
Minimax Design of 2-D Complex-Coefficient FIR

Filters with Low Group Delay using

Semidefinite Programming

Ashira L. Jayaweera∗, Sakila S. Jayaweera∗, Chamira U. S. Edussooriya∗, Chamith Wijenayake†,

and Arjuna Madanayake‡

∗Department of Electronic and Telecommunication Engineering, University of Moratuwa, Moratuwa, Sri Lanka
†School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia

‡Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA

Emails: {ashiraj,sakilaj,chamira}@uom.lk, c.wijenayake@uq.edu.au, amadanay@fiu.edu

Abstract—A minimax design for 2-D complex-coefficient FIR
filters having asymmetric frequency responses is proposed in
this paper. We consider the general form of 2-D FIR filters
with low group delay and formulate the minimax design as a
semidefinite programming problem. The 2-D linear-phase FIR
filters with conjugate-symmetric coefficients are a special case
of the proposed design. Example filter designs having near-
equiripple magnitude responses are presented to verify the
effectiveness of the proposed design method.

Index Terms—2-D FIR filters, complex-coefficient, minimax
design, equiripple, semidefinite programming.

I. INTRODUCTION

Two-dimensional (2-D) filters are employed in numerous

applications in image processing and array signal process-

ing [1]–[10], and in designing higher-dimensional filters [11]–

[17]. Two-dimensional finite-extent impulse response (FIR) fil-

ters are often preferred to 2-D infinite-extent impulse response

(IIR) filters in many applications because the former are inher-

ently stable and can be designed to have constant group delay

despite having higher computational complexities compared

to the latter. Two-dimensional FIR filters can be designed

using the windowing technique, the McClellan transform or

optimization techniques [1, chs. 6 and 9], [2, ch .4], [3, ch. 3],

[18]. These techniques predominantly consider the design of 2-

D FIR filters having symmetric frequency responses of which

the underlying filter coefficients are real-valued. A number of

optimization techniques have been developed in the last three

decades; see [19]–[31] and the references therein. In particular,

a semidefinite programming approach is presented in [32] for

both 2-D real-coefficient FIR and IIR filters.

Two-dimensional FIR filters having asymmetric frequency

responses, hence having complex-valued coefficients, are re-

quired in applications such as wideband receive-mode beam-

forming with down-converted radio-frequency signals en-

countered in antenna arrays [33]–[36] and complex wavelet

transform [37]–[40]. Despite the least-square design approach

proposed in [41] and the windowing-technique based designs

proposed in [33]–[36], very little work has been done towards

to design of 2-D complex-coefficient FIR filters.

In this paper, a minimax design for 2-D complex-coefficient

FIR filters having asymmetric frequency responses is pro-

posed. We consider the general form of 2-D FIR filters

with low group delay, where coefficients do not posses the

conjugate symmetry. The class of 2-D linear-phase FIR filters

with conjugate-symmetric coefficients are a special case of

the proposed method. The minimax design is formulated

as a semidefinite program, which can be efficiently solved

using SeDuMi [42] or CVX [43], [44] optimization toolboxes.

To the best of authors’ knowledge, the proposed method is

the first minimax design method developed to design 2-D

complex-coefficient FIR filters with low group delay. Example

filter designs, with near-equiripple passband and stopband

magnitude responses, are presented to verify the effectiveness

of the proposed method.

II. PROPOSED MINIMAX DESIGN METHOD

A. Problem Formulation

In this subsection, we present the formulation of the min-

imax design of 2-D complex-coefficient FIR filters with low

group delay. To this end, we consider a 2-D FIR filter of order

(N1 − 1) × (N2 − 1) of which the transfer function is given

by

H(z1, z2) =

N1−1∑

n1=0

N2−1∑

n2=0

h(n1, n2)z
−n1

1 z−n2

2 , (1)

where h(n1, n2) is the complex-valued impulse response. The

frequency response of H(z1, z2) can be obtained by evaluating

H(z1, z2) on the unit bi-circle as

H(ejω1 , ejω2) =

N1−1∑

n1=0

N2−1∑

n2=0

h(n1, n2)e
−j(ω1n1+ω2n2)

= e1
THe2, (2)
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where

H =




h(0, 0) h(0, 1) · · · h(0, N2 − 1)
h(1, 0) h(1, 1) · · · h(1, N2 − 1)

...
...

. . .
...

h(N1 − 1, 0) h(N1 − 1, 1) · · · h(N1 − 1, N2 − 1)




e1 =
[
1 e−jω1 e−j2ω1 · · · e−j(N1−1)ω1

]T

e2 =
[
1 e−jω2 e−j2ω2 · · · e−j(N2−1)ω2

]T
.

