoxynucleotide concentrations and requires no structural modification to the biomolecule.

Here, the folding and unfolding spectroscopic characteristics of several DNA i-motifs are presented. We demonstrate a thorough method of interrogating i-motif folding behavior using CD spectroscopy, which is advantageous over other techniques such as nuclear magnetic spectroscopy (NMR) i-motif-forming resonance and show that oligodeoxynucleotides behave differently depending on how a sample is folded or unfolded. We applied this technique to the human telomere sequence, to what we believe is a new i-motif-forming sequence found in the promoter of the human gene RAD17 (26), and to dC₁₉. The sequence of the *RAD17* i-motif is very similar to the recently discovered dC₁₉ i-motif (8), for which the dC-rich core of the sequence differs by only one 2'deoxyguanosine (dG) nucleotide located precisely in the center of the dC₁₉ track. All oligodeoxynucleotides studied exhibit unique multiphasic unfolding behavior that depends on how the pH changes, and in the case of the RAD17 promoter sequence, shows a stable conformation at pH ~7 and human physiological temperature.

Materials and Methods

Oligodeoxynucleotide Synthesis and Purification All oligodeoxynucleotides used herein were synthesized using standard phosphoramidite procedures by the DNA synthesis core at the University of Utah. Samples were then treated with 200 mM piperidine for 30 minutes at 90 °C prior to purification by HPLC using a high pH eluent to prevent i-motif folding on-column. Samples were subsequently dialyzed three separate times for 12 hours each against ddH₂O, lyophilized, resuspended in ddH₂O, quantified and then frozen as concentrated stock solutions until needed for experiments. Molar absorptivity values for all oligodeoxynucleotides studied were determined using the nearest-neighbor method.

pH Titrations Using CD Spectroscopy
Each oligodeoxynucleotide sample was prepared using a buffer composed of 20 mM KPi, 12 mM NaCl and 140 mM KCl, equilibrated at 37 °C. Sample concentrations were on the order of ~1–3 μM, determined individually by calculating the amount needed to give an absorbance of ~0.5 at 260 nm in the UV spectrum based on molar absorptivities. The CD spectra were recorded at pH increments of ~0.1-0.2, using small aliquots of 1 M LiOH to adjust the pH each time, until no further change in the CD spectrum was observed. For increasing pH titrations, LiOH was chosen because (A) it would not significantly affect the physiological concentrations of K+ or Na+ or alter the buffer concentration if used as a concentrated solution and (B) because it was demonstrated to have little effect on i-motif folding behavior until concentrations above 50 mM are obtained (1, 15). Our experiments typically resulted in a high end Li+ concentration of <10 mM, which may affect the thermal stability by a few degrees but overall should have a minimal effect on the isothermal pH stability, while preserving the desired physiological salt and buffer conditions. Once the sample achieved

complete i-motif unfolding, the titration was then reversed using 1 M HCl in the same procedure down to a pH of ~4.5. These two titrations comprised what we call "titration cycle A." Over the course of the bidirectional titration, no more than 60 µL total of 1 M LiOH and 1 M HCl was added to the 2000-µL sample resulting in a volume change of less than 5% in all cases. For completeness, experiments were also conducted by titrating from high to low pH and then back to high pH in the same manner, called "titration cycle B." All titrations were performed in triplicate and every spectrum represents a sample equilibrated for ~90 seconds following addition of an aliquot of acid or base.

Data Analysis for pH Titrations The CD spectra for any given sample were first converted from raw ellipticity, θ , to molar ellipticity, $[\theta]$, by the equation $[\theta] = \theta * (10 * C * l)^{-1}$, where C is the concentration of the sample based on the absorbance at 260 nm in the UV spectrum and l is the path length of the cuvette. The resultant pH-dependent spectra for titration in any given direction of pH change were then analyzed, and the $[\theta]$ values at the experimentally determined maximum wavelength *circa* 285 nm in the lowest pH spectrum were extracted from each pH-specific spectrum. Each set of values from replicate titrations for each sample were then individually normalized and plotted vs. pH, where the normalized values correspond to the folded state population fraction, [x]. Standard non-linear regression analysis was used to mathematically characterize each transition using global analysis of triplicate data sets according to Equation 1.

Eq. 1
$$[x] = \frac{-1}{1 + \rho((-b_1 * pH) + b_2)} + 1$$
 $pH_T = \frac{b_2}{b_1}$

In Equation 1, [x] is the folded state population (ordinate) at a given pH value (abscissa) and $b_{\#}$ are parameters to be fit via non-linear regression in Matlab 2013b. The residuals were then calculated and plotted vs. pH in order to assess each titration curve for multiphasic behavior, indicated by structure in the residuals.

A second method of analysis was then used to assess, and if needed, deconvolute and quantify multiphasic titration curves. To accomplish this, the data used for analysis according to equation 1 were converted to the derivative domain. The negative of the slope between each i and i+1 data point, $(\Delta[x]/\Delta pH)_{i,i+1}$, within a single replicate data set, was calculated and plotted vs. the average pH between the pair-wise values, $\overline{pH}_{i,i+1}$. This gives $i_{total}-1$ data points for each replicate titration. The triplicate data set for each sample was then combined for a given sample and globally normalized, and then Equation 2 was used to analyze the pH titration data in the derivative domain.

Eq. 2
$$\left(\frac{\Delta[x]}{\Delta pH}\right)_{i,i+1} = \sum_{m=1}^{j-1} b_{j,1} * e^{\left(\frac{-(\overline{pH}_{i,i+1} - b_{j,2})^2}{b_{j,3}}\right)} \qquad pH_{T,j} = b_{j,2}$$

In the above equation, b_j are parameters to be fit in Matlab using non-linear regression analysis. The number of bell curves, j, used in the fit varies between 1 and 3 in all cases for this work. For each underlying bell curve, the pH $_{\rm T}$ value was redefined as the pH value corresponding to the steepest slope in each underlying transition resulting from the plot of $[x]_{iM}$ vs. pH, which differs from the standard definition of pH $_{\rm T}$. Following analysis of the pH titration data according to Equation 2, the resulting best fit line was converted back into a normalized sigmoidal form (see supplementary information) for comparison with the original, normalized triplicate data set.

In order to assign populations to each peak, integration of each individual bell curve allowed a summation of total area that could then be used to find the structural population giving rise to each transition assigned using deconvolution by equation 2. In addition to this information, we provide the relative amplitude, b_1 , and the full width at half max (FWHM in pH units) of deconvoluted structural transition peaks found via analysis by Equation 2. FWHM is related to b_3 by the equation $FWHM = 2.355\sqrt{b_3/2}$. The FWHM is indicative of the level of cooperativity of the transition, similar to previous, quantitative work by Nesterova et al. (27) where smaller values indicate a higher level of cooperativity. An example workflow (Figure S1), representative pH-dependent CD spectra and non-linear regression plots according to equation 2 (Figures S2-S22) and fit statistics (Table S4) are provided in the supplementary information.

