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Abstract—A minimax design for 2-D complex-coefficient FIR
filters having asymmetric frequency responses is proposed in
this paper. We consider the general form of 2-D FIR filters
with low group delay and formulate the minimax design as a
semidefinite programming problem. The 2-D linear-phase FIR
filters with conjugate-symmetric coefficients are a special case
of the proposed design. Example filter designs having near-
equiripple magnitude responses are presented to verify the
effectiveness of the proposed design method.

Index Terms—2-D FIR filters, complex-coefficient, minimax
design, equiripple, semidefinite programming.

I. INTRODUCTION

Two-dimensional (2-D) filters are employed in numerous
applications in image processing and array signal process-
ing [1]-[10], and in designing higher-dimensional filters [11]-
[17]. Two-dimensional finite-extent impulse response (FIR) fil-
ters are often preferred to 2-D infinite-extent impulse response
(IIR) filters in many applications because the former are inher-
ently stable and can be designed to have constant group delay
despite having higher computational complexities compared
to the latter. Two-dimensional FIR filters can be designed
using the windowing technique, the McClellan transform or
optimization techniques [1, chs. 6 and 9], [2, ch 4], [3, ch. 3],
[18]. These techniques predominantly consider the design of 2-
D FIR filters having symmetric frequency responses of which
the underlying filter coefficients are real-valued. A number of
optimization techniques have been developed in the last three
decades; see [19]-[31] and the references therein. In particular,
a semidefinite programming approach is presented in [32] for
both 2-D real-coefficient FIR and IIR filters.

Two-dimensional FIR filters having asymmetric frequency
responses, hence having complex-valued coefficients, are re-
quired in applications such as wideband receive-mode beam-
forming with down-converted radio-frequency signals en-
countered in antenna arrays [33]-[36] and complex wavelet
transform [37]-[40]. Despite the least-square design approach
proposed in [41] and the windowing-technique based designs
proposed in [33]-[36], very little work has been done towards
to design of 2-D complex-coefficient FIR filters.
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In this paper, a minimax design for 2-D complex-coefficient
FIR filters having asymmetric frequency responses is pro-
posed. We consider the general form of 2-D FIR filters
with low group delay, where coefficients do not posses the
conjugate symmetry. The class of 2-D linear-phase FIR filters
with conjugate-symmetric coefficients are a special case of
the proposed method. The minimax design is formulated
as a semidefinite program, which can be efficiently solved
using SeDuMi [42] or CVX [43], [44] optimization toolboxes.
To the best of authors’ knowledge, the proposed method is
the first minimax design method developed to design 2-D
complex-coefficient FIR filters with low group delay. Example
filter designs, with near-equiripple passband and stopband
magnitude responses, are presented to verify the effectiveness
of the proposed method.

II. PROPOSED MINIMAX DESIGN METHOD

A. Problem Formulation

In this subsection, we present the formulation of the min-
imax design of 2-D complex-coefficient FIR filters with low
group delay. To this end, we consider a 2-D FIR filter of order
(N1 — 1) x (No — 1) of which the transfer function is given
by

Ni—1Nx—1

H(z,29) = Z Z h(ny,ng)zy "2y "2, (1

ni =0 no =0

where h(n1,nz) is the complex-valued impulse response. The
frequency response of H (21, z2) can be obtained by evaluating
H(z1,22) on the unit bi-circle as

Ni—1Nzy—1

H(ij176jw2) — Z Z h(nth)efj(wlnlergng)

n1:0 n2:0

= elTHez, (2)
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where
h(0,0) h(0,1) -+ h(0,Ny—1)
h(1,0) h(1,1) -+ h(1,Ny—1)
H = . , .
h(Ny—1,0) h(Ny—1,1) --- h(N; —1,N, — 1)
e1=[1 e iz e—j(Nl—l)wl]T

ez =[1 eIw2 eI e_j(NQ_l)“’Z]T.