Here, H(ejω1 , ejω2) is considered only for the principal

Nyquist square N (= {(ω1, ω2) ∈ R
2 | −π ≤ ω1, ω2 < π}).

The expression in (2) can be expanded as

H(ejω1 , ejω2) = [c1(ω1)− js1(ω1)]
TH[c2(ω2)− js2(ω2)]

= trace[P (ω1, ω2)H ]

− j(trace[Q(ω1, ω2)H ]), (3)

where

ci(ωi) =
[
1 cos(ωi) cos(2ωi) · · · cos((Ni − 1)ωi)

]T

si(ωi) =
[
0 sin(ωi) sin(2ωi) · · · sin((Ni − 1)ωi)

]T

P (ω1, ω2) = c2(ω2)c1(ω1)
T − s2(ω2)s1(ω1)

T

Q(ω1, ω2) = c2(ω2)s1(ω1)
T + s2(ω2)c1(ω1)

T,

where i = 1, 2. Now, we create the column vectors p(ω1, ω2)
and q(ω1, ω2) by stacking transposed rows of P (ω1, ω2) and

Q(ω1, ω2), respectively, and a column vector h by stacking

columns of H . Next, H(ejω1 , ejω2) can be expressed as

H(ejω1 , ejω2) = pT(ω1, ω2)h− jqT(ω1, ω2)h. (4)

Furthermore, we express the complex-valued impulse response

as h = hr+ jhi, where hr and hi are the real and imaginary

parts of h, respectively. Then, the frequency response can be

formulated as,

H(ejω1 , ejω2) = pT(ω1, ω2)(hr + jhi)

− jqT(ω1, ω2)(hr + jhi)

= pT(ω1, ω2)hr + qT(ω1, ω2)hi

− j
[
qT(ω1, ω2) −pT(ω1, ω2)

] [hr

hi

]

= aT(ω1, ω2)hc − jbT(ω1, ω2)hc, (5)

where a(ω1, ω2) =
[
pT(ω1, ω2) qT(ω1, ω2)

]T
, b(ω1, ω2) =[

qT(ω1, ω2) −pT(ω1, ω2)
]T

, and hc =
[
hr hi

]T
.

Now the minimax design of the 2-D complex-coefficient

FIR filter can be expressed as the minimization problem given

by

minimize
hc

‖J(hc, ω1, ω2)‖∞, (6)

where ‖·‖∞ is the infinity-norm of a vector, and the objective

function J(hc, ω1, ω2) is defined as

J(hc, ω1, ω2) = W (ω1, ω2)
[
H(ejω1 , ejω2)

−Hd(e
jω1 , ejω2)

]
. (7)

Here, Hd(e
jω1 , ejω2) is the ideal frequency response of the re-

quired filter, and W (ω1, ω2) is a nonnegative weighting func-

tion. Note that the ideal frequency response Hd(e
jω1 , ejω2)

can be expressed as

Hd(e
jω1 , ejω2) = Md(ω1, ω2)e

−j(d1ω1+d2ω2), (8)

where Md(ω1, ω2) is the desired magnitude response and d1
(0 < d1 ≤ (N1−1)/2) and d2 (0 < d2 ≤ (N2−1)/2) are the

constant group delays with respect to ω1 and ω2, respectively.

B. Semidefinite Programming Approach

We convert the optimization problem in (6) to a semidefinite

programming problem in this subsection. To this end, we

consider the equivalent optimization problem to that in (6)

given by

minimize
hc

β (9a)

subject to ‖J(hc, ω1, ω2)‖
2
∞

≤ β for (ω1, ω2) ∈ N (9b)

following an approach similar to those employed for

one-dimensional and 2-D real-coefficient FIR filters de-

signs [32], [45, ch. 16.2], where β is an upper bound on

‖J(hc, ω1, ω2)‖2∞. The function ‖J(hc, ω1, ω2)‖2∞ can be

expressed using (5) and (8) as

‖J(hc, ω1, ω2)‖
2
∞

= W 2(ω1, ω2)|H(ejω1 , ejω2)

−Hd(e
jω1 , ejω2)|2

= W 2(ω1, ω2)
[(
aT(ω1, ω2)hc −Hdr(ω1, ω2)

]2

+
[
bT(ω1, ω2)hc −Hdi(ω1, ω2)

)2]

= α2
1(ω1, ω2) + α2

2(ω1, ω2), (10)

where

α1(ω1, ω2) = aw
T(ω1, ω2)hc − Ĥdr(ω1, ω2)

α1(ω1, ω2) = bw
T(ω1, ω2)hc − Ĥdi(ω1, ω2),

and

aw(ω1, ω2) = W (ω1, ω2)a(ω1, ω2)

bw(ω1, ω2) = W (ω1, ω2)b(ω1, ω2)

Ĥdr(ω1, ω2) = W (ω1, ω2)Hdr(ω1, ω2)

Ĥdi(ω1, ω2) = W (ω1, ω2)Hdi(ω1, ω2).