Thermal Melting Analysis (T_M) Triplicate samples were dissolved in 20 mM Britton-Robinson buffer at a predefined pH, and UV spectroscopy was used to monitor heat-induced denaturation. Each solution was equilibrated at 20 °C for 5 minutes, heated in 1 °C increments at a rate of 1 °C min⁻¹, pausing for 30 seconds after each 1 °C increase in temperature for equilibration, followed by recording the absorbance at 262 nm, to a final temperature of 100 °C. The derivative method was then used to analyze the resultant thermal denaturation curves at 262 nm.

Bromine Footprinting The procedure for bromine footprinting is adapted and modified from a procedure described in the literature (28–30). Briefly, oligodeoxynucleotides were first 5'-radiolabeled with [γ]- 32 P-ATP using T4 polynucleotide kinase. The bromination reaction conditions were as follows: 2 pmols of radiolabeled oligodeoxynucleotide were added to a 200- μ L solution of either 20 mM acetate buffer (pH 5) or 20 mM phosphate

buffer (pH 8) containing 4 µM unlabeled oligodeoxynucleotide. All reaction mixtures were spiked with a concentrated stock of KHSO₅ to give 240 µM final concentration. To noncontrol lanes, a concentrated stock of KBr was added to give a final concentration of 240 μM. The reactions, including controls that lacked a bromine source, were allowed to proceed for 30 min at room temperature. All samples were subsequently guenched with the addition of 2 µL of 200 mM HEPES buffer. The samples were then dialyzed three times for 12 hours each against ddH₂O, lyophilized and then resuspended in a 1 M piperidine solution. The piperidine reaction was carried out at 90 °C for 45 min. Piperidinetreated samples were then dialyzed three times for 12 hours each against ddH₂O, lyophilized several times by refilling the sample Eppendorf tubes with ddH₂O each time to ensure piperidine removal, and then analyzed by denaturing PAGE at 20% 19:1 acrylamide:bisacrylamide. The results of the bromine footprinting reaction were imaged using storage phosphor autoradiography and intensity profiles were used to assign the base-pairing environment of each fragment band, indicative of loop or core locations within the i-motif structure.

Isothermal Difference Spectroscopy During CD spectroscopy experiments, the UV spectrum was recorded concurrently with each CD spectrum. The UV spectra for the lowest and highest pH scans were subtracted from one another giving the isothermal difference spectra (IDS). The results of this approach are identical to those obtained via the thermal method described by Mergny et al. (17) and are characteristic of the protonation state of 2'-deoxycytosine residues. IDS are contained in the supplementary information, in panel B of Figures S2-S22, for all oligodeoxynucleotides studied.

Results and Discussion

Oligodeoxynucleotide Sequences Table 1 shows the oligodeoxynucleotide sequences used in this study. hTeloC is the human telomere sequence and dC₁₉ is the most pH-stable poly-dC sequence, recently identified by Fleming et al. (8). All sequences derived from the gene promoter of *RAD17* are denoted "R17" and include, if necessary, appended core poly-dC track length designations. Each sequence except dC₁₉ contains three nucleotide tails derived from the wild-type sequence except for T₅-R17, which includes a 5'-appended dT₅ sequence used to enhance the results of the bromine footprinting structure assay. Tails were included in order to assay to a greater extent the behavior of an i-motif in the context of surrounding nucleotides proximal to the core sequence itself that could promote or inhibit i-motif stability. The UV molar absorptivities at 260 nm (ϵ_{260}), are included in Table 1.

Table 1: Oligodeoxynucleotide sequences studied and their UV molar extinction coefficients (260 nm).

Name	Sequence	ε ₂₆₀ (L μM ⁻¹ cm ⁻¹)
hTeloC	5`-TAACCCTAACCCTAACCCTAA	0.2542
dC_{19}	5`-cccccccccccccccc	0.1370
R17	5`-CCACCCCCCCGCCCCCCGGA	0.2005
R17-4444	5 \ -CCACCCTCCCCGCCCTCCCCGGA	0.2080
R17-3434	5 \ -CCACCCTCCCCTGTCCCTCCCGGA	0.2053
R17-3443	5 `-CCACCCTCCCCTGTCCCCTCCCGGA	0.2053
R17-4334	5 \ -CCACCCTCCCTGTCCCTCCCGGA	0.2053
R17-4343	5 \ -CCACCCTCCCTGTCCCCTCCCGGA	0.2053
R17-3333	5`-CCACCCTTCCCTGTCCCTTCCCGGA	0.2071
T5-R17*	5`-TTTTTCCACCCCCCCGCCCCCCCGGA	0.2280

^{*}T₅-R17 was primarily designed for bromine footprinting use only, but pH titrations were carried out in order to ensure perturbations in folding compared with R17 were minimal (Figure S18).

pH Titrations of the Human Telomere i-Motif We first set out to characterize the pH-dependent folding and unfolding characteristics of the canonical i-motif sequence, hTeloC, under physiological solution and temperature conditions (37 °C). This set of control experiments was used to test our pH titration methodology, primarily developed to assess the isothermal pH stability when the pH of a sample solution changes in one

direction. The hTeloC i-motif was subject to two cycles of titration. Cycle A was performed by injecting a stock solution of oligodeoxynucleotide (stock pH \approx 7.8) into a pH 4.5 solution, equilibrating the sample for \sim 30 min, titrating to high pH and then titrating back to low pH. Cycle B was performed by injecting a stock solution of oligodeoxynucleotide into a pH 8 solution, titrating to low pH and then titrating back to high pH. Pertinent transition pH values, fit parameters, and population percentages are given in Table S1 of the supplementary information.

Figure 1A shows the results of cycle A; when hTeloC was injected into a pH 4.5 solution and aliquots of LiOH were added in a step-wise manner, slow unfolding occurred in a biphasic fashion (inset 1). Titrating the same samples back toward low pH with small aliquots of HCl resulted in a monophasic transition (inset 2). Figure 1B shows the results of cycle B, where, starting at high pH, slow folding was monophasic (inset 2), but titration back to high pH was also monophasic, yet shifted to slightly higher pH (inset 1). Analysis via Equation 2 shows that hTeloC exhibits a biphasic unfolding transition for samples injected into a low pH solution during cycle A. Integration of the overlapping bell curve peaks (Fig. 1A; inset 1) gave relative populations of ~13% (pH_{T,1}) and ~87% (Table S1, pH_{T,2}), the former being lower in cooperativity than the latter, indicated by the low amplitude (0.19) and relatively large FWHM (0.47) in the $(\Delta x/\Delta pH)$ vs pH plot.

Possibilities for the cause of the biphasic unfolding titration curve (Fig. 1A, inset 1) include multiple conformational topologies or dimer formation. In 2012, Lieblein et al. showed for the human telomere sequence, $d((C_3TA_2)_3C_3)$, that pH jumps from 9 to 6 can result in kinetic partitioning, giving rise to the formation of a 1:3 population distribution of 3`E to 5`E conformations, respectively, at ~2 °C (13, 31). At ~15 °C the ratio shifts to 1:4 and at

~35 °C the 3`E conformation was no longer detectable. Our experiments were conducted at 37 °C, therefore it is unlikely that conformational topology is the cause of the observed biphasic unfolding for samples subject to a sharp pH decrease from the stock solution environment to pH ~4.5.