Here, H(e’*',e/*?) is considered only for the principal
Nyquist square N (= {(w1,w2) € R? | =7 < wy,ws < 7).
The expression in (2) can be expanded as
H(e'*,e7?) = [ex(wr) = jsa(wn)]" Hlez(wa) — jsa(ws2)]
= trace[P(wq,wq ) H]
— j(trace[Q(w1,w2)H]), (3)

where
ci(w;) = [1 cos(w;) cos(2w;) cos((V; — 1)wi)]T
si(w;) = [0 sin(w;) sin(2w;) sin((N; — w,)] "
P(wi,ws) = Cz(wz)cl(wl)T - 32(w2)31(w1)T
Q(w1,w2) = ca(wa)sy(wi)" + sa(wa)er(wi)”,

where i = 1,2. Now, we create the column vectors p(wq, ws)
and g(w1,w9) by stacking transposed rows of P(wq,ws) and
Q (w1, w2), respectively, and a column vector h by stacking
columns of H. Next, H(e/*! e/“2) can be expressed as

H(e'*1, /%) = p¥(wi,wa)h — jq" (w1, w2)h. (4

Furthermore, we express the complex-valued impulse response
as h = h, + jh;, where h, and h; are the real and imaginary
parts of h, respectively. Then, the frequency response can be
formulated as,
H(ejw1’ejw2) — pT(wl,wg)(hr +jhi)
—jq" (w1, w2) (hy + jh)

=p" (w1, w2)hy + q" (w1, wa)h

(

—jla" (w1, wa) —pT(wi,ws)] ﬁﬂ

=a"(w1,w2)he — jb" (w1, w2)he, @)

T
where a(w,ws) = [pT(w1,w2) g% (w1, w2)] ", blwr,ws) =
T T
[qT (w1, w2) —pT(wi,w2)] . and he = [hy  hi] .
Now the minimax design of the 2-D complex-coefficient
FIR filter can be expressed as the minimization problem given
by

min’ilmize 1T (Re, w1, w2) oo, (6)
where || - || is the infinity-norm of a vector, and the objective

function J(h.,ws,ws) is defined as

J(he,wr,we) = W(wi,ws) [H(ejwl,ejw)
_Hd(ejwl,eJWQ)} ) (7

Here, Hy(e’*1, e7*2) is the ideal frequency response of the re-
quired filter, and W (w1, ws) is a nonnegative weighting func-
tion. Note that the ideal frequency response Hg(e/“t,el«?)
can be expressed as

Hy(e?r,e392) = My(wy,wy)e I (hwrtdaway - (g)

where My(wy,ws) is the desired magnitude response and d;
(0<dy <(N1—1)/2)and dy (0 < dg < (N3 —1)/2) are the
constant group delays with respect to w; and ws, respectively.

B. Semidefinite Programming Approach

We convert the optimization problem in (6) to a semidefinite
programming problem in this subsection. To this end, we
consider the equivalent optimization problem to that in (6)
given by

min;Lmize I5) (9a)

c

subject to || J(he, w1, w2)||2 < B for (wi,wz) €N (9b)

following an approach similar to those employed for
one-dimensional and 2-D real-coefficient FIR filters de-
signs [32], [45, ch. 16.2], where [ is an upper bound on
||J(he,wi,w2)||%. The function ||J(h.,wr,ws)||%, can be
expressed using (5) and (8) as
[ (e, wi,w2) |2 = Wwi,wo) [H (71, €72)
_ Hd(ejwl’ejwz)|2
2
= W (w1, w) | (7 (@1, w2)he — Hap (1, 02)]

et o)

1%

= a? (w1, ws) + a3 (wi,ws), (10)
where
o1 (W1, W) = oy " (w1, w2 ) e — Hyp(wr,ws)
ar(wi,w2) = bu " (w1, w2)he — Hyi(wr,ws),
and
Ao (w1, we) = W(wy,ws)a(wr,ws)
bo (w1, ws) = W (w1, ws2)b(wr, ws)
ﬁd7-(W17w2) = W(wy,ws)Hgr(w1,ws)
H i (w1, w2) = W (wi,w2) Hai (wi, wo)
Note that

Hdr(wl,wg) = Md(wl,w2) cos(d1w1 —+ dgwg)
Hdi(wl,wg) = Md(wl,wg) sin(dlwl + d2w2).