Note that

Hdr(ω1, ω2) = Md(ω1, ω2) cos(d1ω1 + d2ω2)

Hdi(ω1, ω2) = Md(ω1, ω2) sin(d1ω1 + d2ω2).

Using (10), the constraint in (9b) can be expressed as

β − α2
1(ω1, ω2)− α2

2(ω1, ω2) ≥ 0 for (ω1, ω2) ∈ N (11)

and it can be shown that this inequality holds if and only if

the matrix D(ω1, ω2) defined as

D(ω1, ω2) =




β α1(ω1, ω2) α2(ω1, ω2)
α1(ω1, ω2) 1 0
α2(ω1, ω2) 0 1


 (12)
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is positive semidefinite for (ω1, ω2) ∈ N [45, ch. 16.2].

Next, we define x =
[
β hT

c

]T
, which is a (2N1N2 + 1)-

dimensional vector, and D(ω1, ω2) is affine with respect to

x [32], [45, ch. 16.2]. Then, we consider the discretized

version of the constraint D(ω1, ω2) < 0 with a dense set

of frequencies Nd = {(ωk
1 , ω

k
2 ) | k = 1, 2, . . . K} ⊆ N . In

this case, D(ω1, ω2) < 0 becomes

F (x) < 0 (13)

where,

F (x) = diag
{
D(ω1

1 , ω
1
2),D(ω2

1 , ω
2
2), · · · ,D(ωK

1 , ωK
2 )

}
.

(14)

Using (14), the optimization problem in (9) can be formulated

to a semidefinite programming problem [45, ch. 14.2] as

minimize fTx (15a)

subject to F (x) < 0 (15b)

where f =
[
1 0 0 · · · 0

]T
1×(2N1N2+1)

.

III. DESIGN EXAMPLES

In this section, we present design examples of a 2-D circular

filter and a 2-D trapezoidal filter in order to confirm the

effectiveness of the proposed method. For both filter designs,

we employ CVX [43], [44] as the optimization toolbox with

an Intel Core i7-4770 processor (3.4 GHz) and 16 GB RAM.

A. Example I

In the first example, we consider the design of a 2-D FIR

shifted circularly-symmetric filter with low group delay. Such

filters are required for beamforming of narrowband radio-

frequency plane waves received by uniform planar arrays [46,

ch. 4]. The specifications of the magnitude response of the

filter is selected as same as the second example presented

in [41], i.e., the passband is a circle of which the center is

(−0.3π, 0.2π) rad/sample and the radius is 0.3π rad/sample;

the stopband is the outside region of a circle having the same

center and a radius of 0.5π rad/s. However, we consider a

lower group delay filter whereas the weighted-least square

design in [41] is a linear-phase filter. The 2-D filter is designed

with orders of 10×10, 16×16, 22×22, and 28×28, with the

group delays of (4, 4), (6, 6), (8, 8) and (10, 10), respectively.

The weight function W (ω1, ω2) is selected to obtain near

equiripple magnitude responses, with W (ω1, ω2) = 0 for the

transition band. For example, for the filter having order 28×28,

the W (ω1, ω2) is selected as

W (ω1, ω2) =





1, (ω1, ω2) ∈ passband

0, (ω1, ω2) ∈ transition band

1, {(ω1, ω2) ∈ stopband} ∩

{−0.75π ≤ ω1 ≤ 0.15π

∪ − 0.25π ≤ ω2 ≤ 0.65π}

0.05, otherwise.

Furthermore, 60×60, 70×70, 70×70, and 80×80 point grids

are selected, respectively, and the number of grid points in the

TABLE I: The maximum passband ripple, the minimum

stopband attenuation, and the maximum absolute errors of

the group delays of the designed 2-D FIR shifted circularly-

symmetric filter.

Filter order 10× 10 16× 16 22× 22 28× 28

δp (dB) 0.4790 0.1573 0.0648 0.0250

δs (dB) 25.3371 33.7812 42.5545 50.7942

ed,1 0.3174 0.4623 0.4293 0.2851

ed,2 0.3174 0.4944 0.3783 0.2851

passband and the stopband regions are 3277, 4429, 4429 and

5757, respectively. The maximum passband ripple δp and the

minimum stopband attenuation δs achieved with each filter,

and the maximum absolute errors ed,1 and ed,2 of the group

delays are presented in Table I. The filter designs take 49.17 s,

173.72 s, 495.67 s, and 1970.97 s, respectively. The magnitude

response and the group delay in the passband with respect to

ω1 and ω2 of the filter having the order 28 × 28 are shown

in Figs. 1(a), 1(b) and 1(c), respectively. It can be observed

that the magnitude response is near equiripple. Furthermore,

according to Table I, with the filter of order 28 × 28, 0.025
dB passband ripple and 50 dB stopband attenuation can be

achieved with less than 3% deviation of the group delay. These

results confirm the effectiveness of the proposed minimax

design method. Note that, to the best of our knowledge, we

are unaware of previously reported minimax design methods

for 2-D FIR complex-coefficient filters with low group delay

in order to perform a fair comparison.