In 2013, Wu et al. used analytical ultracentrifugation to interrogate the effect of pH jumps on the formation of intramolecular structures of the human telomere i-motif sequence $d((C_3TA_2)_3C_3$ (32). They found that the human telomere i-motif is prone to forming intermolecular dimers (~18%) at concentrations as low as 2 μ M when subject to a pH jump from 7.5 to 4.5 at 20 °C. Oligodeoxynucleotide concentrations in our experiments here were ~1.8 μ M, though the temperature of our experiments was 37 °C. Further, Wu et al. showed that the dimer is less stable than the intramolecular i-motif, which our experiments also confirm assuming dimer dissociation is what we observe in the lowest pH, low cooperativity transition in Figure 1A, inset 1.

Monophasic unfolding of hTeloC, after being folded via titration from high pH to low pH during cycle B (Fig. 1B, inset 1), suggests a lack of dimer formation. Slow folding in this case likely promotes intramolecular i-motif formation. Indeed, Wu et al. showed that annealing, which is similar to slow folding via pH titration, prohibited the formation of dimers in analytical ultracentrifugation experiments (32). Therefore, we postulate that our observation of biphasic unfolding for samples subject to a rapid drop in pH is consistent with the formation of a small subpopulation of dimers.

A second observation was that in all cases, unfolding of hTeloC occurs at a higher pH than folding regardless of how the folded state was obtained. In 2000, Phan et al. performed pD titrations of a modified human telomere sequence

d(C₃TA₂5mCC₂TA₂C₃UA₂C₃T) at 4 °C (33). At the time, they attributed hysteresis to slow unfolding and folding kinetics; however in 2012, Chen et al. showed that the human telomere i-motif unfolding transitions occurs between ~120 milliseconds and 150 seconds, depending on the pH change increment across the structural transition range (34). An alternative interpretation is based on structural features. The higher observed unfolding pH_T compared with the folding pH_T could be attributable to a "capping" effect whereby coplanar dT bases between parallel-oriented segments of the i-motif form the dT:dT wobble base pair (35, 36). For the sequence studied by Phan et al., such stabilization would occur only on the two-loop side of the 5`E topology intramolecular imotif. The present sequence, hTeloC, includes 5`-TAA... and ...TAA-3` tails. In this case, it is likely that dT:dT wobble pairs can also form in the 5'E topology on the single loop side of the core between the dT nucleotide of the second loop and the 3'-tail dT nucleotide (Figure 2). The 5'E topology has also been shown to be the dominant fold of the human telomere i-motif in solution, regardless of whether the pH is decreased rapidly or slowly (13, 33).

Folding transitions are predominantly driven by dC-dC⁺ formation, initiated by protonation binding of dC nucleotides (34) in a pH range where the dT protonation state remains unchanged (37, 38). This suggests that dT:dT pairs do not play a role in i-motif formation but they may be a contributing factor to a higher observed unfolding pH_T compared to the folding pH_T. Importantly, we do not suggest this behavior is a general phenomenon for all i-motif-forming sequences; rather it is dependent on the sequence itself. The observed hysteresis is, therefore, likely due to the formation of dT:dT wobble pairs between dT nucleotides (Figure 2, blue rings) on each side of the intercalated core, a unique feature

of the hTeloC sequence studied here. This likely results in resistance to unfolding and dC-dC+ deprotonation, shifting the unfolding transition pH to a higher value than the folding transition pH, where dT:dT wobble pair formation does not contribute to i-motif formation.

RAD17 i-motif (R17) were carried out at 37 °C and analyzed by Equation 2. Experiments were conducted analogously to those performed for hTeloC. The results of each titration cycle are summarized in Table S2 of the supplementary information.

In titration cycle A, R17 was injected into a low pH solution and titrated in the increasing pH direction (Fig. 3A, inset 1). The structural unfolding transition occurred here in triphasic fashion (Fig. 3A; inset 1), in which two of the transitions are obvious in the graph, and the third is broad with low cooperativity. Upon titration of the same samples back to low pH (Fig. 3A, inset 2), a biphasic transition was observed (Fig. 3A; inset 2). In titration cycle B (Fig. 3B), a biphasic folding transition was observed (inset 1) and titration of the same samples back to high pH (inset 2) revealed neither hysteresis nor triphasic unfolding. Instead, unfolding assumed nearly the exact same pH dependence and number of phases as both folding titrations in cycles 1 and 2.

In all cases for R17, the lowest stability and cooperativity transitions could correspond to dimer formation, analogous to our postulate for hTeloC, due to the lower stability and cooperativity of intermolecular structures. In the case of the triphasic unfolding behavior for samples injected into a low pH solution, the two lowest pH_T peaks occur nearly simultaneously with one transition being much sharper, and therefore, more cooperative than the other. The lower cooperativity peak underlies nearly the entire structural

transition range (Fig. 3A, inset 1) and comprises 48% of the total structural population (Table S2). In the three other titrations, a consistent population was observed that could correspond to dimers and always displays low cooperativity corresponding to 25-31% of the population (Table S2). One interpretation is that this is due to the formation of dimers, even under slow folding induced by titration. R17 is nearly poly-dC in nucleotide composition and would not be as spatially restricted to dimer formation through random collisions compared to hTeloC. Wu et al. postulated that collision geometries are a limiting factor in dimer formation for hTeloC, which has only 12 dC nucleotides (32). R17 has 18 dC nucleotides contained within two dC9 tracks separated by a single dG nucleotide making it much less conformationally restricted in terms of the trajectories that lead to folding. The possibility for the formation of higher order intermolecular structures like tetramer i-motifs or supramolecular i-motifs (39–41) remains, though conclusively discerning their formation from that of dimers using our approach is not possible.

Another interpretation of the underlying transition displaying low cooperativity includes non-linearity in the folded and unfolded states, meaning that a particular transition could be an artifact of analysis via Equation 2. Additionally, i-motif folded states are not necessarily observed in CD spectroscopy as an unchanging molar ellipticity at the rotation maximum *circa* 285 nm in low pH ranges (i.e., below the bulk of the structural transition range). Thermodynamic linkage analysis shows that as the pH is decreased below the pK_a of cytosine, the CD spectrum will again decrease as i-motif-forming oligodeoxynucleotides become hyperprotonated, thereby dissociating the folded state at extremely low pH values (42).