Using (10), the constraint in (9b) can be expressed as
B — a2 (wy,ws) — ai(wi,ws) >0 for (wi,wz) €N (11)

and it can be shown that this inequality holds if and only if
the matrix D(wq,ws) defined as

ﬁ al(whwz) ag(wl,wg)
D(wi,ws) = |ag(wr,ws) 1 0 (12)
a2(w1,w2) 0 1
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is positive semidefinite for (wy,w2) € N [45, ch. 16.2].
Next, we define © = [3 hZ]T, which is a (2N7 Ny + 1)-
dimensional vector, and D(w1,ws) is affine with respect to
x [32], [45, ch. 16.2]. Then, we consider the discretized
version of the constraint D(wq,ws2) % 0 with a dense set
of frequencies Ny = {(wf,wh) | k =1,2,...K} C N. In
this case, D(w1,w2) = 0 becomes

F(z) >0 (13)
where,
F(x) = diag {D(w},w%), D(w%,w%)7 e ,D(w{(7w§<)} .
(14)

Using (14), the optimization problem in (9) can be formulated
to a semidefinite programming problem [45, ch. 14.2] as

minimize fT:I: (15a)
subject to  F'(x) =0 (15b)
T
where f=[1 0 0 --- 0]1X(2N1N2+1).

III. DESIGN EXAMPLES

In this section, we present design examples of a 2-D circular
filter and a 2-D trapezoidal filter in order to confirm the
effectiveness of the proposed method. For both filter designs,
we employ CVX [43], [44] as the optimization toolbox with
an Intel Core i7-4770 processor (3.4 GHz) and 16 GB RAM.

A. Example 1

In the first example, we consider the design of a 2-D FIR
shifted circularly-symmetric filter with low group delay. Such
filters are required for beamforming of narrowband radio-
frequency plane waves received by uniform planar arrays [46,
ch. 4]. The specifications of the magnitude response of the
filter is selected as same as the second example presented
in [41], i.e., the passband is a circle of which the center is
(—0.37,0.27) rad/sample and the radius is 0.37 rad/sample;
the stopband is the outside region of a circle having the same
center and a radius of 0.57 rad/s. However, we consider a
lower group delay filter whereas the weighted-least square
design in [41] is a linear-phase filter. The 2-D filter is designed
with orders of 10 x 10, 16 x 16, 22 x 22, and 28 x 28, with the
group delays of (4,4), (6,6), (8,8) and (10, 10), respectively.
The weight function W (wy,ws) is selected to obtain near
equiripple magnitude responses, with W (wy,ws) = 0 for the
transition band. For example, for the filter having order 28 x 28,
the W (w1, ws) is selected as

1, (w1, ws) € passband
0, (w1,ws) € transition band
1, {(w1,ws) € stopband} N
{=0.75m <w; <0.157
U—0.25m < wy < 0.657}
otherwise.

W(wl,wg) =

0.05,

Furthermore, 60 x 60, 70 x 70, 70 x 70, and 80 x 80 point grids
are selected, respectively, and the number of grid points in the

TABLE I: The maximum passband ripple, the minimum
stopband attenuation, and the maximum absolute errors of
the group delays of the designed 2-D FIR shifted circularly-
symmetric filter.

Filter order 10x 10 16 x16 22x22 28 x 28
0p (dB) 0.4790 0.1573 0.0648 0.0250
és (dB) 25.3371  33.7812 425545  50.7942

€d,1 0.3174 0.4623 0.4293 0.2851
€d,2 0.3174 0.4944 0.3783 0.2851

passband and the stopband regions are 3277, 4429, 4429 and
5757, respectively. The maximum passband ripple §,, and the
minimum stopband attenuation &, achieved with each filter,
and the maximum absolute errors e41 and eg o of the group
delays are presented in Table I. The filter designs take 49.17 s,
173.72s,495.67 s, and 1970.97 s, respectively. The magnitude
response and the group delay in the passband with respect to
wy and wo of the filter having the order 28 x 28 are shown
in Figs. 1(a), 1(b) and 1(c), respectively. It can be observed
that the magnitude response is near equiripple. Furthermore,
according to Table I, with the filter of order 28 x 28, 0.025
dB passband ripple and 50 dB stopband attenuation can be
achieved with less than 3% deviation of the group delay. These
results confirm the effectiveness of the proposed minimax
design method. Note that, to the best of our knowledge, we
are unaware of previously reported minimax design methods
for 2-D FIR complex-coefficient filters with low group delay
in order to perform a fair comparison.