B. Example II

In the second example, we consider the design of a 2-

D linear-phase FIR trapezoidal filter typically employed for

wideband beamforming of radio-frequency plane waves re-

ceived by uniform linear arrays at the baseband [33]–[36].

The magnitude response of such a filter is specified by the

angles θ1 and θ2, the cutoff frequencies ω1,cl, ω1,cu and ω2,c,

and the width of the transition band ωt as shown in Fig 2.

The 2-D trapezoidal filter is designed for the specifications

θ1 = 89.3◦, θ2 = 88.7◦, ω1,cl = 0.24π rad/sample, ω1,cu =
0.43π rad/sample, ω2,c = 0.83π rad/sample and ωt = 0.1π
rad/sample, with orders of 10×10, 16×16, 22×22, and 28×28.

Due to the linear-phase responses, the constant group delays of

the filters are (5, 5), (8, 8), (11, 11) and (14, 14), respectively.

The weight function W (ω1, ω2) is selected as W (ω1, ω2) = 1
for both passband and stopband, and W (ω1, ω2) = 0 for

the transition band leading to equiripple magnitude responses.

Similar to the design example I, 60 × 60, 70 × 70, 70 × 70,

and 80 × 80 point grids are selected, respectively, and the

number of grid points in the passband and the stopband regions

are 3355, 4541, 4541 and 5901, respectively. The maximum

passband ripple δp and the minimum stopband attenuation δs
achieved with each example design are presented in Table II.

The filter designs take 51.31 s, 329.79 s, 844.71 s, and 2739.51
s, respectively. The magnitude response of the filter of order

28 × 28 is shown in Fig. 3. It can be observed that the
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Fig. 1: (a) The magnitude response and the group delay, (b)

with respect to ω1 and (c) with respect to ω2, of the 2-D FIR

shifted circularly-symmetric filter having the order 28× 28 in

the passband.

π

-π

ω2

ω1

ω2,c

-ω2,c

π-π

θ1 θ2

ωt

ω1,cl ω1,cu

Fig. 2: The ideal passband of a 2-D trapezoidal filter.

magnitude response is near equiripple. Furthermore, all the

filters achieved more than 15 dB stopband attenuation. In

particular, a stopband attenuation of 30 dB and a maximum

passband ripple of 0.03 dB are achieved with the filter of order

28× 28.

Two-dimensional linear-phase FIR trapezoidal filters hav-

ing the same orders and similar passbands are designed

using the windowing technique with 2-D separable Dolph-

Chebyshev windows [36]. Note that the Dolph-Chebyshev

window leads to near equiripple passband and stopband mag-

nitude responses [47, ch. 9.3]. The ripple-ratio parameter of the
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Fig. 3: The magnitude response of the 2-D FIR trapezoidal

filter of order 28× 28.

TABLE II: The maximum passband ripple and the minimum

stopband attenuation of the designed 2-D linear-phase FIR

trapezoidal filters.

Filter order 10× 10 16× 16 22× 22 28× 28

proposed method
δp (dB) 0.1707 0.1131 0.0604 0.0305
δs (dB) 15.3570 18.9312 24.3844 30.3189

method in [36]
δp (dB) 3.2811 2.8608 1.5625 0.5995
δs (dB) 15.2860 18.9100 24.1368 30.1992

Dolph-Chebyshev windows are selected to achieve minimum

stopband attenuations (δs) similar to those obtained with the

proposed filter design method. The maximum passband ripple

δp and the minimum stopband attenuation δs achieved with

each filter are presented in Table II. It is evident that the

proposed minimax design method provides significantly small

passband ripple compared to those achieved with the filters

designed using the windowing technique [36] for similar

minimum stopband attenuations. These results confirm the

effectiveness of the proposed minimax design method.

IV. CONCLUSIONS AND FUTURE WORK

A minimax design for 2-D complex-coefficient FIR filters

having asymmetric frequency responses and low group delay is

proposed. The minimax design is formulated as a semidefinite

programming problem. Two design examples are presented to

confirm the effectiveness of the proposed method. In particu-

lar, near-equiripple magnitude responses with small passband

ripple can be achieved with the proposed minimax design

method. Future work includes the extension of the proposed

method to design 2-D sparse complex-coefficient FIR filters

and discrete-space continuous-time 2-D complex-coefficient

FIR filters for beamforming applications.
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