Regardless of how we interpret the underlying, low cooperativity transition in triphasic unfolding of R17, we are still left with the question of what gives rise to the two distinct, high cooperativity transitions (Fig. 3A, inset 1), which occur at pH 6.1 and 7.0. Computational and experimental investigations into the unfolding process of the human telomere sequence d((C₃TA₂)₃CCCT) show that more than one step may occur on the unfolding pathway (34, 43, 44), though it is unlikely that these steps would be discernible on timescales relevant to our experiments. Each of those investigations shows a high level of cooperativity in unfolding intramolecular i-motifs, and so, we tentatively assigned each of the aforementioned sharp transitions to individual i-motif structures with different unfolding transition pH values.

It should be noted that the hysteresis observed in cycle A is not observed in cycle B (Figure 3), unlike the behavior of hTeloC (Figure 1). hTeloC possesses the potential for loop and tail nucleotide interactions that would occur regardless of how the folded state is obtained whereas R17 does not possess the same sequence-specific features such as loop dT:dT interactions that could confer a resistance to unfolding. The differences in cycle A and cycle B are likely sequence-specific, but are most likely due to differences in core topology (i.e. the number and arrangement of dC-dC+ pairs) that arise due to the rate of solution pH change during folding, the key difference between cycle A and B experiments. To test this hypothesis, we carried out titrations on mutants of R17 that employ dT substitutions to limit folded conformations to varying core dC-dC+ arrangements.

The Effects of dT Substitutions, Annealing and Concentration on R17 Unfolding

After a Rapid pH Drop. Table 2 summarizes the results of titrating the R17 mutant

sequences in comparison to the wild-type R17 sequence in the increasing pH direction following injection into a low pH solution (first titration of cycle A). Here, we were interested in modulating the triphasic unfolding behavior noted for R17 in Figure 3A (inset 1) in an effort to determine the most likely folding conformations of the wild-type sequence that give rise to multiphasic unfolding.

Table 2: Structural transition data and fit parameters from analysis via Equation 2 for R17 and R17-dT mutants from cycle A, increasing pH titrations.

Sequence	pH _T (± S.D.)	Amplitude (b ₁) ^a	FWHM (pH units)b	Pop. (%) ^c	Conc. (µM)d
R17	$pH_{T,1} = 6.1 (0.1)$	0.74	0.29	39	
	$pH_{T,2} = 6.2 (0.2)$	0.20	1.28	48	3.0
	$pH_{T,3} = 7.0 (0.1)$	0.22	0.33	13	
R17-Annealed*	$pH_{T,1} = 6.1 (0.1)$	0.88	0.37	65	2.4
	$pH_{T,2} = 6.2 (0.2)$	0.09	1.90	35	
R17-Low Conc.	$pH_{T,1} = 6.1 (0.1)$	0.16	0.29	43	
	$pH_{T,2} = 6.2 (0.1)$	0.81	1.43	40	1.3
	$pH_{T,3} = 7.0 (0.1)$	0.45	0.24	17	
R17-4444	$pH_{T,1} = 6.1 (0.1)$	0.69	0.87	66	2.7
	$pH_{T,2} = 6.7 (0.1)$	0.84	0.37	34	
R17-3434	$pH_{T,1} = 5.7 (0.1)$	0.30	1.04	54	
	$pH_{T,2} = 5.8 (0.1)$	0.69	0.29	35	2.3
	$pH_{T,3} = 6.6 (0.1)$	0.16	0.41	11	
R17-3443	$pH_{T,1} = 5.2 (0.1)$	0.11	0.47	10	
	$pH_{T,2} = 5.8 (0.1)$	0.97	0.44	78	2.6
	$pH_{T,3} = 6.6 (0.1)$	0.16	0.41	12	
R17-4334	$pH_{T,1} = 5.6 (0.1)$	0.24	0.74	42	2.2
	$pH_{T,2} = 5.8 (0.1)$	0.76	0.33	58	
R17-4343	$pH_{T,1} = 5.4 (0.1)$	0.16	0.69	7	
	$pH_{T,2} = 5.9 (0.1)$	0.95	0.44	73	2.5
	$pH_{T,3} = 6.6 (0.1)$	0.24	0.47	20	
R17-3333	$pH_{T,1} = 5.2 (0.2)$	0.21	0.50	18	
	$pH_{T,2} = 5.6 (0.1)$	0.93	0.44	71	2.4
	$pH_{T,3} = 6.4 (0.1)$	0.10	0.60	11	
T ₅ -R17*	$pH_{T,1} = 6.1 (0.1)$	0.26	1.15	46	
	$pH_{T,2} = 6.1 (0.1)$	0.53	0.24	18	2.5
	$pH_{T,3} = 7.0 (0.1)$	0.60	0.41	35	

a: Amplitudes are a relative indication of the steepness of a transition pH at the midpoint (Eq. 2, parameter b₁).

Visual comparison of the dT mutated R17 sequences (Fig. 4) shows several facets of R17 folding that point toward the most stable folded-state conformation. At the extremes

b: The FWHM was calculated via equation 2 using parameter b_3 . The FWHM value is an indication of the cooperativity of a structural transition when the amplitude is also taken into account.

c: Populations were determined by integrating each underlying transition using the fit parameters and equation 2 and dividing by the sum of areas for all underlying transitions.

d: Concentrations were determined by using the UV molar absorptivity at 260 nm (ϵ_{260}) and the concurrently recorded UV spectrum of a given sample at high pH.

of pH stability lie R17-4444 and R17-3333. R17-3434 and R17-4343 show nearly identical behavior, lower overall than R17-4444. R17-3443 and R17-4334 also show nearly identical behavior. The data generally point to a trend where the more dT nucleotides there are, forcing loops in those positions, the less pH-stable the i-motif is. This indicates that restricting the range of conformations that R17 may assume via dT substitution when folding during a rapid drop in pH decreases their structural stability. Causes of this observation include increases the hydrophobicity of the oligodeoxynucleotide (45) and decreases in both the number of core dC-dC+ hydrogen bonds and possible core configurations.

Previously, d((C₄T)₃CCCC) was noted as the most pH stable dT mutant sequence of dC₁₉, but less stable than dC₁₉ overall (8). Single dT nucleotides in the first and third loops of other i-motif sequences have also been shown as the most thermally stable for four dC-dC⁺-pair core i-motif structures (46). In concurrence with these previous investigations, our data suggests that limiting the conformational possibilities of the i-motif by forcing loop positions in a minimal way, as shown by R17-4444 increases the population giving rise to the highest stability fold in the R17 i-motif (Fig. 4) obtained by subjecting the sample to a rapid drop in pH. Conversely, R17-3333, which limits conformational possibilities to the greatest extent, results in a significantly diminished overall pH-stability and diminished population of structures with high pH-stability (pH_{T,3}; see Table 2). The intermediate loop configurations show that a seven dC-dC⁺ core (R17-3434 and R17-4343) is more stable than a six dC-dC⁺ core (R17-3443 and R17-4334). This suggests that when hydrogen bonds are maximized between dC nucleotides, higher stability results overall.