B. Example 11

In the second example, we consider the design of a 2-
D linear-phase FIR trapezoidal filter typically employed for
wideband beamforming of radio-frequency plane waves re-
ceived by uniform linear arrays at the baseband [33]-[36].
The magnitude response of such a filter is specified by the
angles 6, and 62, the cutoff frequencies wj ¢, w1 ¢y and wa ¢,
and the width of the transition band w; as shown in Fig 2.
The 2-D trapezoidal filter is designed for the specifications
01 = 89.3°, 02 = 88.7°, wy,q = 0.247 rad/sample, wi ¢, =
0.437 rad/sample, wa . = 0.837 rad/sample and w; = 0.17
rad/sample, with orders of 10x 10, 16x 16, 22x22, and 28 x 28.
Due to the linear-phase responses, the constant group delays of
the filters are (5,5), (8,8), (11,11) and (14, 14), respectively.
The weight function W (w1, ws) is selected as W (wq,ws) =1
for both passband and stopband, and W(w;,ws) = 0 for
the transition band leading to equiripple magnitude responses.
Similar to the design example I, 60 x 60, 70 x 70, 70 x 70,
and 80 x 80 point grids are selected, respectively, and the
number of grid points in the passband and the stopband regions
are 3355, 4541, 4541 and 5901, respectively. The maximum
passband ripple d,, and the minimum stopband attenuation d,
achieved with each example design are presented in Table II.
The filter designs take 51.31's, 329.79 s, 844.71 s, and 2739.51
s, respectively. The magnitude response of the filter of order
28 x 28 is shown in Fig. 3. It can be observed that the
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Fig. 1: (a) The magnitude response and the group delay, (b)
with respect to wy and (c) with respect to ws, of the 2-D FIR
shifted circularly-symmetric filter having the order 28 x 28 in
the passband.

Fig. 2: The ideal passband of a 2-D trapezoidal filter.

magnitude response is near equiripple. Furthermore, all the
filters achieved more than 15 dB stopband attenuation. In
particular, a stopband attenuation of 30 dB and a maximum
passband ripple of 0.03 dB are achieved with the filter of order
28 x 28.

Two-dimensional linear-phase FIR trapezoidal filters hav-
ing the same orders and similar passbands are designed
using the windowing technique with 2-D separable Dolph-
Chebyshev windows [36]. Note that the Dolph-Chebyshev
window leads to near equiripple passband and stopband mag-
nitude responses [47, ch. 9.3]. The ripple-ratio parameter of the
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Fig. 3: The magnitude response of the 2-D FIR trapezoidal
filter of order 28 x 28.

TABLE II: The maximum passband ripple and the minimum
stopband attenuation of the designed 2-D linear-phase FIR
trapezoidal filters.

Filter order 10x10 16 x16 22x22 28 x 28
proposed method

0p (dB) 0.1707 0.1131 0.0604 0.0305

ds (dB) 15.3570  18.9312 24.3844  30.3189
method in [36]

6p (dB) 3.2811 2.8608 1.5625 0.5995

és (dB) 15.2860 18.9100 24.1368  30.1992

Dolph-Chebyshev windows are selected to achieve minimum
stopband attenuations (J,) similar to those obtained with the
proposed filter design method. The maximum passband ripple
dp and the minimum stopband attenuation J, achieved with
each filter are presented in Table II. It is evident that the
proposed minimax design method provides significantly small
passband ripple compared to those achieved with the filters
designed using the windowing technique [36] for similar
minimum stopband attenuations. These results confirm the
effectiveness of the proposed minimax design method.

IV. CONCLUSIONS AND FUTURE WORK

A minimax design for 2-D complex-coefficient FIR filters
having asymmetric frequency responses and low group delay is
proposed. The minimax design is formulated as a semidefinite
programming problem. Two design examples are presented to
confirm the effectiveness of the proposed method. In particu-
lar, near-equiripple magnitude responses with small passband
ripple can be achieved with the proposed minimax design
method. Future work includes the extension of the proposed
method to design 2-D sparse complex-coefficient FIR filters
and discrete-space continuous-time 2-D complex-coefficient
FIR filters for beamforming applications.
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