Interestingly, slow folding does not appear to maximize the number of dC-dC⁺ pairs when folding is induced in the wild-type R17 sequence (Fig. 4). R17-4343 and R17-3434 closely match the slow folding curve, rather than that of R17-4444. The slight lag in dissociation noted for R17-4343 and R17-3434 *circa* pH 6.5 is possibly a stalled unfolding process, indicated by the lower cooperativity of those transitions. In this case, slow folding may actually promote the contribution of other factors in i-motif folding such as loop-loop, looptail and tail-tail interactions that require longer timescales for formation, which is not afforded when the pH drops rapidly. Alternatively, they could be due to a small population of a high stability alternative fold, but our data set is not conducive to making this determination.

Beyond dT loop substitutions, we investigated the effect of thermal equilibration and oligodeoxynucleotide concentration on the R17 unfolding. Figure 5 shows R17 unfolding after injection into a low pH solution and slow refolding via titration (same data as Figure 3A) in comparison to the unfolding titration curve of a sample of R17 that was injected into a low pH solution, heated to 85 °C and then slowly cooled back to 37 °C prior to titration in the increasing pH direction. Figure 5 also shows the effect of decreasing the concentration of R17 by a factor of 2 on the overall unfolding titration curve of samples injected into a low pH solution.

For the annealing experiment (Fig. 5, R17-Annealed), a clear drop in pH stability was observed as well as a loss of triphasic unfolding behavior. The overall titration curve of the annealed sample assumes a transition similar to the biphasic folding curve of R17 (Fig. 5, R17-Cycle A Down). We therefore conclude that annealing promotes the

formation of structural populations that are more similar to folded R17 samples obtained via titration from high pH to low pH.

Reducing the concentration of R17 by a factor of 2 (Fig. 5, R17-Low Conc.) for samples injected into a low pH solution seems only to diminish the formation of the low cooperativity population (~40%) compared to a higher concentration R17 treated in the same way (~48%). This indicates that concentration has an effect on the formation of what are likely dimers, though the sensitivity of our CD instrument is not high enough to allow further decreases in concentration without a significant growth in the noise intensity.

To ensure that our observation of triphasic unfolding was not a result of performing titrations too rapidly, therefore resulting in the recording of a non-equilibrated CD spectrum, we titrated a separate set of R17 samples from low to high pH following injection into a low pH solution. We paused this experiment in each replicate titration at pH ~6.4 for 10 minutes, which is an order of magnitude greater than the longest equilibration times used to study the human telomere sequence (34). This point is where the greatest difference between increasing and decreasing pH titration curves in cycle A occurs. The results of that experiment are shown in Figure S24. The folded state population in the pausing experiment showed that a steady CD spectrum persists at pH ~6.4 following injection of samples into a low pH solution and titration up to that pH. If the i-motif system was not equilibrated, a drop in folded state population should be observed as changes in the CD spectrum during the pause, but none occurred.

Importantly, the observation of higher unfolding pH stability in rapidly folded samples of R17 (Figure 5) compared with annealed R17 samples indicates that the most thermally stable i-motif conformations, obtained via annealing, may not reflect what the most stable

conformation is when folding is induced at a specific temperature. As demonstrated by Lieblein *et al.* for the human telomere i-motif, solution temperature during a pH jump experiment, analogous to sample preparation here prior to carrying out cycle A increasing pH titrations, significantly shifts the conformational equilibrium between 3'E and 5'E topologies where favoritism for the 3'E topology grows as the temperature is decreased below ~35 °C (13, 31). During the annealing process, the i-motif could reach a stable conformation beyond which further temperature reduction may not induce rearrangement to a more favored form at a lower specific temperature. This finding indicates that extreme care must be used when evaluating annealed i-motif structural transitions if the goal is to assess their relevance to biological activity or use in sensor applications, both of which typically occur or are carried out under isothermal conditions.

dC₁₉ Isothermal Folding and Unfolding To draw comparisons between R17 and dC₁₉ we carried out pH titrations of dC₁₉ in the same way as was done in the two titration cycles with R17 (Fig. 3) and hTeloC (Fig. 1). Figure 6 shows the results of those experiments. The values for transition pH values and fit parameters are provided in Table S3 of the supplementary information.

Cycle A titrations of dC₁₉ show triphasic unfolding curves for samples injected into a low pH solution and titrated toward high pH (Fig. 6A, inset 1). The transitions assume a more characteristic behavior consistent with that observed for R17-Annealed (Table 2), rather than for non-annealed R17. It should be noted that even though a biphasic regression of the decreasing pH titration portion of cycle A gave the best results according to Equation 2 (see Table S3), the transition likely occurs in a single phase. This is because the Jacobian for regression using a single phase was ill-conditioned, a result of oversampling

the regions of unchanging CD spectra below pH ~5.5 and above pH ~6.5. Noise fluctuations of the instrument when the CD spectrum is relatively constant over a given pH range can result in the misinterpretation of slope values between data points by the regression routine as underlying structural transitions. Titration in the decreasing direction (Fig. 6A, inset 2) is therefore considered monophasic.

For cycle B, we again observed nearly identical folding and unfolding titration curves (Fig. 6B), both of which were monophasic. Above and below the transitions, the fit results according to equation 2 are not ideal, and result from similar inconsistencies noted for cycle A pH titrations in the decreasing direction. These examples illustrate the limitations of analysis via equation 2 for certain types of pH titration curves, predominantly occurring where the folded and unfolded states are separated by an extremely narrow pH range.

Overall, dC₁₉ exhibits markedly different behavior from R17. It may be a result of complete conformational freedom where restrictions on folding patterns induced by the presence of non-dC nucleotides leads to a lower overall stability of the most rapidly vs. slowly formed folds. The effect of tails, present in the R17 sequence but not for dC₁₉, may also play a role in the observed behavioral discrepancies, similar to what was noted as a possibility for the observed hysteresis in hTeloC titrations. Regardless, unfolding of dC₁₉ has a generally similar behavior to R17 and so we hypothesize that its pattern supports the assignment of a conformation analogous to R17-4444 as the high stability population in R17 increasing pH titrations in cycle A.

Bromine Footprinting, T_M Analysis and IDS of *RAD17* Figure 7 shows the results of bromine footprinting of the R17 i-motif at pH 5 and pH 8. Three loops are clearly distinguishable at pH 5 by the greater intensity of dC bands, which correspond to non-

pairing dC nucleotides. At pH 8, bromination occurs roughly equally for all dC bases indicating a random coil state.

Bromine footprinting shows two structural possibilities; R17-4444(3`E) and R17-4343 (5`E). Using the results of this assay in conjunction with dT substituted R17 titrations, we assign R17-4444(3`E) as the high stability fold noted in cycle A titrations in the increasing pH direction and R17-4343(5`E) as the lower stability fold. Our hypothesis is that when folding is induced rapidly, a 1:3 distribution of R17-4444(3`E) (~13%) to R17-4343(5`E) (~39%) intramolecular products is formed, while the remaining population (~48%) is made up of dimer or higher order intermolecular products (see populations in Table S2). In the slow folding situation, we assign the R17-4343 as the dominant intramolecular population and the remaining population as dimer or higher order intermolecular products. The focus of future investigations will be to determine conclusively the structures giving rise to each population through a variety of other experimental means not within the scope of the work presented here.

Thermal melting analysis was also carried out for R17 injected into pH 5, 6 and 7 Britton-Robinson buffers (Figure S23). The T_M values were 80.9, 63.2 and 46.8 °C, respectively, and did not conclusively indicate multiphasic thermally induced unfolding. We did not perform thermal melting analysis on any mutant sequences because we cannot guarantee that any sample prepared would be composed of 100% of each specific conformation, calling into question their validity. Indeed, the pH titration curves for each mutant in Figure 4 show a high likelihood that any sample prepared would have a significant population of alternative i-motif core arrangement conformations which could perturb the results of thermal melting analysis. Further, the isothermal folding and

unfolding processes may be distinctly different from thermally induced folding and unfolding. In addition to T_M analysis, we compiled isothermal difference spectra for R17, dC₁₉, hTeloC and dT substituted R17 sequences, and all confirm dC-dC⁺ formation (panel B of Figs. S2-S22). Due to the complexity of samples, the end behavior of IDS (17, 47) for samples whose folded state populations may contain higher order intermolecular structures was not predictive.

Conclusions

We have shown that folding and unfolding of the DNA i-motif-forming sequences hTeloC, dC₁₉, R17 and dT-substituted R17 sequences exhibit sequence-specific folding and unfolding behavior that depends on how the folded state was obtained. The human telomere sequence, hTeloC, exhibited persistent hysteresis for which unfolding always occurred at a higher pH than folding. Unfolding of hTeloC, after experiencing folding induced by a rapid drop in pH, was biphasic and consistent with the formation of a small subpopulation of dimers. R17 exhibited unusual triphasic unfolding after folding induced by a rapid drop in pH, wherein we hypothesize that a subpopulation of R17-4444(3`E) was observed with a transition pH of ~6.9 at human physiological temperature. During slow folding, the transition pH of R17 dropped significantly and, unlike hTeloC, did not exhibit hysteresis. Finally, dC₁₉, which is similar in sequence to R17, exhibited minimal hysteresis regardless of how the folded state was obtained.

In addition, we have provided an alternative method of mathematical analysis of pH titration curves that allows facile deconvolution and quantification of multiphasic i-motif structural transitions from spectroscopic data. We applied our method of titration and

analysis to characterize the isothermal folding and unfolding behavior of an i-motifforming sequence found in the promoter of the DNA repair gene RAD17. This sequence has a high likelihood for forming a folded conformation that is stable at neutral pH and human physiological temperature, which is unusual in the i-motif field absent molecular crowding agents, although recently Dzatko, et al. showed that several i-motif-forming sequences fold in living cells (48). Interrogating the folding of any DNA i-motif under conditions in which the pH changes from high to low rapidly vs. slowly results in the observation of different behavioral characteristics, which may be of high importance to applications of the DNA i-motif in sensors and materials as well as biology, possibly enhancing their in vivo activity and response characteristics, particularly in the case of living cell sensor technology (24, 25). Our work also evokes further questions about the effect of tails on i-motif stability, how hysteresis may affect pertinent i-motif-forming sequences of oncological importance such as the BCL2 (49-51) and c-MYC (52, 53) imotif, and questions regarding the formation of higher order intermolecular i-motifs, even at low µM concentrations.

Supporting Information

Supporting information is available free of charge on the XXX website at DOI:XXX.

Example workflow for analysis of pH titration curves using Equations 1 and 2, Tables of fit parameters, pH_T values, sample concentrations, CD spectra, isothermal difference spectra, Equation 2 plots, numerically converted Equation 2 regressions plotted against normalized titration data, example R17 T_M curves,

time-dependent changes in CD spectra for R17 cycle A increasing pH titration and Matlab R2013b code.

Author Contributions

All authors designed the research. R.A. Rogers conducted the research. All authors wrote the manuscript.

Acknowledgments

This work was supported by a National Science Foundation grant (CHE-1507813) with partial support by the National Institute of General Medical Sciences. Oligodeoxynucleotides were provided by the DNA/Peptide core facility at the University of Utah that is supported in part by the NCI Cancer Center Support grant (P30 CA042014).

Conflict of interest statement. The authors declare no conflicts of interest in this work.

References

- 1. Leroy, J.-L., M. Gueron, J.-L. Mergny, and C. Helene. 1994. Intramolecular folding of a fragment of the cytosine-rich strand of telomeric DNA into an i-motif. *Nucleic Acids Res.* 22:1600–1606.
- 2. Gehring, K., J.-L. Leroy, and M. Gueron. 1993. A tetrameric DNA structure with protonated cytosine-cytosine base pairs. *Nature*. 363:561–565.
- 3. Brooks, T.A., S. Kendrick, and L. Hurley. 2010. Making sense of G-quadruplex and i-motif functions in oncogene promoters: G-quadruplex and i-motif in oncogene promoters. *FEBS J.* 277:3459–3469.
- 4. Brown, R.V., and L.H. Hurley. 2011. DNA acting like RNA. *Biochem. Soc. Trans.* 39:635–640.

- 5. Day, H.A., P. Pavlou, and Z.A.E. Waller. 2014. i-Motif DNA: Structure, stability and targeting with ligands. *Bioorg. Med. Chem.* 22:4407–4418.
- 6. Dong, Y., Z. Yang, and D. Liu. 2014. DNA nanotechnology based on i-motif *Structures. Acc. Chem. Res.* 47:1853–1860.
- 7. Wang, F., X. Liu, and I. Willner. 2015. DNA switches: from principles to applications. *Angew. Chem. Int. Ed.* 54:1098–1129.
- 8. Fleming, A.M., Y. Ding, R.A. Rogers, J. Zhu, J. Zhu, A.D. Burton, C.B. Carlisle, and C.J. Burrows. 2017. 4*n* –1 is a "sweet spot" in DNA i-motif folding of 2′-deoxycytidine homopolymers. *J. Am. Chem. Soc.* 139:4682–4689.
- 9. Wright, E.P., J.L. Huppert, and Z.A.E. Waller. 2017. Identification of multiple genomic DNA sequences which form i-motif structures at neutral pH. *Nucleic Acids Res.* 45:2951–2959.
- 10. Gurung, S.P., C. Schwarz, J.P. Hall, C.J. Cardin, and J.A. Brazier. 2015. The importance of loop length on the stability of i-motif structures. *Chem Commun.* 51:5630–5632.
- 11. Reilly, S.M., R.K. Morgan, T.A. Brooks, and R.M. Wadkins. 2015. Effect of interior loop length on the thermal stability and p K_a of i-motif DNA. *Biochemistry*. 54:1364–1370.
- 12. Benabou, S., M. Garavís, S. Lyonnais, R. Eritja, C. González, and R. Gargallo. 2016. Understanding the effect of the nature of the nucleobase in the loops on the stability of the i-motif structure. *Phys Chem Chem Phys.* 18:7997–8004.
- 13. Lieblein, A.L., B. Fürtig, and H. Schwalbe. 2013. Optimizing the kinetics and thermodynamics of DNA i-motif folding. *ChemBioChem.* 14:1226–1230.
- 14. Miyoshi, D., S. Matsumura, W. Li, and N. Sugimoto. 2003. Structural polymorphism of telomeric DNA regulated by pH and divalent cation. *Nucleosides Nucleotides Nucleic Acids*. 22:203–221.
- 15. Kim, S.E., I.-B. Lee, C. Hyeon, and S.-C. Hong. 2014. Destabilization of i-motif by submolar concentrations of a monovalent cation. *J. Phys. Chem. B.* 118:4753–4760.
- 16. Day, H.A., C. Huguin, and Z.A.E. Waller. 2013. Silver cations fold i-motif at neutral pH. *Chem. Commun.* 49:7696–7698.
- 17. Mergny, J.-L., L. Lacroix, S. Amrane, and J.B. Chaires. 2005. Thermal difference spectra: a specific signature for nucleic acid structures. *Nucleic Acids Res.* 33:e138–e138.
- 18. Bhavsar-Jog, Y.P., E. Van Dornshuld, T.A. Brooks, G.S. Tschumper, and R.M. Wadkins. 2014. Epigenetic modification, dehydration, and molecular crowding effects on

- the thermodynamics of i-motif structure formation from C-rich DNA. *Biochemistry*. 53:1586–1594.
- 19. Cui, J., P. Waltman, V. Le, and E. Lewis. 2013. The effect of molecular crowding on the stability of human *c-MYC* promoter sequence i-motif at neutral pH. *Molecules*. 18:12751–12767.
- 20. Rajendran, A., S. Nakano, and N. Sugimoto. 2010. Molecular crowding of the cosolutes induces an intramolecular i-motif structure of triplet repeat DNA oligomers at neutral pH. *Chem. Commun.* 46:1299.
- 21. Mathur, V., A. Verma, S. Maiti, and S. Chowdhury. 2004. Thermodynamics of itetraplex formation in the nuclease hypersensitive element of human *c-MYC* promoter. *Biochem. Biophys. Res. Commun.* 320:1220–1227.
- 22. Pataskar, S.S., D. Dash, and S.K. Brahmachari. 2001. Intramolecular i-motif structure at acidic pH for progressive myoclonus epilepsy (EPM1) repeat d(CCCGCCCGCG)_n. *J. Biomol. Struct. Dyn.* 19:307–313.
- 23. Catasti, P., X. Chen, L.L. Deaven, R.K. Moyzis, E.M. Bradbury, and G. Gupta. 1997. Cystosine-rich strands of the insulin minisatellite adopt hairpins with intercalated cytosine+ cytosine pairs. *J. Mol. Biol.* 272:369–382.
- 24. Modi, S., S. M. G., D. Goswami, G.D. Gupta, S. Mayor, and Y. Krishnan. 2009. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. *Nat. Nanotechnol.* 4:325–330.
- 25. Modi, S., C. Nizak, S. Surana, S. Halder, and Y. Krishnan. 2013. Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. *Nat. Nanotechnol.* 8:459–467.
- 26. Fleming, A.M., J. Zhu, Y. Ding, J.A. Visser, J. Zhu, and C.J. Burrows. 2018. Human DNA Repair Genes Possess Potential G-Quadruplex Sequences in Their Promoters and 5'-Untranslated Regions. *Biochemistry*. In press.
- 27. Nesterova, I.V., J.R. Briscoe, and E.E. Nesterov. 2015. Rational control of folding cooperativity in DNA quadruplexes. *J. Am. Chem. Soc.* 137:11234–11237.
- 28. Ross, S.A., and C.J. Burrows. 1996. Cytosine-specific chemical probing of DNA using bromide and monoperoxysulfate. *Nucleic Acids Res.* 24:5062–5063.
- 29. Ross, S.A., and C.J. Burrows. 1997. Bromination of pyrimidines using bromide and monoperoxysulfate: a competition study between cytidine, uridine and thymidine. *Tetrahedron Lett.* 38:2805–2808.
- 30. Guo, K., A. Pourpak, K. Beetz-Rogers, V. Gokhale, D. Sun, and L.H. Hurley. 2007. Formation of pseudosymmetrical G-quadruplex and i-motif structures in the proximal promoter region of the *RET* oncogene. *J. Am. Chem. Soc.* 129:10220–10228.

- 31. Lieblein, A.L., J. Buck, K. Schlepckow, B. Fürtig, and H. Schwalbe. 2012. Time-resolved NMR spectroscopic studies of DNA i-motif folding reveal kinetic partitioning. *Angew. Chem. Int. Ed.* 51:250–253.
- 32. Wu, S., X. Wang, X. Ye, and G. Zhang. 2013. pH-induced conformational change and dimerization of DNA chains investigated by analytical ultracentrifugation. *J. Phys. Chem. B.* 117:11541–11547.
- 33. Phan, A.T., M. Guéron, and J.-L. Leroy. 2000. The solution structure and internal motions of a fragment of the cytidine-rich strand of the human telomere. *J. Mol. Biol.* 299:123–144.
- 34. Chen, C., M. Li, Y. Xing, Y. Li, C.-C. Joedecke, J. Jin, Z. Yang, and D. Liu. 2012. Study of pH-induced folding and unfolding kinetics of the DNA i-motif by stopped-flow circular dichroism. *Langmuir*. 28:17743–17748.
- 35. Han, X., J.-L. Leroy, and M. Gueron. 1998. An intramolecular i-motif: the solution structure and base-pair opening kinetics of d(5mCCT₃CCT₃ACCT₃CC). *J. Mol. Biol.* 278:949–965.
- 36. Nonin-Lecomte, S., and J.L. Leroy. 2001. Structure of a C-rich strand fragment of the human centromeric satellite III: a pH-dependent intercalation topology. *J. Mol. Biol.* 309:491–506.
- 37. Mucha, A., B. Knobloch, M. Jeżowska-Bojczuk, H. Kozłowski, and R.K.O. Sigel. 2008. Comparison of the acid-base properties of ribose and 2'-deoxyribose nucleotides. *Chem. Eur. J.* 14:6663–6671.
- 38. Verdolino, V., R. Cammi, B.H. Munk, and H.B. Schlegel. 2008. Calculation of pK_a values of nucleobases and the guanine oxidation products guanidinohydantoin and spiroiminodihydantoin using density functional theory and a polarizable continuum model. *J. Phys. Chem. B.* 112:16860–16873.
- 39. Laisne, A., D. Pompon, and J.-L. Leroy. 2010. [C₇GC₄]₄ Association into supra molecular i-motif structures. *Nucleic Acids Res.* 38:3817–3826.
- 40. Guittet, E., D. Renciuk, and J.-L. Leroy. 2012. Junctions between i-motif tetramers in supramolecular structures. *Nucleic Acids Res.* 40:5162–5170.
- 41. Protopopova, A.D., V.B. Tsvetkov, A.M. Varizhuk, N.A. Barinov, V.V. Podgorsky, D.V. Klinov, and G.E. Pozmogova. 2018. The structural diversity of C-rich DNA aggregates: unusual self-assembly of beetle-like nanostructures. *Phys. Chem. Chem. Phys.* In press.
- 42. Kim, B.G., and T.V. Chalikian. 2016. Thermodynamic linkage analysis of pH-induced folding and unfolding transitions of i-motifs. *Biophys. Chem.* 216:19–22.
- 43. Smiatek, J., and A. Heuer. 2014. Deprotonation mechanism of a single-stranded DNA i-motif. *RSC Adv.* 4:17110.

- 44. Smiatek, J., C. Chen, D. Liu, and A. Heuer. 2011. Stable conformations of a single stranded deprotonated DNA i-motif. *J. Phys. Chem. B.* 115:13788–13795.
- 45. Guckian, K.M., B.A. Schweitzer, R.X.-F. Ren, C.J. Sheils, D.C. Tahmassebi, and E.T. Kool. 2000. Factors contributing to aromatic stacking in water: evaluation in the context of DNA. *J. Am. Chem. Soc.* 122:2213–2222.
- 46. Mergny, J.-L., L. Lacroix, X. Han, J.-L. Leroy, and C. Helene. 1995. Intramolecular folding of pyrimidine oligodeoxynucleotides into an i-DNA motif. *J. Am. Chem. Soc.* 117:8887–8898.
- 47. Largy, E., and J.-L. Mergny. 2014. Shape matters: size-exclusion HPLC for the study of nucleic acid structural polymorphism. *Nucleic Acids Res.* 42:e149–e149.
- 48. Dzatko, S., M. Krafcikova, R. Hänsel-Hertsch, T. Fessl, R. Fiala, T. Loja, D. Krafcik, J.-L. Mergny, S. Foldynova-Trantirkova, and L. Trantirek. 2018. Evaluation of the stability of DNA i-motifs in the nuclei of living mammalian cells. *Angew. Chem. Int. Ed.* 57:1–6.
- 49. Kang, H.-J., S. Kendrick, S.M. Hecht, and L.H. Hurley. 2014. The transcriptional complex between the *BCL2* i-motif and hnRNP LL Is a molecular switch for control of gene expression that can be modulated by small molecules. *J. Am. Chem. Soc.* 136:4172–4185.
- 50. Kendrick, S., H.-J. Kang, M.P. Alam, M.M. Madathil, P. Agrawal, V. Gokhale, D. Yang, S.M. Hecht, and L.H. Hurley. 2014. The dynamic character of the *BCL2* promoter i-motif provides a mechanism for modulation of gene expression by compounds that bind selectively to the alternative DNA hairpin structure. *J. Am. Chem. Soc.* 136:4161–4171.
- 51. Kendrick, S., Y. Akiyama, S.M. Hecht, and L.H. Hurley. 2009. The i-motif in the *BCL2* P1 promoter forms an unexpectedly stable structure with a unique 8:5:7 loop folding pattern. *J. Am. Chem. Soc.* 131:17667–17676.
- 52. Dai, J., E. Hatzakis, L.H. Hurley, and D. Yang. 2010. i-Motif structures formed in the human *c-MYC* promoter are highly dynamic–insights into sequence redundancy and i-motif stability. *PLoS ONE*. 5:e11647.
- 53. Lemarteleur, T., D. Gomez, R. Paterski, E. Mandine, P. Mailliet, and J.-F. Riou. 2004. Stabilization of the *c-MYC* gene promoter quadruplex by specific ligands' inhibitors of telomerase. *Biochem. Biophys. Res. Commun.* 323:802–808.

Figure Captions:

Figure 1: hTeloC pH titration cycles recorded *circa* 287 nm in the CD spectrum (see Table S4 for exact values). Increasing pH titrations are black and decreasing pH titrations are red. (A) Cycle A, increasing pH (inset 1), then decreasing pH (inset 2). (B) Cycle B, decreasing pH (inset 2), then increasing pH (inset 1). Insets are plots according to equation 2 for each directional pH titration. Table S1 contains fit parameters, structural populations (for multiphasic curves) and sample concentrations. Table S4 contains pertinent statistics information for each fit. The (*) indicates the starting pH for each cycle.

Figure 2: Model of the 5`E topology of hTeloC. Potential dT:dT wobble pairs that stabilize the structure during unfolding are shown by rings. Loops are numbered 1 to 3 from the 5`-terminus to the 3`-terminus.

Figure 3: R17 pH titration cycles, recorded at ~288 nm in the CD spectrum (see Table S4 for exact values). Increasing pH titrations are black and decreasing pH titrations are red. (A) Cycle A, increasing pH (inset 1), then decreasing pH (inset 2). (B) Cycle B, decreasing pH (inset 2), then increasing pH (inset 1). Insets are plots according to equation 2 for each directional pH titration. Table S2 contains fit parameters, structural populations (for multiphasic curves) and sample concentrations. Table S4 contains pertinent statistics information for each fit. The (*) indicates the starting pH for each cycle.

Figure 4: Comparison of unfolding pH titration curves for dT substituted mutants of R17 with R17 cycle A, increasing pH and decreasing pH curves. Note that the data shown are

the regression lines from analysis via equation 2 and do not show the replicate data points from titration experiments. Each curve was recorded *circa* 288 nm in the CD spectrum (See Table S4 for exact values).

Figure 5: Titration curve plots of R17 *circa* 288 nm in the CD spectrum (see Table S4 for exact values). R17 titrated in the increasing pH direction after injection into a low pH solution at a concentration of ~3 μM (R17-Cycle A Up) and ~1.3 μM (R17-Low Conc.). (R17-Annealed) R17 titrated in the increasing pH direction after both injection into a low pH solution and annealing at 85 °C. (R17-Cycle A Down) titration of the same samples from "R17-Cycle A Up" in the decreasing pH direction. Note that the data shown are the regression lines from analysis via Equation 2 and do not show the replicate data points from titration experiments.

Figure 6: dC₁₉ pH titration cycles recorded *circa* 288 nm in the CD spectrum (see Table S4 for exact values). Increasing pH titrations are black and decreasing pH titrations are red. (A) Cycle A, increasing pH (inset 1), then decreasing pH (inset 2). (B) Cycle B, decreasing pH (inset 2), then increasing pH (inset 1). Insets are plots according to equation 2 for each directional pH titration. Table S3 contains fit parameters, structural populations (for multiphasic curves) and sample concentrations. Table S4 contains pertinent statistics information for each fit. The (*) indicates the starting pH for each cycle.

Figure 7: R17 bromine footprinting. The gel shown at left indicates a possibility for two conformations of the intramolecular R17 i-motif. Sample preparation for the pH 5 lane was analogous to samples injected into a low pH solution and titrated toward high pH, therefore these structures represent the main conformations of R17 for triphasic unfolding.